Upload
dewan
View
267
Download
12
Embed Size (px)
DESCRIPTION
dinding penahan
concrete = 11 x 2,500,000 = 28,312,500 75%
reinforcement = 374 x 25,000 = 9,351,665 25%
Rp 37,664,165 ,- /m'
reinforcement = 33.03 kg/m3-concrete
0.001.00
2.003.00
4.005.00
6.007.00
8.009.00
10.0011.00
12.0013.00
14.0015.00
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
11.00
12.00
13.00
14.00
15.00
1 0.00 0.002 0.00 1.003 1.00 1.504 1.00 7.005 1.30 7.006 2.00 1.507 6.00 1.008 6.00 0.009 0.00 0.00
1 0.00 2.502 1.00 2.50
1 1.00 0.002 6.00 0.00
1 0.00 0.002 1.00 0.00
303296237.xls-02/05/2016
Location : PERUM UNMUL
Top wall level = 7.00 mDinding Penahan River bed level = 2.50 m
Ground water level = 0.00 m
River water level = 0.00 m
Foundation level = 0.00 m
Dimension (unit length)
H = 7.00 m B = 6.00 m L = 1.00 m
= 0.70 m = 0.30 m = 0.00 m
= 4.00 m = 1.00 m = 1.00 m
= 7.00 m = 1.00 m = 0.50 m
= 2.50 m = 0.00 m = 0.00 m
q = 0.50 Kh = 0.18
Backfill soil = 2.50 = 1.00
= 1.80
= 2.50 = 0.00 (for stability analysis) = 44.6 = 7.25 (for structural analysis)
c = 0.00 = 0.00
Section of Retaining wall Foundation soil
= 1.50 Safety factor (normal) (seismic)
= 44.6 Overturning < B/6=1.17 B/3=2.00
= 0.00 Sliding > 2.00 1.25
Friction coefficient = 0.79 qmax > qa=qu/3 qae=qu/2
Uplift coefficient Allowable stress
= 1.00 = 60 90
Cover of bar = 1850 2775
Wall = 5.5 8.25
= 7 cm Young's modulus ratio
= 7 cm 24 16
Footing
= 7 cm
= 7 cm
b11
b12
b13
b21
b22
b23
h1
h31
h32
h4
hw1
hw2
t/m2
c t/m3 w t/m3
soil t/m3
sat t/m3 o
o o
t/m2 o
s' t/m3
B
o |e|c
B t/m2 fs
Reaction of foundation soil
U Compressive ca kg/cm2
Tensile sa kg/cm2
Shear a kg/cm2
d back
d front
d upper
d lower
b12
H=h1
h31
b21 b
23
q (t/m2)
h4
b11
b13
b22
h32
hw1
hw2
B
303296237.xls-02/05/2016
STABILITY : Dinding PenahanS
Normal Condition Seismic Condition
a) Stability against overturning a) Stability against overturning
= 0.35 m < B/6 = 1.00 m OK! = 0.02 m < B/3 = 2.00 m OK!
b) Stability against sliding b) Stability against sliding
Fs = -3.27 < 2.00 Check! Fs = 5.22 > 1.25 OK!
= 8.23 < = 171.89 OK! = 12.02 < = 257.83 OK!
= 17.18 < = 171.89 OK! = 12.61 < = 257.83 OK!
|e| |e|
c) Reaction of foundation soil c) Reaction of foundation soil
q1 t/m2 q
a t/m2 q1 t/m2 q
ae t/m2
q2 t/m2 q
a t/m2 q2 t/m2 q
ae t/m2
303296237.xls-02/05/2016
Stressing of Reinforcement and Concrete Name of Structure : Dinding Penahan Location : PERUM UNMUL
Normal Condition = 60
= 1850
= 5.5Young's modulus ratio = 24
Item Section A-A Section B-B Section C-C Section D-D100.0 100.0 100.0 100.0
h (cm) 119.1 100.0 150.0 150.07.0 back 7.0 back 7.0 lower 7.0 upper7.0 front 7.0 front 7.0 upper 7.0 lower
112.1 93.0 143.0 143.0
M (ton m) 10 10 3 -8 S (ton) 5 5 6 0
Bar size and spacing (mm)
Bar (As1) D 16 - 200 D 16 - 200 D 16 - 200 D 16 - 200Section of Retaining wall Bar (As2) D 16 - 250 D 16 - 125 D 16 - 200 D 16 - 200
9 OK! 12 OK! 2 OK! -5 OK!944 OK! 1144 OK! 214 OK! -595 OK!0.46 OK! 0.56 OK! 0.41 OK! -0.01 OK!
Seismic Condition = 90
= 2775
= 8.25Young's modulus ratio = 16
Item Section A-A Section B-B Section C-C Section D-D100.0 100.0 100.0 100.0
h (cm) 119.1 100.0 150.0 150.07.0 7.0 7.0 7.07.0 7.0 7.0 7.0
112.1 93.0 143.0 143.0
M (ton m) 17 20 5 9 S (ton) 9 10 9 5
Bar size and spacing (mm)
Bar (As1) D 16 - 200 D 16 - 200 D 16 - 200 D 16 - 200Section of Retaining wall Bar (As2) D 16 - 250 D 16 - 125 D 16 - 200 D 16 - 200
