of 26 /26
Sec 2.1.5 How Arithmetic Sequences Work? Generalizing Arithmetic Sequences

# Sec 2.1.5 How Arithmetic Sequences Work? Generalizing Arithmetic Sequences

Embed Size (px)

### Text of Sec 2.1.5 How Arithmetic Sequences Work? Generalizing Arithmetic Sequences Sec 2.1.5How Arithmetic Sequences

Work?

Generalizing Arithmetic Sequences Blast from the past

• Solve the system of equations:

x+9y=33

x+21y=-3 Test 2Thursday Oct 31

Happy Halloween! So far:• Linear function:• Constant increase or

(or subtracted) to the output as the input increases by one unit.

• Exponential function:

• Constant growth or decay by a common ratio.

• The output is multiplied (or divided) by a common ratio as the input increases by one unit. Next few lessons

Arithmetic sequences:

Constant increase or decrease.

Geometric Sequences:Constant growth or decay by a common ratio.  Some terms you should know before we start

• Definition of Counting Numbers• The numbers which are used for counting from

one to infinity are called Counting Numbers. • More about Counting Numbers• Counting numbers are also called as natural

numbers.

• Counting numbers are designated as n. Example on Counting Numbers

Identify the counting numbes.

A. 30B. 9.1C. 0D. 10

E. -2

F. 1 A sequence can be thought of as a function, with

the input numbers consisting of the natural

numbers, and the output numbers being the

terms. A sequence in which a constant (d) can be added to each term to get the next term is called an

Arithmetic Sequence.

The constant (d) is called theCommon Difference. To find the common difference (d), subtract any term from one that follows it.

2 5 8 11 14

3 3 3 3

t1 t2 t3 t4 t5 Find the first term and the common difference of each arithmetic sequence.

1.) 4,9,14,19,24First term (a): 4Common difference (d): 2 1a a = 9 – 4 = 5

2.) 34,27,20,13,6, 1, 8,.... First term (a): 34Common difference (d): -7

BE CAREFUL: ALWAYS CHECK TO MAKE SURE THE DIFFERENCE IS THE SAME BETWEEN EACH TERM ! Now you try!Find the first term and the common difference of each of these arithmetic sequences.

b) 11, 23, 35, 47, ….

a) 1, -4, -9, -14, ….

d) s-4, 3s-3, 5s-2, 7s-1, …..

c) 3x-8, x-8, -x-8, -3x-8 b) 11, 23, 35, 47, ….

a) 1, -4, -9, -14, ….

d) s-4, 3s-3, 5s-2, 7s-1, …..

c) 3x-8, x-8, -x-8, -3x-8

a = 1 and

d = a2 - a1 = - 4 - 1 = - 5

a = 11 and

d = a2 - a1 = 23 - 11 = 12

a = 3x-8 and

d = a2 - a1 = x – 8 – (3x – 8) = - 2x

a = s - 4 and

d = a2 - a1 = 3s – 3 – (s – 4) = 2s + 1 The first term of an arithmetic sequence is (a) . We add (d) to get the next term. There is a pattern, therefore there is a formula we can use to give use any term that we need without listing the whole sequence .

3, 7, 11, 15, …. We know a = 3 and d = 4

t1= a = 3

t2= a+d = 3+4 = 7

t3= a+d+d = a+2d = 3+2(4) = 11

t4 = a+d+d+d = a+3d = 3+3(4) = 15 The first term of an arithmetic sequence is (a) . We add (d) to get the next term. There is a pattern, therefore there is a formula we can use to give use any term that we need without listing the whole sequence .

The nth term of an arithmetic sequence is given by:

The last # in the sequence/or the # you are looking for

First term

The position the term is in The common

difference

tn = t1 + (n – 1) d Explicit Formula of a Sequence

• A formula that allows direct computation of any term for a sequence a1, a2, a3, . . . , an, . . . .

• To determine the explicit formula, the pervious term need not be computed. Find the 14th term of the arithmetic sequence4, 7, 10, 13,……

(14 1) 44 (13)3 4 39 43

tn = t1 + (n – 1) dt14 = 3 You are

looking for the term!

