29
concrete = 11 x 2,500,000 = 28,312,500 75% reinforcement = 374 x 25,000 = 9,351,665 25% Rp 37,664,165 ,- /m' reinforcement = 33.03 kg/m3-concrete 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00

Retaining Wall 7

  • Upload
    dewan

  • View
    274

  • Download
    12

Embed Size (px)

DESCRIPTION

dinding penahan

Citation preview

Page 1: Retaining Wall 7

concrete = 11 x 2,500,000 = 28,312,500 75%

reinforcement = 374 x 25,000 = 9,351,665 25%

Rp 37,664,165 ,- /m'

reinforcement = 33.03 kg/m3-concrete

0.001.00

2.003.00

4.005.00

6.007.00

8.009.00

10.0011.00

12.0013.00

14.0015.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

Page 2: Retaining Wall 7

1 0.00 0.002 0.00 1.003 1.00 1.504 1.00 7.005 1.30 7.006 2.00 1.507 6.00 1.008 6.00 0.009 0.00 0.00

1 0.00 2.502 1.00 2.50

1 1.00 0.002 6.00 0.00

1 0.00 0.002 1.00 0.00

Page 3: Retaining Wall 7

303296237.xls-02/05/2016

Location : PERUM UNMUL

Top wall level = 7.00 mDinding Penahan River bed level = 2.50 m

Ground water level = 0.00 m

River water level = 0.00 m

Foundation level = 0.00 m

Dimension (unit length)

H = 7.00 m B = 6.00 m L = 1.00 m

= 0.70 m = 0.30 m = 0.00 m

= 4.00 m = 1.00 m = 1.00 m

= 7.00 m = 1.00 m = 0.50 m

= 2.50 m = 0.00 m = 0.00 m

q = 0.50 Kh = 0.18

Backfill soil = 2.50 = 1.00

= 1.80

= 2.50 = 0.00 (for stability analysis) = 44.6 = 7.25 (for structural analysis)

c = 0.00 = 0.00

Section of Retaining wall Foundation soil

= 1.50 Safety factor (normal) (seismic)

= 44.6 Overturning < B/6=1.17 B/3=2.00

= 0.00 Sliding > 2.00 1.25

Friction coefficient = 0.79 qmax > qa=qu/3 qae=qu/2

Uplift coefficient Allowable stress

= 1.00 = 60 90

Cover of bar = 1850 2775

Wall = 5.5 8.25

= 7 cm Young's modulus ratio

= 7 cm 24 16

Footing

= 7 cm

= 7 cm

b11

b12

b13

b21

b22

b23

h1

h31

h32

h4

hw1

hw2

t/m2

c t/m3 w t/m3

soil t/m3

sat t/m3 o

o o

t/m2 o

s' t/m3

B

o |e|c

B t/m2 fs

Reaction of foundation soil

U Compressive ca kg/cm2

Tensile sa kg/cm2

Shear a kg/cm2

d back

d front

d upper

d lower

b12

H=h1

h31

b21 b

23

q (t/m2)

h4

b11

b13

b22

h32

hw1

hw2

B

Page 4: Retaining Wall 7

303296237.xls-02/05/2016

STABILITY : Dinding PenahanS

Normal Condition Seismic Condition

a) Stability against overturning a) Stability against overturning

= 0.35 m < B/6 = 1.00 m OK! = 0.02 m < B/3 = 2.00 m OK!

b) Stability against sliding b) Stability against sliding

Fs = -3.27 < 2.00 Check! Fs = 5.22 > 1.25 OK!

= 8.23 < = 171.89 OK! = 12.02 < = 257.83 OK!

= 17.18 < = 171.89 OK! = 12.61 < = 257.83 OK!

|e| |e|

c) Reaction of foundation soil c) Reaction of foundation soil

q1 t/m2 q

a t/m2 q1 t/m2 q

ae t/m2

q2 t/m2 q

a t/m2 q2 t/m2 q

ae t/m2

Page 5: Retaining Wall 7

303296237.xls-02/05/2016

Stressing of Reinforcement and Concrete Name of Structure : Dinding Penahan Location : PERUM UNMUL

Normal Condition = 60

= 1850

= 5.5Young's modulus ratio = 24

Item Section A-A Section B-B Section C-C Section D-D100.0 100.0 100.0 100.0

h (cm) 119.1 100.0 150.0 150.07.0 back 7.0 back 7.0 lower 7.0 upper7.0 front 7.0 front 7.0 upper 7.0 lower

112.1 93.0 143.0 143.0

M (ton m) 10 10 3 -8 S (ton) 5 5 6 0

Bar size and spacing (mm)

Bar (As1) D 16 - 200 D 16 - 200 D 16 - 200 D 16 - 200Section of Retaining wall Bar (As2) D 16 - 250 D 16 - 125 D 16 - 200 D 16 - 200

9 OK! 12 OK! 2 OK! -5 OK!944 OK! 1144 OK! 214 OK! -595 OK!0.46 OK! 0.56 OK! 0.41 OK! -0.01 OK!

Seismic Condition = 90

= 2775

= 8.25Young's modulus ratio = 16

Item Section A-A Section B-B Section C-C Section D-D100.0 100.0 100.0 100.0

h (cm) 119.1 100.0 150.0 150.07.0 7.0 7.0 7.07.0 7.0 7.0 7.0

112.1 93.0 143.0 143.0

M (ton m) 17 20 5 9 S (ton) 9 10 9 5

Bar size and spacing (mm)

Bar (As1) D 16 - 200 D 16 - 200 D 16 - 200 D 16 - 200Section of Retaining wall Bar (As2) D 16 - 250 D 16 - 125 D 16 - 200 D 16 - 200

19 OK! 28 OK! 3 OK! 7 OK!1636 OK! 2216 OK! 333 OK! 685 OK!0.82 OK! 1.11 OK! 0.63 OK! 0.35 OK!

Allowable compressive stress (ca

) kg/cm2

Allowable tensile stress (sa

) kg/cm2

Allowable shearing stress (a) kg/cm2

b (cm)

d1 (cm) d2 (cm) d (cm)

Stress c Stress s Stress

Allowable compressive stress (ca

) kg/cm2

Allowable tensile stress (sa

) kg/cm2

Allowable shearing stress (a) kg/cm2

b (cm)

d1 (cm) d2 (cm) d (cm)

Stress c Stress s Stress

D C

BB

A A

CD

D C

BB

A A

CD

Page 6: Retaining Wall 7

Stability6/29

303296237.xls-02/05/2016

1. Design Data

1.1 Dimensions

B = 6.00 m H = 7.00 m

L = 1.00 m (unit length)