19 OK! 28 OK! 3 OK! 7 OK!1636 OK! 2216 OK! 333 OK! 685 OK!0.82 OK! 1.11 OK! 0.63 OK! 0.35 OK!
Allowable compressive stress (ca
) kg/cm2
Allowable tensile stress (sa
) kg/cm2
Allowable shearing stress (a) kg/cm2
b (cm)
d1 (cm) d2 (cm) d (cm)
Stress c Stress s Stress
Allowable compressive stress (ca
) kg/cm2
Allowable tensile stress (sa
) kg/cm2
Allowable shearing stress (a) kg/cm2
b (cm)
d1 (cm) d2 (cm) d (cm)
Stress c Stress s Stress
D C
BB
A A
CD
D C
BB
A A
CD
Stability6/29
303296237.xls-02/05/2016
1. Design Data
1.1 Dimensions
B = 6.00 m H = 7.00 m
L = 1.00 m (unit length)
= 0.70 m = 4.00 m
= 0.30 m = 1.00 m
= 0.00 m = 1.00 m
= 7.00 m = 2.50 m
= 1.00 m = 0.00 m
= 0.50 m = 0.00 m
1.2 Parameters
q = 0.50
= 0.00 Section of Retaining Wall
= 2.50
= 1.00
Backfill soil Safety factor
= 1.80 = 1.50 Overturning
= 2.50 = 0.00 normal |e|<B/6=1.00m
c = 0.00 = 44.60 seismic |e|<B/3=2.00m
= 44.60 = 0.79 (Friction coefficient) Sliding
= (Uplift coefficient) normal 2.00
= 0.000 seismic 1.25
= 0.000 (for stability analysis) Reaction of foundation soil
= 7.253 (for structural analysis) normal
= 0.000 qa=qu/3
= 29.73 seismic
= 39.12 (for stability analysis in seismic condition, see Section 2.3) qae=qu/2
= 22.30
= 10.204 Kh = 0.18
2. Stability Calculation
2.1 Case 1 (Normal condition, with vertical live load)0.70
q = 0.50 0.30
0.00
7.00 5.50
0.50
0.00
2.50 0.00
1.00
4.00 1.00 1.00
Acting Load in Case 1
b11
b21
b12
b22
b13
b23
h1
h4
h31
hw1
h32 h
w2
t/m2 (for normal condition)
t/m2 (for seismic condition)
c t/m3
w t/m3
Foundation soil
soil t/m3 s' t/m3 (=
sat
w)
sat t/m3 c
B t/m2
t/m2 B
o
o
U fs >o fs >o
o qmax<qao (for stability analysis in normal condition, = )o (for structural analysis in normal condition, = 2/3 ) qmax<qaeo
o (for structural analysis in seismic condition, = 1/2 )o ( =Arc tan(Kh) )
t/m2
q (t/m2)b
12
b21
b22
b23
hw1
H=h1
h31
b11
b13
h32 h4
hw2
B
Pw1 Pa4
Pa2
Pa1
qa2
qa3qw1 qa4
Pa3
O
Pp1
qa1
qp1
7
1
10
12
9
2 3
5
6
8
4
11
Pw2
qw2qu2
Pu1Pu2
qu1
Stability7/29
303296237.xls-02/05/2016
(1) Vertical Load
No. Description W X W x X1 1.00 x 4.00 x 2.50 10.000 4.000 40.002 1.50 x 1.00 x 2.50 3.750 1.500 5.633 1.00 x 1.00 x 2.50 2.500 0.500 1.254 0.50 x 0.50 x 4.00 x 2.50 2.500 3.333 8.335 0.50 x 0.50 x 1.00 x 2.50 0.625 0.333 0.216 0.50 x 5.50 x 0.70 x 2.50 4.813 1.767 8.507 5.50 x 0.30 x 2.50 4.125 1.150 4.748 0.50 x 5.50 x 0.00 x 2.50 0.000 1.000 0.009 0.50 x 5.50 x 0.70 x 1.80 3.465 1.767 6.1210 4.00 x 5.50 x 1.80 39.600 4.000 158.4011 4.00 x 0.00 x 1.80 0.000 4.000 0.0012 0.50 x 4.00 x 0.50 x 2.50 2.499 4.667 11.66q 0.50 x 4.70 2.350 3.650 8.58
T o t a l(1 to q) 76.227 253.42Pu1 0.00 x 6.00 x 0.50 x -1.00 0.000 4.000 0.00Pu2 0.00 x 6.00 x 0.50 x -1.00 0.000 2.000 0.00
Total ( 1 to Pu2) 76.227 253.42
(2) Horizontal Load
Coefficient of Active earth pressure
Ka =
(for stability analysis)
= 0.000 = 0.000
= 0.507 = 0.702
= 1.000 = 0.702
= 1.000 = 1.000
Ka = 0.175 for stability analysis
(for structural analysis)
= 7.253 = 29.730
= 0.632 = 0.963
= 0.984 = 0.702
= 0.799 = 0.992
Ka' = 0.217 for structural analysis
Coefficient of Passive earth pressure
Kp =
= 0.000 = 0.000
= 0.507 = 0.702
= 1.000 = 0.702= 1.000 = 1.000
Kp = 5.709
qa1 = Ka x q = 0.088 ton/m
qa2 = = 2.205 ton/mqa3 = qa1 + qa2 = 2.293 ton/m
qa4 = = 0.000 ton/m
qw 1 = = 0.000 ton/m
qw 2 = = 0.000 ton/m
qp1 = = 21.395 ton/m
o o
Cos2(-) Sin(+)
Cos2 SinCos(+) Cos
o o
Cos2(-) Sin(+)
Cos2 SinCos(+) Cos
o o
Cos2(+) Sin(+)
Cos2 SinCos(-) Cos
Ka x (h1- h
w1) x
soil
Ka x hw1
x (sat
- w)
hw1
x w
hw2
x w
Kp x h4 x (
sat -
w)
2
Cos2(-)
Cos2 x Cos(+) x 1+Sin(+) x Sin
Cos(+) x Cos
2
Cos2(+)
Cos2 x Cos(-) x 1 -Sin(+) x Sin
Cos(-) x Cos
Stability8/29
303296237.xls-02/05/2016
No. Description H Y H x YPa1 0.088 x 7.00 0.613 3.500 2.14Pa2 2.205 x 7.00 x 0.50 7.718 2.333 18.01Pa3 2.293 x 0.00 0.000 0.000 0.00Pa4 0.000 x 0.00 x 0.50 0.000 0.000 0.00Pw1 0.000 x 0.00 x 0.50 0.000 0.000 0.00Pw2 0.000 x 0.00 x 0.50 0.000 0.000 0.00Pp1 -21.395 x 2.50 x 0.50 -26.744 0.833 -22.28
T o t a l -18.413 -2.12
(3) Stability Calculation
a) Stability against overturning a) -1 Without Uplift
B = 6.00 m
253.42 - -2.12X = = = 3.352 m
76.227
B 6.00e = - X = - 3.352 = -0.352 m < B/6 = 1.000 m OK !
2 2 a) -2 With Uplift
B = 6.00 m
253.42 - -2.12X = = = 3.352 m
76.227
B 6.00e = - X = - 3.352 = -0.352 m < B/6 = 1.000 m OK !
2 2
b) Stability against sliding b)-1 Without Uplift Sliding force : = -18.413 ton
Resistance : = 0.79 x 76.227 = 60.143 ton
0.79 )
HR 60.143Fs = = = -3.266 < 2.00 Check !
-18.413 b)-2 With Uplift Sliding force : = -18.413 ton
Resistance : = 0.79 x 76.227 = 60.143 ton
0.789 )
HR 60.143Fs = = = -3.266 < 2.00 Check !
