51
Fritz Riehle; Lecture: June 19, 2014 Single ion clocks vs. neutral atom lattice clocks Storage of electrically charged particles in a rf trap Two dimensional trap Paul trap in 3d Penning trap Optical atomic clocks based on stored ions Yb Hyper Ramsey Spectroscopy Quantum logic clock Secondary representations of the second Other applications of ion traps Microwave frequency standard for deep space applications Mass spectrometry Research Training Group 1729 Ion traps for clocks and other metrological applications

Research - RTG1729 · Atome, Moleküle oder Ionen ... ion in a Paul trap shows besides the carrier the ... evaluation of reproducibility of these standards at the highest level

  • Upload
    vananh

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

  • Fritz Riehle; Lecture: June 19, 2014

    Singleion clocks vs.neutralatom lattice clocks

    Storageof electrically charged particles inarf trap Two dimensionaltrap Paultrap in3d Penning trap

    Opticalatomic clocks based onstored ions Yb

    Hyper RamseySpectroscopy Quantumlogic clock Secondary representations of the second

    Otherapplications of ion traps Microwave frequency standard for deep space applications Mass spectrometry

    ResearchTrainingGroup1729

    Ion traps for clocks and other metrological applications

  • Oszillator

    0

    Atome, Molekle oder Ionen

    Detektor

    Regelungs-elektronik

    0

    0

    S

    Absorptions- signal

    FehlersignaldSd

    oscillator

    servo electronics

    absorptionsignal

    errorsignal

    Absorber(ions,atoms,molecules)

    Principle of (optical)atomic clocks

    out

    Opticalclockwork:femtosecondlaser

    Accuracy:How accurately agrees out with 0?

    Stability:Towhatextentfluctuatesout around0?

    detector

  • Noiseand instability

    104 neutralSr atoms, =429THz, =2Hz:y(t) 51017 1/2

    SingleYbion, =688THz, =3.1Hz:y(t)51015 1/26105 Csatoms, =9.2GHz, =1Hz:y(t) 41014 1/2

    Measure of instability(Allan deviation):

  • Singleionandneutralatomopticalclocks

    Electrodynamic(Paul)trap

    Singleionscanbeconfinedinfieldfreecenter

    Trappingtime:

    Neutralatomlatticeclock

    104 106 atomscanbeinterrogated HighS/N;highfrequencystability Limitedtrappingtime(seconds)

    NIST(Boulder)operating ,PTB,NPL,Innsbruck,under construction

    Quantumlogicclock

    CourtesyofP.Schmidt(QUEST)

    Singleionclock

    LowS/N;limitedfrequency stability

  • Achievable fractional instability

    Assuming: Csfountain:105 Csatoms;Tint =1sec

    104 Sr atoms:Tint =0.5sec

    Yb+ ion:Tint =10sec

    10 1 100 10 1 102 103 10 4 10 5 106 10710 18

    10 17

    10 16

    10 15

    10 14

    10 13

    10 12

    MonthDayHour

    Yb+ ion (642THz)

    104 Sratoms(429THz)

    Csfountain (9.2GHz)

    [sec]

    AllanDe

    viation

  • 6

    IonTraps

    FromF.Riehle,FrequencyStandards:

    BasicsandApplicationsWileyVCH(2004)

  • QuadrupolePotential

  • PaulTrap(MechanicalAnalogueModel)

    From:http://nobelprize.org/nobel_prizes/physics/laureates/1989/paullecture.pdf

    WolfgangPaulNobelprize 1989

  • Realisations oflineartrapsgeneratingaradialquadrupole potentialwithtwoadditionalringelectrodesa)orwithadditionalrodsb)foraxialconfinement.

    Linearion traps

  • Linearion trap (Innsbruckdesign2000)

  • 11

    LinearPaulTrap

    Regionsofstability

  • Linearstrings of ions

    From :Innsbruckgroup

  • Traponachip

    Figure23:Schematicofasurfaceelectrodeiontrap.Theiontrapelectrodesareshownatthebottomofthefigureinred(RF)andblack(DC).Ionsaretrappedattheoriginofthecoordinatesystemshown.Thesecularpotentialisplottedonalinearcolorscaleasafunctionofxandy,withbluerepresentingthelowestandredrepresentingthehighestsecularpotentialvalues.