= 0.70 m = 4.00 m

= 0.30 m = 1.00 m

= 0.00 m = 1.00 m

= 7.00 m = 2.50 m

= 1.00 m = 0.00 m

= 0.50 m = 0.00 m

1.2 Parameters

q = 0.50

= 0.00 Section of Retaining Wall

= 2.50

= 1.00

Backfill soil Safety factor

= 1.80 = 1.50 Overturning

= 2.50 = 0.00 normal |e|<B/6=1.00m

c = 0.00 = 44.60 seismic |e|<B/3=2.00m

= 44.60 = 0.79 (Friction coefficient) Sliding

= (Uplift coefficient) normal 2.00

= 0.000 seismic 1.25

= 0.000 (for stability analysis) Reaction of foundation soil

= 7.253 (for structural analysis) normal

= 0.000 qa=qu/3

= 29.73 seismic

= 39.12 (for stability analysis in seismic condition, see Section 2.3) qae=qu/2

= 22.30

= 10.204 Kh = 0.18

2. Stability Calculation

2.1 Case 1 (Normal condition, with vertical live load)0.70

q = 0.50 0.30

0.00

7.00 5.50

0.50

0.00

2.50 0.00

1.00

4.00 1.00 1.00

Acting Load in Case 1

b11

b21

b12

b22

b13

b23

h1

h4

h31

hw1

h32 h

w2

t/m2 (for normal condition)

t/m2 (for seismic condition)

c t/m3

w t/m3

Foundation soil

soil t/m3 s' t/m3 (=

sat

w)

sat t/m3 c

B t/m2

t/m2 B

o

o

U fs >o fs >o

o qmax<qao (for stability analysis in normal condition, = )o (for structural analysis in normal condition, = 2/3 ) qmax<qaeo

o (for structural analysis in seismic condition, = 1/2 )o ( =Arc tan(Kh) )

t/m2

q (t/m2)b

12

b21

b22

b23

hw1

H=h1

h31

b11

b13

h32 h4

hw2

B

Pw1 Pa4

Pa2

Pa1

qa2

qa3qw1 qa4

Pa3

O

Pp1

qa1

qp1

7

1

10

12

9

2 3

5

6

8

4

11

Pw2

qw2qu2

Pu1Pu2

qu1

Page 7: Retaining Wall 7

Stability7/29

303296237.xls-02/05/2016

(1) Vertical Load

No. Description W X W x X1 1.00 x 4.00 x 2.50 10.000 4.000 40.002 1.50 x 1.00 x 2.50 3.750 1.500 5.633 1.00 x 1.00 x 2.50 2.500 0.500 1.254 0.50 x 0.50 x 4.00 x 2.50 2.500 3.333 8.335 0.50 x 0.50 x 1.00 x 2.50 0.625 0.333 0.216 0.50 x 5.50 x 0.70 x 2.50 4.813 1.767 8.507 5.50 x 0.30 x 2.50 4.125 1.150 4.748 0.50 x 5.50 x 0.00 x 2.50 0.000 1.000 0.009 0.50 x 5.50 x 0.70 x 1.80 3.465 1.767 6.1210 4.00 x 5.50 x 1.80 39.600 4.000 158.4011 4.00 x 0.00 x 1.80 0.000 4.000 0.0012 0.50 x 4.00 x 0.50 x 2.50 2.499 4.667 11.66q 0.50 x 4.70 2.350 3.650 8.58

T o t a l(1 to q) 76.227 253.42Pu1 0.00 x 6.00 x 0.50 x -1.00 0.000 4.000 0.00Pu2 0.00 x 6.00 x 0.50 x -1.00 0.000 2.000 0.00

Total ( 1 to Pu2) 76.227 253.42

(2) Horizontal Load

Coefficient of Active earth pressure

Ka =

(for stability analysis)

= 0.000 = 0.000

= 0.507 = 0.702

= 1.000 = 0.702

= 1.000 = 1.000

Ka = 0.175 for stability analysis

(for structural analysis)

= 7.253 = 29.730

= 0.632 = 0.963

= 0.984 = 0.702

= 0.799 = 0.992

Ka' = 0.217 for structural analysis

Coefficient of Passive earth pressure

Kp =

= 0.000 = 0.000

= 0.507 = 0.702

= 1.000 = 0.702= 1.000 = 1.000

Kp = 5.709

qa1 = Ka x q = 0.088 ton/m

qa2 = = 2.205 ton/mqa3 = qa1 + qa2 = 2.293 ton/m

qa4 = = 0.000 ton/m

qw 1 = = 0.000 ton/m

qw 2 = = 0.000 ton/m

qp1 = = 21.395 ton/m

o o

Cos2(-) Sin(+)

Cos2 SinCos(+) Cos

o o

Cos2(-) Sin(+)

Cos2 SinCos(+) Cos

o o

Cos2(+) Sin(+)

Cos2 SinCos(-) Cos

Ka x (h1- h

w1) x

soil

Ka x hw1

x (sat

- w)

hw1

x w

hw2

x w

Kp x h4 x (

sat -

w)

2

Cos2(-)

Cos2 x Cos(+) x 1+Sin(+) x Sin

Cos(+) x Cos

2

Cos2(+)

Cos2 x Cos(-) x 1 -Sin(+) x Sin

Cos(-) x Cos

Page 8: Retaining Wall 7

Stability8/29

303296237.xls-02/05/2016

No. Description H Y H x YPa1 0.088 x 7.00 0.613 3.500 2.14Pa2 2.205 x 7.00 x 0.50 7.718 2.333 18.01Pa3 2.293 x 0.00 0.000 0.000 0.00Pa4 0.000 x 0.00 x 0.50 0.000 0.000 0.00Pw1 0.000 x 0.00 x 0.50 0.000 0.000 0.00Pw2 0.000 x 0.00 x 0.50 0.000 0.000 0.00Pp1 -21.395 x 2.50 x 0.50 -26.744 0.833 -22.28

T o t a l -18.413 -2.12

(3) Stability Calculation

a) Stability against overturning a) -1 Without Uplift

B = 6.00 m

253.42 - -2.12X = = = 3.352 m

76.227

B 6.00e = - X = - 3.352 = -0.352 m < B/6 = 1.000 m OK !

2 2 a) -2 With Uplift

B = 6.00 m

253.42 - -2.12X = = = 3.352 m

76.227

B 6.00e = - X = - 3.352 = -0.352 m < B/6 = 1.000 m OK !

2 2

b) Stability against sliding b)-1 Without Uplift Sliding force : = -18.413 ton

Resistance : = 0.79 x 76.227 = 60.143 ton

0.79 )

HR 60.143Fs = = = -3.266 < 2.00 Check !

