58
ROTATIONAL MOTION ROTATIONAL MOTION Y. Edi Gunanto Y. Edi Gunanto

ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Embed Size (px)

Citation preview

Page 1: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

ROTATIONAL MOTIONROTATIONAL MOTION

Y. Edi GunantoY. Edi Gunanto

Page 2: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Gerak Rotasi Dalam Fisika dibedakan 2 jenis gerak benda :

1. Gerak Translasi :

the motion of an object through space. (change of location)

2. Gerak Rotasi :

the spinning of an object around an axis. (change of orientation)

Page 3: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Objects may have purely translational motion, purely rotational motion, or both.

A rigid body (benda tegar) is composed of particles in fixed positions.

In a rigid body undergoing purely rotational motion, all points of the body move in circles centered around a line called the axis of rotation.

Page 4: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Rotational Motion

Key to learning rotational motion:

THE CONCEPTS FROM TRANSLATIONAL MECHANICS (E.G. VELOCITY, ACCELERATION, FORCE

ENERGY, & MOMENTUM) HAVE ANALOGOUS ROTATIONAL

CONCEPTS.

Page 5: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Rotational Kinematics

Angular displacement (Angular displacement ()) is the rotational is the rotational analog of displacement (∆x).analog of displacement (∆x).

Page 6: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Angular displacements are measured in radians.

= Arc length/radius

= r/r = 1 radian

r

r

= 1 rad= 1 radFor one complete For one complete revolution:revolution: = 2= 2r/r = 2r/r = 2 radians radiansSo, 2So, 2 rad = 360° rad = 360°

Page 7: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

l = R

Page 8: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Rotational Kinematics

Answers

180

/2

57.3

20

Find the following:

rad = ___ degrees

90° = ___ rad

1 rad = ___ degrees

10 rev = ___ rad

Page 9: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Rotational KinematicsRotational Kinematics

Average angular velocity (Average angular velocity (avgavg) ) is the is the rotational analog of velocity (v).rotational analog of velocity (v).

Velocity = Displacement / TimeVelocity = Displacement / Time

v = ∆x / tv = ∆x / t

Ang. velocity = Ang. displacement / TimeAng. velocity = Ang. displacement / Time

avgavg = = / t / t

Page 10: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Rotational KinematicsRotational Kinematics

What is the angular velocity of the points What is the angular velocity of the points on a record rotating at 45 rpm?on a record rotating at 45 rpm?

= 45 rev = 45 rev xx (2 (2 rad / 1 rev) = 90 rad / 1 rev) = 90 rad rad

= = / t / t

= 90= 90 rad / 60 s rad / 60 s

= 3= 3/2 rad/s/2 rad/s

Page 11: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Rotational KinematicsRotational Kinematics

Angular acceleration (Angular acceleration ()) is the rotational is the rotational analog of acceleration (a).analog of acceleration (a).

Acceleration = Change in velocity / TimeAcceleration = Change in velocity / Time

a = ∆v / ta = ∆v / t

Ang. accel. = Change in Ang.veloc. / Ang. accel. = Change in Ang.veloc. / TimeTime

= = / t / t

Page 12: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Rotational Kinematics

A record begins spinning from rest and reaches a rotation of 45 rpm in three

seconds. What is the angular acceleration of the points on the record?

= / t

= (3/2 rad/s - 0) / 3 s

= /2 rad/s2

Page 13: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Rotational Kinematics

Rotational Motion = o + t

= (1/2)(o + )t

avg = (1/2)(o + )

= ot + (1/2)t2

2 = o2 + 2

Linear Motion

v = vo + at

∆x = (1/2)(vo + v)t

vavg = (1/2)(vo + v)

∆x = vot + (1/2)at2

v2 = vo2 + 2a∆x

Page 14: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Problem 1

Given: ω = 27.5 rad/s at t = 0

α = -10 rad/s2

Line PQ lies on the disc along the x- axis

Find:

a) ω at t = 0.30 s?

b) Angle PQ makes with x – axis at this time?

