28
1 241-460 Introduction to Queueing Netw orks : Engineering Approach Asso c. Prof. Thossa porn Kamolphiwong Centre for Network Research (CNR) Department of Computer Engineering, Faculty of Engineering Prince of Songkla University , Thailand  Stochastic Processes Stochastic Processes Email : kthossaporn@coe .psu.ac.th Outline Random Processes or Stochastic Processes Definitions Types of Stochastic Processes Random Sequences Examples of Stochastic Processes Bernoulli Process ount ng rocess Poisson Process Stationary Process Chapter 6 : Stochastic Process es

ReviewCh6 Random Processes

Embed Size (px)

Citation preview

8/3/2019 ReviewCh6 Random Processes

http://slidepdf.com/reader/full/reviewch6-random-processes 1/28

1

241-460 Introduction to Queueing

Netw orks : Engineering Approach

Assoc. Prof. Thossaporn KamolphiwongCentre for Network Research (CNR)

Department of Computer Engineering, Faculty of EngineeringPrince of Songkla University, Thailand

 Stochastic ProcessesStochastic Processes

Email : [email protected]

Outline

Random Processes or Stochastic Processes

• Definitions

• Types of Stochastic Processes

• Random Sequences• Examples of Stochastic Processes

Bernoulli Process

ount ng rocess

Poisson Process

Stationary Process

Chapter 6 : Stochastic Processes

8/3/2019 ReviewCh6 Random Processes

http://slidepdf.com/reader/full/reviewch6-random-processes 2/28

2

Stochastic Process

• Observation corresponds to function of time

OutcomesS

 

Chapter 6 : Stochastic Processes

Random Variable

 X ( )Random Variable

 X (t ) = X (t , )

Stochastic Process

 Definition : A stochastic process X ( t) or Random process is a rule for assigning to every   a function

 x(t, )

 Definition : Sample Function

 A sample function x(t, ) is the time function associated with outcome  of an experiment 

 Definition : Ensemble

The ensemble of a stochastic process is the set of all  possible time functions that can result from anexperiment 

Chapter 6 : Stochastic Processes

8/3/2019 ReviewCh6 Random Processes

http://slidepdf.com/reader/full/reviewch6-random-processes 3/28

3

Example

 x(t, 1)

1

 2

 x(t, 2)

 x(t, 3)

Ensemble

Chapter 6 : Stochastic Processes

 3

Sample Space Sample Function

Stochastic Symbols

 

 t : time dependent 

 x( t,) : sample functions, X ( t) : name of stochastic process

Chapter 6 : Stochastic Processes

8/3/2019 ReviewCh6 Random Processes

http://slidepdf.com/reader/full/reviewch6-random-processes 4/28

4

Example

Time instants T = 0, 1, 2,…,  x(t,S 1)

  T 

where 1 N T  6

 X (t ) = N T 

 X (t ) for T  t < T + 1 , x(t,S 2)

S 11,2,6,3,…

Chapter 6 : Stochastic Processes

24,2,6,5,…

Type of Stochast ic processes

• Based on the parameter space:

Discrete-time stochastic rocess:

Set I is countable ( t  I )

Continuous-time stochastic process

Set I is continuous (t  I )• Based on the state processes:

Discrete-state processes:

state space discrete

Continuous-state processes:

state space continuous

Chapter 6 : Stochastic Processes

8/3/2019 ReviewCh6 Random Processes

http://slidepdf.com/reader/full/reviewch6-random-processes 5/28

5

Stochastic processes Example

• Discrete-time, discrete-state processes

The number of occupied channels in a telephone

link at the arrival time of the k th customer,

k = 1,2,…

he number of ackets in the buffer of a

statistical multiplexer at the arrival time of the k th

customer, k = 1,2,…

Chapter 6 : Stochastic Processes

(Continue)

• Continuous-time, discrete-state processes

The number of occupied channels in a telephone

link at time t > 0

The number of packets in the buffer of a

Chapter 6 : Stochastic Processes

8/3/2019 ReviewCh6 Random Processes

http://slidepdf.com/reader/full/reviewch6-random-processes 6/28

6

Type of Stochastic Processes

Discrete-Time, Continuous-Value

    t             )

Continuous-Time, Continuous-Value

             )

Continuous-Time, Discrete-Value

     D             (    t             )

Discrete-Time, Discrete-Value

     D             (    t             )