-18.413 b)-2 With Uplift Sliding force : = -18.413 ton

Resistance : = 0.79 x 76.227 = 60.143 ton

0.789 )

HR 60.143Fs = = = -3.266 < 2.00 Check !

-18.413

c) Reaction of foundation soil6 x e

q1,2 = x ) B B

76.227 6 x -0.352

q1 = x (1 + ) = 8.233 < qa = 171.885 OK !6.00 6.00

76.227 6 x -0.352

q2 = x (1 - ) = 17.176 < qa = 171.885 OK !6.00 6.00

Reaction of Foundation Soil in Case 1

- 8.233

- 17.176

W x X - H x Y

W

W x X - H x Y

W

H

HR = x W

(friction coefficient : =

H

H

HR = x W

(friction coefficient : =

H

W(1 +

t/m2 t/m2

t/m2 t/m2

t/m2 t/m2

t/m2 t/m2

in case, e > 0 in case, e < 0

Page 9: Retaining Wall 7

Stability9/29

303296237.xls-02/05/2016

(not applicable) (applicable)

Page 10: Retaining Wall 7

Stability10/29

303296237.xls-02/05/2016

2.2 Case 2 (Normal condition, without vertical live load)0.70

q = 0.50 0.30

0.00

7.00 5.50

0.50

0.00

2.50 0.00

1.00

4.00 1.00 1.00

Acting Load in Case 2

(1) Vertical Load

No. Description W X W x X1 1.00 x 4.00 x 2.50 10.000 4.000 40.00 2 1.50 x 1.00 x 2.50 3.750 1.500 5.63 3 1.00 x 1.00 x 2.50 2.500 0.500 1.25 4 0.50 x 0.50 x 4.00 x 2.50 2.500 3.333 8.33 5 0.50 x 0.50 x 1.00 x 2.50 0.625 0.333 0.21 6 0.50 x 5.50 x 0.70 x 2.50 4.813 1.767 8.50 7 5.50 x 0.30 x 2.50 4.125 1.150 4.74 8 0.50 x 5.50 x 0.00 x 2.50 0.000 1.000 0.00 9 0.50 x 5.50 x 0.70 x 1.80 3.465 1.767 6.12 10 4.00 x 5.50 x 1.80 39.600 4.000 158.40 11 4.00 x 0.00 x 1.80 0.000 4.000 0.00 12 0.50 x 4.00 x 0.50 x 2.50 2.499 4.667 11.66

T o t a l (1 to 12) 73.877 244.84 Pu1 0.00 x 6.00 x 0.50 x -1.00 0.000 4.000 0.00 Pu2 0.00 x 6.00 x 0.50 x -1.00 0.000 2.000 0.00

Total ( 1 to Pu2) 73.877 244.84

(2) Horizontal Load

Coefficient of Active earth pressure

Ka = 0.175 (for stability analysis)

Ka ' = 0.217 (for structural analysis)

Coefficient of Passive earth pressure

Kp = 5.709

qa1 = Ka x q = 0.088 ton/m

qa2 = = 2.205 ton/m

qa3 = qa1 + qa2 = 2.293 ton/m

qa4 = = 0.000 ton/m

qw 1 = = 0.000 ton/m

qw2 = = 0.000 ton/m

qp1 = = 21.395 ton/m

No. Description H Y H x YPa1 0.088 x 7.00 0.613 3.500 2.14Pa2 2.205 x 7.00 x 0.50 7.718 2.333 18.01Pa3 2.293 x 0.00 0.000 0.000 0.00Pa4 0.000 x 0.00 x 0.50 0.000 0.000 0.00Pw1 0.000 x 0.00 x 0.50 0.000 0.000 0.00Pw2 0.000 x 0.00 x 0.50 0.000 0.000 0.00Pp1 -21.395 x 2.50 x 0.50 -26.744 0.833 -22.28

t/m2

Ka x (h1- h

w1) x

soil

Ka x hw1

x (sat

- w)

hw1

x w

hw2

x w

Kp x h4 x (

sat -

w)

Pw1 Pa4

Pa2

Pa1

qa2

qa3qw1 qa4

Pa3

O

9

Pp1

qa1

qp1

7

1

10

12

2 3

5

6

8

4

11

Pw2

qw2qu2 Pu2

qu1

Pu1

Page 11: Retaining Wall 7

Stability11/29

303296237.xls-02/05/2016

T o t a l -18.413 -2.12

Page 12: Retaining Wall 7

Stability12/29

303296237.xls-02/05/2016

(3) Stability Calculation

a) Stability against overturning a)-1 Without Uplift

B = 6.00 m

244.84 - -2.12X = = = 3.343 m

73.877

B 6.00e = - X = - 3.343 = -0.343 m < B/6 = 1.000 m OK !

2 2 a)-2 With Uplift

B = 6.00 m

244.84 - -2.12X = = = 3.343 m

73.877

B 6.00e = - X = - 3.343 = -0.343 m < B/6 = 1.000 m OK !

2 2

b) Stability against sliding b)-1 without Uplift Pressure Sliding force : = -18.413 ton

Resistance : = 0.79 x 73.877 = 58.289 ton

0.789 )

HR 58.289Fs = = = -3.17 < 2.00 Check !

-18.413 b)-2 with Uplift Pressure Sliding force : = -18.413 ton

Resistance : = 0.79 x 73.877 = 58.289 ton

0.789 )

HR 58.289Fs = = = -3.17 < 2.00 Check !

-18.413

c) Reaction of foundation soil

6 x eq1,2 = x )

B B

73.877 6 x -0.343

q1 = x (1 + ) = 8.090 < qa = 171.885 OK !6.00 6.00

73.877 6 x -0.343

q2 = x (1 - ) = 16.536 < qa = 171.885 OK !6.00 6.00

- 8.090

- 16.536

(not applicable) (applicable)

Reaction of Foundation Soil in Case 2

W x X - H x Y

W

W x X - H x Y

W

H

HR = x W

(friction coefficient : =

H

H

HR = x W

(friction coefficient : =

H

W(1 +

t/m2 t/m2

t/m2 t/m2

t/m2 t/m2

t/m2 t/m2

in case, e > 0 in case, e < 0

Page 13: Retaining Wall 7

Stability13/29

303296237.xls-02/05/2016

2.3 Case 3 (Seismic condition)0.70

0.30

0.00

7.00 5.50

0.50

0.00

2.50 0.00

1.00

4.00 1.00 1.00

Acting Load in Case 3

(1) Vertical Load = Same as Case 2

(2) Horizontal Load

= 44.60 = 0.000 (for stability analysis) = 10.204 = 0.00 = 7.253 (for structural analysis) =

q = 0.00 Kh = 0.18

Coefficient of Active earth pressure

Kae =

(for stability analysis)