Page 15: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

EXAMPLE EXAMPLE 11

Part a Solution:

Use: ωz = ωiz + αzt for t = 0.3 s

ωz = (27.5 rad/s) + (-10 rad/s2)(0.3s)

= 24.5 rad/s

In addition to stated givens we know

Θi= 0° at t = 0s

Given: ω = 27.5 rad/s at t = 0

α = -10 rad/s2

Line PG lies on the disc

along the x -axis

Page 16: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Part b

Part b Solution:

Use: Θ = Θi + ωizt + ½ αzt2 for t = 0.3 s

Θ = 0 + (27.5 rad/s)(0.3s) + ½ (-10 rad/s2)(0.3s)2 = 7.8 rad

# revolutions?: 7.8 rad (1rev/2π rad) = 1.24 rev

The disc has gone through one revolution plus 0.24 into the next. So the angle at that time with the x –axis is:

0.24 (360°/rev) = 87°

In addition to stated givens we know

Θi= 0° at t = 0s

Page 17: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Rolling Motion (without slipping)

Rolling without slipping depends on static friction between the wheel, ball, etc. and the ground.

The friction is static because the rolling object’s point of contact with the ground is at rest at each moment.

Kinetic friction comes in if the object skids, that is, slides.

VERY IMPORTANT CONCEPT!

Page 18: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Rolling Without Slipping Involves Both Rotation and Translation.

Static friction: wheel does not slide

Reference frame attached to ground

Center of mass (CM)

Reference frame attached to wheel

Page 19: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Reference frame attached to the ground

Page 20: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Reference frame attached to the wheel

Page 21: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space
Page 22: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Torque

Torque (t ) deals with the dynamics, or causes of rotational motion.

Dynamics in linear motion dealt with force. In rotational motion TORQUE is

analogous to FORCE in linear motion. That is, force through a distance

F

Page 23: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Definition of torque (magnitude)*

RF = RFsin

* Torque is a vector.

R x F = RFsin

Page 24: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space
Page 25: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

These two methods of calculation are completely equivalent.

Page 26: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Example 2

Torque on a compound wheel.

Two thin cylindrical wheels, of radii R1 = 30 cm and R2 = 50 cm, are attached to each other. Calculate the net torque on the two-wheel system due to the two forces shown, each of magnitude 50 N.

Page 27: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space
Page 28: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

F2

Page 29: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Rotational Dynamics; Torque and Rotational Dynamics; Torque and Rotational InertiaRotational Inertia

Linear Acceleration: Linear Acceleration: directlydirectly proportional to proportional to forceforce.. inversely inversely proportional to proportional to inertiainertia..

Angular Acceleration:Angular Acceleration: directlydirectly proportional to proportional to torquetorque.. inverselyinversely proportional to the proportional to the moment of moment of

inertiainertia..

Page 30: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Torque and Force

= I

F = ma

Moment of inertia

Page 31: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Example 3

Two Weights on a Bar: Different Axis, Different I.

Two small “weights” of mass 5.0 kg and 7.0 kg are mounted 4.0 m apart on a light rod (whose mass can be ignored). Calculate the moment of inertia of the system (a) when rotated about an axis half way between the weights, and (b) when the system rotates about an axis 0.50 m to the left of the 5.0 kg mass.

Page 32: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space
Page 33: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space
Page 34: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space
Page 35: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Example 4

A heavy pulley.

A 15.0-N force (represented by FT) is applied to a cord wrapped around a pulley of mass M = 4.0 kg and radius Ro = 33.0 cm. The pulley is observed to accelerate uniformly from rest to reach an angular speed of 30.0 rad/s. If there is a frictional torque (at the axle), t = 1.10 mN, determine the moment of inertia of the pulley. The pulley is assumed to rotate about its center.

Page 36: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space
Page 37: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Example 5

Rotating rod.

A uniform rod of mass M and length l can pivot freely (i.e., we ignore friction) about a hinge or pin attached to the case of a large machine. The rod is held horizontally and then released. At the moment of release determine (a) the angular acceleration of the rod (b) the linear acceleration of the tip of the rod. Assume the force of gravity acts at the CM of the rod.

Page 38: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space
Page 39: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Determining Moments of Inertia

The are two methods of determining moments of inertia: By experiment (See Example 4) By calculus

Page 40: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Using Calculus

For many bodies, or systems of particles, the moment of inertia can be calculated directly, as in Example 3.

