32
Respiration + Pulmonic Airflow February 7, 2017 These notes are largely adapted from Thomas J. Hixon (1973), “Respiratory Function in Speech”, in Normal Aspects of Speech, Hearing and Language.

Respiration + Pulmonic Airflow

  • Upload
    elma

  • View
    59

  • Download
    5

Embed Size (px)

DESCRIPTION

Respiration + Pulmonic Airflow. February 4, 2014. These notes are largely adapted from Thomas J. Hixon (1973), “Respiratory Function in Speech”, in Normal Aspects of Speech, Hearing and Language. Taking Care of Business. Production exercises are due on Thursday; - PowerPoint PPT Presentation

Citation preview

Page 1: Respiration +  Pulmonic Airflow

Respiration + Pulmonic Airflow

February 7, 2017

These notes are largely adapted from Thomas J. Hixon (1973), “Respiratory Function in Speech”, in Normal Aspects of Speech, Hearing and Language.

Page 2: Respiration +  Pulmonic Airflow

Languages!Polish 2

Vietnamese 2

Afrikaans

Bisaya

Dutch

Ilocano

Ligurian

Low German

Min Nan

Punjabi

Slovenian

Spanish

Tagalog

Taiwanese Mandarin

Tamil

Page 3: Respiration +  Pulmonic Airflow

Taking Care of Business• I have graded your first course project reports!

• I also finished grading your DSP homeworks;

• You will be getting an e-mail about them.

• I have still not gotten to your first production exercise, so the second one will not be due on Thursday.

• Let’s shoot for the Friday before Reading Week break, instead (the 17th).

• Let’s take a second to walk through the last set of TOBI exercises!

• Today: Respiration first

• then maybe Phonation

• Okay. Everybody take a deep breath!

Page 4: Respiration +  Pulmonic Airflow

From the Bottom Up• All speech sounds require airflow.

• The vast majority of sounds in the world’s languages use a pulmonic egressive airflow.

• = out of the lungs

• Questions to answer/consider:

1. How do we make air flow out of the lungs?

2. How does pulmonic airflow differ in breathing and in speech?

3. How does pulmonic airflow relate to language?

• primarily: suprasegmentals (stress, F0)

Page 5: Respiration +  Pulmonic Airflow

The Machinery• The human torso (from

the neck to the legs) has two major divisions:

1. The thorax

• consisting of the heart and lungs

• the “chest”

2. The abdomen

• includes the digestive system and other interesting glands

• the “belly”

Page 6: Respiration +  Pulmonic Airflow

The Thorax• The heart and the pulmonary system are enclosed by the thoracic cage.

• the “rib cage”

• Ribs are connected by cartilage to the sternum.

• The intercostal muscles fill in the gaps between ribs...

• and also cover the surfaces of the thoracic cage.

Page 7: Respiration +  Pulmonic Airflow

Connections• The thorax is split from the

abdomen by a dome-shaped structure known as the diaphragm.

• The lungs sit on top of the diaphragm.

• Two membranes link the lungs to the ribs:

1. The visceral pleura covers the lungs.

2. The parietal pleura lines the inside of the thoracic cage.

Page 8: Respiration +  Pulmonic Airflow

Equilibrium

volume

• The linkage between the lungs and the rib cage makes:

• The lungs are bigger than they would be on their own.

• The rib cage is smaller than it would be on its own.

• The linkage tends towards a natural equilibrium point.

Page 9: Respiration +  Pulmonic Airflow

Taking A Step Back• Air flows naturally from areas of high pressure to areas of low pressure.

• Q: How do we make air pressure differences?

• A: We take advantage of Boyle’s Law.

• Boyle’s Law states that:

• the pressure of the gas in a chamber is inversely proportional to the volume of gas in the chamber

• The pressure of the gas can be increased or decreased by changing the volume of the chamber.

• decreasing volume increases pressure

• increasing volume decreases pressure

Page 10: Respiration +  Pulmonic Airflow

Inspiration• A normal breathing cycle begins with inspiration

• “breathing in”

• Air will flow into the lungs if...

• the air pressure inside the lungs is lower than it is outside the lungs

• Air pressure can be decreased inside the lungs by...

• expanding the volume of the lungs.

• Lung volume can be expanded:

• In all three dimensions

• With two primary muscle mechanisms

Page 11: Respiration +  Pulmonic Airflow

Expansion #1• The vertical expansion of the thorax is primarily driven by the contraction of the muscles in the diaphragm.

• This bows out the front wall of the abdomen.

• Also: diaphragm contraction elevates the lower ribs.

• expands the circumference of the thorax.

Page 12: Respiration +  Pulmonic Airflow

Expansion #2• The thorax can also be expanded through the contraction of the external intercostal muscles.

• Contraction of each intercostal muscle lifts up the rib beneath it.

• Also pulls each rib forward with the sternum.

• = expansion in the front-back dimension.

sternum

Page 13: Respiration +  Pulmonic Airflow

Expansion #3• The thorax can also be expanded through the contraction of the external intercostal muscles.

• Contraction of the intercostals elevates the lower ribs more than the upper ribs

• Lower ribs lift like a “bucket handle”

• Expansion in the side-to-side dimension.

Page 14: Respiration +  Pulmonic Airflow

Expiration• Air flows out of the lungs whenever air pressure in the lungs is greater than external air pressure.

• Note: technical term

• alveolar pressure = air pressure inside the lungs

• Alveolar pressure may be increased by decreasing lung volume.

• Lung volume is decreased through both passive and active forces.

• Normally, lungs contract after inspiration due to passive forces alone.

• No muscular effort is necessary!

