33
1 © The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: [email protected] Genetic Therapies for Cystic Fibrosis Lung Disease Patrick L. Sinn 1 , Reshma Anthony 1 , Paul B. McCray, Jr. 1 * 1 Program in Gene Therapy, Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242 *Corresponding Author Department of Pediatrics 200 Hawkins Drive The University of Iowa College of Medicine The University of Iowa Iowa City, IA 52242 Tel: (319) 356-4866 Fax: (319) 356-7171 E‐mail: paul‐[email protected] HMG Advance Access published March 21, 2011 by guest on April 1, 2013 http://hmg.oxfordjournals.org/ Downloaded from

Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

Embed Size (px)

DESCRIPTION

UploadBrowseLibraryUploadDon't want to upload?Get unlimited access as a memberSign up nowOnce you upload an approved document, you will be able to read and download this documentREFERAT-SINDROM-NEFROTIKAyu AndrianUpload a document for free access.Select files from your computer or choose other ways to upload below.Select files to uploadFor multiple files hold down the shift key when selecting.Drag files here from your computer.Supported File Types: pdf, txt, ps, rtf, epub, key, odt, odp, ods, odg, odf, sxw, sxc, sxi, sxd, doc, ppt, pps, xls, docx, pptx, ppsx, xlsxBy uploading, you agree to the Scribd Uploader Agreement.Add files from Google Drive, Gmail, Dropbox and more with FilePicker.io.Add files from multiple cloud and file storage services.Pick FilesMore reasons to publish on ScribdScribd's platform is designed to help you easily publish your content on the web and mobile devices, distribute it to a wide and global audience, and potentially make money from selling that content. Here's more on the benefits of publishing on Scribd. Reach Scribd's audience of 90 million monthly readers. By publishing on Scribd, your content can be seen by up to 90 million people from all around the world who use Scribd. Turn your content into a beautiful HTML5 webpage, that you can even embed on another website. Scribd's patent-pending conversion technology instantly turns documents into beautifully formatted webpages. Get your content indexed by Google and other search engines. Scribd does SEO for you. Every word of your content will be fully indexed by all major search engines. Make your content social and get distribution on Facebook, Twitter, and other social networks. Social networking gets bigger every year, and even written documents now need to be social. Scribd socially optimizes all content to maximize social distribution. Make money by selling your content. If you choose to, you can set a price for your content and make it for sale through a simple link, and the earnings go right to your account. Make your content readable on iPhone, iPad, Android, and other mobile devices. Scribd makes all content easily readable on the mobile web, and provides an even better reading experience for people who download Scribd's apps. Get detailed stats on readership of your content. Scribd Stats gives you all the analytics you need on who is reading your content.What's published on Scribd?Scribd supports just about any kind of written content. Here are a few examples of the types of things we have seen published on Scribd. Creative writing Recipes How-to-guides Books Presentations School papers Spreadsheets Original essays Travel guides Legal documents Business forms Sheet music Study guides Academic papers Poetry Catalogs Speeches Letters Historical documents Scientific data Infographics Source documents Magazines Newspapers Comics ResumesGet Started.Select files from your computer or simply drag and drop.Select files to uploadFor multiple files hold down the shift key when selecting.Drag files here from your computer.Supported File Types: pdf, txt, ps, rtf, epub, key, odt, odp, ods, odg, odf, sxw, sxc, sxi, sxd, doc, ppt, pps, xls, docx, pptx, ppsx, xlsxBy uploading, you agree to the Scribd Uploader Agreement.Tell us moreMake it easier for other people to find your content by providing more information about it.Add more filesDrag files here from your computer.File 1 of 1 |buat YAnda.pdf|Uploading...18%Uploading...Discoverability Score1/5Filename: buat YAnda.pdf*Title: (Required field)*Description: (Required field)Tags:Category:Scribd Store:If you would like to sell this document rather than making it freely avai

Citation preview

Page 1: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

© The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: [email protected] 

Genetic Therapies for Cystic Fibrosis Lung Disease

Patrick L. Sinn1, Reshma Anthony1, Paul B. McCray, Jr. 1*

1Program in Gene Therapy, Department of Pediatrics, Carver College of Medicine, The

University of Iowa, Iowa City, Iowa 52242

*Corresponding Author

Department of Pediatrics

200 Hawkins Drive

The University of Iowa College of Medicine

The University of Iowa

Iowa City, IA 52242

Tel: (319) 356-4866

Fax: (319) 356-7171

E‐mail: paul‐[email protected] 

HMG Advance Access published March 21, 2011 by guest on A

pril 1, 2013http://hm

g.oxfordjournals.org/D

ownloaded from

Page 2: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

Abstract

The aim of gene therapy for cystic fibrosis (CF) lung disease is to efficiently and safely express

the cystic fibrosis transmembrane conductance regulator (CFTR) in the appropriate pulmonary

cell types. While CF patients experience multi-organ disease, the chronic bacterial lung

infections and associated inflammation are the primary cause of shortened life expectancy. Gene

transfer-based therapeutic approaches are feasible, in part, because the airway epithelium is

directly accessible by aerosol delivery or instillation. Improvements in standard delivery vectors

and the development of novel vectors, as well as emerging technologies and new animal models,

are propelling exciting new research forward. Here we review recent developments that are

advancing this field of investigation.

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 3: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

INTRODUCTION

Since the discovery of the CFTR gene in 1989, cystic fibrosis (CF) has been in the sights of

scientists hoping to prevent or delay the onset and progression of lung disease through the use of

gene transfer. While loss of CFTR function adversely affects multiple cells and tissues,

progressive lung disease accounts for the majority of the morbidity and mortality. For this

reason, most effort in the field has focused on gene transfer to the airways. CFTR is expressed in

multiple epithelial cell types in the surface and submucosal glands of the conducting airways

where its mRNA is expressed in low abundance. The gene product is an apical membrane anion

channel that is regulated by nucleotides and phosphorylation (1-3). Loss of CFTR function likely

alters the volume and composition of airway secretions, but key details of the molecular

pathogenesis of CF lung disease remain the subject of intense study.

Complementation of this autosomal recessive disease by the delivery of a CFTR cDNA to the

airway epithelium with a viral or non-viral vector holds appeal, as the envisioned target cells are

accessible via direct instillation or aerosol delivery approaches. Furthermore, early studies

indicated that complementation of as few as 6-10% of CF epithelia generated wild type levels of

chloride transport in vitro (4). However, since the completion of the first human gene therapy

trial in 1993, the achievement of this goal has proved challenging.

There is controversy regarding which cells to target for CF gene therapy. Arguments can be

made in support of correcting cells of the surface epithelium, the submucosal glands, or both (5-

8). A heterogeneous population of cell types express CFTR in the airways including ciliated

cells within the surface epithelium and a subpopulation of cells in submucosal gland ducts and

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 4: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

acini. There appear to be several epithelial cell types in the lung that provide progenitor

functions, providing the possibility of long term correction if such cells can be targeted with

integrating vectors (9). These cells may represent a pluripotent population or serve as progenitors

for a specific lineage. Experiments from several species and model systems identify potential

progenitor populations, including: basal cells (10, 11) and non-ciliated columnar cells of the

airways (10, 12, 13), submucosal gland epithelia (14-16), Clara cells (17, 18) and alveolar type II

cells in the distal lung (19, 20). Studies using integrating vectors (Moloney murine leukemia

virus (MLV)- and lentivirus-based) suggest that if cells with progenitor capacity are targeted in

vitro and in vivo, long-term expression can be attained (21-25).

RECENT VECTOR DEVELOPMENTS

Enveloped Viral Vectors

Current lentiviral vector technology has made considerable progress toward the aims of

efficiently, safely, and persistently expressing CFTR in the appropriate pulmonary cell types.