Many bodies can be considered as a continuous distribution of mass. In this case we can write:

I = R2 dm

where dm represents the mass of an infinitesimal particle of the body and R is the perpendicular distance of the particle from the axis of rotation.

Page 41: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

EXAMPLE 6

Show that the moment of inertia of a uniform rod length L :

a. throught the centre of mass

b. throught the end of rod

Page 42: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

The Parallel-Axis and The Parallel-Axis and Perpendicular-Axis TheoremsPerpendicular-Axis Theorems

Parallel-Axis Theorem:Parallel-Axis Theorem: if the moment of if the moment of inertia inertia II is the moment of inertia of a body of is the moment of inertia of a body of total mass total mass MM about any axis, and about any axis, and IICMCM is the is the

moment of inertia about an axis passing moment of inertia about an axis passing through the center of mass and parallel to the through the center of mass and parallel to the first axis but a distance first axis but a distance hh away, then away, then

I = ICM + Mh2

Page 43: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Angular Momentum and Its Angular Momentum and Its ConservationConservation

Linear momentum: Linear momentum: p = p = mmvv

Angular momentum: Angular momentum: L = L = IIww

The SI units for The SI units for LL are kg.m are kg.m22/s./s.

Page 44: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Angular and Linear Angular and Linear MomentumMomentum

= I = dL dt

F = ma =dp dt

Page 45: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Conservation of Angular Conservation of Angular MomentumMomentum

Law of Conservation of Angular Momentum

The total angular momentum of a rotating body remains constant if the net external torque acting on it is zero.

When there is zero net torque acting on a body, and the body is rotating about a fixed axis or about an axis through its CM such that the direction doesn’t change, we can write

Iw = Iowo = constant

Page 46: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

When the skater pulls her arms in, she is decreasing her moment of inertia.

Page 47: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Example 7

Clutch design. You are designing a clutch assembly for a piece of machinery. The clutch assembly consists of two cylindrical plates, of mass MA = 6.0 kg and MB = 9.0 kg, with equal radii Ro = 0.60 m. They are initially separated. Plate MA is accelerated from rest to an angular velocity w1 = 7.2 rad/s in a time Δt = 2.0 s. Calculate (a) the angular momentum of MA, and (b) the torque required to have accelerated MA from rest to w1.

Page 48: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Clutch design (cont.).

Next, plate MB, initially at rest but free to rotate without friction, is allowed to fall vertically so it is in firm contact with plate MA. Before contact, MA was rotating at constant w1, with no friction or other torque exerted on it. Upon contact, the two plates both rotate at a constant angular velocity w2, which is considerably less than w1. (c) Why does this happen, and what is w2?

Page 49: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space
Page 50: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Rotational Kinetic Rotational Kinetic EnergyEnergy

Linear Kinetic Energy: Linear Kinetic Energy: KK = ½ = ½ mvmv22

Rotational Kinetic Energy: Rotational Kinetic Energy: K K = ½ = ½ IwIw22

Page 51: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

WorkWork

Linear work: W = ½ mv22 – ½ mv1

2 = ΔK

Rotational Work: Wrot = ½ Iw22 – ½ Iw1

2 = ΔKrot

Page 52: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Example 8

Rotating rod.

A rod of mass M is pivoted on a frictionless hinge at one end. The rod is held at rest horizontally and then released. Determine the angular velocity of the rod when it reaches the vertical position, and the speed of the rod’s tip at this moment.

Page 53: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space
Page 54: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Rotational Plus Translational Motion

Page 55: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

The EquationsThe Equations

Kinetic Energy = KCM + Krot

K = ½ MvCM + ½ ICMw22

Page 56: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

Example 9

Sphere rolling down an incline.

What will be the speed of a solid sphere of mass M and radius Ro when it reaches the bottom of an incline if it starts from rest at a vertical height H and rolls without slipping? Compare to the result of sliding down the incline.

Page 57: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space
Page 58: ROTATIONAL MOTION Y. Edi Gunanto. Gerak Rotasi  Dalam Fisika dibedakan 2 jenis gerak benda : 1. Gerak Translasi : the motion of an object through space

TERIMA KASIH