16
1 www.cert.ucr.edu Role of Glyoxal in SOA Formation from Aromatic Hydrocarbons SHUNSUKE NAKAO, Yingdi Liu, Ping Tang, Chia-Li Chen, David Cocker AAAR 2011 Orlando, FL Oct.6 (Thu) 10E.5

Role of Glyoxal in SOA Formation from Aromatic Hydrocarbons

Embed Size (px)

DESCRIPTION

Role of Glyoxal in SOA Formation from Aromatic Hydrocarbons. SHUNSUKE NAKAO , Yingdi Liu, Ping Tang, Chia-Li Chen, David Cocker AAAR 2011 Orlando, FL Oct.6 (Thu) 10E.5. Role of glyoxal in aromatic SOA formation. SOA: Secondary Organic Aerosol. SOA formation from glyoxal. - PowerPoint PPT Presentation

Citation preview

Page 1: Role of Glyoxal in SOA Formation from Aromatic Hydrocarbons

1www.cert.ucr.edu

Role of Glyoxal in SOA Formation from Aromatic Hydrocarbons

SHUNSUKE NAKAO, Yingdi Liu, Ping Tang, Chia-Li Chen, David Cocker

AAAR 2011Orlando, FLOct.6 (Thu)

10E.5

Page 2: Role of Glyoxal in SOA Formation from Aromatic Hydrocarbons

2

Role of glyoxal in aromatic SOA formation

SOA: Secondary Organic Aerosol

Page 3: Role of Glyoxal in SOA Formation from Aromatic Hydrocarbons

3

SOA formation from glyoxal – Cloud and fog processing

• Aqueous oxidation (Tan et al., 2009)

• Evaporating droplet (Leoffler et al., 2006; De Haan et al., 2009)

– “Missing sink” uptake onto aerosol• 15% of SOA formation in Mexico city (Volkamer et al., 2007)

– Uptake onto wet (NH4)2SO4 • SO4

2- enhances Henry’s law constant (Ip et al., 2009)

• Catalytic effect of NH4+ on oligomerization (Nozière et al., 2009)

• Chamber studies (Jang and Kamens, 2001; Kroll et al., 2005; Liggio et al., 2005; Galloway et al., 2009, 2011; Volkamer et al., 2009)

– Uptake onto organic seed• Fulvic acid, humic acid sodium salt, amino acids, carboxylic acids

(Corrigan et al., 2008; Volkamer et al., 2009; De Haan et al., 2009)

Page 4: Role of Glyoxal in SOA Formation from Aromatic Hydrocarbons

4

SOA formation from aromatics

Glyoxal inferred to play a major role in aromatic-SOA

• Glyoxal significant product: 8~24% from toluene (with NOx, Calvert et al., 2002)

• Oligomer formation (Kalberer et al., 2004)

• Water effect: Cocker et al., 2001 no effect (RH2~50%) Edney et al., 2000 no effect (RH 52~70%) Zhou et al., 2011 2~3 fold increase (RH 10~90%, ascribed to glyoxal)

This study: synthesized glyoxal, added glyoxal into aromatic-SOA system, and evaluated its impact

Kalberer et al., Science, 2004RH 40~50%

Page 5: Role of Glyoxal in SOA Formation from Aromatic Hydrocarbons

Experimental • Glyoxal synthesis - Heating glyoxal trimer dihydrate / P2O5 mixture under vacuum (Galloway et al., 2009, ACP)

• Gas Phase Analysis

Glyoxal, NO2 – CEAS

(Cavity Enhanced Absorption Spectrometer)

GC-FID – hydrocarbon

O3, NOX analyzer

• Particle Phase Analysis

SMPS – volume concentration and size distribution (Scanning Mobility Particle Sizer)

V/H-TDMA –volatility/hygroscopicity (Volatility/hygroscopicity Tandem Differential Mobility Analyzer)

HR-ToF-AMS – bulk chemical composition (Aerodyne High Resolution Time-of-Flight Mass Spectrometer)

Dual SMPS

Blacklights

Dual teflon reactor

APMTDMA

PTRMSAMS

Page 6: Role of Glyoxal in SOA Formation from Aromatic Hydrocarbons

Glyoxal uptake onto wet (NH4)2SO4

Glyoxal uptake confirmed(reversible oligomerization, Galloway et al., 2009; wall-reservoir, Loza et al., 2010)

RH~65%RunID: EPA1369A

50

40

30

20

10

0

Gly

oxal

(pp

b)

86420

Uptake time (hour)

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Organic/S

ulfate

500

400

300

200

100

0

Perfluorohexane (ppb)

Glyoxal Org/sulfate Tracer

Page 7: Role of Glyoxal in SOA Formation from Aromatic Hydrocarbons

7

Glyoxal and SOA formation from toluene/NOx photooxidation

Solid line: model prediction by SAPRC11(Poster 5E.8)