Studies are beginning to examine the consequences of repeated administration of lentiviral-based

vectors in the airways. Sinn and colleagues repeatedly administered (7 doses, 1 dose/week) a

baculovirus envelope (GP64) pseudotyped feline immunodeficiency virus (FIV)-based lentiviral

vector to the nasal epithelia of mice (26) and observed dose-dependant increases in reporter gene

expression that persisted for the 80 week duration of the experiment (Figure 1). The observed

innate or adaptive immune responses to the vector or vector encoded transgenes were minimal

and failed to curtail reporter or therapeutic gene expression. In contrast, Limberis and coworkers

reported that gene transfer with a VSV-G pseudotyped HIV vector resulted in activation of

transgene–specific T cells in mice (27). Transduction by VSV-G pseudotyped HIV vectors can

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 5: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

be further improved by formulations including magnetofectins (28), polyethylenimine (29), or

lysophosphatidylcholine (30, 31). Such methods may prove vital for achieving transduction

efficiencies sufficient to correct the chloride transport defect in vivo. Careful preclinical studies

in large animal models will be needed to further assess the safety and efficacy of the different

lentiviral vector platforms under investigation for pulmonary gene transfer.

Fetal and neonatal re-administration of a GP64-pseudotyed HIV vector was also investigated in

mouse lung (32). Buckley et al. compared a single fetal intra-amniotic administration, 3

administrations (1 fetal/2 neonatal), and 2 neonatal administrations. The levels of macrophage

transduction increased with neonatal re-administration. The authors speculated that following the

initial dose of lentiviral vector, macrophages are recruited to the pulmonary lumen and are

subsequently transduced by the second and third doses. The authors further concluded that intra-

amniotic administration of GP64-pseudotyped HIV was the most efficient mode of delivery for

achieving airway epithelial cell transduction in the mouse model.

Mitoma and colleagues described a simian immunodeficiency virus (SIV)-based lentiviral vector

pseudotyped with the Sendai virus envelope proteins, hemaglutinin-neuraminidase (HN) and

fusion (F) protein (33). F/HN-pseudotyped SIV vector transduced nasal epithelial cells, resulting

in sustained transgene expression for the duration of the experiment (8-12 months) in vivo.

Similar to studies with GP64-pseudotyped FIV (26), re-administration was feasible with F/HN-

pseudotyped SIV, where transgene expression remained stable after 3 vector doses. In addition,

F/HN-pseudotyped SIV conferred functional CFTR expression in vitro as determined by iodide

efflux assay.

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 6: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

Paramyxovirus family members with known airway tropism are currently being explored as

potential CFTR delivery vehicles for the treatment of CF lung disease using reverse genetics

systems. Kwilas and colleagues recently demonstrated that a respiratory syncytial virus (RSV)-

based vector could deliver CFTR and correct the chloride transport defect in primary cultures of

human CF airway epithelia (34). In addition, a human parainfluenza virus (PIV)-based vector

mediated detectable but transient expression of GFP and a-fetoprotein in rhesus macaques (35).

Both the RSV and PIV-based vectors are replication competent; however, these studies may lead

to replication attenuated vectors that are further engineered to reduce the expression of cytotoxic

and/or immunogenic proteins. If such engineering is feasible, it could improve the duration of

gene expression, address the obstacle of pre-existing immunity, allow for repeat administration,

and make these vectors suitable for clinical studies.

Encapsidated Viral Vectors

Helper dependent-adenoviral (HD-Ad) vectors do not express viral-coding sequences and elicit

reduced cell-mediated immune responses, as compared to earlier generations of Ad vectors.

However, HD-Ad capsid proteins remain targets for neutralizing antibodies and may trigger

cytokine responses from innate immune effector cells. Recently, Cao and colleagues

demonstrated that transient immunosuppression significantly enhanced the efficiency of

transgene expression and facilitated readministration of HD-Ad vectors to mouse lungs (36). In

addition to immunosuppression, serotype switching is a proposed technique to allow for redosing

of CFTR expressing HD-Ad vectors in vivo (37). Granio and colleagues delivered an Ad vector

expressing GFP tagged CFTR to primary cultures of human CF airway epithelia. They observed

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 7: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

that swapping Ad5 fiber with serotype 35 fiber conferred more effective apical transduction and

correction of the Cl- transport defect (38). These data suggest that Ad vectors such as Ad5 that

use the coxackie and adenovirus receptor (CAR) are less effective at transducing the apical

surface of airway epithelial cells than CAR-independent vector serotypes such as Ad35. Taken

together, these studies outline strategies for using HD-Ad, immunosuppression, serotype

switching, and optimal fiber selection to improve the safety and long-term efficacy of adenovirus

for gene transfer to the airways.

Recombinant adeno-associated virus (AAV) has been used for pulmonary gene transfer in

several preclinical and clinical trials. Flotte and colleagues demonstrated that AAV1 offered

advantages over AAV5 in the chimpanzee airways, both in terms of gene transfer efficiency and

reduced immunogenicity (39). Importantly, this observation was validated by studies in well-

differentiated human airway epithelia, suggesting that the dual reporter virus co-infection

approach can help predict efficacy of AAV vectors in vivo. Progress has also been made in

engineering minimal CFTR expression cassettes that can be accommodated by the AAV vector

(40).

Additional strategies to improve the efficiency of AAV transduction to airway epithelia include

using different capsid serotypes or capsid mutants with a greater affinity for airway epithelial

cells (41). As discussed below, other novel AAV capsid variants have resulted from directed

evolution and sequence shuffling (42-44). Although standard triple transfection methodology

remains an option, new developments in baculovirus-based methods are better suited to meet

AAV production requirements (45-47). In conclusion, improvements in AAV engineering,

capsid serotype design, and production methods have made AAV an attractive vector choice for

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 8: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

delivering CFTR to the airways. Studies of efficacy and vector readministration in large animal

models will help guide vector development.

Non-Viral Vectors

Considerable progress has been made toward developing non-viral vectors for gene transfer to

the lung. Typically, non-viral vectors fall into two categories: 1) non-integrating, such as

plasmids (48), nanoparticles (49), and mini-circles (50), or 2) integrating, such as transposons

(51) and phage phiC31 (52, 53). Both integrating and non-integrating non-viral vectors face

many of the same delivery and transduction obstacles in vivo. Optimizing the delivery efficiency

of DNA-based vectors to the in vivo airways remains a focus of the field (54, 55). Doxorubicin

(56), carboxymethylcellulose (57), and chitosan (58) improve plasmid-based gene transfer and

expression in the airways. As an alternative, some groups are investigating hybrid vector systems

combining features of adenovirus (59) or lentivirus with transposon-based vectors to improve

delivery (60).

RECENT DEVELOPMENT OF CLINICAL STUDIES FOR CF GENE THERAPY

Since 1993, approximately 25 phase I/II trials using either viral or non-viral vectors for CF have

been conducted (61). A currently ongoing clinical trial in the field was initiated by the UK CF

Gene Therapy Consortium, funded by the Cystic Fibrosis Trust, using an aerosolized non-viral

gene transfer agent (62). CF patients are receiving a single dose of a plasmid carrying the CFTR

cDNA that is complexed to the cationic lipid GL67. The plasmid, termed pGM169, is devoid of

putative pro-inflammatory sequences (CpG islands) and gene expression is regulated by a hybrid

elongation factor-1a promoter. When complexed to the cationic lipid GL67A, pGM169 led to >4

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 9: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

week expression in mouse models upon single dosing (48). The initial single dose clinical trial

will assess safety and duration of expression in patients and will guide a planned (approximately

100 patients) multi-dose placebo controlled trial. The planned trial, due to start in autumn 2011

(personal communication, Uta Griesenbach), will determine if repeated non-viral CFTR gene

transfer (12 doses over 12 months) improves CF lung disease (61).

