26
Riemannian simplices and triangulations Ramsay Dyer, Gert Vegter and Mathijs Wintraecken Johann Bernoulli Institute SOCG 2015 Dyer, Vegter, Wintraecken (JBI) Riemannian simplices SOCG 2015 1 / 23

Riemannian simplices and triangulations - Sophia - Inria · Riemannian simplices and triangulations Ramsay Dyer, Gert Vegter and Mathijs Wintraecken Johann Bernoulli Institute SOCG

Embed Size (px)

Citation preview

Page 1: Riemannian simplices and triangulations - Sophia - Inria · Riemannian simplices and triangulations Ramsay Dyer, Gert Vegter and Mathijs Wintraecken Johann Bernoulli Institute SOCG

Riemannian simplices and triangulations

Ramsay Dyer, Gert Vegter and Mathijs Wintraecken

Johann Bernoulli Institute

SOCG 2015

Dyer, Vegter, Wintraecken (JBI) Riemannian simplices SOCG 2015 1 / 23

Page 2: Riemannian simplices and triangulations - Sophia - Inria · Riemannian simplices and triangulations Ramsay Dyer, Gert Vegter and Mathijs Wintraecken Johann Bernoulli Institute SOCG

Geometric simplices in Riemannian manifolds

Motivation: Generic triangulationcriteria |A| →M

manifold abstract simplicialcomplex A with verticesP ⊂Mintrinsic setting

explicit density requirements

Arbitrary dimension (ignore2D pictures)

Dyer, Vegter, Wintraecken (JBI) Riemannian simplices SOCG 2015 2 / 23

Page 3: Riemannian simplices and triangulations - Sophia - Inria · Riemannian simplices and triangulations Ramsay Dyer, Gert Vegter and Mathijs Wintraecken Johann Bernoulli Institute SOCG

Simplices

Dyer, Vegter, Wintraecken (JBI) Riemannian simplices SOCG 2015 3 / 23

Page 4: Riemannian simplices and triangulations - Sophia - Inria · Riemannian simplices and triangulations Ramsay Dyer, Gert Vegter and Mathijs Wintraecken Johann Bernoulli Institute SOCG

Riemannian centres of mass

Natural way to “fill in” a simplex?

Convex hull bad (conjectured not closed)

Instead, barycentric coordinates on M

Riemannian centres of mass

Centre of mass

Eλ(x) =1

2

∑i

λidM (x, pi)2

barycentric coordinates: λi ≥ 0,∑λi = 1

Bσj :∆j →M

λ 7→ argminx∈Bρ

Eλ(x)

∆j the standard Euclidean j-simplex, σM image

Dyer, Vegter, Wintraecken (JBI) Riemannian simplices SOCG 2015 4 / 23

Page 5: Riemannian simplices and triangulations - Sophia - Inria · Riemannian simplices and triangulations Ramsay Dyer, Gert Vegter and Mathijs Wintraecken Johann Bernoulli Institute SOCG

Exponential map

Notation

vi(x) = exp−1x (pi), σ(x) = {v0(x), . . . , vj(x)} ⊂ TxM , injectivity ιM

Dyer, Vegter, Wintraecken (JBI) Riemannian simplices SOCG 2015 5 / 23

Page 6: Riemannian simplices and triangulations - Sophia - Inria · Riemannian simplices and triangulations Ramsay Dyer, Gert Vegter and Mathijs Wintraecken Johann Bernoulli Institute SOCG

Non-degenerate Riemannian simplices

For fixed weights, barycenter (minimum ofEλ(x) = 1

2

∑i λidM (x, pi)

2):

grad Eλ(x) = −∑i

λi exp−1x (pi) = −∑i

λivi(x) = 0

Definition

A Riemannian simplex σM is non-degenerate if the barycentriccoordinate map Bσj : ∆j →M is an embedding.

Proposition

A Riemannian simplex σM ⊂M is non-degenerate if and onlyif σ(x) ⊂ TxM is non-degenerate for every x ∈ σM .