= 0.000 = 39.12

= 0.177 = 0.702

= 0.252 then = 14.6

0.420 0.908

= 0.813

0.681 = 0.994

= 0.984 = 0.565

= 1.000 = 1.000

= 0.652

Kae = 0.286 (for stability analysis)

(for structural analysis)

= 7.253 = 22.30

0.792 = 0.920

= 0.984 = 0.565

= 0.984 = 0.992

0.769

o o o

o o ( Arc tan(Kh) )

t/m2 (for seismic condition)

o o

tan = Sin Sin ( + - )Sin Cos ( + - )

sin = Sin ( + )Sin

Sin (+ ) = Sin Sin Sin(+-) = Cos(+-)=

tan

Cos2(--)= Sin(Cos Sin(--)

Cos2 Cos(-)

Cos(+)

o o

Cos2(--)= Sin(Cos Sin(--)

Cos2 Cos(-)

Cos(+)=

2

Cos2()

Cos x Cos2 x Cos() x 1+Sin( x Sin()

Cos() x Cos()

Pa1

qa1

qa2qa3qw1

Pa2

Pa3Pw1

O

7

1

10

12

9

2 3

5

6

8

4

11

Pw2

qw2

Pp1

qp1Pu1

qu2 Pu2qu1

Page 14: Retaining Wall 7

Stability14/29

303296237.xls-02/05/2016

Kae = 0.319 (for structural analysis)

Coefficient of Passive earth pressure

Kpe =

= 0.000 = 39.12

0.681 = 0.095= 0.984 = 0.565

= 1.000 = 1.0000.875

Kpe = 1.397

qa1 = = 3.604 ton/mqa2 = qa2 = 3.604 ton/m

qa3 = = 0.000 ton/m

qw 1 = = 0.000 ton/m

qw 2 = = 0.000 ton/m

qp1 = = 5.235 ton/m

No. Description H Y H x Y1 0.18 x 10.00 1.800 0.500 0.902 0.18 x 3.75 0.675 0.750 0.513 0.18 x 2.50 0.450 0.500 0.234 0.18 x 2.50 0.450 1.167 0.535 0.18 x 0.63 0.113 1.167 0.136 0.18 x 4.81 0.866 3.333 2.897 0.18 x 4.13 0.743 4.250 3.168 0.18 x 0.00 0.000 3.333 0.00

Pw1 0.50 x 0.00 x 0.00 0.000 0.000 0.00Pw2 0.50 x 0.00 x 0.00 0.000 0.000 0.00Pa1 0.50 x 3.60 x 7.00 12.613 2.333 29.43pa2 3.60 x 0.00 0.000 0.000 0.00Pa3 0.50 x 0.000 x 0.00 0.000 0.000 0.00Pp1 -5.235 x 2.50 x 0.50 -6.544 2.500 -16.36

T o t a l 11.165 21.40

(3) Stability Calculation

a) Stability against overturning a)-1 Without Uplift

B = 6.00 m

244.84 - 21.40X = = = 3.024 m

73.877

B 6.00e = - X = - 3.024 = -0.024 m < B/3 = 2.000 m OK !

2 2

B = 6.00 m

244.84 - 21.40X = = = 3.024 m

73.877

B 6.00e = - X = - 3.024 = -0.024 m < B/3 = 2.000 m OK !

2 2

o o

Cos2(-)= Sin(Cos Sin(-)

Cos2 Cos(-)Cos()=

Kae x ( h1 - h

w1) x

soil

Kae x hw1

x (sat

- w)

hw1

x w

hw2

x w

Kp x h4 x (

sat -

w)

W x X - H x Y

W

a)-2 With Uplift

W x X - H x Y

W

2

Cos2()

Cos x Cos2 x Cos() x 1Sin( x Sin()

Cos() x Cos()

Page 15: Retaining Wall 7

Stability15/29

303296237.xls-02/05/2016

b) Stability against sliding b)-1 Without Uplift Sliding force : = 11.165 ton

Resistance : = 0.79 x 73.877 = 58.289 ton

0.79 )

HR 58.289Fs = = = 5.22 > 1.25 OK !

11.165 b)-2 With Uplift Sliding force : = 11.165 ton

Resistance : = 0.79 x 73.877 = 58.289 ton

0.79 )

HR 58.289Fs = = = 5.22 > 1.25 OK !

11.165

c) Reaction of foundation soil

(applicable)

6 x eq1,2 = x )

B B

73.877 6 x -0.024

q1 = x (1 + ) = 12.017 < qae = 257.828 OK !6.00 6.00

73.877 6 x -0.024

q2 = x (1 - ) = 12.608 < qae = 257.828 OK !6.00 6.00

(not applicable)

q1' = = = - qae = -3 x (B/2-|e|)

-

- -

(not applicable) (not applicable)

12.017

12.608 -

(applicable) (not applicable)

Reaction of Foundation Soil in Case 3

H

HR = x W

(friction coefficient : =

H

H

HR = x W

(friction coefficient : =

H

c-1) in case, |e| < B/6

W(1 +

t/m2 t/m2

t/m2 t/m2

c-2) in case, B/6 < |e| < B/3

2 x W

t/m2 t/m2

t/m2

t/m2 t/m2

in case, e > 0 and e < B/6 in case, e > 0 and B/6 < e < B/3

t/m2

t/m2 t/m2

in case, e < 0 and |e| < B/6 in case, e < 0 and B/6 < |e| < B/3

Page 16: Retaining Wall 7

Stability16/29

303296237.xls-02/05/2016

2.4 Bearing Capacity of soil

(1) Design Data

= 44.60 = 0.00 = 1.50

B = 6.00 m z = 2.50 m L = 1.00 m (unit length)

(2) Ultimate Bearing Capacity of soil, (qu) ######

Calculation of ultimate bearing capacity will be obtained by applying the following ### Terzaghi's formula : ###

###

qu = ######

Shape factor (Table 2.5 of KP-06) ###

= 1.00 = 0.50

Shape of footing : 1 (strip)

Shape of footing 1 strip 1.00 0.502 square 1.30 0.403 rectangular, B x L 1.13 0.40

(= 1.09 + 0.21 B/L)(B > L) (= 1.09 + 0.21 L/B)

4 circular, diameter = B 1.30 0.30

Bearing capacity factor (Figure 2.3 of KP-06, by Capper)