The 14th term in this sequence is the number 43! Now you try!Find the 10th and 25th term given the following information. Make sure to derive the general formula first and then list ehat you have been provided.

b) x+10, x+7, x+4, x+1, ….

a) 1, 7, 13, 19 ….

d) The second term is 8 and the common difference is 3

c) The first term is 3 and the common difference is -21 b) x+10, x+7, x+4, x+1,.

a) 1, 7, 13, 19 …. ….

d) The second term is 8 and the common difference is 3

c) The first term is 3 and the common difference is -21

Answers with solutionsa = 1 and d = a2 - a1 = 7 – 1 = 6

tn=a+(n-1)d = 1 + (n-1) 6 = 1+6n-6 So tn = 6n-5

t10 = 6(10) – 5 = 55

t25 = 6(25)-5 = 145a = x+10 and d = a2 - a1 = x+7-(x+10) = -3

tn=a+(n-1)d = x+10 + (n-1)(-3) = x+10-3n+3 So tn= x-3n+13

t10 = x -3(10)+13 = x - 17

t25 = x -3(25)+13 = x - 62

a = 3 and d = -21

tn=a+(n-1)d = 3 + (n-1) -21 = 3-21n+21 So tn= 24-21n

t10 = 24-21(10) = -186 t25 = 24-21(25) = -501

a = 8 - 3 = 5 and d = 3

tn=a+(n-1)d = 5 + (n-1) 3 = 5+3n-3 So tn = 3n+2

t10 = 3(10) +2 = 32 t25 = 3(25)+2 = 77 Find the 14th term of the arithmetic sequence with first term of 5 and the common difference is –6.

(14 1) tn = a + (n – 1) dt14 =

You are looking for the term! List which variables from the general term are

provided!

The 14th term in this sequence is the number -73!

a = 5 and d = -6

5 -6

= 5 + (13) * -6= 5 + -78= -73 In the arithmetic sequence 4,7,10,13,…, which term has a value of 301?

301 4 ( 1)3n 301 4 3 3n 301 1 3n 300 3n100 n

tn = t1 + (n – 1) d

You are looking for n!

The 100th term in this sequence is 301! In the arithmetic sequence 4,7,10,13,…,

Can a term be 560?

tn = t1 + (n – 1) d

You are looking for n!

560 is not a term. In an arithmetic sequence, term 10 is 33 and term 22 is –3. What are the first four terms of the sequence?

The sequence is 60, 57, 54, 51, …….

Use what you know!t10=33

t22= -3

tn = t1 + (n – 1) dFor term 10: 33= a + 9d

tn = t1 + (n – 1) d

For term 22: -3= a + 21d

HMMM! Two equations you can solve! 33 = a+9d

-3 = a+21d

By elimination -36 = 12d

-3 = d

SOLVE: SOLVE: 33 = a + 9d

33 = a +9(-3)

33 = a –27

60 = a Recursive Formula• For a sequences a1, a2, a3, . . . , an, . . . a

recursive formula is a formula that requires the computation of all previous terms in order to find the value of an . homework

• Review and Preview

• Page 78

• #71-77 all

• http://mathbits.com/MathBits/TISection/Algebra2/sequences.htm ##### Mathematical Patterns. Arithmetic Sequences. Arithmetic ... · Arithmetic Sequences. Arithmetic Series. To identify mathematical patterns found n a sequence. To use a formula to find
Documents ##### SECTION 9.2: ARITHMETIC SEQUENCES and … 9.2: ARITHMETIC SEQUENCES and PARTIAL SUMS ... (Chapter 9: Discrete Math) 9.13 PART B: ... arithmetic sequences often arise from linear models
Documents ##### hon alg2 unit a.2.2 notes - McLean County Unit District No. 5...A • 2.2 How do arithmetic sequences work? Generalizing Arithmetic Sequences In Lesson A.2.1, you learned how to identify
Documents ##### Concept 16: Arithmetic & Geometric Sequences€¦ · Concept 16 Arithmetic & Geometric Sequences Notes Level 2: Goals: Identify Arithmetic and Geometric Sequences Find the next term
Documents ##### hon alg2 unit a.2.2 notes - McLean County Unit 5 / Homepage · 2015. 9. 12. · A • 2.2 How do arithmetic sequences work? Generalizing Arithmetic Sequences In Lesson A.2.1, you
Documents ##### Arithmetic Sequences - Weebly · 2018-08-10 · Arithmetic Sequences Focus: To understand and apply the concept of arithmetic sequences Warmup - The starting salary of an employee
Documents ##### 9.2 – Arithmetic Sequences and Series. An introduction………… Arithmetic Sequences ADD To get next term Geometric Sequences MULTIPLY To get next term Arithmetic
Documents ##### Objectives: To identify and extend patterns in sequences. To represent arithmetic sequences using functions notation Arithmetic Sequences
Documents ##### Section 9.2 Arithmetic Sequences. OBJECTIVE 1 Arithmetic Sequence
Documents ##### 12.1 – Arithmetic Sequences and Series. An introduction………… Arithmetic Sequences ADD To get next term Geometric Sequences MULTIPLY To get next term Arithmetic
Documents ##### 4.6 Arithmetic Sequences - Weeblyederushe.weebly.com/uploads/3/7/6/5/37655305/alg._1_4.6_tb.pdfSection 4.6 Arithmetic Sequences 209 4.6 Arithmetic Sequences COMMON ... Equation for
Documents Documents