     X     D     C

             (

t      X     C     C

             (

Chapter 6 : Stochastic Processes

     X     C

     X     D

Random Variables fromStochastic Processes

 x(t,S 1)

 x(t,S 2)

S 11,2,6,3,…

 Random Variable : X (t )

 

 x(0 ,1), x(1 ,2),  x(2 ,6), x(3 ,3), …

 x P  PMF 

 x f  PDF 

t  X 

t  X 

:

:

Chapter 6 : Stochastic Processes

S 24,2,6,5,…

8/3/2019 ReviewCh6 Random Processes

http://slidepdf.com/reader/full/reviewch6-random-processes 7/28

7

Example

• Rolling a die, what is the PMF of  X (3.5)?

T  t < T + 1  x(t,S 1) 6

Solution

• The random variables  X (3.5) is the value of the

die roll at time 3.

2

otherwise x x P  6,...,2,1

0

6 / 15.3

Chapter 6 : Stochastic Processes

Random Sequence

Definition :

   n  

of  X 0, X 1, X 2, …

 Independent, Identically Distributed (iid ) Random

Sequences is a random sequence  X n in which…, X -2, X -1, X 0, X 1, X 2,… are ii Ran om Varia es

Chapter 6 : Stochastic Processes

8/3/2019 ReviewCh6 Random Processes

http://slidepdf.com/reader/full/reviewch6-random-processes 8/28

8

Theorem : Let X n is an iid random sequence.

IID Random Sequences

For a continuous-valued process, the joint PDF is

  - ,

i X k  X  X   x P  x x x P k 

,...,,21,...,1

Chapter 6 : Stochastic Processes

i

i X k  X  X   x f  x x x f k 

1

21,...,,...,,

1

Sum P rocess

• Many interesting random processes are obtainedas the sum of se uence of iid random variable  X 1, X 2, …

S n = X 1 + X 2 + … + X n n = 1, 2, …

Chapter 6 : Stochastic Processes

8/3/2019 ReviewCh6 Random Processes

http://slidepdf.com/reader/full/reviewch6-random-processes 9/28

9

Some Important Stochastic

Process• Bernoulli Process

 

• Poisson Process

Chapter 6 : Stochastic Processes

Bernoulli P rocess

Definition : A Bernoulli (  p ) process X  n is an iid 

ran om sequence n w c eac n  s a

 Bernoulli (  p ) random variable

Example

Chapter 6 : Stochastic Processes

,output X 1, X 2,… of a binary source is modeled as

a Bernoulli ( p = ½) process

8/3/2019 ReviewCh6 Random Processes

http://slidepdf.com/reader/full/reviewch6-random-processes 10/28

10

Counting Process

Definition Counting Process

s oc as c process s a coun ng process

if for every sample function, k (t, ) = 0

 for t < 0 and k (t, ) is integer-valued and 

nondecreasing with time

Chapter 6 : Stochastic Processes

Sample path of counting process

 N (t )

Arrival rate > 0

 X 5

S 1 S 2 S 3 S 4 S 5t 

 X 4 X 3 X 2 X 1

Chapter 6 : Stochastic Processes

 X n : Bernoulli process

 N (t ) = # of customers that arrive at a systemduring interval (0,t ]

8/3/2019 ReviewCh6 Random Processes

http://slidepdf.com/reader/full/reviewch6-random-processes 11/28

11

 N (t )

Arrival rate > 0

(Continue)

• Sum of Process

S 1 = X 1

 X 5

S 1 S 2 S 3 S 4 S 5t 

 X 4 X 3 X 2 X 1

S 2 = X 1 + X 2

S 3 = X 1 + X 2 + X 3

S 4 = X 1 + X 2 + X 3 + X 4

S 5 = X 1 + X 2 + X 3 + X 4 + X 5

Chapter 6 : Stochastic Processes

 N (t )

(Continue)

 N (t ) = # of customers

 X n : Bernoulli process

 X 5

t S 1 S 2 S 3 S 4 S 5

Arrival rate > 0

 X 4 X 3 X 2 X 1

T=m

T=m

S 1 S 2 S 3 S 4 S 5

Chapter 6 : Stochastic Processes

8/3/2019 ReviewCh6 Random Processes

http://slidepdf.com/reader/full/reviewch6-random-processes 12/28

12

Counting Process

S 1 S 2 S 3 S 4 S 5

0, there is only 1 arrival ( X n = 1)

Choose << 1, success probability of T  / m

5 10 15 m

nmn

 N  mT mT n

mn P 

m

 

  

     1

Chapter 6 : Stochastic Processes

Prob. of  N m arrival is

Binomial PMF

Counting Process

Binomial Process

nmn

 N  mT mT n

n P m

  

   1

T n  

 m , 0 ,

Chapter 6 : Stochastic Processes

otherwise

nnn P  N m

,...,,

0

!