Nc = 82.0 Nq = 50.0 = 73.0

Nc Nq0 5.7 0.0 0.05 7.0 1.4 0.0

10 9.0 2.7 0.215 12.0 4.5 2.320 17.0 7.5 4.725 24.0 13.0 9.530 36.0 23.0 20.035 57.0 44.0 41.037 70.0 50.0 55.039 > 82.0 50.0 73.0

= 0.000

= 187.375

= 328.281

qu = 515.656

(3) Allowable Bearing Capacity of soil, (qa)

qa = qu / 3 = 171.885 (safety factor = 3 , normal condition)

qae = qu / 2 = 257.828 (safety factor = 2 , seismic condition)

B

o cB t/m2

s' t/m3 (=

sat

w)

( x c x Nc) + (soil

' x z x Nq) + ( x soil

x B x N)

(B < L)

N

N

( x c x Nc)

(soil

x z x Nq)

( x soil

x B x N)

t/m2

t/m2

t/m2

Page 17: Retaining Wall 7

Structure17/29

303296237.xls-02/05/2016

3. Structure Calculation

3.1 Normal Condition

(1) Wall 0.70

q = 0.50 0.30

0.00

5.50

0.9

0.00 0.00

0.50

1.00 1.00

4.00 1.00 1.00

Load Diagram on Wall in Normal ConditionKa = 0.217

= 7.253 = 29.73

= 0.799

= = 0.174

a) Section A - A

h = 5.50 m

qa1 = = 0.087 ton/m

qa2 = = 1.718 ton/m

No. Description Ha Y (from A-A) Ha x YPa1 0.087 x 5.50 0.477 2.750 1.312 Pa2 1.718 x 5.50 x 0.50 4.725 1.833 8.662

T o t a l 5.202 9.975

Sa = 5.202 ton Ma = 9.975 ton m

b) Section B - B

h = 5.50 m = 0.00 m = 0.00 m

qa1 = = 0.087 ton/m

qa2 = = 1.718 ton/mqa3 = qa1 + qa2 = 1.805 ton/m

qa4 = = 0.000 ton/m

qw1 = = 0.000 ton/m

qw2 = = 0.000 ton/m

No. Description Hb Y (from B-B) Ha x YPa1 0.087 x 5.50 0.477 2.750 1.312 Pa2 1.718 x 5.50 x 0.50 4.725 1.833 8.662 Pa3 1.805 x 0.00 0.000 0.000 0.000 Pa4 0.000 x 0.00 x 0.50 0.000 0.000 0.000 Pw1 0.000 x 0.00 x 0.50 0.000 0.000 0.000 Pw2 0.000 x 0.00 x 0.50 0.000 0.000 0.000

T o t a l 5.202 9.975

Sb = 5.202 ton Mb = 9.975 ton m

t/m2

o

o

cos (+)

Kha Ka x cos (+)

Kha

x q

Kha

x h x soil

hw1

hw2

Kha

x q

Kha

x h x soil

Kha

x hw2

x (sat

- w)

hw1

x w

hw2

x w

qa1

qa4 qa3qw1

Pw1 Pa4

Pa2

Pa1

qa2

Pa3 B

A

B

A

Pw2

qw2

Page 18: Retaining Wall 7

Structure18/29

303296237.xls-02/05/2016

(2) FootingCase 1 (with vertical live load) Case 2 (without vertical live load)

q = 0.50 q = 0.50

5.50 5.50

0.00 0.00

0.50 0.50

1.00 1.00

4.00 1.00 1.00 4.00 1.00 1.00

#VALUE!

#VALUE! - -

- -

- -

- -

in case, e < 0 in case, e < 0

11.214 8.233 10.905 8.090

17.176 9.724 16.536 9.498

Load Diagram on Footing in Normal Case

a) Section C - C

Case 1 (with vertical live load)No. Description Hc X (from C-C) Hc x X1 1.000 x 1.00 x 2.50 2.500 0.500 1.250

0.500 x 1.00 x 2.50 x 0.50 0.625 0.333 0.2082 -8.233 x 1.00 -8.233 0.500 -4.117

-1.491 x 1.00 x 0.50 -0.745 0.333 -0.248 T o t a l -5.853 -2.907

Case 2 (without vertical live load)No. Description Hc X (from C-C) Hc x X1 1.000 x 1.00 x 2.50 2.500 0.500 1.250

0.500 x 1.00 x 2.50 x 0.50 0.625 0.333 0.2082 -8.090 x 1.00 -8.090 0.500 -4.045

-1.408 x 1.00 x 0.50 -0.704 0.333 -0.235 T o t a l -5.669 -2.821

Case 1 Sc = -5.853 ton Mc = -2.907 ton mCase 2 Sc = -5.669 ton Mc = -2.821 ton m

t/m2 t/m2

in case, e > 0 in case, e > 0

t/m2 t/m2

t/m2 t/m2

t/m2 t/m2

t/m2 t/m2

t/m2 t/m2 t/m2 t/m2

t/m2 t/m2 t/m2 t/m2

1

1

C

C

D

D

4

3

26

1

C

C

D

D

3

4

3 1 3

4

5

4

62 2

6

26

Page 19: Retaining Wall 7

Structure19/29

303296237.xls-02/05/2016

b) Section D - D

Case 1 (with vertical live load)No. Description Hd X (from D-D) Hd x Y3 1.000 x 4.00 x 2.50 10.000 2.000 20.000

0.500 x 4.00 x 2.50 x 0.50 2.500 1.333 3.3334 5.500 x 4.00 x 1.80 39.600 2.000 79.200

0.000 x 4.00 x 2.50 0.000 2.000 0.0000.500 x 4.00 x 2.50 x 0.50 2.499 2.667 6.664

5 0.500 x 4.00 2.000 2.000 4.0006 -11.214 x 4.00 -44.856 2.000 -89.712

-5.962 x 4.00 x 0.50 -11.924 2.667 -31.797 T o t a l -0.181 -8.312

Case 2 (without vertical live load)No. Description Hd X (from D-D) Hd x Y3 1.000 x 4.00 x 2.50 10.000 2.000 20.000

0.500 x 4.00 x 2.50 x 0.50 2.500 1.333 3.3334 5.500 x 4.00 x 1.80 39.600 2.000 79.200

0.000 x 4.00 x 2.50 0.000 2.000 0.0000.500 x 4.00 x 2.50 x 0.50 2.499 2.667 6.664