-18.413
c) Reaction of foundation soil6 x e
q1,2 = x ) B B
76.227 6 x -0.352
q1 = x (1 + ) = 8.233 < qa = 171.885 OK !6.00 6.00
76.227 6 x -0.352
q2 = x (1 - ) = 17.176 < qa = 171.885 OK !6.00 6.00
Reaction of Foundation Soil in Case 1
- 8.233
- 17.176
W x X - H x Y
W
W x X - H x Y
W
H
HR = x W
(friction coefficient : =
H
H
HR = x W
(friction coefficient : =
H
W(1 +
t/m2 t/m2
t/m2 t/m2
t/m2 t/m2
t/m2 t/m2
in case, e > 0 in case, e < 0
Stability9/29
303296237.xls-02/05/2016
(not applicable) (applicable)
Stability10/29
303296237.xls-02/05/2016
2.2 Case 2 (Normal condition, without vertical live load)0.70
q = 0.50 0.30
0.00
7.00 5.50
0.50
0.00
2.50 0.00
1.00
4.00 1.00 1.00
Acting Load in Case 2
(1) Vertical Load
No. Description W X W x X1 1.00 x 4.00 x 2.50 10.000 4.000 40.00 2 1.50 x 1.00 x 2.50 3.750 1.500 5.63 3 1.00 x 1.00 x 2.50 2.500 0.500 1.25 4 0.50 x 0.50 x 4.00 x 2.50 2.500 3.333 8.33 5 0.50 x 0.50 x 1.00 x 2.50 0.625 0.333 0.21 6 0.50 x 5.50 x 0.70 x 2.50 4.813 1.767 8.50 7 5.50 x 0.30 x 2.50 4.125 1.150 4.74 8 0.50 x 5.50 x 0.00 x 2.50 0.000 1.000 0.00 9 0.50 x 5.50 x 0.70 x 1.80 3.465 1.767 6.12 10 4.00 x 5.50 x 1.80 39.600 4.000 158.40 11 4.00 x 0.00 x 1.80 0.000 4.000 0.00 12 0.50 x 4.00 x 0.50 x 2.50 2.499 4.667 11.66
T o t a l (1 to 12) 73.877 244.84 Pu1 0.00 x 6.00 x 0.50 x -1.00 0.000 4.000 0.00 Pu2 0.00 x 6.00 x 0.50 x -1.00 0.000 2.000 0.00
Total ( 1 to Pu2) 73.877 244.84
(2) Horizontal Load
Coefficient of Active earth pressure
Ka = 0.175 (for stability analysis)
Ka ' = 0.217 (for structural analysis)
Coefficient of Passive earth pressure
Kp = 5.709
qa1 = Ka x q = 0.088 ton/m
qa2 = = 2.205 ton/m
qa3 = qa1 + qa2 = 2.293 ton/m
qa4 = = 0.000 ton/m
qw 1 = = 0.000 ton/m
qw2 = = 0.000 ton/m
qp1 = = 21.395 ton/m
No. Description H Y H x YPa1 0.088 x 7.00 0.613 3.500 2.14Pa2 2.205 x 7.00 x 0.50 7.718 2.333 18.01Pa3 2.293 x 0.00 0.000 0.000 0.00Pa4 0.000 x 0.00 x 0.50 0.000 0.000 0.00Pw1 0.000 x 0.00 x 0.50 0.000 0.000 0.00Pw2 0.000 x 0.00 x 0.50 0.000 0.000 0.00Pp1 -21.395 x 2.50 x 0.50 -26.744 0.833 -22.28
t/m2
Ka x (h1- h
w1) x
soil
Ka x hw1
x (sat
- w)
hw1
x w
hw2
x w
Kp x h4 x (
sat -
w)
Pw1 Pa4
Pa2
Pa1
qa2
qa3qw1 qa4
Pa3
O
9
Pp1
qa1
qp1
7
1
10
12
2 3
5
6
8
4
11
Pw2
qw2qu2 Pu2
qu1
Pu1
Stability11/29
303296237.xls-02/05/2016
T o t a l -18.413 -2.12
Stability12/29
303296237.xls-02/05/2016
(3) Stability Calculation
a) Stability against overturning a)-1 Without Uplift
B = 6.00 m
244.84 - -2.12X = = = 3.343 m
73.877
B 6.00e = - X = - 3.343 = -0.343 m < B/6 = 1.000 m OK !
2 2 a)-2 With Uplift
B = 6.00 m
244.84 - -2.12X = = = 3.343 m
73.877
B 6.00e = - X = - 3.343 = -0.343 m < B/6 = 1.000 m OK !
2 2
b) Stability against sliding b)-1 without Uplift Pressure Sliding force : = -18.413 ton
Resistance : = 0.79 x 73.877 = 58.289 ton
0.789 )
HR 58.289Fs = = = -3.17 < 2.00 Check !
-18.413 b)-2 with Uplift Pressure Sliding force : = -18.413 ton
Resistance : = 0.79 x 73.877 = 58.289 ton
0.789 )
HR 58.289Fs = = = -3.17 < 2.00 Check !