Poisson Process

8/3/2019 ReviewCh6 Random Processes

http://slidepdf.com/reader/full/reviewch6-random-processes 13/28

13

Poisson P rocess

•  Any interval (t 0,t 1], # of arrivals is a Poisson PMF

1- 0

• # of arrivals in (t 0,t 1] dependents on the

independent Bernoulli trials

• 0, counting process in which # of arrivals in

any interval is Poisson process

Chapter 6 : Stochastic Processes

Poisson P rocess

Definition : Poisson Process

 

a) # of arrivals in any interval (t 0 ,t 1] , N (t 1) – 

 N (t 0

),is a Poisson random variable withexpected value  (t 1-t 0)

b)  For any pair of nonoverlapping intervals (t 0 ,t 1]

0 , 1 ,

interval, N (t 1) – N (t 0) and N (t 1) – N (t 0)respectively, are independent random variables

Chapter 6 : Stochastic Processes

8/3/2019 ReviewCh6 Random Processes

http://slidepdf.com/reader/full/reviewch6-random-processes 14/28

14

Poisson P rocess

t 0

 N (t 0)

 N (t 1)

1

 N (t )

Chapter 6 : Stochastic Processes

 N (t ) = # of arrivals in the interval (t 0 ,t 1]

 N (t 1) - N (t 0) = # of arrivals in the interval (t 0 ,t 1]

Poisson P rocess

• Process rate () = E [ N (t )]/ t 

• Poisson random variable  N t  = N t  – t 

me

m

t t 

m P t t 

m

t  N 

,...,1,0!

0101   

 

PMF is

0

Chapter 6 : Stochastic Processes

8/3/2019 ReviewCh6 Random Processes

http://slidepdf.com/reader/full/reviewch6-random-processes 15/28

15

Example

Suppose that the number of calls that arrive at acom an call centre is a Poisson rocess with a rate of 120 per hour.

a) What is the probability of 3 calls in a minute? 

b) What is the probability of at least two calls in a minute? 

Chapter 6 : Stochastic Processes

Solution

 =120 calls/hour 

t t 0 t 1

 N (t )

Chapter 6 : Stochastic Processes

  1 - 0 = m nu e, = ca s = =

b) t 1 - t 0 = 1 minute, N (t ) > 2 calls P [ N (t ) > 2] = ?

8/3/2019 ReviewCh6 Random Processes

http://slidepdf.com/reader/full/reviewch6-random-processes 16/28

16

Solution

a) What is the probability of 3 calls in a minute? 

 P N t   = 3 = ??

33

 

On average there are 120/60 =2 calls perminute. (= 2)

18.0!3!)3(01 01

eemt  N  P 

Chapter 6 : Stochastic Processes

Solution

b) What is the probability of at least two calls in a minute?   P [ N (t ) > 2] = ??

101212  N  P  N  P  N  P  N  P 

 P [ N > 2] = P [ N = 2] + P [ N = 3] + P [ N = 4] + …

 P [ N  = 0] + P [ N  = 1] + P [ N = 2] + P [ N = 3] + … = 1

101  N  P  N  P 

Chapter 6 : Stochastic Processes

594.0211

!1

2

!0

21

2

12

02

 

 

 

e

ee

8/3/2019 ReviewCh6 Random Processes

http://slidepdf.com/reader/full/reviewch6-random-processes 17/28

17

Theorem : For a Poisson process  N (t ) of rate ,

Joint PMF

e o n o = 1  ,…, k  , orordered time instances t 1 < ···< t k , is

otherwise

nnnn

e

nn

e

n

e

n P k 

k k 

nn

nnn

 N 

k k k 

,...0

0

!!!1

112

2

1

1121211        

Chapter 6 : Stochastic Processes

 1 =  t 1 and  i =  (t i –t i-1), i = 2, 3,…

Example

 

t 0 t 4t 1 t 2 t 3α1

Chapter 6 : Stochastic Processes

2

n1 = 2 n2 = 3 n3 = 4

8/3/2019 ReviewCh6 Random Processes

http://slidepdf.com/reader/full/reviewch6-random-processes 18/28

18

(Continue)