NEW TECHNOLOGIES

Directed evolution of viral vectors

As vehicles for gene therapy applications, all viral vectors have potential weaknesses, such as

immunogenicity, tropism, transient transgene expression, and production to high titers. The

success in exploiting viral vectors will depend on the ability to overcome these limitations.

Directed evolution of viruses is a method for generating new or improved viral protein properties

using selection-based approaches. AAV and retroviruses have been the subject of combinatorial

engineering approaches in the past decade. AAV has been attractive due to its safety profile, low

immunogenicity, and ability to transduce both dividing and non-dividing cells. The AAV capsid

determines infectivity and cell tropism (63) and is therefore the target of modification by directed

evolution (42) or phage panning (64). The breadth of naturally occurring AAV serotypes

suggests that the capsid is tolerant to changes (65). Directed evolution of the AAV capsid by

PCR-based mutagenesis combined with high throughput in vitro recombination generated a

library of chimeric cap genes with components from two diverse serotypes. These serotypes,

AAV2 and AAV5, use distinct receptors, heparan sulphate and sialic acid, respectively (42).

Further selection of this library for improved transduction of human airway cells in culture

identified a novel AAV variant, AAV2.5T, a chimera between AAV2 (aa1–128) and AAV5

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 10: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

10 

(aa129–725) with a single point mutation (A581T) that exhibited enhanced binding to the apical

surface of airway epithelia and improved gene transfer (42). Furthermore, AAV2.5T could

efficiently express the CFTR cDNA in human airway cells in culture and correct the Cl- transport

defect in human CF epithelia (42).

Gamma retrovirus vectors are also efficient gene delivery tools but insertional mutagenesis and

potential oncogenesis due to preferential integration at transcriptional start sites (TSS) are

limitations for their clinical use (66-69). Lim et al. recently showed that the random insertion of

engineered zinc finger domains throughout the MLV Gag-Pol region and selection of viable

variants resulted in a shifting of the integration preferences of these vectors (70). Furthermore,

these modified integration patterns did not favor TSS. This approach could be extended to

lentiviruses and may serve as a powerful method to improve the safety profile of retroviruses as

gene transfer vectors for clinical use.

Gene repair and gene addition

A technique known as ‘genome editing’ enables efficient and precise modification of a target

sequence in a genome by introduction of a double stranded break (DSB) followed by

modification of the locus during subsequent DSB repair by homologous recombination. The

DSB is induced by a zinc finger nuclease (ZFN) (71-74), a specifically engineered endonuclease

designed to cleave a chosen target in the genome. The ZFN consists of two components, the zinc

finger protein (ZFP) and the non-specific cleavage domain of Fok1 endonuclease. The ZFP

binds to the target sequence and contains a tandem array of Cys2-His2 fingers (75) each

recognizing 3 bp of DNA. The arrays generally contain three or four fingers that bind a 9 or 12

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 11: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

11 

bp target, respectively. The Fok1 domains must dimerize to cleave the DNA (76), consequently

the specificity of the recognition site is doubled from 9 to 18 bp for a 3 finger ZFN.

Homology-based genome editing can be exploited for correction of mutated genes responsible

for monogenic disorders (Figure 2). ZFN-based genome editing requires delivery of a donor

DNA repair template along with the target specific ZFN pair. Methods for generating ZFN pairs

targeting specific genomic loci are becoming widely available and include modular design

approaches (77-79) and the selection-based oligomerized pool engineering (OPEN) strategy (80).

ZFNs designed using OPEN technology have been shown to bind the genomic DNA encoding

CFTR (78) and create double strand breaks near the F508 mutation in exon 10. Provision of a

wild-type donor DNA template with a non-integrating vector, such as integrase-deficient

lentiviral vector (81), can facilitate repair of this mutation by homologous recombination.

Other repair strategies using homing endonucleases (82-84) or transcription activator-like

effector (TALE) nucleases (85) provide alternative mechanisms for creating DSBs in genomic

DNA and allowing for gene repair by co-delivery of a homology repair template. A potential

advantage of each of these gene repair approaches is that correction of CFTR in progenitor cell

types could preserve the native regulatory elements and allow for correction in subsequent

daughter cells. Reagent development and delivery to airway epithelia will be important for this

field to advance.

An alternative to the gene repair approach is termed ‘targeted gene addition’ (Figure 2). Here,

ZFNs may be used to create DSBs at potential ‘safe harbor’ loci such as AAVS1 (86), CCR5

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 12: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

12 

(87), or the mouse Rosa26 locus (88). In this approach, the entire therapeutic transgene with

flanking homology arms would be inserted into the safe harbor loci by homologous

recombination. Modification of such a locus is reasoned much less likely to perturb the

expression of neighboring genes or disrupt the function of other genetic elements (89).

Applications of RNA interference to treat CF

The recent explosion of knowledge in the field of small interfering RNAs has led to applications

of direct relevance to CF. First, RNAi has been used as a tool to identify gene products that

contribute to steps in wild type and mutant CFTR biogenesis including ER and Golgi trafficking,

residence time in the cell membrane, and its removal by proteosomal degradation (90-92). This

has raised the possibility that RNAi-based strategies might be developed to increase the

expression of F508 CFTR, to rescue F508 CFTR from proteosomal degradation, or enhance

its residence time in the cell membrane. Any of these approaches might provide sufficient

residual CFTR function to be therapeutically relevant. Similarly, targeting other cellular

pathways, such as those involved in inflammation, might offer a means to ameliorate disease

symptoms and progression. A significant hurdle for translational studies in this area is

identifying the methods to efficiently deliver RNAi to well-differentiated airway epithelia.

Another area of investigation relevant to the field is the identification of the microRNA

repertoire in airway epithelia and other CFTR expressing cells, as well as their respective target

gene products. Knowledge in this area may identify new targets for therapeutic manipulation.

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 13: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

13 

Lung tissue engineering

Lung transplantation is currently the only definitive treatment for end stage CF lung disease. The

supply of donor lungs is limited and transplantation achieves only a 10 to 20% survival at 10

years (93). Recently, two groups independently used similar tissue engineering strategies to

develop an autologous bioartificial lung that may begin to help to overcome the limited

availability of donor tissues (94, 95). The bioartificial lungs were created by first generating a

whole lung scaffold by perfusion and decellularization of the adult rat lung, followed by

reseeding of the endothelial and epithelial surfaces of the scaffold with new cells. Evidence for

gas exchange within the resulting grafts was demonstrated. With the further development of this

technology, one could envision the ex vivo correction of patient derived cells, followed by lung

tissue engineering, and transplantation. Although these initial results are very exciting, several

steps need to be further optimized before long-term tissue-engineered lung function can be

translated to the clinic (96).

NEW ANIMAL MODELS OF CF DISEASE

A significant bottleneck for the development of new CF therapeutics has been the lack of animal

models that recapitulate key features of lung and other organ disease pathogenesis. The mouse

models with CFTR null alleles and specific disease mutations available since the early 1990s

have contributed greatly to disease understanding but fail to develop spontaneous lung disease

similar to humans with CF. Recently, two groups used somatic cell targeting of the CFTR gene

with AAV vectors, followed by nuclear transfer and cloning to develop novel models in pigs (97,

98) and ferrets (99, 100). These new animal models recapitulate key features of CF disease (98,

100). At birth, the lungs of CFTR null pigs are free of inflammation but manifest a bacterial host

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 14: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

14 

defense defect without the secondary consequences of infection (98, 101). CF pigs spontaneously

develop a lung disease phenotype mirroring key features of human CF lung disease in the first

months of life including infection with bacteria, airway remodeling, and mucus hypersecretion

(Figure 3). CFTR null ferrets also develop multiorgan system disease and neonatal animals

manifest a pulmonary host defense defect in the airways associated with colonization by bacteria

(100). There is also early evidence that adult CF ferrets develop a lung disease phenotype with

similarities to human CF, including bacterial colonization (personal communication, John

Engelhardt). These phenotypic features make these new models very attractive for gene therapy

studies. They offer the unique opportunity to test gene therapy interventions prior to the onset of

lung disease and monitor the outcomes for prevention-based treatment strategies.