    From:Leibrandt:Integratedchipsandopticalcavitiesfortrappedionquantum information processing,ThesisMIT2009

  • Penning Trap

    Staticelectricfield+staticmagneticfield

    ringelectrode

    endcap

    from:evB=mv2/r

    Cyclotronfrequency

    from:eErad =evB

    Magnetronfrequency

    Oscillatorymotioninz

  • 15

    IonMotioninPenning Trap

    CyclotronfrequencycMagnetronfrequencym

    Oscillatorymotionz

  • RadioFrequency (Paul)Trap

    ringelectrode

    endcap

    z0r0

  • Quantumjumpspectroscopy

  • Thenumberofobserveddarkphasestakenfromdatalikethatofprevioustransparencyasafunctionoftheirdurationallowsonetofitanexponentialdecayandtodeterminethelifetimeofthelonglivedstate.

    From:E.Peik:LaserspektroskopieangespeichertenIndiumIonen.DissertationMPQ181,MaxPlanckInstitutfrQuantenoptik,1993

    Determinationof the lifetime from quantum jumps

  • Sidebandcooling

    Absorptionspectrumofthe281.5nmtransitioninasingle198Hg+ionbefore(inset)andaftersidebandcoolingusing194nmradiation.Courtsey ofD.Wineland,withpermission

  • Yb+ singleionclock

    E2:Chr.Tamm etal.,Phys.Rev.A89,023820(2014)

    E3:N.Huntemannetal.,Phys.Rev.Lett. 108,090801(2012)

    V.Yudin etal.,Phys.Rev.A82 011804(R)(2010)

    E3: Insensitive to external fields E3:Extremely long natural lifetime

    low instability hugelightshift

    hasbeensuppressedbyHyper Ramsey Technique

    Courtesy of N.Huntemann,PTB

  • PartialenergydiagramofYb+.Dashedlines(411nm,435nmand467nm)representtheopticaltransitionsproposedforopticalfrequencystandards.The369nmlineisusedforcoolinganddetection.

    ThespectrumofthetransitionofasingleYb+ioninaPaultrapshowsbesidesthecarrierthemotionalsidebandsalongtheradial(r1andr2)andaxial(z)directions.Courtesy of Chr.Tamm.

    Yb+

  • Currently smallest estimated uncertainty of any optical clock(comparable to Al+ NIST(8.6x1018),Sr JILA(6.4x1018))

    Similarly low statistical uncertainties would require ~300hmeasuring time(could be reduced by asmaller experimentalline width;requires more stable laser)

    Required:comparison of two Yb+ clocks with suchanuncertainty

    Accurate measurement ofdifferentialpolarizabilityand temperature measurementinthe trap

    With HyperRamseytechnique

    EstimateduncertaintybudgetofPTBsYb+ clock(E3)

    Courtesy of N.Huntemann

  • Temperatureradiationatthelocationoftheion

    MeasurementwithtemperaturesensorsatacopyofthetrapandFEMbyP.BallingundM.Doleal (CMI)effec vetemperatureriseT=2(1)K

    Combinationwithmeasurementofambienttemperature Frequencyshiftbythermalradiation=70.7(2.6) 1018

    Courtesy of N.Huntemann

  • HyperRamseySpectroscopy(HRS)

    Yudin etal.,Phys.Rev.A82 011804(R)(2010)Huntemannetal.,Phys.Rev.Lett. 109 213002(2012)

    CompensationofthelightshiftL bydetuningS oftheclocklaserduringinterrogation

    Additional pulseremoveslinearbehaviour ofLSconsiderablesuppressionoflightshift

  • ExperimentalinvestigationofHRS

    RealtimestabilizationoffrequencyjumpSguarantees(LS)=0Huntemannetal.,Phys.Rev.Lett. 109 213002(2012)

  • PrincipleoftheAl+ Clock

    LaserOscillator fscomb

    8:52amQuantumLogicStateDetectionFrequency

    Feedback

    280THz=1070nm

    x4

    I(f)

    f

    Al+Ca+

    quantum logic

    2P3/2

    2D5/2

    2S1/2

    397nm

    729nm

    866nm

    854nm

    I=0

    2P1/2

    2D3/2

    40Ca+

    coolingand

    detection

    I=5/2

    clock

    3P1

    1S0

    167nm

    267.4nm

    1P1

    3P0logic267nm

    27Al+Courtesy of P.Schmidt

  • Quantumlogic ion technique

    a)Clock ion and logicionareintheirelectronicandmotionalgroundstates.b)Excitationoftheclockion.c)Apulsedetunedtothebluemotionalsidebandmapstheexcitationamplitudesandoftheclockionontothemotionalstatesoftheclockionand,asaresultoftheentanglement,thelogicion.

    d)Apulsedetunedtotheredmotionalsidebandmapsandontheelectronicstatesofthelogicion.