 

t t 0 t 4t 1 t 2 t 3

α1 α2 α3

n1 = 2 n2 = 3 n3 = 4

23   e

Chapter 6 : Stochastic Processes

!32 12 t t  N 

!2

1

1

2

101

   e

t t  P  N 

!4

3

3

4

334

   e

t t  P  N 

(Continue)

 

t t 0 t 4t 1 t 2 t 3

α

3

n1 = 2 n2 = 3 n3 = 4

Chapter 6 : Stochastic Processes

!4!3!2

321 4

3

3

2

2

1

        eeet  P  N 

8/3/2019 ReviewCh6 Random Processes

http://slidepdf.com/reader/full/reviewch6-random-processes 19/28

19

Example

Inquiries arrive at a recorded message deviceaccordin to a Poisson rocess of rate 15 inquiries per minute.

• Find the probability that in a 1-minute period, 3inquiries arrive during the first 10 seconds and 2inquiries arrive during the last 15 seconds.

Chapter 6 : Stochastic Processes

(Continue)

3  = 15 inquiries/minute

t ( s)0 102

= ¼ /second 

50 60

Chapter 6 : Stochastic Processes

 P [ N 1(10) = 3 and N 3(60)- N 2(45) = 2] = ??

8/3/2019 ReviewCh6 Random Processes

http://slidepdf.com/reader/full/reviewch6-random-processes 20/28

20

Solution

 Arrival rate () =15/60 = ¼ inquiries per second,

!2

415

!3

41041524103

ee

 P [ N 1(10) = 3, N 3(60)- N 2(45) = 2] = ??

= P [ N (10) = 3] P [ N (60 – 45) = 2]

Chapter 6 : Stochastic Processes

Interarrival Time

Theorem: A counting process with independentex onential interarrival  X X … is a Poisson 

process of rate

 N (t ) Arrival rate > 0

Chapter 6 : Stochastic Processes

 X 5

S 1 S 2 S 3 S 4 S 5 X 4 X 3 X 2 X 1

2th Interarrival time

8/3/2019 ReviewCh6 Random Processes

http://slidepdf.com/reader/full/reviewch6-random-processes 21/28

21

Theorem : For a Poisson process of rate   ,

Interarrival time

the interarrival times X 1, X 2,… are an iid 

random sequence with the exponential PDF 

otherwise

 xe x f 

 x

 X 

,0

0

  

Chapter 6 : Stochastic Processes

Relationship between the Poissonand Exponential Distributions

Poisson distributionPoisson distributionrovides an a ro riate descri tionrovides an a ro riate descri tion

of the number of occurrencesof the number of occurrencesper intervalper interval

Ex onential distributionEx onential distribution

Chapter 6 : Stochastic Processes

 provides an appropriate descriptionprovides an appropriate description

of the length of the intervalof the length of the intervalbetween occurrencesbetween occurrences

8/3/2019 ReviewCh6 Random Processes

http://slidepdf.com/reader/full/reviewch6-random-processes 22/28

22

• Property 1 : Memoryless property

Properties of Poisson Process

h

n

nnnn e

t  X  P 

t t t  X ht  X  P 

 

,|

h

Chapter 6 : Stochastic Processes

 If the arrival has not occurred by time t, the additional time until 

the arrival, h + t, has the same exponential distribution as X n

t  t+h time

(Continue)

t  X ht  X  P 

t  X ht  X  P  nnnn

,|

h

 X n > t + h X n > t 

n

Chapter 6 : Stochastic Processes

+ met 

8/3/2019 ReviewCh6 Random Processes

http://slidepdf.com/reader/full/reviewch6-random-processes 23/28

23

Example

Connection requests arrive at a server according toa Poisson rocess with intensit = 5 re uests in a minute.

(a) What is the probability that exactly 2 newrequests arrive during the next 30 seconds?

 at the server, what is the probability that ittakes more than 30 seconds before nextrequest arrives?

Chapter 6 : Stochastic Processes

Solution

•  N (t ) : # of requests arrive at a server at time t 

 requests arrive during the next 30 seconds?

30 s

Chapter 6 : Stochastic Processes

t 0 1 

 P [ N (t 0 + 30) - N (t 0) = 2 ] = ??