-18.413
c) Reaction of foundation soil
6 x eq1,2 = x )
B B
73.877 6 x -0.343
q1 = x (1 + ) = 8.090 < qa = 171.885 OK !6.00 6.00
73.877 6 x -0.343
q2 = x (1 - ) = 16.536 < qa = 171.885 OK !6.00 6.00
- 8.090
- 16.536
(not applicable) (applicable)
Reaction of Foundation Soil in Case 2
W x X - H x Y
W
W x X - H x Y
W
H
HR = x W
(friction coefficient : =
H
H
HR = x W
(friction coefficient : =
H
W(1 +
t/m2 t/m2
t/m2 t/m2
t/m2 t/m2
t/m2 t/m2
in case, e > 0 in case, e < 0
Stability13/29
303296237.xls-02/05/2016
2.3 Case 3 (Seismic condition)0.70
0.30
0.00
7.00 5.50
0.50
0.00
2.50 0.00
1.00
4.00 1.00 1.00
Acting Load in Case 3
(1) Vertical Load = Same as Case 2
(2) Horizontal Load
= 44.60 = 0.000 (for stability analysis) = 10.204 = 0.00 = 7.253 (for structural analysis) =
q = 0.00 Kh = 0.18
Coefficient of Active earth pressure
Kae =
(for stability analysis)
= 0.000 = 39.12
= 0.177 = 0.702
= 0.252 then = 14.6
0.420 0.908
= 0.813
0.681 = 0.994
= 0.984 = 0.565
= 1.000 = 1.000
= 0.652
Kae = 0.286 (for stability analysis)
(for structural analysis)
= 7.253 = 22.30
0.792 = 0.920
= 0.984 = 0.565
= 0.984 = 0.992
0.769
o o o
o o ( Arc tan(Kh) )
t/m2 (for seismic condition)
o o
tan = Sin Sin ( + - )Sin Cos ( + - )
sin = Sin ( + )Sin
Sin (+ ) = Sin Sin Sin(+-) = Cos(+-)=
tan
Cos2(--)= Sin(Cos Sin(--)
Cos2 Cos(-)
Cos(+)
o o
Cos2(--)= Sin(Cos Sin(--)
Cos2 Cos(-)
Cos(+)=
2
Cos2()
Cos x Cos2 x Cos() x 1+Sin( x Sin()
Cos() x Cos()
Pa1
qa1
qa2qa3qw1
Pa2
Pa3Pw1
O
7
1
10
12
9
2 3
5
6
8
4
11
Pw2
qw2
Pp1
qp1Pu1
qu2 Pu2qu1
Stability14/29
303296237.xls-02/05/2016
Kae = 0.319 (for structural analysis)
Coefficient of Passive earth pressure
Kpe =
= 0.000 = 39.12
0.681 = 0.095= 0.984 = 0.565
= 1.000 = 1.0000.875
Kpe = 1.397
qa1 = = 3.604 ton/mqa2 = qa2 = 3.604 ton/m
qa3 = = 0.000 ton/m
qw 1 = = 0.000 ton/m
qw 2 = = 0.000 ton/m
qp1 = = 5.235 ton/m
No. Description H Y H x Y1 0.18 x 10.00 1.800 0.500 0.902 0.18 x 3.75 0.675 0.750 0.513 0.18 x 2.50 0.450 0.500 0.234 0.18 x 2.50 0.450 1.167 0.535 0.18 x 0.63 0.113 1.167 0.136 0.18 x 4.81 0.866 3.333 2.897 0.18 x 4.13 0.743 4.250 3.168 0.18 x 0.00 0.000 3.333 0.00
Pw1 0.50 x 0.00 x 0.00 0.000 0.000 0.00Pw2 0.50 x 0.00 x 0.00 0.000 0.000 0.00Pa1 0.50 x 3.60 x 7.00 12.613 2.333 29.43pa2 3.60 x 0.00 0.000 0.000 0.00Pa3 0.50 x 0.000 x 0.00 0.000 0.000 0.00Pp1 -5.235 x 2.50 x 0.50 -6.544 2.500 -16.36
T o t a l 11.165 21.40
(3) Stability Calculation
a) Stability against overturning a)-1 Without Uplift
B = 6.00 m
244.84 - 21.40X = = = 3.024 m
73.877
B 6.00e = - X = - 3.024 = -0.024 m < B/3 = 2.000 m OK !
2 2
B = 6.00 m
244.84 - 21.40X = = = 3.024 m
73.877
B 6.00e = - X = - 3.024 = -0.024 m < B/3 = 2.000 m OK !
2 2
o o
Cos2(-)= Sin(Cos Sin(-)
Cos2 Cos(-)Cos()=
Kae x ( h1 - h
w1) x
soil
Kae x hw1
x (sat
- w)
hw1
x w
hw2
x w
Kp x h4 x (
sat -
w)
W x X - H x Y
W
a)-2 With Uplift
W x X - H x Y
W
2
Cos2()
Cos x Cos2 x Cos() x 1Sin( x Sin()
Cos() x Cos()
Stability15/29
303296237.xls-02/05/2016
b) Stability against sliding b)-1 Without Uplift Sliding force : = 11.165 ton
Resistance : = 0.79 x 73.877 = 58.289 ton
0.79 )
HR 58.289Fs = = = 5.22 > 1.25 OK !
11.165 b)-2 With Uplift Sliding force : = 11.165 ton
Resistance : = 0.79 x 73.877 = 58.289 ton
0.79 )
HR 58.289Fs = = = 5.22 > 1.25 OK !
11.165
c) Reaction of foundation soil
(applicable)
6 x eq1,2 = x )
B B
73.877 6 x -0.024
q1 = x (1 + ) = 12.017 < qae = 257.828 OK !6.00 6.00
73.877 6 x -0.024
q2 = x (1 - ) = 12.608 < qae = 257.828 OK !6.00 6.00
(not applicable)
q1' = = = - qae = -3 x (B/2-|e|)
-
- -
(not applicable) (not applicable)
12.017
12.608 -
(applicable) (not applicable)
Reaction of Foundation Soil in Case 3
H
HR = x W
(friction coefficient : =
H
H
HR = x W
(friction coefficient : =
H
c-1) in case, |e| < B/6
W(1 +
t/m2 t/m2
t/m2 t/m2
c-2) in case, B/6 < |e| < B/3
2 x W
t/m2 t/m2
t/m2
t/m2 t/m2
in case, e > 0 and e < B/6 in case, e > 0 and B/6 < e < B/3
t/m2
t/m2 t/m2
in case, e < 0 and |e| < B/6 in case, e < 0 and B/6 < |e| < B/3
Stability16/29
303296237.xls-02/05/2016
2.4 Bearing Capacity of soil
(1) Design Data
= 44.60 = 0.00 = 1.50
B = 6.00 m z = 2.50 m L = 1.00 m (unit length)
(2) Ultimate Bearing Capacity of soil, (qu) ######
Calculation of ultimate bearing capacity will be obtained by applying the following ### Terzaghi's formula : ###
###
qu = ######
Shape factor (Table 2.5 of KP-06) ###
= 1.00 = 0.50
Shape of footing : 1 (strip)
Shape of footing 1 strip 1.00 0.502 square 1.30 0.403 rectangular, B x L 1.13 0.40