Dyer, Vegter, Wintraecken (JBI) Riemannian simplices SOCG 2015 6 / 23

Page 7: Riemannian simplices and triangulations - Sophia - Inria · Riemannian simplices and triangulations Ramsay Dyer, Gert Vegter and Mathijs Wintraecken Johann Bernoulli Institute SOCG

Rauch comparison theoremBuser and Karcher (1981)

Very roughly speaking bounds the distortion in

exp−1x ◦ expp : TpM → TxM,

depends on bounds on sectional curvatures and distance

Dyer, Vegter, Wintraecken (JBI) Riemannian simplices SOCG 2015 7 / 23

Page 8: Riemannian simplices and triangulations - Sophia - Inria · Riemannian simplices and triangulations Ramsay Dyer, Gert Vegter and Mathijs Wintraecken Johann Bernoulli Institute SOCG

Rauch comparison theoremBuser and Karcher (1981)

Very roughly speaking bounds the distortion in

exp−1x ◦ expp : TpM → TxM,

depends on bounds on sectional curvatures and distance

Dyer, Vegter, Wintraecken (JBI) Riemannian simplices SOCG 2015 8 / 23

Page 9: Riemannian simplices and triangulations - Sophia - Inria · Riemannian simplices and triangulations Ramsay Dyer, Gert Vegter and Mathijs Wintraecken Johann Bernoulli Institute SOCG

Rauch comparison theoremBuser and Karcher (1981)

Very roughly speaking bounds the distortion in

exp−1x ◦ expp : TpM → TxM,

depends on bounds on sectional curvatures and distance

Dyer, Vegter, Wintraecken (JBI) Riemannian simplices SOCG 2015 9 / 23

Page 10: Riemannian simplices and triangulations - Sophia - Inria · Riemannian simplices and triangulations Ramsay Dyer, Gert Vegter and Mathijs Wintraecken Johann Bernoulli Institute SOCG

Rauch comparison theoremBuser and Karcher (1981)

Very roughly speaking bounds the distortion in

exp−1x ◦ expp : TpM → TxM,

depends on bounds on sectional curvatures and distance

Dyer, Vegter, Wintraecken (JBI) Riemannian simplices SOCG 2015 10 / 23

Page 11: Riemannian simplices and triangulations - Sophia - Inria · Riemannian simplices and triangulations Ramsay Dyer, Gert Vegter and Mathijs Wintraecken Johann Bernoulli Institute SOCG

Euclidean simplex quality

Measure for how far a simplex is from degeneracy

Altitudes and thickness in Rn

altitude

σvi

viai The thickness of a j-simplex σ with longest

edge L is

t(σ) =

{1 if j = 0

minvi∈σaijL otherwise.

Another quality measure is fatness, a normalized volume.

Dyer, Vegter, Wintraecken (JBI) Riemannian simplices SOCG 2015 11 / 23

Page 12: Riemannian simplices and triangulations - Sophia - Inria · Riemannian simplices and triangulations Ramsay Dyer, Gert Vegter and Mathijs Wintraecken Johann Bernoulli Institute SOCG

Stability of thicknessBoissonnat, Dyer, Ghosh

Thickness is stable under distance distortions

Lemma (Thickness under distortion)

Suppose that σ = {v0, . . . , vk} and σ = {v0, . . . , vk} are two k-simplicesin Rn such that

||vi − vj | − |vi − vj || ≤ C0L(σ)

for all 0 ≤ i < j ≤ k.If

C0 =ηt(σ)2

4with 0 ≤ η ≤ 1,

then

t(σ) ≥ 4

5√k

(1− η)t(σ).

Dyer, Vegter, Wintraecken (JBI) Riemannian simplices SOCG 2015 12 / 23

Page 13: Riemannian simplices and triangulations - Sophia - Inria · Riemannian simplices and triangulations Ramsay Dyer, Gert Vegter and Mathijs Wintraecken Johann Bernoulli Institute SOCG

Main result: intrinsic simplex

Theorem (Non-degeneracy criteria)

Suppose M is a Riemannian manifold with sectional curvatures Kbounded by |K| ≤ Λ, and σM is a Riemannian simplex, withσM ⊂ Bρ ⊂M , where Bρ is an open geodesic ball of radius ρ with

ρ < ρ0 = min

{ιM2,π

4√

Λ

}.(sufficiently small neighbourhood)

Then σM is non-degenerate if there is a point p ∈ Bρ such that the liftedEuclidean simplex σ(p) has thickness satisfying

t(σ(p)) > 10√

ΛL(σM ),

where L(σM ) is the geodesic length of the longest edge in σM .