CONCLUSIONS

This is an unprecedented time in the development of new therapies for CF. The near universal

availability of newborn screening for CF in developed nations has made early diagnosis

commonplace, allowing the potential for treatment of healthy lungs before the onset of chronic

lung disease. However, this opportunity comes at a time where there is a dearth of sensitive and

specific markers of early disease that can be used to assess lung disease onset and monitor

responses to therapy. Additional work is needed to develop new specific and sensitive measures

of the early stages of lung disease suitable for monitoring the response to therapies for use in

infants and young children. Parallel developments in improved gene transfer tools should further

aid the field and lead to new clinical trials.

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 15: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

15 

ACKNOWLEDGEMENTS

We thank John Engelhardt, and Uta Griesenbach for their helpful discussions, as well as David

Meyerholz for providing the images presented in Figure 3. This work was supported by NIH

grants: R01 HL-075363 (P.B.M.), PO1 HL-51670 (P.B.M.), R21 HL-91808 (P.B.M.), the Cystic

Fibrosis Foundation (P.L.S.), and the Roy J. Carver Charitable Trust (P.B.M.). We also

acknowledge the support of the In Vitro Models and Cell Culture Core and Cell Morphology

Cores, partially supported by the Center for Gene Therapy for Cystic Fibrosis (NIH P30 DK-

54759) and the Cystic Fibrosis Foundation.

CONFLICT OF INTEREST STATEMENT

None declared.

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 16: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

16 

REFERENCES

1  Sheppard, D.N. and Welsh, M.J. (1999) Structure and function of the CFTR chloride 

channel. Physiol. Rev., 79, S23‐45. 

2  Devidas,  S.  and  Guggino,  W.B.  (1997)  CFTR:  domains,  structure,  and  function.  J 

Bioenerg. Biomembr., 29, 443‐451. 

3  Riordan,  J.R. (2008) CFTR function and prospects  for therapy. Annu. Rev. Biochem., 

77, 701‐726. 

4  Johnson,  L.G.,  Olsen,  J.C.,  Sarkadi,  B., Moore,  K.L.,  Swanstrom,  R.  and Boucher,  R.C. 

(1992) Efficiency of  gene  transfer  for  restoration of  normal  airway  epithelial  function  in 

cystic fibrosis. Nature Genet., 2, 21‐25. 

5  Engelhardt, J.F., Yankaskas, J.R., Ernst, S.A., Yang, Y., Marino, C.R., Boucher, R.C., Cohn, 

J.A.  and  Wilson,  J.M.  (1992)  Submucosal  glands  are  the  predominant  site  of  CFTR 

expression in the human bronchus. Nat. Genet., 2, 240‐248. 

6  Zhou,  L.,  Dey,  C.R., Wert,  S.E.,  DuVall,  M.D.,  Frizzell,  R.A.  and Whitsett,  J.A.  (1994) 

Correction of  lethal  intestinal defect  in a mouse model of  cystic  fibrosis by human CFTR. 

Science, 266, 1705‐1708. 

7  Joo, N.S., Cho, H.J., Khansaheb, M. and Wine,  J.J. (2010) Hyposecretion of  fluid from 

tracheal submucosal glands of CFTR‐deficient pigs. J. Clin. Invest., 120, 3161‐3166. 

8  Lee, R.J. and Foskett,  J.K. (2010) Mechanisms of Ca2+‐stimulated fluid secretion by 

porcine  bronchial  submucosal  gland  serous  acinar  cells.  Am.  J.  Physiol.  Lung.  Cell  Mol. 

Physiol., 298, L210‐231. 

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 17: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

17 

9  Liu, X., Luo, M., Guo, C., Yan, Z., Wang, Y., Lei‐Butters, D.C. and Engelhardt, J.F. (2009) 

Analysis of adeno‐associated virus progenitor cell  transduction  in mouse  lung. Mol. Ther., 

17, 285‐293. 

10  Hong, K.U., Reynolds, S.D., Watkins, S., Fuchs, E. and Stripp, B.R.  (2004) Basal cells 

are a multipotent progenitor capable of renewing the bronchial epithelium. Am.  J. Pathol., 

164, 577‐588. 

11  Rock,  J.R.,  Onaitis, M.W.,  Rawlins,  E.L.,  Lu,  Y.,  Clark,  C.P.,  Xue,  Y.,  Randell,  S.H.  and 

Hogan,  B.L.  (2009)  Basal  cells  as  stem  cells  of  the  mouse  trachea  and  human  airway 

epithelium. Proc. Natl. Acad. Sci. U S A, 106, 12771‐12775. 

12  Randell,  S.H.  (1992) Progenitor‐progeny  relationships  in  airway  epithelium. Chest, 

101, 11S‐16S. 

13  Ford,  J.R. and Terzaghi‐Howe, M. (1992) Basal cells are the progenitors of primary 

tracheal epithelial cell cultures. Exper. Cell Res., 198, 69‐77. 

14  Engelhardt,  J.F.,  Schlossberg,  H.,  Yankaskas,  J.R.  and  Dudus,  L.  (1995)  Progenitor 

cells of the adult human airway involved in submucosal gland development. Development, 

121, 2031‐2046. 

15  Borthwick,  D.W.,  Shahbazian,  M.,  Krantz,  Q.T.,  Dorin,  J.R.  and  Randell,  S.H.  (2001) 

Evidence  for  stem‐cell  niches  in  the  tracheal  epithelium. Am.  J. Respir. Cell Mol. Biol., 24, 

662‐670. 

16  Liu,  X.  and  Engelhardt,  J.F.  (2008)  The  glandular  stem/progenitor  cell  niche  in 

airway development and repair. Proc. Am. Thorac. Soc., 5, 682‐688. 

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 18: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

18 

17  Evans,  M.J.,  Johnson,  L.V.,  Stephens,  R.J.  and  Freeman,  G.  (1976)  Renewal  of  the 

terminal bronchiolar epithelium in the rat following exposure to NO2 or O3. Lab. Invest., 35, 

246‐257. 

18  Hong, K.U., Reynolds, S.D., Giangreco, A., Hurley, C.M. and Stripp, B.R.  (2001) Clara 

cell  secretory  protein‐expressing  cells  of  the  airway  neuroepithelial  body 

microenvironment  include  a  label‐retaining  subset  and  are  critical  for  epithelial  renewal 

after progenitor cell depletion. Am. J. Respir. Cell Mol. Biol., 24, 671‐681. 

19  Evans,  M.J.,  Cabral,  L.J.,  Stephens,  R.J.  and  Freeman,  G.  (1975)  Transformation  of 

alveolar type 2 cells to type 1 cells  following exposure to NO2. Exp. Mol. Pathol., 22, 142‐

150. 

20  Adamson,  I.Y.  and  Bowden,  D.H.  (1974)  The  type  2  cell  as  progenitor  of  alveolar 

epithelial regeneration. A cytodynamic study in mice after exposure to oxygen. Lab. Invest., 

30, 35‐42. 

21  Wang, G., Slepushkin, V., Zabner, J., Keshavjee, S., Johnston, J.C., Sauter, S.L., Jolly, D.J., 

Dubensky,  T.W.,  Jr.,  Davidson,  B.L.  and McCray,  P.B.,  Jr.  (1999)  Feline  immunodeficiency 

virus  vectors  persistently  transduce  nondividing  airway  epithelia  and  correct  the  cystic 

fibrosis defect. J. Clin. Invest., 104, R55‐62. 