8/3/2019 ReviewCh6 Random Processes

http://slidepdf.com/reader/full/reviewch6-random-processes 24/28

24

Solution

• # of new arrivals during a time interval followsPoisson distribution with the parameter

!2

5.052)(30

2

5.05

2

et  N t  N  P 

=(5/60)30 = 2.5

•  N (t +30)- N (t ) ~ Poisson(2.5)

257.0

!2

.5.2

e

Chapter 6 : Stochastic Processes

Solution

(b) If a new connection request has just arrived atthe server what is the robabilit that it takes more than 30 seconds before next requestarrives?

new connection next connection

 P [t 1-t 0 > 30] = ??

Or  P [T > 30+t | T > t ] = ??

Chapter 6 : Stochastic Processes

t 0 1 

8/3/2019 ReviewCh6 Random Processes

http://slidepdf.com/reader/full/reviewch6-random-processes 25/28

25

Solution

• Consider the process as a point process. Theinterarrival time follows ex onential distribution with parameter

 P [t 1-t 0 > 30] = 1 – P [t 1-t 0 < 30]

= e-(5/60)30 = e-2.5 = 0.82

 P [T > t+30 | T > t ] = e-(5)(30/60)

= e-2.5 = 0.82

Chapter 6 : Stochastic Processes

Properties of Poisson Process

• Property 2 : Let N 1(t ) and N 2(t ) be two

and 2. The counting process  N (t ) = N 1(t ) + N 2(t )

is a Poisson process of rate 1 + 2.

 1 N 1(t )

Chapter 6 : Stochastic Processes

 2

 1 +  2

2

 N (t )

8/3/2019 ReviewCh6 Random Processes

http://slidepdf.com/reader/full/reviewch6-random-processes 26/28

26

Properties of Poisson Process

• Property 3 : The counting processes  N 1(t ) andt  derived from a Bernoulli decom osition of  

the Poisson process N (t ) are independentPoisson processes with rate  p and (1- p).

 N (t )= N 1(t )+ N 2(t ) 

Chapter 6 : Stochastic Processes

1  p

 N 2(t ) (1- p)

Example

 A corporate Web server records hits (request forHTML document as a Poisson rocess at a rate of 10 hits per second. Each page is either aninternal request (with probability 0.7) from the

corporate intranet or an external request (withprobability 0.3) from the Internet.

• Over a 10-minute interval, what is the joint PMF of  I  , the number of internal requests, and  X  , the 

number of external requests? 

Chapter 6 : Stochastic Processes

8/3/2019 ReviewCh6 Random Processes

http://slidepdf.com/reader/full/reviewch6-random-processes 27/28

27

Solution

Internal and external request arrival areindependent Poisson processes with rate of 7an its per secon

  I = 7(600) = 4200 hits

  X = 3(600) = 1800 hits

The joint PMF of  I and X is

otherwise0

,...1,0,!

1800

!

4200

,

18004200

,

 xi x

e

i

e xi

 X  I  X  I 

Chapter 6 : Stochastic Processes

Stationary Processes

• Stochastic process X (t ) ,

  1 1    X (t 1)   1.

• Stationary process,

at t 1: X (t 1) with  f  X (t 1)( x) does not depend on t 1

Stationary process 

Chapter 6 : Stochastic Processes

• Same random variable at all time• The statistical properties of the processdo not change with time

8/3/2019 ReviewCh6 Random Processes

http://slidepdf.com/reader/full/reviewch6-random-processes 28/28

• Definition : Stationary Process

Stationary Process

stoc astic process t is stationary i an on y

if for all sets of time instant t 1 ,…, t m , and any

time difference  

mt  X t  X mt  X t  X   x x f  x x f mm

,...,,..., 1,...,1,..., 11   

Chapter 6 : Stochastic Processes

References

1.  Alberto Leon-Garcia, Probability and RandomProcesses for Electrical En ineerin 3rd Ed., Addision-Wesley Publishing, 2008

2. Roy D. Yates, David J. Goodman, Probabilityand Stochastic Processes: A FriendlyIntroduction for Electrical and ComputerEngineering, 2nd, John Wiley & Sons, Inc, 2005

3. Jay L. Devore, Probability and Statistics forEngineering and the Sciences, 3rdedition, Brooks/Cole PublishingCompany, USA, 1991.

Chapter 6 : Stochastic Processes