Page 15: Respiration +  Pulmonic Airflow

Passive Expiration• Thorax + lungs combo contracts back to its equilibrium point without any external impetus.

• Relaxation pressure is inherent pressure on the lungs to revert back to the equilibrium point.

• Note: relaxation pressure works both ways.

Page 16: Respiration +  Pulmonic Airflow

Active Expiration• Lung volume can be actively decreased by contracting

a variety of muscles which:

1. Lower the ribs and/or sternum

• thereby compressing the thorax in the front-to-back and side-to-side dimensions

2. Increase abdominal pressure

• thereby driving the diaphragm upwards

Page 17: Respiration +  Pulmonic Airflow

Expiration #1• The thoracic cage can be compressed by contracting the internal intercostals and the transversus thoracis.

• These pull the ribs downward...

• effectively the opposite action of contracting the external intercostals.

Page 18: Respiration +  Pulmonic Airflow

Expiration #2• The most important muscles for active expiration increase pressure in the abdomen.

• These include the rectus abdominis, the external and internal obliques, and the transversus abdominis.

• Contracting these muscles drives in the abdomen...

• and pulls down the sternum and lower ribs.

Page 19: Respiration +  Pulmonic Airflow

Expiration Dynamics• Technical term: the equilibrium point of thorax + lung volume is called the resting expiratory level.

• At volumes above the resting expiratory level, the lungs will contract due to relaxation pressure alone.

• ...although active expiration forces may contribute.

• Below the resting expiratory level, the lungs will tend to expand due to relaxation pressure.

• To continue expiration at this level, active expiration is necessary.

Page 20: Respiration +  Pulmonic Airflow

More Verbiage1. Total lung capacity: volume of air in the lungs after a

maximum inspiration.

2. Residual volume: amount of air that remains in the lungs after a maximum expiration.

3. Vital capacity: greatest amount of air that can be expelled from the lungs after a maximum inspiration.

• = total lung capacity - residual volume

4. Functional residual capacity: volume of air contained in the lungs at the resting expiratory level.

5. Inspiratory capacity: maximum volume of air that can be inspired from the resting expiratory level.

• = total lung capacity - functional residual capacity

Page 21: Respiration +  Pulmonic Airflow

Verbiage Diagram #1

residual volume

total lung

capacity vital capacity

Page 22: Respiration +  Pulmonic Airflow

Verbiage Diagram #2

functional residual capacity

inspiratory capacity

total lung

capacity

Note: FRC - RV only 35% of vital capacity

Page 23: Respiration +  Pulmonic Airflow

Keeping it Steady• The production of speech generally requires a continuous flow of air from the lungs.

• A continuous flow of air requires constant alveolar pressure in the lungs.

• Accomplishing this is tricky...

• Because there is more relaxation pressure at the extremes (both high and low) of lung capacity.

• Active inspiratory and expiratory forces have to dynamically compensate.

Page 24: Respiration +  Pulmonic Airflow

external air pressure

constant pressure needed for utterance

• Relaxation pressure changes from expiratory to inspiratory...

• in going from maximum to minimum vital capacity

expiratory pressure

inspiratory pressure

Page 25: Respiration +  Pulmonic Airflow

Effort required to maintain constant alveolar pressure:

effort initially requires inspiratory forces!

effort eventually requires expiratory forces

active inspiratory pressure

active expiratory pressure

Page 26: Respiration +  Pulmonic Airflow

Electromyography (EMG)• The activity of inspiratory and expiratory muscles during continuous exhalation has been documented with electromyography (EMG) studies.

• In EMG, an electrode is inserted into a particular muscle.

• When that muscle contracts, it discharges an electrical signal (an action potential).

• The voltage and timing of this discharge may be recorded through the electrode.

Page 27: Respiration +  Pulmonic Airflow

EMG Recordings

Diaphragm

External Intercostals

Internal Intercostals

Rectus Abdominis

External Oblique

Latissimus Dorsi

inspiratory

expiratory

Page 28: Respiration +  Pulmonic Airflow

• The intensity of an utterance is primarily determined by alveolar pressure.

• Doubling alveolar pressure increases intensity by 9 -12 dB.

Loudness

• Louder utterances require a greater difference between alveolar and external air pressures

• Louder utterances require more active expiratory force.

Page 29: Respiration +  Pulmonic Airflow

Differences• Conversational speech makes different demands on the respiratory system than either normal breathing or the production of a continuous vowel.

• For instance, a normal breath cycle lasts about five seconds:

• 40% of the cycle is devoted to inspiration

• 60% of the cycle is devoted to expiration

• In speech:

• 10% of the cycle is devoted to inspiration

• 90% of the cycle is devoted to expiration (i.e., talking)

Page 30: Respiration +  Pulmonic Airflow

Volume Differences• Normal breathing encompasses 35% - 45% of vital capacity.

• Note: normally ends above the resting expiratory level.

• Normal conversational speech encompasses 35% - 60% of vital capacity.

• Loud speech usually starts at 60% - 80% of vital capacity.

• and may end considerably above resting expiratory level.

• Note: extremes of the vital capacity are not normally used, in either breathing or speech.

• (requires too much muscular effort)

Page 31: Respiration +  Pulmonic Airflow

Modulating Airflow• During conversational speech, there are frequent demands for rapid changes in muscular pressure.

• These changes are primarily required for differentiating between stressed and unstressed syllables.

• Rapid modulations to airflow are primarily made by the internal intercostal muscles.

Page 32: Respiration +  Pulmonic Airflow

Lastly• Higher airflow from lungs = increase in F0

• The have-your-friend-punch-you-in-the-stomach experiment.

• Increased F0 also contributes to stress.

• However, F0 level is primarily determined by laryngeal activity...

• which we’ll talk about next...