22  Wang, G., Sinn, P.L. and McCray, P.B., Jr. (2000) Development of retroviral vectors for 

gene transfer to airway epithelia. Curr. Opin. Mol. Ther., 2, 497‐506. 

23  Wang, G., Slepushkin, V.A., Bodner, M., Zabner,  J., Es, H.H.G.v., Thomas, P.,  Jolly, D.J., 

Davidson,  B.L.  and McCray,  P.B.,  Jr.  (1999)  Keratinocyte  growth  factor  induces  epithelial 

proliferation facilitates retroviral‐mediated gene transfer to distal lung epithelia in vivo.  J. 

Gene Med., 1, 22‐30. 

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 19: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

19 

24  Wang, G., Sinn, P.L., Zabner, J. and McCray, J.P.B. (2002), In Meth. Enzymol. Academic 

Press, 346, 500‐514. 

25  Sinn,  P.L.,  Burnight,  E.R.,  Hickey,  M.A.,  Blissard,  G.W.  and  McCray,  P.B.,  Jr.  (2005) 

Persistent  gene  expression  in  mouse  nasal  epithelia  following  feline  immunodeficiency 

virus‐based vector gene transfer. J. Virol., 79, 12818‐12827. 

26  Sinn, P.L., Arias, A.C., Brogden, K.A. and McCray, P.B., Jr. (2008) Lentivirus vector can 

be  readministered  to  nasal  epithelia  without  blocking  immune  responses.  J.  Virol.,  82, 

10684‐10692. 

27  Limberis, M.P., Bell, C.L., Heath,  J.  and Wilson,  J.M.  (2010) Activation of  transgene‐

specific T cells  following  lentivirus‐mediated gene delivery  to mouse  lung. Mol. Ther., 18, 

143‐150. 

28  Orlando,  C.,  Castellani,  S.,  Mykhaylyk,  O.,  Copreni,  E.,  Zelphati,  O.,  Plank,  C.  and 

Conese,  M.  (2010)  Magnetically  guided  lentiviral‐mediated  transduction  of  airway 

epithelial cells. J. Gene Med., 12, 747‐754. 

29  Castellani, S., Di Gioia, S., Trotta, T., Maffione, A.B. and Conese, M. (2010) Impact of 

lentiviral  vector‐mediated  transduction  on  the  tightness  of  a  polarized  model  of  airway 

epithelium  and  effect  of  cationic  polymer  polyethylenimine.  J. Biomed. Biotechnol., 2010, 

103976. 

30  Cmielewski, P., Anson, D.S. and Parsons, D.W. (2010) Lysophosphatidylcholine as an 

adjuvant  for  lentiviral  vector mediated  gene  transfer  to  airway  epithelium:  effect  of  acyl 

chain length. Respir. Res., 11, 84. 

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 20: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

20 

31  Stocker,  A.G.,  Kremer,  K.L.,  Koldej,  R.,  Miller,  D.S.,  Anson,  D.S.  and  Parsons,  D.W. 

(2009)  Single‐dose  lentiviral  gene  transfer  for  lifetime  airway  gene  expression.  J.  Gene. 

Med., 11, 861‐867. 

32  Buckley,  S.M.,  Howe,  S.J.,  Sheard,  V.,  Ward,  N.J.,  Coutelle,  C.,  Thrasher,  A.J., 

Waddington,  S.N.  and  McKay,  T.R.  (2008)  Lentiviral  transduction  of  the  murine  lung 

provides efficient pseudotype and developmental  stage‐dependent cell‐specific  transgene 

expression. Gene Ther., 15, 1167‐1175. 

33  Mitomo, K., Griesenbach, U.,  Inoue, M., Somerton, L., Meng, C., Akiba, E., Tabata, T., 

Ueda, Y., Frankel, G.M., Farley, R. et al. (2010) Toward gene therapy for cystic fibrosis using 

a lentivirus pseudotyped with Sendai virus envelopes. Mol. Ther., 18, 1173‐1182. 

34  Kwilas,  A.R.,  Yednak,  M.A.,  Zhang,  L.,  Liesman,  R.,  Collins,  P.L.,  Pickles,  R.J.  and 

Peeples, M.E.  (2010) Respiratory syncytial virus engineered  to express  the cystic  fibrosis 

transmembrane conductance regulator corrects the bioelectric phenotype of human cystic 

fibrosis airway epithelium in vitro. J. Virol., 84, 7770‐7781. 

35  Zhang,  L.,  Limberis,  M.P.,  Thompson,  C.,  Antunes,  M.B.,  Luongo,  C.,  Wilson,  J.M., 

Collins,  P.L.  and  Pickles,  R.J.  (2010)  alpha‐Fetoprotein  Gene  Delivery  to  the  Nasal 

Epithelium of Nonhuman Primates by Human Parainfluenza Viral Vectors. Hum. Gene Ther., 

21, 1657‐1664. 

36  Cao,  H.,  Yang,  T.,  Li,  X.F.,  Wu,  J.,  Duan,  C.,  Coates,  A.L.  and  Hu,  J.  (2010) 

Readministration  of  helper‐dependent  adenoviral  vectors  to mouse  airway mediated  via 

transient immunosuppression. Gene Ther., 18,  173‐181. 

37  Bangari,  D.S.  and  Mittal,  S.K.  (2006)  Current  strategies  and  future  directions  for 

eluding adenoviral vector immunity. Curr. Gene Ther., 6, 215‐226. 

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 21: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

21 

38  Granio,  O.,  Ashbourne  Excoffon,  K.J.,  Henning,  P., Melin,  P.,  Norez,  C.,  Gonzalez,  G., 

Karp,  P.H.,  Magnusson,  M.K.,  Habib,  N.,  Lindholm,  L.  et  al.  (2010)  Adenovirus  5‐fiber  35 

chimeric  vector mediates  efficient  apical  correction of  the  cystic  fibrosis  transmembrane 

conductance regulator defect  in cystic  fibrosis primary airway epithelia. Hum. Gene Ther., 

21, 251‐269. 

39  Flotte,  T.R.,  Fischer,  A.C.,  Goetzmann,  J., Mueller,  C.,  Cebotaru,  L.,  Yan,  Z., Wang,  L., 

Wilson, J.M., Guggino, W.B. and Engelhardt, J.F. (2010) Dual reporter comparative indexing 

of rAAV pseudotyped vectors in chimpanzee airway. Mol. Ther., 18, 594‐600. 

40  Ostedgaard, L.S., Rokhlina, T., Karp, P.H., Lashmit, P., Afione, S., Schmidt, M., Zabner, 

J.,  Stinski,  M.F.,  Chiorini,  J.A.  and Welsh,  M.J.  (2005)  A  shortened  adeno‐associated  virus 

expression  cassette  for  CFTR  gene  transfer  to  cystic  fibrosis  airway  epithelia. Proc. Natl. 

Acad. Sci. U S A, 102, 2952‐2957. 

41  White, A.F., Mazur, M., Sorscher, E.J., Zinn, K.R. and Ponnazhagan, S. (2008) Genetic 

modification  of  adeno‐associated  viral  vector  type  2  capsid  enhances  gene  transfer 

efficiency in polarized human airway epithelial cells. Hum. Gene Ther., 19, 1407‐1414. 

42  Excoffon,  K.J.,  Koerber,  J.T.,  Dickey,  D.D.,  Murtha,  M.,  Keshavjee,  S.,  Kaspar,  B.K., 

Zabner,  J.  and  Schaffer,  D.V.  (2009)  Directed  evolution  of  adeno‐associated  virus  to  an 

infectious respiratory virus. Proc. Natl. Acad. Sci. U S A, 106, 3865‐3870. 