6 -10.905 x 4.00 -43.621 2.000 -87.243-5.631 x 4.00 x 0.50 -11.261 2.667 -30.030

T o t a l -0.284 -8.076

Case 1 Sd = -0.181 ton Md = -8.312 ton mcase 2 Sd = -0.284 ton Md = -8.076 ton m

3.2 Seismic Condition

(1) Wall 0.70

0.30

0.00

5.50

6.00

0.00 0.00

0.50

1.00 1.00

4.00 1.00 1.00

Load diagram on Wall for Seismic caseKae = 0.319

= 7.253 = 22.30

= 0.870

= = 0.278 Kh = 0.18

a) Section A - A

h = 5.50 m

qa1 = = 2.747 t/mNo. Description Hae Y (from A-A) Hae x Y1 0.500 x 5.500 x 0.700 x 2.500 x 0.180 0.866 1.833 1.588 2 5.500 x 0.300 x 2.500 x 0.180 0.743 2.750 2.042 3 0.500 x 5.500 x 0.000 x 2.500 x 0.180 0.000 1.833 0.000

Pa1 2.747 x 5.500 x 0.500 7.555 1.833 13.851 T o t a l 9.164 17.481

Sae = 9.164 ton Mae = 17.481 ton m

o

o

cos (+)

Khea Kae x cos (+)

Khae

x h x soil

2

Pa2

Pa1

qa2

qa1

qa3

Pa3

A A

B B

1 3

Pw1 Pw2

qw2qw1

Page 20: Retaining Wall 7

Structure20/29

303296237.xls-02/05/2016

b) Section B - B

h = 5.50 m = 0.00 m = 0.00 m

qa1 = = 3.158 t/mqa2 = qa1 = 3.158 t/m

qa3 = = 0.000 t/m

qw1 = = 0.000 ton/m

qw2 = = 0.000 ton/m

No. Description Hbe Y (from B-B) Hbe x YPa1 3.158 x 5.50 x 0.50 8.685 1.833 15.922Pa2 3.158 x 0.00 0.000 0.000 0.000Pa3 0.000 x 0.00 x 0.50 0.000 0.000 0.000Pw1 0.000 x 0.00 x 0.50 0.000 0.000 0.000Pw2 0.000 x 0.00 x 0.50 0.000 0.000 0.000

1 0.500 x 5.50 x 0.70 x 2.50 x 0.18 0.866 1.833 1.5882 5.500 x 0.30 x 2.50 x 0.18 0.743 2.750 2.0423 0.500 x 5.50 x 0.00 x 2.50 x 0.18 0.000 1.833 0.000

T o t a l 10.294 19.552

Sbe = 10.294 ton Mbe = 19.552 ton m

(2) Footing

5.50 5.50

0.00 0.00

0.50 0.50

1.00 1.00

4.00 1.00 1.00 4.00 1.00 1.00

- -

-

- -

- -

in case, e < 0 and |e| < B/6

12.214 12.017 - -

12.608 12.116 -

Load Diagram on Footing in Seismic Case

hw1

hw2

Khae

x h x soil

Khae

x hw1

x ( sat

- w)

hw1

x w

hw2

x w

in case, e < B/6 in case, B/6 < e < B/3

in case, e > 0 ande < B/6 in case, e > 0 and B/6 < e < B/3

t/m2 t/m2

t/m2

t/m2 t/m2

t/m2 t/m2

in case, e < 0 and B/6 < |e| < B/3

t/m2 t/m2 t/m2 t/m2

t/m2 t/m2 t/m2

D

1

1

C

C

D

D

2

4

5

3 1

C

C

D

D

2

3

4

3 1 3

4 4

6

62

2

6

Page 21: Retaining Wall 7

Structure21/29

303296237.xls-02/05/2016

a) Section C - C

No. Description Hce X (from C-C) Hce x X1 1.000 x 1.00 x 2.50 2.500 0.500 1.250

0.500 x 1.00 x 2.50 x 0.50 0.625 0.333 0.2082 -12.017 x 1.00 -12.017 0.500 -6.009

-0.098 x 1.00 x 0.50 -0.049 0.333 -0.016 T o t a l -8.941 -4.567

Sce = -8.941 ton Mce = -4.567 ton m

b) Section D - D

No. Description Hde X (from D-D) Hde x X3 1.000 x 4.00 x 2.50 10.000 2.000 20.000

0.500 x 4.00 x 2.50 x 0.50 2.500 1.333 3.3334 5.500 x 4.00 x 1.80 39.600 2.000 79.200

0.500 x 4.00 x 2.50 x 0.50 2.499 2.667 6.6645 -12.214 x 4.00 -48.856 2.000 -97.712

-0.394 x 4.00 x 0.50 -0.788 2.667 -2.101 T o t a l 4.955 9.384

Sde = 4.955 ton Mde = 9.384 ton m

3.3 Design Bending Moment and Shear Force

(1) Bending moment and shear force in each case

Description Bending Moment Shear ForceNormal Seismic Normal Seismic

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Section A - A 9.975 9.975 17.481 5.202 5.202 9.164 Section B - B 9.975 9.975 19.552 5.202 5.202 10.294 Section C - C 2.907 2.821 4.567 5.853 5.669 8.941 Section D - D (8.312) (8.076) 9.384 (0.181) (0.284) 4.955

(2) Design bending moment and shear force

Description Bending Moment Shear ForceNormal Seismic Normal Seismic

Section A - A 9.975 17.481 5.202 9.164 Section B - B 9.975 19.552 5.202 10.294 Section C - C 2.907 4.567 5.853 8.941 Section D - D (8.076) 9.384 (0.181) 4.955

Notes: --

Moment at Section C-C < Moment at Section B-BMoment at Section D-D < Moment at Section B-B

Page 22: Retaining Wall 7

4. Wooden Pile (Not applicable for this Project)

4.1 Bearing Capacity of a Pile

(1) Design data

Diameter of wooden pile D = 40.0 cm Length of pile L = 6.00 m

Area of pile section A = = 0.126 Perimeter of pile = = 1.257 m SPT N-Value = 30

Ni : Average N value in a soil layer = 30

fi : friction of soil = 0.20 x Ni = 6.00

(2) Ultimate vertical bearing capacity, (qu)

qu == ( 40 x 30.0 x 0.126 )+( 1.257 x 6.00 x 6.0 )= 150.796 + 45.239 = 196.035 ton/pile

(3) Ultimate vertical bearing capacity, (qu)

qa = qu/n = 196.035 / 3 = 65.345 ton/pile

(safety factor : n = 3)

4.2 Allowable horizontal bearing capacity

Horizontal bearing capacity depend on displacement of a pile

(1) Design data

Class of timber (pile) : III Class

E = 80,000 (Young's modulus) = Allowable horizontal displacement = 0.01 mN = SPT N-value is assumed as = 30

I = = 125,663.7 (I : Moment of Inertia for a pile)64

(2) Horizontal bearing capacity of one pile (Ha)