(= 1.09 + 0.21 B/L)(B > L) (= 1.09 + 0.21 L/B)
4 circular, diameter = B 1.30 0.30
Bearing capacity factor (Figure 2.3 of KP-06, by Capper)
Nc = 82.0 Nq = 50.0 = 73.0
Nc Nq0 5.7 0.0 0.05 7.0 1.4 0.0
10 9.0 2.7 0.215 12.0 4.5 2.320 17.0 7.5 4.725 24.0 13.0 9.530 36.0 23.0 20.035 57.0 44.0 41.037 70.0 50.0 55.039 > 82.0 50.0 73.0
= 0.000
= 187.375
= 328.281
qu = 515.656
(3) Allowable Bearing Capacity of soil, (qa)
qa = qu / 3 = 171.885 (safety factor = 3 , normal condition)
qae = qu / 2 = 257.828 (safety factor = 2 , seismic condition)
B
o cB t/m2
s' t/m3 (=
sat
w)
( x c x Nc) + (soil
' x z x Nq) + ( x soil
x B x N)
(B < L)
N
N
( x c x Nc)
(soil
x z x Nq)
( x soil
x B x N)
t/m2
t/m2
t/m2
Structure17/29
303296237.xls-02/05/2016
3. Structure Calculation
3.1 Normal Condition
(1) Wall 0.70
q = 0.50 0.30
0.00
5.50
0.9
0.00 0.00
0.50
1.00 1.00
4.00 1.00 1.00
Load Diagram on Wall in Normal ConditionKa = 0.217
= 7.253 = 29.73
= 0.799
= = 0.174
a) Section A - A
h = 5.50 m
qa1 = = 0.087 ton/m
qa2 = = 1.718 ton/m
No. Description Ha Y (from A-A) Ha x YPa1 0.087 x 5.50 0.477 2.750 1.312 Pa2 1.718 x 5.50 x 0.50 4.725 1.833 8.662
T o t a l 5.202 9.975
Sa = 5.202 ton Ma = 9.975 ton m
b) Section B - B
h = 5.50 m = 0.00 m = 0.00 m
qa1 = = 0.087 ton/m
qa2 = = 1.718 ton/mqa3 = qa1 + qa2 = 1.805 ton/m
qa4 = = 0.000 ton/m
qw1 = = 0.000 ton/m
qw2 = = 0.000 ton/m
No. Description Hb Y (from B-B) Ha x YPa1 0.087 x 5.50 0.477 2.750 1.312 Pa2 1.718 x 5.50 x 0.50 4.725 1.833 8.662 Pa3 1.805 x 0.00 0.000 0.000 0.000 Pa4 0.000 x 0.00 x 0.50 0.000 0.000 0.000 Pw1 0.000 x 0.00 x 0.50 0.000 0.000 0.000 Pw2 0.000 x 0.00 x 0.50 0.000 0.000 0.000
T o t a l 5.202 9.975
Sb = 5.202 ton Mb = 9.975 ton m
t/m2
o
o
cos (+)
Kha Ka x cos (+)
Kha
x q
Kha
x h x soil
hw1
hw2
Kha
x q
Kha
x h x soil
Kha
x hw2
x (sat
- w)
hw1
x w
hw2
x w
qa1
qa4 qa3qw1
Pw1 Pa4
Pa2
Pa1
qa2
Pa3 B
A
B
A
Pw2
qw2
Structure18/29
303296237.xls-02/05/2016
(2) FootingCase 1 (with vertical live load) Case 2 (without vertical live load)
q = 0.50 q = 0.50
5.50 5.50
0.00 0.00
0.50 0.50
1.00 1.00
4.00 1.00 1.00 4.00 1.00 1.00
#VALUE!
#VALUE! - -
- -
- -
- -
in case, e < 0 in case, e < 0
11.214 8.233 10.905 8.090
17.176 9.724 16.536 9.498
Load Diagram on Footing in Normal Case
a) Section C - C
Case 1 (with vertical live load)No. Description Hc X (from C-C) Hc x X1 1.000 x 1.00 x 2.50 2.500 0.500 1.250
0.500 x 1.00 x 2.50 x 0.50 0.625 0.333 0.2082 -8.233 x 1.00 -8.233 0.500 -4.117
-1.491 x 1.00 x 0.50 -0.745 0.333 -0.248 T o t a l -5.853 -2.907
Case 2 (without vertical live load)No. Description Hc X (from C-C) Hc x X1 1.000 x 1.00 x 2.50 2.500 0.500 1.250
0.500 x 1.00 x 2.50 x 0.50 0.625 0.333 0.2082 -8.090 x 1.00 -8.090 0.500 -4.045
-1.408 x 1.00 x 0.50 -0.704 0.333 -0.235 T o t a l -5.669 -2.821
Case 1 Sc = -5.853 ton Mc = -2.907 ton mCase 2 Sc = -5.669 ton Mc = -2.821 ton m
t/m2 t/m2
in case, e > 0 in case, e > 0
t/m2 t/m2
t/m2 t/m2
t/m2 t/m2
t/m2 t/m2
t/m2 t/m2 t/m2 t/m2
t/m2 t/m2 t/m2 t/m2
1
1
C
C
D
D
4
3
26
1
C
C
D
D
3
4
3 1 3
4
5
4
62 2
6
26
Structure19/29
303296237.xls-02/05/2016
b) Section D - D
Case 1 (with vertical live load)No. Description Hd X (from D-D) Hd x Y3 1.000 x 4.00 x 2.50 10.000 2.000 20.000
0.500 x 4.00 x 2.50 x 0.50 2.500 1.333 3.3334 5.500 x 4.00 x 1.80 39.600 2.000 79.200
0.000 x 4.00 x 2.50 0.000 2.000 0.0000.500 x 4.00 x 2.50 x 0.50 2.499 2.667 6.664
5 0.500 x 4.00 2.000 2.000 4.0006 -11.214 x 4.00 -44.856 2.000 -89.712
-5.962 x 4.00 x 0.50 -11.924 2.667 -31.797 T o t a l -0.181 -8.312
Case 2 (without vertical live load)No. Description Hd X (from D-D) Hd x Y3 1.000 x 4.00 x 2.50 10.000 2.000 20.000
0.500 x 4.00 x 2.50 x 0.50 2.500 1.333 3.3334 5.500 x 4.00 x 1.80 39.600 2.000 79.200
0.000 x 4.00 x 2.50 0.000 2.000 0.0000.500 x 4.00 x 2.50 x 0.50 2.499 2.667 6.664
6 -10.905 x 4.00 -43.621 2.000 -87.243-5.631 x 4.00 x 0.50 -11.261 2.667 -30.030
T o t a l -0.284 -8.076
Case 1 Sd = -0.181 ton Md = -8.312 ton mcase 2 Sd = -0.284 ton Md = -8.076 ton m
3.2 Seismic Condition
(1) Wall 0.70
0.30
0.00
5.50
6.00
0.00 0.00
0.50
1.00 1.00
4.00 1.00 1.00
Load diagram on Wall for Seismic caseKae = 0.319
= 7.253 = 22.30
= 0.870
= = 0.278 Kh = 0.18
a) Section A - A
h = 5.50 m
qa1 = = 2.747 t/mNo. Description Hae Y (from A-A) Hae x Y1 0.500 x 5.500 x 0.700 x 2.500 x 0.180 0.866 1.833 1.588 2 5.500 x 0.300 x 2.500 x 0.180 0.743 2.750 2.042 3 0.500 x 5.500 x 0.000 x 2.500 x 0.180 0.000 1.833 0.000