43  Li,  W.,  Zhang,  L.,  Johnson,  J.S.,  Zhijian,  W.,  Grieger,  J.C.,  Ping‐Jie,  X.,  Drouin,  L.M., 

Agbandje‐McKenna,  M.,  Pickles,  R.J.  and  Samulski,  R.J.  (2009)  Generation  of  novel  AAV 

variants  by  directed  evolution  for  improved  CFTR  delivery  to  human  ciliated  airway 

epithelium. Mol. Ther., 17, 2067‐2077. 

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 22: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

22 

44  Carlon, M., Toelen, J., Van der Perren, A., Vandenberghe, L.H., Reumers, V., Sbragia, L., 

Gijsbers, R., Baekelandt, V., Himmelreich, U., Wilson, J.M. et al. (2010) Efficient gene transfer 

into  the  mouse  lung  by  fetal  intratracheal  injection  of  rAAV2/6.2. Mol.  Ther.,  18,  2130‐

2138. 

45  Lock,  M.,  Alvira,  M.,  Vandenberghe,  L.H.,  Samanta,  A.,  Toelen,  J.,  Debyser,  Z.  and 

Wilson,  J.M.  (2010)  Rapid,  simple,  and  versatile  manufacturing  of  recombinant  adeno‐

associated viral vectors at scale. Hum. Gene Ther., 21, 1259‐1271. 

46  Virag,  T.,  Cecchini,  S.  and  Kotin,  R.M.  (2009)  Producing  recombinant  adeno‐

associated  virus  in  foster  cells:  overcoming  production  limitations  using  a  baculovirus‐

insect cell expression strategy. Hum. Gene Ther., 20, 807‐817. 

47  Smith,  R.H.,  Levy,  J.R.  and  Kotin,  R.M.  (2009)  A  simplified  baculovirus‐AAV 

expression vector system coupled with one‐step affinity purification yields high‐titer rAAV 

stocks from insect cells. Mol. Ther., 17, 1888‐1896. 

48  Hyde,  S.C.,  Pringle,  I.A.,  Abdullah,  S.,  Lawton,  A.E.,  Davies,  L.A.,  Varathalingam,  A., 

Nunez‐Alonso,  G.,  Green,  A.M.,  Bazzani,  R.P.,  Sumner‐Jones,  S.G.  et  al.  (2008)  CpG‐free 

plasmids  confer  reduced  inflammation  and  sustained  pulmonary  gene  expression.  Nat. 

Biotechnol., 26, 549‐551. 

49  Davis, P.B. and Kowalczyk, T.H. (2010) Preparation and analysis of PEGylated poly‐

L‐lysine  DNA  nanoparticles  for  gene  delivery.  Cold  Spring  Harb.  Protoc.,  2010,  pdb 

prot5419. 

50  Riu,  E.,  Grimm,  D.,  Huang,  Z.  and  Kay,  M.A.  (2005)  Increased  maintenance  and 

persistence  of  transgenes  by  excision  of  expression  cassettes  from plasmid  sequences  in 

vivo. Hum. Gene Ther., 16, 558‐570. 

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 23: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

23 

51  Mikkelsen,  J.G., Yant, S.R., Meuse, L., Huang, Z., Xu, H. and Kay, M.A. (2003) Helper‐

Independent  Sleeping  Beauty  transposon‐transposase  vectors  for  efficient  nonviral  gene 

delivery and persistent gene expression in vivo. Mol. Ther., 8, 654‐665. 

52  Maucksch,  C.,  Aneja,  M.K.,  Hennen,  E.,  Bohla,  A.,  Hoffmann,  F.,  Elfinger,  M., 

Rosenecker, J. and Rudolph, C. (2008) Cell type differences in activity of the Streptomyces 

bacteriophage phiC31 integrase. Nucleic Acids Res., 36, 5462‐5471. 

53  Olivares, E.C., Hollis, R.P. and Calos, M.P.  (2001) Phage R4  integrase mediates site‐

specific integration in human cells. Gene, 278, 167‐176. 

54  McLachlan, G., Baker, A., Tennant, P., Gordon, C., Vrettou, C., Renwick, L., Blundell, R., 

Cheng,  S.H.,  Scheule,  R.K.,  Davies,  L.  et  al.  (2007)  Optimizing  aerosol  gene  delivery  and 

expression in the ovine lung. Mol. Ther., 15, 348‐354. 

55  Alton, E.W. (2004) Use of nonviral vectors for cystic fibrosis gene therapy. Proc. Am. 

Thorac. Soc., 1, 296‐301. 

56  Griesenbach, U., Meng, C., Farley, R., Gardner, A., Brake, M.A., Frankel, G.M., Gruenert, 

D.C., Cheng, S.H., Scheule, R.K. and Alton, E.W. (2009) The role of doxorubicin in non‐viral 

gene transfer in the lung. Biomaterials, 30, 1971‐1977. 

57  Griesenbach,  U.,  Meng,  C.,  Farley,  R.,  Wasowicz,  M.Y.,  Munkonge,  F.M.,  Chan,  M., 

Stoneham,  C.,  Sumner‐Jones,  S.G.,  Pringle,  I.A.,  Gill,  D.R.  et  al.  (2010)  The  use  of 

carboxymethylcellulose  gel  to  increase  non‐viral  gene  transfer  in  mouse  airways. 

Biomaterials, 31, 2665‐2672. 

58  Nydert, P., Dragomir, A. and Hjelte, L. (2008) Chitosan as a carrier for non‐viral gene 

transfer in a cystic‐fibrosis cell line. Biotechnol. Appl. Biochem., 51, 153‐157. 

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 24: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

24 

59  Hausl,  M.A.,  Zhang,  W.,  Muther,  N.,  Rauschhuber,  C.,  Franck,  H.G.,  Merricks,  E.P., 

Nichols,  T.C., Kay, M.A.  and Ehrhardt, A.  (2010) Hyperactive  sleeping beauty  transposase 

enables persistent phenotypic correction in mice and a canine model for hemophilia B. Mol. 

Ther., 18, 1896‐1906. 

60  Vink,  C.A.,  Gaspar,  H.B.,  Gabriel,  R.,  Schmidt,  M.,  McIvor,  R.S.,  Thrasher,  A.J.  and 

Qasim, W. (2009) Sleeping beauty transposition from nonintegrating lentivirus. Mol. Ther., 

17, 1197‐1204. 

61  Griesenbach,  U.  and  Alton,  E.W.  (2009)  Cystic  fibrosis  gene  therapy:  successes, 

failures and hopes for the future. Expert Rev. Respir. Med., 3, 363‐371. 

62  Pringle, I.A., Hyde, S.C. and Gill, D.R. (2009) Non‐viral vectors in cystic fibrosis gene 

therapy: recent developments and future prospects. Expert Opin. Biol. Ther., 9, 991‐1003. 

63  Asokan, A., Hamra,  J.B., Govindasamy, L., Agbandje‐McKenna, M.  and Samulski, R.J. 

(2006)  Adeno‐associated  virus  type  2  contains  an  integrin  alpha5beta1  binding  domain 

essential for viral cell entry. J. Virol., 80, 8961‐8969. 

64  Chen,  Y.H.,  Chang,  M.  and  Davidson,  B.L.  (2009)  Molecular  signatures  of  disease 

brain endothelia provide new sites for CNS‐directed enzyme therapy. Nat. Med., 15, 1215‐

1218. 

65  Gao, G., Vandenberghe, L.H., Alvira, M.R., Lu, Y., Calcedo, R., Zhou, X. and Wilson, J.M. 

(2004)  Clades  of  Adeno‐associated  viruses  are  widely  disseminated  in  human  tissues.  J. 