Dyer, Vegter, Wintraecken (JBI) Riemannian simplices SOCG 2015 13 / 23

Page 14: Riemannian simplices and triangulations - Sophia - Inria · Riemannian simplices and triangulations Ramsay Dyer, Gert Vegter and Mathijs Wintraecken Johann Bernoulli Institute SOCG

Triangulations

Dyer, Vegter, Wintraecken (JBI) Riemannian simplices SOCG 2015 14 / 23

Page 15: Riemannian simplices and triangulations - Sophia - Inria · Riemannian simplices and triangulations Ramsay Dyer, Gert Vegter and Mathijs Wintraecken Johann Bernoulli Institute SOCG

Triangulation: stitching simplices together

Given:

points P ⊂M .

(abstract) simplicial complex A vertices identified with P

When can we be sure that A triangulates M?

Avoid local conflicts by local geometric control and global coverage

For geometric control we focus on full stars:Closure all simplices adjacent to a vertex

Dyer, Vegter, Wintraecken (JBI) Riemannian simplices SOCG 2015 15 / 23

Page 16: Riemannian simplices and triangulations - Sophia - Inria · Riemannian simplices and triangulations Ramsay Dyer, Gert Vegter and Mathijs Wintraecken Johann Bernoulli Institute SOCG

Star in the tangent space

Dyer, Vegter, Wintraecken (JBI) Riemannian simplices SOCG 2015 16 / 23

Page 17: Riemannian simplices and triangulations - Sophia - Inria · Riemannian simplices and triangulations Ramsay Dyer, Gert Vegter and Mathijs Wintraecken Johann Bernoulli Institute SOCG

Star on the surface

Rauch comparison theorem gives geometric control: Map to manifold

Dyer, Vegter, Wintraecken (JBI) Riemannian simplices SOCG 2015 17 / 23

Page 18: Riemannian simplices and triangulations - Sophia - Inria · Riemannian simplices and triangulations Ramsay Dyer, Gert Vegter and Mathijs Wintraecken Johann Bernoulli Institute SOCG

Star at adjacent vertex

Dyer, Vegter, Wintraecken (JBI) Riemannian simplices SOCG 2015 18 / 23

Page 19: Riemannian simplices and triangulations - Sophia - Inria · Riemannian simplices and triangulations Ramsay Dyer, Gert Vegter and Mathijs Wintraecken Johann Bernoulli Institute SOCG

Star at adjacent vertex

Dyer, Vegter, Wintraecken (JBI) Riemannian simplices SOCG 2015 19 / 23

Page 20: Riemannian simplices and triangulations - Sophia - Inria · Riemannian simplices and triangulations Ramsay Dyer, Gert Vegter and Mathijs Wintraecken Johann Bernoulli Institute SOCG

Two stars in the tangent space

We need to cover the entire manifold

Brouwer’s invariance of domain: f : M → N locally one-to-one implieslocal homeomorphism

Dyer, Vegter, Wintraecken (JBI) Riemannian simplices SOCG 2015 20 / 23

Page 21: Riemannian simplices and triangulations - Sophia - Inria · Riemannian simplices and triangulations Ramsay Dyer, Gert Vegter and Mathijs Wintraecken Johann Bernoulli Institute SOCG

Two stars on the surface

With geometric control (Rauch) we can stitch the simplices together

Dyer, Vegter, Wintraecken (JBI) Riemannian simplices SOCG 2015 21 / 23

Page 22: Riemannian simplices and triangulations - Sophia - Inria · Riemannian simplices and triangulations Ramsay Dyer, Gert Vegter and Mathijs Wintraecken Johann Bernoulli Institute SOCG

Theorem (Triangulation criteria)

Suppose M is a compact n-dimensional Riemannian manifold withsectional curvatures K bounded by |K| ≤ Λ, and A is an abstractsimplicial complex with finite vertex set P ⊂M . Define a qualityparameter t0 > 0, and let

h = min

{ιM4,

√nt0

6√

Λ

}.