Pa1 2.747 x 5.500 x 0.500 7.555 1.833 13.851 T o t a l 9.164 17.481
Sae = 9.164 ton Mae = 17.481 ton m
o
o
cos (+)
Khea Kae x cos (+)
Khae
x h x soil
2
Pa2
Pa1
qa2
qa1
qa3
Pa3
A A
B B
1 3
Pw1 Pw2
qw2qw1
Structure20/29
303296237.xls-02/05/2016
b) Section B - B
h = 5.50 m = 0.00 m = 0.00 m
qa1 = = 3.158 t/mqa2 = qa1 = 3.158 t/m
qa3 = = 0.000 t/m
qw1 = = 0.000 ton/m
qw2 = = 0.000 ton/m
No. Description Hbe Y (from B-B) Hbe x YPa1 3.158 x 5.50 x 0.50 8.685 1.833 15.922Pa2 3.158 x 0.00 0.000 0.000 0.000Pa3 0.000 x 0.00 x 0.50 0.000 0.000 0.000Pw1 0.000 x 0.00 x 0.50 0.000 0.000 0.000Pw2 0.000 x 0.00 x 0.50 0.000 0.000 0.000
1 0.500 x 5.50 x 0.70 x 2.50 x 0.18 0.866 1.833 1.5882 5.500 x 0.30 x 2.50 x 0.18 0.743 2.750 2.0423 0.500 x 5.50 x 0.00 x 2.50 x 0.18 0.000 1.833 0.000
T o t a l 10.294 19.552
Sbe = 10.294 ton Mbe = 19.552 ton m
(2) Footing
5.50 5.50
0.00 0.00
0.50 0.50
1.00 1.00
4.00 1.00 1.00 4.00 1.00 1.00
- -
-
- -
- -
in case, e < 0 and |e| < B/6
12.214 12.017 - -
12.608 12.116 -
Load Diagram on Footing in Seismic Case
hw1
hw2
Khae
x h x soil
Khae
x hw1
x ( sat
- w)
hw1
x w
hw2
x w
in case, e < B/6 in case, B/6 < e < B/3
in case, e > 0 ande < B/6 in case, e > 0 and B/6 < e < B/3
t/m2 t/m2
t/m2
t/m2 t/m2
t/m2 t/m2
in case, e < 0 and B/6 < |e| < B/3
t/m2 t/m2 t/m2 t/m2
t/m2 t/m2 t/m2
D
1
1
C
C
D
D
2
4
5
3 1
C
C
D
D
2
3
4
3 1 3
4 4
6
62
2
6
Structure21/29
303296237.xls-02/05/2016
a) Section C - C
No. Description Hce X (from C-C) Hce x X1 1.000 x 1.00 x 2.50 2.500 0.500 1.250
0.500 x 1.00 x 2.50 x 0.50 0.625 0.333 0.2082 -12.017 x 1.00 -12.017 0.500 -6.009
-0.098 x 1.00 x 0.50 -0.049 0.333 -0.016 T o t a l -8.941 -4.567
Sce = -8.941 ton Mce = -4.567 ton m
b) Section D - D
No. Description Hde X (from D-D) Hde x X3 1.000 x 4.00 x 2.50 10.000 2.000 20.000
0.500 x 4.00 x 2.50 x 0.50 2.500 1.333 3.3334 5.500 x 4.00 x 1.80 39.600 2.000 79.200
0.500 x 4.00 x 2.50 x 0.50 2.499 2.667 6.6645 -12.214 x 4.00 -48.856 2.000 -97.712
-0.394 x 4.00 x 0.50 -0.788 2.667 -2.101 T o t a l 4.955 9.384
Sde = 4.955 ton Mde = 9.384 ton m
3.3 Design Bending Moment and Shear Force
(1) Bending moment and shear force in each case
Description Bending Moment Shear ForceNormal Seismic Normal Seismic
Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Section A - A 9.975 9.975 17.481 5.202 5.202 9.164 Section B - B 9.975 9.975 19.552 5.202 5.202 10.294 Section C - C 2.907 2.821 4.567 5.853 5.669 8.941 Section D - D (8.312) (8.076) 9.384 (0.181) (0.284) 4.955
(2) Design bending moment and shear force
Description Bending Moment Shear ForceNormal Seismic Normal Seismic
Section A - A 9.975 17.481 5.202 9.164 Section B - B 9.975 19.552 5.202 10.294 Section C - C 2.907 4.567 5.853 8.941 Section D - D (8.076) 9.384 (0.181) 4.955
Notes: --
Moment at Section C-C < Moment at Section B-BMoment at Section D-D < Moment at Section B-B
4. Wooden Pile (Not applicable for this Project)
4.1 Bearing Capacity of a Pile
(1) Design data
Diameter of wooden pile D = 40.0 cm Length of pile L = 6.00 m
Area of pile section A = = 0.126 Perimeter of pile = = 1.257 m SPT N-Value = 30
Ni : Average N value in a soil layer = 30
fi : friction of soil = 0.20 x Ni = 6.00
(2) Ultimate vertical bearing capacity, (qu)
qu == ( 40 x 30.0 x 0.126 )+( 1.257 x 6.00 x 6.0 )= 150.796 + 45.239 = 196.035 ton/pile
(3) Ultimate vertical bearing capacity, (qu)
qa = qu/n = 196.035 / 3 = 65.345 ton/pile
(safety factor : n = 3)
4.2 Allowable horizontal bearing capacity
Horizontal bearing capacity depend on displacement of a pile
(1) Design data
Class of timber (pile) : III Class
E = 80,000 (Young's modulus) = Allowable horizontal displacement = 0.01 mN = SPT N-value is assumed as = 30
I = = 125,663.7 (I : Moment of Inertia for a pile)64
(2) Horizontal bearing capacity of one pile (Ha)
= 0.20 E = 28 x N
Kh =
= 0.20 x( 28 x 30.0 )x( 40.0 = 10.562
Kh x D 10.562 x 40.0 = = = 0.010 cm
4 EI 4 x 80,000 x 125,663.7
Kh x D 10.562 x 40.0 Ha = x = x 1 = 41,730.94 kg
0.010= 41.731 ton
1/4 x x D2 m2
x D
t/m2
(40 x N x A) + ( x fi x li)
kg/cm2
x D4
cm4
x E x D-3/4
)-3/4 kg/cm3
4 4
(3) Allowable horizontal bearing capacity due to the stress of a pile itself
Ha =
= Allowable stress of timber III class = 75.00
W = = 6,283.19 ; (W : section modulus of a pile)32
Ma = x W = 75.00 x 6,283.19 = 471,238.9 kg cm
Ha == 2 x 0.010 x 471,238.9 = 9,541.95 kg/pile = 9.542 ton/pile
Allowable horizontal bearing capacity acting on the pile top depend upon the allowable stress of pile itself.