Virol., 78, 6381‐6388. 

66  Hacein‐Bey‐Abina,  S.,  Von  Kalle,  C.,  Schmidt,  M.,  McCormack,  M.P.,  Wulffraat,  N., 

Leboulch, P., Lim, A., Osborne, C.S., Pawliuk, R., Morillon, E. et al. (2003) LMO2‐associated 

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 25: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

25 

clonal T cell proliferation in two patients after gene therapy for SCID‐X1. Science., 302, 415‐

419. 

67  Cavazzana‐Calvo, M., Hacein‐Bey, S., Basile, G.d., Gross, F., Yvon, E., Nusbaum, P., Selz, 

F., Hue, C., Certain, S., Casanova, J.‐L. et al. (2000) Gene therapy of human severe combined 

immunodeficiency (SCID)‐X1 disease. Science, 288, 669‐672. 

68  Schmidt,  M.,  Carbonaro,  D.A.,  Speckmann,  C.,  Wissler,  M.,  Bohnsack,  J.,  Elder,  M., 

Aronow,  B.J.,  Nolta,  J.A.,  Kohn,  D.B.  and  von  Kalle,  C.  (2003)  Clonality  analysis  after 

retroviral‐mediated gene transfer to CD34+ cells from the cord blood of ADA‐deficient SCID 

neonates. Nat. Med.., 9, 463‐468. 

69  Wu, X.,  Li,  Y.,  Crise, B.  and Burgess,  S.M.  (2003) Transcription  start  regions  in  the 

human genome are favored targets for MLV integration. Science, 300, 1749‐1751. 

70  Lim, K.I.,  Klimczak, R.,  Yu,  J.H.  and  Schaffer, D.V.  (2010)  Specific  insertions  of  zinc 

finger domains  into Gag‐Pol yield engineered retroviral vectors with selective  integration 

properties. Proc. Natl. Acad. Sci. U S A, 107, 12475‐12480. 

71  Kim,  Y.G.,  Cha,  J.  and  Chandrasegaran,  S.  (1996)  Hybrid  restriction  enzymes:  zinc 

finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. U S A, 93, 1156‐1160. 

72  Bibikova,  M.,  Carroll,  D.,  Segal,  D.J.,  Trautman,  J.K.,  Smith,  J.,  Kim,  Y.G.  and 

Chandrasegaran,  S.  (2001)  Stimulation  of  homologous  recombination  through  targeted 

cleavage by chimeric nucleases. Mol. Cell Biol., 21, 289‐297. 

73  Moehle, E.A., Rock,  J.M., Lee, Y.L.,  Jouvenot, Y., DeKelver, R.C., Gregory, P.D., Urnov, 

F.D. and Holmes, M.C. (2007) Targeted gene addition into a specified location in the human 

genome using designed zinc finger nucleases. Proc. Natl. Acad. Sci. U S A, 104, 3055‐3060. 

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 26: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

26 

74  Doyon, Y., Vo, T.D., Mendel, M.C., Greenberg, S.G., Wang, J., Xia, D.F., Miller, J.C., Urnov, 

F.D.,  Gregory,  P.D.  and  Holmes, M.C.  (2011)  Enhancing  zinc‐finger‐nuclease  activity with 

improved obligate heterodimeric architectures. Nat. Methods, 8, 74‐79. 

75  Wolfe, S.A., Nekludova, L. and Pabo, C.O. (2000) DNA recognition by Cys2His2 zinc 

finger proteins. Annu. Rev. Biophys. Biomol. Struct., 29, 183‐212. 

76  Vanamee,  E.S.,  Santagata,  S.  and  Aggarwal,  A.K.  (2001)  FokI  requires  two  specific 

DNA sites for cleavage. J. Mol. Biol., 309, 69‐78. 

77  Wright, D.A., Thibodeau‐Beganny, S., Sander, J.D., Winfrey, R.J., Hirsh, A.S., Eichtinger, 

M.,  Fu,  F.,  Porteus,  M.H.,  Dobbs,  D.,  Voytas,  D.F.  et  al.  (2006)  Standardized  reagents  and 

protocols for engineering zinc finger nucleases by modular assembly. Nat. Protoc., 1, 1637‐

1652. 

78  Maeder,  M.L.,  Thibodeau‐Beganny,  S.,  Osiak,  A.,  Wright,  D.A.,  Anthony,  R.M., 

Eichtinger, M.,  Jiang, T., Foley,  J.E., Winfrey, R.J., Townsend,  J.A. et al.  (2008) Rapid "open‐

source"  engineering  of  customized  zinc‐finger  nucleases  for  highly  efficient  gene 

modification. Mol. Cell., 31, 294‐301. 

79  Cathomen,  T.,  Segal,  D.J.,  Brondani,  V.  and Muller‐Lerch,  F.  (2008) Generation  and 

functional analysis of zinc finger nucleases. Methods Mol. Biol., 434, 277‐290. 

80  Maeder, M.L., Thibodeau‐Beganny, S., Sander, J.D., Voytas, D.F. and Joung, J.K. (2009) 

Oligomerized pool engineering  (OPEN): an  'open‐source' protocol  for making customized 

zinc‐finger arrays. Nat. Protoc., 4, 1471‐1501. 

81  Lombardo, A., Genovese, P., Beausejour, C.M., Colleoni, S., Lee, Y.L., Kim, K.A., Ando, 

D., Urnov, F.D., Galli, C., Gregory, P.D. et al. (2007) Gene editing in human stem cells using 

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 27: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

27 

zinc finger nucleases and integrase‐defective lentiviral vector delivery. Nat. Biotechnol., 25, 

1298‐1306. 

82  Grizot, S., Epinat, J.C., Thomas, S., Duclert, A., Rolland, S., Paques, F. and Duchateau, P. 

(2010) Generation of redesigned homing endonucleases comprising DNA‐binding domains 

derived from two different scaffolds. Nucleic Acids Res., 38, 2006‐2018. 

83  Grizot,  S.,  Smith,  J.,  Daboussi,  F.,  Prieto,  J.,  Redondo,  P.,  Merino,  N.,  Villate,  M., 

Thomas, S., Lemaire, L., Montoya, G. et al.  (2009) Efficient  targeting of a SCID gene by an 

engineered single‐chain homing endonuclease. Nucleic Acids Res., 37, 5405‐5419. 

84  Marcaida,  M.J.,  Munoz,  I.G.,  Blanco,  F.J.,  Prieto,  J.  and  Montoya,  G.  (2010)  Homing 

endonucleases: from basics to therapeutic applications. Cell Mol. Life Sci., 67, 727‐748. 

85  Miller,  J.C., Tan, S., Qiao, G., Barlow, K.A., Wang,  J., Xia, D.F., Meng, X., Paschon, D.E., 

Leung,  E.,  Hinkley,  S.J.  et  al.  (2010)  A  TALE  nuclease  architecture  for  efficient  genome 

editing. Nat Biotechnol., 29, 143‐148. 

86  Hockemeyer, D., Soldner, F., Beard, C., Gao, Q., Mitalipova, M., DeKelver, R.C., Katibah, 

G.E., Amora, R., Boydston, E.A., Zeitler, B. et al. (2009) Efficient targeting of expressed and 

silent genes in human ESCs and iPSCs using zinc‐finger nucleases. Nat. Biotechnol., 27, 851‐

857. 

87  Perez,  E.E.,  Wang,  J.,  Miller,  J.C.,  Jouvenot,  Y.,  Kim,  K.A.,  Liu,  O.,  Wang,  N.,  Lee,  G., 

Bartsevich, V.V., Lee, Y.L. et al. (2008) Establishment of HIV‐1 resistance in CD4+ T cells by 

genome editing using zinc‐finger nucleases. Nat. Biotechnol., 26, 808‐816. 