  • Al+ clock

  • Al+ clock (instability and accuracy)

    f(Al+)/f(Hg+)=1.052871833148990438(55)

    f(Hg+)=1064721609899145.30(69)Hz.

    T.Rosenbandetal,Science319(2008),1808 1812

  • 31

    Influence of special relativity

    1905"ZurElektrodynamikbewegterKrper"

    Principleofrelativity:LawsofPhysicsarethesameinallinertialsystems

    c=const:Thespeedoflighthasineachinertialsystem(invacuum)thesamevalue(c=299792458m/s).

    t:Timeintervalinaninertialsystem,movingw/rtoasecondonewithvelocityv.t:Timeintervalasobservedfromthesecondinertialsystem.

    Spaceandtimearenolongerabsolute!

    Timedilation:movedclocksslowdown

  • Al+ quantum logic clock relativistic tests (I)

    C.W.ChouandD.B.HumeandT.Rosenband andD.J.Wineland:OpticalClocksandRelativity;Science329 (2010)1630 1633

    Relativistic timedilation

  • Theory of GeneralRelativity

    Largemass(sun,earth)

    Theoryofgeneralrelativity(1915)frominertialsystemsofspecialrelativitytoacceleratedsystems

    Equivalenceprinciple:Gravitationandaccelerationareequivalent

    Result:Gravitationmodifiesspace(curvature)andslowsdowntime

    Curvatureofspace

    Matter(density,pressure,..)

    Fundamentalconstants

  • Metric tensords2=g (x)dx dx

    metric tensor inasuitable coordinate system (x) = (x0, x1, x2 x3)

    Metrictensorforanonrotatinggeocentriccoordinatesystem:

    with U=UEarth +UTide:Newtonian gravitational potential

    Near Earths surface the approximation holdsU~ghwith g~9.81m/s2and h:height/ ~gh/c2~1.1. 1016 h

  • C.W.ChouandD.B.HumeandT.Rosenband andD.J.Wineland:OpticalClocksandRelativity;Science329 (2010)1630 1633

    Al+ quantum logic clock relativistic tests (II)

    h =33cm

    Relativistic timevariation inagravitational potential

  • Inthefutureanewdefinitionforthesecondwillberequired.

    Opticalclocksvs.Csclocks Status2014

    PrimaryCsclocksOpticalfrequencies (relativeto Cs)Estimated uncertainties of optical standards

    year

    fractio

    naluncertainty

  • Adoption as such secondary representations would help with detailedevaluation of reproducibility of these standards at the highest level

    Such systems could be used to realise the second, provided their accuracy was close to that of caesium

    Optical and other micowave standards were expected to demonstratereproducibility and stability approaching that of primary caesium

    Their uncertainty could obviously be no better than the caesiumuncertainty

    This activity was likely to significantly aid the process of evaluation of different standards in preparation for a possible future redefinition of the second

    In2001CCTFhas established aworking group,that developed the concept,procedures and recommendations (now CCL CCTFWGFS).

    Secondary representations of the second

  • Criteria for asecondary representation

    2)Thisuncertaintyshouldbenolargerthanaboutafactorof10oftheprimarystandardsofthatdatethatserveasthebestrealisationsofthesecond.

    1)TheSIvalueoftheunperturbedfrequencyofaquantumtransitionsuitableasasecondaryrepresentationofthesecondmusthaveanuncertaintythatisevaluated anddocumentedsoastomeettherequirementsadoptedfortheprimaryfrequencystandardforuseinTAI.

  • Secondary Representations of the Second

    System Studied at Value / Hz Relative uncertainty

    27Al+ NIST, PTB 1 121 015 393 207 857.3 1.9 x 10-15

    199Hg+ NIST 1 064 721 609 899 145.3 1.9 x 10-15

    171Yb+ (E2) PTB, NPL 688 358 979 309 307.1 3 x 10-15

    171Yb+ (E3) PTB, NPL 642 121 496 772 645.6 1.3 x 10-1588Sr+ NPL, NRC 444 779 044 095 485.3 4.0 x 10-1587Sr PTB, SYRTE,

    U. Tokyo, JILA, NIMJ, NPL,

    429 228 004 229 873.4 1 x 10-15

    171Yb NIST, 518 295 836 590 865.0 2.7 x 10-1587Rb SYRTE, NPL,

    6 834 682 610. 904 312 1.3 x 10-15

    Theseoptical clocks can be used alternatively to the Csclock,butcan never have anuncertainty better than the Csclock.