4.3 Spacing of Pile (1) For horizontal load
Ha = 9.542 ton/pile ; (Ha : Horizontal load carried by pile)
Hr = H - Hf = = 11.165 - 43.532 = -32.367 ton/m
Ha 9.542 Spacing of pile = = = -0.29 m
Hr -32.367
Spacing of pile = -0.29 m (center to center) by horizontal force
(2) For vertical load
V = 76.227 ton/m : Vertical load carried by pile
qa = 65.345 ton/pile : Allowable vertical bearing capacity of a pile
qa 65.345 Spacing of pile = = = 0.86 m
V 76.227
= 6.00 m ),
Vp = -1,508.781 ton/m : Vertical load carried by pile
qa = 65.345 ton/pile : Allowable vertical bearing capacity of a pile
qa 65.345 Spacing of pile = = = -0.04 m
Vp -1,508.781
= 6.00 m ),
2 x x Ma
kg/cm2
x D3
cm3
2 x x Ma
H - V x tan(2/3)
Spacing of pile can be determined 0.75 m for a pile ( 150, L
Spacing of pile can be determined 1.50 m for a pile ( 150, L
Re-bar 24/29
303296237.xls-02/05/2016
Reinforcement Bar Arrangement and Stress
Normal Condition Name of Structure : Dinding Penahan Location : PERUM UNMUL
Wall (upper) Wall (lower) Footing (toe) Footing (heel)
back front back front upper upperBending moment M kgfcm 997,472 997,472 290,658 (807,556)Shearing force (joint) S kgf 5,202 5,202 5,853 (181)Axial force N kgf 0 0 0 0
Height of member h cm 119.1 100.0 150.0 150.0Covering depth d' cm 7.0 7.0 7.0 7.0Effective height d cm 112.1 93.0 143.0 143.0Effective width b cm 100.0 100.0 100.0 100.0Young's modulus ratio n - 24 24 24 24
Required R-bar Asreq cm2 5.13 6.22 1.16 -3.23
R-bar arrangement 16~200 16~250 16~200 16~125 16~200 16~200 16~200 16~200
Reinforcement As cm2 10.05 8.04 10.05 16.08 10.05 10.05 10.05 10.05Perimeter of R-bar U cm 25.13 ok 25.13 ok 25.13 ok 25.13 ok
Dist. from neutral axis x cm 20.97 18.91 23.97 23.97
Compressive stress kgf/cm2 9.1 12.2 1.8 -5.0Allowable stress kgf/cm2 60.0 60.0 60.0 60.0
ok ok ok okTensile stress kgf/cm2 944 1,144 214 (595)Allowable stress kgf/cm2 1,850 1,850 1,850 1,850
ok ok ok okShearing stress at joint kgf/cm2 0.46 0.56 0.41 -0.01Allowable stress kgf/cm2 5.50 5.50 5.50 5.50
ok ok ok ok
Resisting Moment Mr kgfcm 1,601,100 1,970,601 1,987,983 2,496,764 Mr for compression Mrc kgfcm 3,428,834 5,645,000 5,012,470 7,977,777 x for Mrc cm 17 20 19 22
kgf/cm2 4,971 5,922 5,680 6,681 Mr for tensile Mrs kgfcm 1,601,100 1,970,601 1,987,983 2,496,764 x for Mrs cm 19 22 21 25
kgf/cm2 26 22 23 19 Distribution bar (>As/6 and >Asmin) 1.68 1.34 1.68 2.68 1.68 1.68 1.68 1.68
16~250 13~200 16~125 13~200 13~200 13~200 13~200 13~200Reinforcement As cm2 8.04 6.64 16.08 6.64 6.64 6.64 6.64 6.64
ok ok ok ok ok ok ok ok
Minimum requirement of distribution bar As min = 4.50 cm2
Section A-A Section B-B Section C-C Section D-Dlower lower
cca
ssa
a
s for Mrc
c for Mrs
Re-bar 25/29
303296237.xls-02/05/2016
Reinforcement Bar Arrangement and Stress
Seismic ConditionName of Structure : Dinding PenahanLocation : PERUM UNMUL
Wall (upper) Wall (lower) Footing (toe) Footing (heel)
back front back frontBending moment M kgfcm 1,748,096 1,955,209 456,658 938,400 Shearing force (joint) S kgf 9,164 10,294 8,941 4,955 Axial force N kgf 0 0 0 0
Height of member h cm 119.1 100.0 150.0 150.0Covering depth d' cm 7.0 7.0 7.0 7.0Effective height d cm 112.1 93.0 143.0 143.0Effective width b cm 100.0 100.0 100.0 100.0Young's modulus ratio n - 16 16 16 16
Required R-bar Asreq cm2 5.93 8.03 1.21 2.48
R-bar arrangement 16~200 16~250 16~200 16~125 16~200 16~200 16~200 16~200
Reinforcement As cm2 10.05 8.04 10.05 16.08 10.05 10.05 10.05 10.05Perimeter of R-bar U cm 25.13 25.13 25.13 25.13
Dist. from neutral axis x cm 17.45 15.76 19.90 19.90
Compressive stress kgf/cm2 18.9 28.3 3.4 6.9Allowable stress kgf/cm2 90.0 90.0 90.0 90.0
ok ok ok okTensile stress kgf/cm2 1,636 2,216 333 685 Allowable stress kgf/cm2 2,775 2,775 2,775 2,775
ok ok ok okShearing stress at joint kgf/cm2 0.82 1.11 0.63 0.35Allowable stress kgf/cm2 8.25 8.25 8.25 8.25
ok ok ok ok
Resisting Moment Mr kgfcm 2,267,768 2,734,218 2,773,407 3,504,081 Mr for compression Mrc kgfcm 4,129,727 6,302,895 5,780,353 9,117,853 x for Mrc cm 14 16 15 18
kgf/cm2 6,117 7,087 6,877 8,054 Mr for tensile Mrs kgfcm 2,267,768 2,734,218 2,773,407 3,504,081 x for Mrs cm 15 17 17 20