If

For every p ∈ P, the vertices of St(p) are contained in BM (p;h), andthe balls {BM (p;h)}p∈P cover M . (global coverage)

For every p ∈ P, the restriction of the inverse of the exponential mapexp−1p to the vertices of St(p) ⊂ A defines a piecewise linearembedding of |St(p)| into TpM , realising St(p) as a full star such thatevery simplex σ(p) has thickness t(σ(p)) ≥ t0. (geometric controle)

then A triangulates M , and the triangulation is given by the barycentriccoordinate map on each simplex.

Dyer, Vegter, Wintraecken (JBI) Riemannian simplices SOCG 2015 22 / 23

Page 23: Riemannian simplices and triangulations - Sophia - Inria · Riemannian simplices and triangulations Ramsay Dyer, Gert Vegter and Mathijs Wintraecken Johann Bernoulli Institute SOCG

Questions?

Dyer, Vegter, Wintraecken (JBI) Riemannian simplices SOCG 2015 23 / 23

Page 24: Riemannian simplices and triangulations - Sophia - Inria · Riemannian simplices and triangulations Ramsay Dyer, Gert Vegter and Mathijs Wintraecken Johann Bernoulli Institute SOCG

Bibliographic notes

Karcher means

Cartan (1928); Frechet (1948); Karcher (1977); Kendall (1990)

Buser and Karcher (1981); Peters (1984); Chavel (2006)

Riemannian simplices

Berger (2003)

Rustamov (2010); Sander (2012)

von Deylen (2014)

Dyer, Vegter, Wintraecken (JBI) Riemannian simplices SOCG 2015 1 / 3

Page 25: Riemannian simplices and triangulations - Sophia - Inria · Riemannian simplices and triangulations Ramsay Dyer, Gert Vegter and Mathijs Wintraecken Johann Bernoulli Institute SOCG

Theorem (Metric distortion)

If the requirements of the Triangulation Theorem, are satisfied with thescale parameter h replaced by

h = min

{ιM4,t0

6√

Λ

},

then A is naturally equipped with a piecewise flat metric dA defined byassigning to each edge the geodesic distance in M between its endpoints.If H : |A| →M is the triangulation defined by the barycentric coordinatemap in this case, then the metric distortion induced by H is quantified as

|dM (H(x), H(y))− dA(x, y)| ≤ 50Λh2

t20dA(x, y),

for all x, y ∈ |A|.

Dyer, Vegter, Wintraecken (JBI) Riemannian simplices SOCG 2015 2 / 3

Page 26: Riemannian simplices and triangulations - Sophia - Inria · Riemannian simplices and triangulations Ramsay Dyer, Gert Vegter and Mathijs Wintraecken Johann Bernoulli Institute SOCG

Theorem (Intrinsic simplex triangulation criteria)

Suppose M is a compact n-dimensional Riemannian manifold withsectional curvatures K bounded by |K| ≤ Λ, and A is an abstractsimplicial complex with finite vertex set P ⊂M . Define a qualityparameter t0 > 0, and let

h = min

{ιM4,t0

8√

Λ

}.

If

1 For every simplex σ = {p0, . . . , pn} ∈ A, the edge lengths`ij = dM (pi, pj) satisfy `ij < h, and they define a Euclidean simplexσE with t(σE) ≥ t0.

2 The balls {BM (p;h)}p∈P cover M , and for each p ∈ P the secantmap of exp−1p realises St(p) as a full star.

then A triangulates M , and the triangulation is given by the barycentriccoordinate map on each simplex.

Dyer, Vegter, Wintraecken (JBI) Riemannian simplices SOCG 2015 3 / 3