88  Meyer,  M.,  de  Angelis,  M.H.,  Wurst,  W.  and  Kuhn,  R.  (2010)  Gene  targeting  by 

homologous recombination in mouse zygotes mediated by zinc‐finger nucleases. Proc. Natl. 

Acad. Sci. U S A, 107, 15022‐15026. 

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 28: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

28 

89  Papapetrou, E.P., Lee, G., Malani, N., Setty, M., Riviere, I., Tirunagari, L.M., Kadota, K., 

Roth, S.L., Giardina, P., Viale, A. et al. (2011) Genomic safe harbors permit high beta‐globin 

transgene  expression  in  thalassemia  induced  pluripotent  stem  cells. Nat. Biotechnol., 29, 

73‐78. 

90  Wang, X., Venable,  J., LaPointe, P., Hutt, D.M., Koulov, A.V., Coppinger,  J., Gurkan, C., 

Kellner, W., Matteson, J., Plutner, H. et al. (2006) Hsp90 cochaperone Aha1 downregulation 

rescues misfolding of CFTR in cystic fibrosis. Cell, 127, 803‐815. 

91  Hutt, D.M., Herman, D., Rodrigues, A.P., Noel, S., Pilewski, J.M., Matteson, J., Hoch, B., 

Kellner,  W.,  Kelly,  J.W.,  Schmidt,  A.  et  al.  (2010)  Reduced  histone  deacetylase  7  activity 

restores function to misfolded CFTR in cystic fibrosis. Nat. Chem. Biol., 6, 25‐33. 

92  Okiyoneda, T., Barriere, H., Bagdany, M., Rabeh, W.M., Du, K., Hohfeld, J., Young, J.C. 

and Lukacs, G.L. (2010) Peripheral protein quality control removes unfolded CFTR from the 

plasma membrane. Science, 329, 805‐810. 

93  Orens, J.B. and Garrity, E.R., Jr. (2009) General overview of lung transplantation and 

review of organ allocation. Proc. Am. Thorac. Soc., 6, 13‐19. 

94  Petersen, T.H., Calle, E.A., Zhao, L., Lee, E.J., Gui, L., Raredon, M.B., Gavrilov, K., Yi, T., 

Zhuang,  Z.W.,  Breuer,  C.  et  al.  (2010)  Tissue‐engineered  lungs  for  in  vivo  implantation. 

Science, 329, 538‐541. 

95  Ott,  H.C.,  Clippinger,  B.,  Conrad,  C.,  Schuetz,  C.,  Pomerantseva,  I.,  Ikonomou,  L., 

Kotton,  D.  and  Vacanti,  J.P.  (2010)  Regeneration  and  orthotopic  transplantation  of  a 

bioartificial lung. Nat. Med., 16, 927‐933. 

96  de Perrot, M.,  Fischer,  S.,  Liu, M.,  Imai,  Y., Martins,  S.,  Sakiyama,  S., Tabata, T., Bai, 

X.H., Waddell, T.K., Davidson, B.L. et al. (2003) Impact of human interleukin‐10 on vector‐

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 29: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

29 

induced inflammation and early graft function in rat lung transplantation. Am. J. Respir. Cell 

Mol. Biol., 28, 616‐625. 

97  Rogers, C.S., Hao, Y., Rokhlina, T., Samuel, M., Stoltz, D.A., Li, Y., Petroff, E., Vermeer, 

D.W.,  Kabel,  A.C.,  Yan,  Z.  et  al.  (2008)  Production  of  CFTR‐null  and  CFTR‐DeltaF508 

heterozygous  pigs  by  adeno‐associated  virus‐mediated  gene  targeting  and  somatic  cell 

nuclear transfer. J. Clin. Invest., 118, 1571‐1577. 

98  Rogers,  C.S.,  Stoltz,  D.A.,  Meyerholz,  D.K.,  Ostedgaard,  L.S.,  Rokhlina,  T.,  Taft,  P.J., 

Rogan, M.P., Pezzulo, A.A., Karp, P.H.,  Itani, O.A. et al.  (2008) Disruption of the CFTR gene 

produces a model of cystic fibrosis in newborn pigs. Science, 321, 1837‐1841. 

99  Sun, X., Yan, Z., Yi, Y., Li, Z., Lei, D., Rogers, C.S., Chen, J., Zhang, Y., Welsh, M.J., Leno, 

G.H. et al.  (2008) Adeno‐associated virus‐targeted disruption of  the CFTR gene  in  cloned 

ferrets. J. Clin. Invest., 118, 1578‐1583. 

100  Sun, X., Sui, H., Fisher, J.T., Yan, Z., Liu, X., Cho, H.J., Joo, N.S., Zhang, Y., Zhou, W., Yi, Y. 

et al. (2010) Disease phenotype of a ferret CFTR‐knockout model of cystic fibrosis. J. Clin. 

Invest., 120, 3149‐3160. 

101  Stoltz, D.A., Meyerholz, D.K., Pezzulo, A.A., Ramachandran, S., Rogan, M.P., Davis, G.J., 

Hanfland,  R.A., Wohlford‐Lenane,  C.,  Dohrn,  C.L.,  Bartlett,  J.A.  et al.  (2010)  Cystic  fibrosis 

pigs  develop  lung  disease  and  exhibit  defective  bacterial  eradication  at  birth. Sci. Transl. 

Med., 2, 29ra31. 

 

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 30: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

30 

FIGURE LEGENDS

Figure 1. Repeat administration of lentiviral vector results in persistent transgene expression in

the nasal airways. Seven doses of GP64 pseudotyped FIV expressing luciferase were delivered at

1 week intervals for 7 consecutive weeks to mice via nasal instillation (arrows). At the indicated

time points, light release was captured using bioluminescent imaging and data quantified with

living image software. Stable luciferase expression was documented for 80 weeks. Data are

expressed as mean ± standard error. n = 5.

Figure 2. Schematic of targeted gene correction and gene addition strategies. A) Expressed ZFN

pairs bind to and cleave the target genomic locus near the disease causing mutation. ZFNs are

composed of chimeric zinc fingers (blue) and Fok1 endonuclease domains (red). Introduction of

a double stranded break (DSB) promotes homologous recombination, using the repair template

donor. B) For targeted gene addition, the ZFN pair cleaves a predetermined “safe harbor” locus.

The expression cassette with a therapeutic gene (green) is flanked by homology arms to the safe

harbor locus.

Figure 3. Pigs with CFTR mutations develop pulmonary disease with similarity to humans with

CF. In this example from a pig of 5.5 months of age, key pathogenic features observed include

mucus accumulation in the airways, airway obstruction with purulent material containing

neutrophils and bacteria (right panel, black arrows), and airway remodeling. The bacterial

cultures from this animal were positive for Bordetella bronchiseptica. The wild-type pig is an

age matched control. Hemotoxylin & eosin stain. Both images are 100X magnification.

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 31: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

0

10000

20000

30000

40000

50000

60000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

7 doses

phot

ons/

s/cm

2

Weeks

Figure 1

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 32: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

ZFN cleavage

* disease mutation

Repair template

Corrected gene

Homologous recombination

A) Targeted correction

Figure 2

B) Gene addition

ZFN cleavage

cDNA of wild-type gene

Homology arm

Homology arm

Wild-type gene added to ‘safe harbor’ locus by homologous recombination

ZFN

by guest on April 1, 2013

http://hmg.oxfordjournals.org/

Dow

nloaded from

Page 33: Scribd on AppstoreScribd on Google Play © Copyright 2015 Scribd Inc. Mobile Site Language English scribd

Wild-type pig CF pig

Figure 3 by guest on A

pril 1, 2013http://hm

g.oxfordjournals.org/D

ownloaded from