    (CIPM2012)

  • Application 1:Deep SpaceAtomic Clock

  • Microwave IonTrap(199Hg+)

    IntheJetPropulsionLaboratoryultrastablefrequencystandards[basedonlineartrapswithtypically106to107 199Hg+ ionspumpedbya202Hgrf dischargelampandcooledwithHebuffergastonearroomtemperature.

  • Microwave IonTrap(199Hg+)for deep space applications

    InanextendedlineartrapionsaretransferredbetweentwoconfinementregionsoneforproductionanddetectionoftheionsandoneforRamseyexcitation.ThecontributionofthefractionalsecondorderDopplershiftwasestimatedtobe4 1013.

    2.29cmx26cmx23cm;17,5kg;44W

    From:https://directory.eoportal.org/web/eoportal/satellitemissions/d/dsac

    https://directory.eoportal.org/web/eoportal/satellite

  • Microwave IonTrap(199Hg+)for deep space applications

  • Application 2:LinearPaulTrapas Mass Filter

    From:http://nobelprize.org/nobel_prizes/physics/laureates/1989/paullecture.pdf

  • LinearPaulTrapasMassFilter

    Resolvingpowerm/m=6500

    From:http://nobelprize.org/nobel_prizes/physics/laureates/1989/paullecture.pdf

  • IonTrapMass Spectrometry inSpace

    PtolemyInstrumentandtheRosettaSpaceMission

    J.F.J.Todd,S.J.Barberetal.J.MassSpectrom. 2007;42;110

    Cometsaresmallbodiesthatorbitthesuninoursolarsystem

    Cometscompriseofrock,dustandice Nucleusissmallerthan50km,thetail(coma,

    etc.)canbeverylarge upto150millionkm(largerthanthesun)

    Cometsareusuallyverydarkobjects:onlyfew%ofmassreflectlight

    Cometsconsistofmaterialformedattheformationoftheearth(+otherplanets)frozenintime(4600millionyearsago)

    CometHaleBopp(03/21/97)

  • RosettaMission LaunchedMar2004onAriane 5G+inKourou,French

    Guyana DesignedtomeetupwithcometChuryumov

    Gerasimenko (67P)in2014 3000kglaunched(100kglander,165kgscientific

    instruments) Flybyseveralothercometsuntilthelanding Fullyautomaticlanding Totalcost:$970980million

    2004

    2005

    02/2007

    11/2007

    05/2014

  • PtolemyInstrumentonRosettaLander

  • Mass Spectrometer of Ptolemy

    Measure2H,13C,15N,17Oand18Orelativetospecifiedreference

    http://ptolemy.open.ac.uk/frames.htm

    http://ptolemy.open.ac.uk/frames.htm

  • KATRIN:KarlsruheTritiumNeutrinoExperiment(75mlong)

    Application 3:Mass spectrometer for neutrino restmasshttp://depts.washington.edu/uwptms/pics/dp7neutrino.png

  • Fritz Riehle; Lecture: June 19, 2014

    Singleion clocks vs.neutralatom lattice clocks

    Storageof electrically charged particles inarf trap Two dimensionaltrap Paultrap in3d Penning trap

    Opticalatomic clocks based onstored ions Yb

    Hyper RamseySpectroscopy Quantumlogic clock Secondary representations of the second

    Otherapplications of ion traps Microwave frequency standard for deep space applications Mass spectrometry

    ResearchTrainingGroup1729

    Ion traps for clocks and other metrological applications

    Foliennummer 1Principle of (optical) atomic clocksFoliennummer 3 Single ion and neutral atom optical clocksFoliennummer 5Foliennummer 6Foliennummer 7Foliennummer 8Foliennummer 9Foliennummer 10Foliennummer 11Foliennummer 12Foliennummer 13Foliennummer 14Foliennummer 15Foliennummer 16Foliennummer 17Foliennummer 18Foliennummer 19 Yb+ single ion clockYb+Foliennummer 22Foliennummer 23Foliennummer 24Foliennummer 25Foliennummer 26Principle of the Al+ ClockQuantum logic ion techniqueAl+ clockAl+ clock (instability and accuracy)Foliennummer 31Al+ quantum logic clock - relativistic tests (I)Foliennummer 33Foliennummer 34Foliennummer 35Foliennummer 36Foliennummer 37Criteria for a secondary representationFoliennummer 39Foliennummer 40Foliennummer 41Foliennummer 42Foliennummer 43Foliennummer 44Foliennummer 45Foliennummer 46Foliennummer 47Foliennummer 48Foliennummer 49Application 3: Mass spectrometer for neutrino rest massFoliennummer 51