kgf/cm2 47 39 41 34
Distribution bar (>As/6 and >Asmin) 16~250 13~200 16~125 13~200 13~200 13~200 13~200 13~200Reinforcement As cm2 8.04 6.64 16.08 6.64 6.64 6.64 6.64 6.64
Minimum requirement of distribution bar As min = 4.50 cm2
Reference: Assumed requirement of reinforcement bar Normal ConditionRequired R-bar Asreqo cm2 5.03 7.11 1.15 -3.47Dist. from neutral axis cm 14.62 51.44 19.12 51.25
a -336.27 -279.00 -429.00 -429.00b -776.41 -776.41 -226.24 628.58c 87028.54 72206.16 32352.63 -89887.48
6937 -569902 -121839 -1049785 nol(check) check check check check
Reference: Assumed requirement of reinforcement bar Seismic ConditionRequired R-bar Asreqo cm2 5.83 8.98 1.19 2.63Dist. from neutral axis cm 12.17 43.75 13.73 43.61
a -336.27 -279.00 -429.00 -429.00b -604.75 -676.40 -157.98 -324.64c 67786.62 62904.88 22591.01 46422.90
12450 -416906 -57882 -700837 nol(check) check check check check
= 7.85 t/m3 = 0.785 kg/cm2-m
Wall (upper) Wall (lower) Footing (toe) Footing (heel)
Section A-A Section B-B Section C-C Section D-Dlower upper upper lower
cca
ssa
a
s for Mrc
c for Mrs
xo
xo
s
Section A-A Section B-B Section C-C Section D-D
Re-bar 26/29
303296237.xls-02/05/2016
Data of Reinforcement Bar
Sectional Perimeter Arrangement Area PerimeterArea
(mm) (cm2) (cm) (cm2) (cm)12 1.131 3.770 12@125 9.05 30.16
12@150 7.54 25.13 Footing (heel)12@250 4.52 15.0812@300 3.77 12.57 upper
16 2.011 5.027 16@125 16.08 40.21 #REF!16@150 13.40 33.51 #REF!16@250 8.04 20.11 0 16@300 6.70 16.76
19 2.835 5.969 19@125 22.68 47.75 125.019@150 18.90 39.79 7.019@250 11.34 23.88 118.019@300 9.45 19.90 100.0
22 3.801 6.912 22@125 30.41 55.29 2422@150 25.34 46.0822@250 15.21 27.65 #REF!22@300 12.67 23.04 #REF!
25 4.909 7.854 49.09 78.54 25~200 16~20025@150 32.72 52.36 #REF!25@250 19.63 31.42 24.54 10.0525@300 16.36 26.18 39.27 ok
32 8.042 10.053 32~125 64.34 80.4232@150 53.62 67.02 31.8632@250 32.17 40.2132@300 26.81 33.51 Calculation Check #REF!
12@250 + 16@250 12,16@125 12.56 35.19 12.56 35.19 60.012,19@125 15.86 38.96 15.86 38.96 #REF!12,22@125 19.73 42.73 19.73 42.73 #REF!12,25@125 24.15 46.50 24.15 46.50 1,850 12,32@125 36.69 55.29 36.69 55.29 #REF!16,19@125 19.38 43.99 19.38 43.99 #REF!16,22@125 23.25 47.76 23.25 47.76 5.5016,25@125 27.67 51.53 27.67 51.53 #REF!16,32@125 40.21 60.32 40.21 60.32 19,22@125 26.55 51.53 26.55 51.53 3,623,270 19,25@125 30.97 55.30 30.97 55.30 3623270.4819,32@125 43.51 64.09 43.51 64.09 22 22,25@125 34.84 59.07 34.84 59.07 2673.9931722,32@125 47.38 67.86 47.38 67.86 4,289,501 25,32@125 51.80 71.63 51.80 71.63 27
12@300 + 16@300 12,16@150 10.47 29.33 10.47 29.33 59 12,19@150 13.22 32.47 13.22 32.47 4.09 1.6812,22@150 16.44 35.61 16.44 35.61 16~200 16~30012,25@150 20.13 38.75 20.13 38.75 10.05 6.7012,32@150 30.58 46.08 30.58 46.08 ok ok16,19@150 16.15 36.66 16.15 36.66 16,22@150 19.37 39.80 19.37 39.80 16,25@150 23.06 42.94 23.06 42.94 16,32@150 33.51 50.27 33.51 50.27
Section E-Elower
25@75
Re-bar 27/29
303296237.xls-02/05/2016
19,22@150 22.12 42.94 22.12 42.94 19,25@150 25.81 46.08 25.81 46.08
19,32@150 36.26 53.41 36.26 53.41 22,25@150 29.03 49.22 29.03 49.22 22,32@150 39.48 56.55 39.48 56.55 25,32@150 43.17 59.69 43.17 59.69
Footing (heel)
#REF!#REF!
0
125.07.0
118.0100.0
16
#REF!
25~200 16~200#REF!24.54 10.0539.27
26.77
#REF!90.0
#REF!#REF!
2,775 #REF!
#REF!8.25
#REF!
4,706,450 4,706,450 19 3,405 5,815,251 22 95
16~200 16~30010.05 6.70
Section E-Eupper lower
303296237.xls-02/05/2016
Reinforcement Bar Arrangement( Dinding Penahan )
0.70 0.30 0.00
+ 7.00
D16~2007.00
D13~2007.00
D13~2000.00 D16~200 + 2.50
0.50
1.00+ 0.00
D13~400D13~200 D16~200
4.00 1.00 1.00
6.00
Section of Retaining wall
D
A A
B BC
CD
12th Oct, Stability AnalysisUplift pressure are added for stability analysis.
Reinforcement Bar ArrangementReinforcement bar for Footing (heel) are collected.
Jan. 7, '03 Stability
(distributed width of reaction of foundation soil)
Structure
(distributed width of reaction of foundation soil)
Calculation formula in case of (B/6 < e < B/3) under seismic condition are corrected.
Calculation formula in case of (B/6 < e < B/3) under seismic condition are corrected.