= 0.20 E = 28 x N

Kh =

= 0.20 x( 28 x 30.0 )x( 40.0 = 10.562

Kh x D 10.562 x 40.0 = = = 0.010 cm

4 EI 4 x 80,000 x 125,663.7

Kh x D 10.562 x 40.0 Ha = x = x 1 = 41,730.94 kg

0.010= 41.731 ton

1/4 x x D2 m2

x D

t/m2

(40 x N x A) + ( x fi x li)

kg/cm2

x D4

cm4

x E x D-3/4

)-3/4 kg/cm3

4 4

Page 23: Retaining Wall 7

(3) Allowable horizontal bearing capacity due to the stress of a pile itself

Ha =

= Allowable stress of timber III class = 75.00

W = = 6,283.19 ; (W : section modulus of a pile)32

Ma = x W = 75.00 x 6,283.19 = 471,238.9 kg cm

Ha == 2 x 0.010 x 471,238.9 = 9,541.95 kg/pile = 9.542 ton/pile

Allowable horizontal bearing capacity acting on the pile top depend upon the allowable stress of pile itself.

4.3 Spacing of Pile (1) For horizontal load

Ha = 9.542 ton/pile ; (Ha : Horizontal load carried by pile)

Hr = H - Hf = = 11.165 - 43.532 = -32.367 ton/m

Ha 9.542 Spacing of pile = = = -0.29 m

Hr -32.367

Spacing of pile = -0.29 m (center to center) by horizontal force

(2) For vertical load

V = 76.227 ton/m : Vertical load carried by pile

qa = 65.345 ton/pile : Allowable vertical bearing capacity of a pile

qa 65.345 Spacing of pile = = = 0.86 m

V 76.227

= 6.00 m ),

Vp = -1,508.781 ton/m : Vertical load carried by pile

qa = 65.345 ton/pile : Allowable vertical bearing capacity of a pile

qa 65.345 Spacing of pile = = = -0.04 m

Vp -1,508.781

= 6.00 m ),

2 x x Ma

kg/cm2

x D3

cm3

2 x x Ma

H - V x tan(2/3)

Spacing of pile can be determined 0.75 m for a pile ( 150, L

Spacing of pile can be determined 1.50 m for a pile ( 150, L

Page 24: Retaining Wall 7

Re-bar 24/29

303296237.xls-02/05/2016

Reinforcement Bar Arrangement and Stress

Normal Condition Name of Structure : Dinding Penahan Location : PERUM UNMUL

Wall (upper) Wall (lower) Footing (toe) Footing (heel)

back front back front upper upperBending moment M kgfcm 997,472 997,472 290,658 (807,556)Shearing force (joint) S kgf 5,202 5,202 5,853 (181)Axial force N kgf 0 0 0 0

Height of member h cm 119.1 100.0 150.0 150.0Covering depth d' cm 7.0 7.0 7.0 7.0Effective height d cm 112.1 93.0 143.0 143.0Effective width b cm 100.0 100.0 100.0 100.0Young's modulus ratio n - 24 24 24 24

Required R-bar Asreq cm2 5.13 6.22 1.16 -3.23

R-bar arrangement 16~200 16~250 16~200 16~125 16~200 16~200 16~200 16~200

Reinforcement As cm2 10.05 8.04 10.05 16.08 10.05 10.05 10.05 10.05Perimeter of R-bar U cm 25.13 ok 25.13 ok 25.13 ok 25.13 ok

Dist. from neutral axis x cm 20.97 18.91 23.97 23.97

Compressive stress kgf/cm2 9.1 12.2 1.8 -5.0Allowable stress kgf/cm2 60.0 60.0 60.0 60.0

ok ok ok okTensile stress kgf/cm2 944 1,144 214 (595)Allowable stress kgf/cm2 1,850 1,850 1,850 1,850

ok ok ok okShearing stress at joint kgf/cm2 0.46 0.56 0.41 -0.01Allowable stress kgf/cm2 5.50 5.50 5.50 5.50

ok ok ok ok

Resisting Moment Mr kgfcm 1,601,100 1,970,601 1,987,983 2,496,764 Mr for compression Mrc kgfcm 3,428,834 5,645,000 5,012,470 7,977,777 x for Mrc cm 17 20 19 22

kgf/cm2 4,971 5,922 5,680 6,681 Mr for tensile Mrs kgfcm 1,601,100 1,970,601 1,987,983 2,496,764 x for Mrs cm 19 22 21 25

kgf/cm2 26 22 23 19 Distribution bar (>As/6 and >Asmin) 1.68 1.34 1.68 2.68 1.68 1.68 1.68 1.68

16~250 13~200 16~125 13~200 13~200 13~200 13~200 13~200Reinforcement As cm2 8.04 6.64 16.08 6.64 6.64 6.64 6.64 6.64

ok ok ok ok ok ok ok ok

Minimum requirement of distribution bar As min = 4.50 cm2

Section A-A Section B-B Section C-C Section D-Dlower lower

cca

ssa

a

s for Mrc

c for Mrs

Page 25: Retaining Wall 7

Re-bar 25/29

303296237.xls-02/05/2016

Reinforcement Bar Arrangement and Stress

Seismic ConditionName of Structure : Dinding PenahanLocation : PERUM UNMUL

Wall (upper) Wall (lower) Footing (toe) Footing (heel)

back front back frontBending moment M kgfcm 1,748,096 1,955,209 456,658 938,400 Shearing force (joint) S kgf 9,164 10,294 8,941 4,955 Axial force N kgf 0 0 0 0

Height of member h cm 119.1 100.0 150.0 150.0Covering depth d' cm 7.0 7.0 7.0 7.0Effective height d cm 112.1 93.0 143.0 143.0Effective width b cm 100.0 100.0 100.0 100.0Young's modulus ratio n - 16 16 16 16

Required R-bar Asreq cm2 5.93 8.03 1.21 2.48

R-bar arrangement 16~200 16~250 16~200 16~125 16~200 16~200 16~200 16~200

Reinforcement As cm2 10.05 8.04 10.05 16.08 10.05 10.05 10.05 10.05Perimeter of R-bar U cm 25.13 25.13 25.13 25.13