NO: 42 ppbRH 40%RunID: EPA1503A

100

80

60

40

20

0

To

lue

ne (

ppb

)

1086420Hours after lights on

30

25

20

15

10

5

0

Glyoxal (p

pb)

50

40

30

20

10

0

Vo

lume

conce

ntration (

m3/cm

3)

Toluene Volume Glyoxal Glyoxal - model

Page 8: Role of Glyoxal in SOA Formation from Aromatic Hydrocarbons

0.10

0.08

0.06

0.04

0.02

0.00

Tol

uene

(pp

m)

1086420Hours after lights on

100

80

60

40

20

0

PM

Volum

e concentration (m

3/cm3)

Effect of additional glyoxal on toluene SOA formation

Kinetic effect

Additional 80ppb glyoxal

NOx: ~40ppbRH ~70%

+ glyoxal

+ H2O2

Page 9: Role of Glyoxal in SOA Formation from Aromatic Hydrocarbons

9

140

120

100

80

60

40

20

0

Gly

oxal

(pp

b)

121086420

Hours after lights on

100

80

60

40

20

0

PM

volume (

m3/cm

3)

Glyoxal Volume (suspended) Volume (wall-corrected)

No glyoxal uptake onto “aromatic-SOA seed”

No contribution from glyoxal during/after SOA formation

Shaded area: dark

Page 10: Role of Glyoxal in SOA Formation from Aromatic Hydrocarbons

10

Glyoxal oligomer

Vol

ume

Fra

ctio

n R

emai

ning

16014012010080604020

Decanedioic acid Hexanedioic acid

Thermodenuder vaporization profiles

Glyoxal oligomer & aromatic SOA low volatile (<<10-8 Pa)

Aromatic SOA

~10-6~10-5

Pa~10-7

~10-8

Faulhaber et al., AMT, 2009

Residence time: ~15 sec

Page 11: Role of Glyoxal in SOA Formation from Aromatic Hydrocarbons

11

Volatility evolution1.0

0.8

0.6

0.4

0.2

0.0

Vol

ume

Fra

ctio

n R

emai

ning

@10

0C

121086420Hours after lights on

Toluene + NOx (humid) Toluene + NOx + glyoxal (humid)

Toluene + NOx + H2O2 (humid)

Page 12: Role of Glyoxal in SOA Formation from Aromatic Hydrocarbons

12

100

80

60

40

20

0

Pa

rtic

le v

olum

e (m

3 /cm

3 )

250200150100500

Hydrocarbon reacted (g/m3)

non-seeded non-seeded non-seeded

Toluene + NOx (RH~70%)

Non-seeded vs (NH4)2SO4 seed

(NH4)2SO4 seed (NH4)2SO4 seed (NH4)2SO4 seed (NH4)2SO4 seed

Page 13: Role of Glyoxal in SOA Formation from Aromatic Hydrocarbons

13

2-tert-butylphenol(BP)

• Tert-butyl AMS fragment (C4H9+)

tracer for BP SOA

Page 14: Role of Glyoxal in SOA Formation from Aromatic Hydrocarbons

14

Enhanced SOA formation by glyoxal without glyoxal oligomerization

Higher SOA without decrease in C4H9 fraction

2t-BP (100ppb) + H2O2 (250ppb) RH 51%Added glyoxal ~ 1ppm

12

8

4

0

Vo

lum

e c

on

cen

tra

tion

(m

3/c

m3)

121086420Hours after lights on

0.20

0.15

0.10

0.05

0.00

fC4 H

9

add glyoxal Vol

C4H9+

Page 15: Role of Glyoxal in SOA Formation from Aromatic Hydrocarbons

Conclusion

• The role of glyoxal in this chamber study was observed to be a radical source; insignificant contribution of reactive uptake was observed.

• Glyoxal uptake onto “SOA seed” needs to be evaluated

• Glyoxal reactive uptake onto wet (NH4)2SO4 confirmed

• No significant glyoxal uptake onto toluene SOA was observed

- Addition of glyoxal/H2O2 resulted in same PM formation and PM volatility

- Addition of glyoxal after PM formation (dark, SOA seed) did not form SOA

- Presence of (NH4)2SO4 seeds did not impact SOA yield significantly

- Addition of glyoxal did not alter fC4H9 of 2-tert-BP SOA

Page 16: Role of Glyoxal in SOA Formation from Aromatic Hydrocarbons

16

www.cert.ucr.edu16

Acknowledgements

• Graduate advisor: Dr. David Cocker• Current/former students: Christopher Clark, Ping Tang,

Xiaochen Tang, Dr. Quentin Malloy, Dr. Li Qi, Dr. Kei Sato

• Undergraduate student: Sarah Bates• Support staff: Kurt Bumiller, Chuck Bufalino• Glyoxal synthesis: Dr. Melissa Galloway, Dr. Arthur Chan• Funding sources: NSF, W.M. Keck Foundation, and

University of California, Transportation Center