Dist. from neutral axis x cm 17.45 15.76 19.90 19.90

Compressive stress kgf/cm2 18.9 28.3 3.4 6.9Allowable stress kgf/cm2 90.0 90.0 90.0 90.0

ok ok ok okTensile stress kgf/cm2 1,636 2,216 333 685 Allowable stress kgf/cm2 2,775 2,775 2,775 2,775

ok ok ok okShearing stress at joint kgf/cm2 0.82 1.11 0.63 0.35Allowable stress kgf/cm2 8.25 8.25 8.25 8.25

ok ok ok ok

Resisting Moment Mr kgfcm 2,267,768 2,734,218 2,773,407 3,504,081 Mr for compression Mrc kgfcm 4,129,727 6,302,895 5,780,353 9,117,853 x for Mrc cm 14 16 15 18

kgf/cm2 6,117 7,087 6,877 8,054 Mr for tensile Mrs kgfcm 2,267,768 2,734,218 2,773,407 3,504,081 x for Mrs cm 15 17 17 20

kgf/cm2 47 39 41 34

Distribution bar (>As/6 and >Asmin) 16~250 13~200 16~125 13~200 13~200 13~200 13~200 13~200Reinforcement As cm2 8.04 6.64 16.08 6.64 6.64 6.64 6.64 6.64

Minimum requirement of distribution bar As min = 4.50 cm2

Reference: Assumed requirement of reinforcement bar Normal ConditionRequired R-bar Asreqo cm2 5.03 7.11 1.15 -3.47Dist. from neutral axis cm 14.62 51.44 19.12 51.25

a -336.27 -279.00 -429.00 -429.00b -776.41 -776.41 -226.24 628.58c 87028.54 72206.16 32352.63 -89887.48

6937 -569902 -121839 -1049785 nol(check) check check check check

Reference: Assumed requirement of reinforcement bar Seismic ConditionRequired R-bar Asreqo cm2 5.83 8.98 1.19 2.63Dist. from neutral axis cm 12.17 43.75 13.73 43.61

a -336.27 -279.00 -429.00 -429.00b -604.75 -676.40 -157.98 -324.64c 67786.62 62904.88 22591.01 46422.90

12450 -416906 -57882 -700837 nol(check) check check check check

= 7.85 t/m3 = 0.785 kg/cm2-m

Wall (upper) Wall (lower) Footing (toe) Footing (heel)

Section A-A Section B-B Section C-C Section D-Dlower upper upper lower

cca

ssa

a

s for Mrc

c for Mrs

xo

xo

s

Section A-A Section B-B Section C-C Section D-D

Page 26: Retaining Wall 7

Re-bar 26/29

303296237.xls-02/05/2016

Data of Reinforcement Bar

Sectional Perimeter Arrangement Area PerimeterArea

(mm) (cm2) (cm) (cm2) (cm)12 1.131 3.770 12@125 9.05 30.16

12@150 7.54 25.13 Footing (heel)12@250 4.52 15.0812@300 3.77 12.57 upper

16 2.011 5.027 16@125 16.08 40.21 #REF!16@150 13.40 33.51 #REF!16@250 8.04 20.11 0 16@300 6.70 16.76

19 2.835 5.969 19@125 22.68 47.75 125.019@150 18.90 39.79 7.019@250 11.34 23.88 118.019@300 9.45 19.90 100.0

22 3.801 6.912 22@125 30.41 55.29 2422@150 25.34 46.0822@250 15.21 27.65 #REF!22@300 12.67 23.04 #REF!

25 4.909 7.854 49.09 78.54 25~200 16~20025@150 32.72 52.36 #REF!25@250 19.63 31.42 24.54 10.0525@300 16.36 26.18 39.27 ok

32 8.042 10.053 32~125 64.34 80.4232@150 53.62 67.02 31.8632@250 32.17 40.2132@300 26.81 33.51 Calculation Check #REF!

12@250 + 16@250 12,16@125 12.56 35.19 12.56 35.19 60.012,19@125 15.86 38.96 15.86 38.96 #REF!12,22@125 19.73 42.73 19.73 42.73 #REF!12,25@125 24.15 46.50 24.15 46.50 1,850 12,32@125 36.69 55.29 36.69 55.29 #REF!16,19@125 19.38 43.99 19.38 43.99 #REF!16,22@125 23.25 47.76 23.25 47.76 5.5016,25@125 27.67 51.53 27.67 51.53 #REF!16,32@125 40.21 60.32 40.21 60.32 19,22@125 26.55 51.53 26.55 51.53 3,623,270 19,25@125 30.97 55.30 30.97 55.30 3623270.4819,32@125 43.51 64.09 43.51 64.09 22 22,25@125 34.84 59.07 34.84 59.07 2673.9931722,32@125 47.38 67.86 47.38 67.86 4,289,501 25,32@125 51.80 71.63 51.80 71.63 27

12@300 + 16@300 12,16@150 10.47 29.33 10.47 29.33 59 12,19@150 13.22 32.47 13.22 32.47 4.09 1.6812,22@150 16.44 35.61 16.44 35.61 16~200 16~30012,25@150 20.13 38.75 20.13 38.75 10.05 6.7012,32@150 30.58 46.08 30.58 46.08 ok ok16,19@150 16.15 36.66 16.15 36.66 16,22@150 19.37 39.80 19.37 39.80 16,25@150 23.06 42.94 23.06 42.94 16,32@150 33.51 50.27 33.51 50.27

Section E-Elower

25@75

Page 27: Retaining Wall 7

Re-bar 27/29

303296237.xls-02/05/2016

19,22@150 22.12 42.94 22.12 42.94 19,25@150 25.81 46.08 25.81 46.08

19,32@150 36.26 53.41 36.26 53.41 22,25@150 29.03 49.22 29.03 49.22 22,32@150 39.48 56.55 39.48 56.55 25,32@150 43.17 59.69 43.17 59.69

Footing (heel)

#REF!#REF!

0

125.07.0

118.0100.0

16

#REF!

25~200 16~200#REF!24.54 10.0539.27

26.77

#REF!90.0

#REF!#REF!

2,775 #REF!

#REF!8.25

#REF!

4,706,450 4,706,450 19 3,405 5,815,251 22 95

16~200 16~30010.05 6.70

Section E-Eupper lower

Page 28: Retaining Wall 7

303296237.xls-02/05/2016

Reinforcement Bar Arrangement( Dinding Penahan )

0.70 0.30 0.00

+ 7.00

D16~2007.00

D13~2007.00

D13~2000.00 D16~200 + 2.50

0.50

1.00+ 0.00

D13~400D13~200 D16~200

4.00 1.00 1.00

6.00

Section of Retaining wall

D

A A

B BC

CD

Page 29: Retaining Wall 7

12th Oct, Stability AnalysisUplift pressure are added for stability analysis.

Reinforcement Bar ArrangementReinforcement bar for Footing (heel) are collected.

Jan. 7, '03 Stability

(distributed width of reaction of foundation soil)

Structure

(distributed width of reaction of foundation soil)

Calculation formula in case of (B/6 < e < B/3) under seismic condition are corrected.

Calculation formula in case of (B/6 < e < B/3) under seismic condition are corrected.