42
Disusun Oleh : Arya Sigit W M. Fajar Hidayat M. Yusuf Afandi Nuryanti Rafika Hidayati Siti Kholifah 1

Referensi Mutasi

Embed Size (px)

Citation preview

Page 1: Referensi Mutasi

Disusun Oleh :

Arya Sigit WM. Fajar HidayatM. Yusuf AfandiNuryantiRafika HidayatiSiti Kholifah

1

Page 2: Referensi Mutasi

Biologi merupakan ilmu pengetahuan yang sangat penting bagi dunia kedokteran dan sains oleh sebab itu anda bisa mempelajari pelajaran biologi untuk mengenal dan mengetahui tentang biologi. Banyak disekitar kita yang berhubungan dengan biologi karena biologi merupakan pelajran yang membahas tentang kehidupan. Dan kita harus menyadari tentang apa yang sudah diberi dan anugerah dari Tuhan Yang Maha Esa diman telah menciptakan kehidupan dialam ini untk kelestarian makhluk hidup khususnya pada manusia.

Dalam mempelajari biologi, Anda akan diarahkan untuk mencari tahu tentang alam dan mengungkap berbagai fakta alam sekitar. Pada proses tersebut anda diharapkan dapat menjadi individu yang memiliki jiwa objektif, jujur, ulet, kritis, dan dapat bekerja sama dengan orang lain. Dengan demikian anda dapat menerapkan ilmu biologi untuk menghasilkan suatu karya, menyelesaikan masalah, dan berperan serta dalam melestarikan alam.

Buku makalah referensi biologi ini mengulas tentang masalah mutasi. Disusun untuk memudahkan pembaca agar bisa memahami tentang materi mutasi secara terperinci dan mendetail sehingga dapat memperoleh apa yang anda buthkan. Dibuat dari berbagai informasi media elektronik untuk mempermudah pembacadalam mencari materi tentang mutasi. Dan buku makalah ini kami susun dengan menarik agar pembaca bisa termotivasi untuk membaca buku makalah ini.

Buku makalah terdiri dari ulasan – ulasan yang terngkum dari beberapa wacana di media elektronik dimana anda juga bisa mendapatkai informasi ini di internet dimana yang tertera pada daftar pustaka. Sehingga memungkinkan pembaca untuk mencari sendiri kumpulan – kumpulan informasi buku ini di internet dengan mudah. Selain itu jika pembaca enggan untuk mencari materi tersebut di internet tinggal membaca buku makalah ini dengan praktisi – praktisi seperti penyusunan yang sistematis dan teratur sehinnga pembaca akan tertarik.

Akhir kata semoga buku makalah ini bisa bermanfaat bagi pembaca dan memaham dengan mudah isi bacaan buku makalah ini dan menjadi penyemangat untuk memotivasi belajar anda, sekian terima kasih.

Pandaan, 25 November 2008

Penyusun

2

Page 3: Referensi Mutasi

A. Pengertian MutasiMutasi merupakan perubahan gen pembawa sifat yang menyebabkan

berubahnya sifat individu pembawanya dan diturunkan pada generasi berikutnya. Individu yang mengalami mutasi disebut mutan, sedangkan mutagen adalah penyebab terjadinya mutasi. Mutasi yang terjadi pada sel somatik disebut mutasi somatik. Adapun mutasi germinal adalah mutasi yang terjadi pada sel-sel kelamin. Perubahan materi genetik (DNA) dari suatu sel yang dapat diwariskan secara genetis kepada keturunannya. Mutasi merupakan perubahan yang terjadi pada materi genetik, perubahan ini dapat diwariskan maupun tidak dan perubahan ini dapat dideteksi. Ada beberapa pendapat para ahli tentang mutasi, di antaranya sebagai berikut: Menurut Ayala dkk (1989), mutasi diartikan sebagai suatu proses yang dapat menyebabkan suatu perubahan pada sesuatu gen.

Mutasi adalah perubahan yang terjadi pada bahan genetik (DNA maupun RNA), baik pada taraf urutan gen (disebut mutasi titik) maupun pada taraf kromosom. Mutasi pada tingkat kromosomal biasanya disebut aberasi. Mutasi pada gen dapat mengarah pada munculnya alel evolusi mengenai munculnya variasi-variasi baru pada spesies. baru dan menjadi dasar bagi kalangan pendukung

Mutasi terjadi pada frekuensi rendah di alam, biasanya lebih rendah daripada 1:10.000 individu. Mutasi di alam dapat terjadi akibat zat pembangkit mutasi (mutagen, termasuk karsinogen), radiasi surya maupun radioaktif, serta loncatan energi listrik seperti petir.Individu yang memperlihatkan perubahan sifat (fenotipe) akibat mutasi disebut mutan. Dalam kajian genetik, mutan biasa dibandingkan dengan individu yang tidak mengalami perubahan sifat (individu tipe liar atau "wild type").

Mutasi adalah perubahan pada materi genetik suatu makhluk yang terjadi secara tiba-tiba, acak, dan merupakan dasar bagi sumber variasi organisma hidup yang bersifat terwariskan (heritable). Mutasi dapat terjadi secara sepontan di alam (spontaneous mutation) dan dapat juga terjadi melalui induksi (induced mutation). Secara mendasar tidak terdapat perbedaan antara mutasi yang terjadi secara alami dan mutasi hasil induksi. Keduanya dapat menimbulkan variasi genetik untuk dijadikan dasar seleksi tanaman, baik seleksi secara alami (evolusi) maupun seleksi secara buatan (pemuliaan).

Eksisi merupakan suatu proses enzimatik bertahap yang diawali dengan pembuangan dimer dari molekul DNA diikuti oleh resistensis segmen DNA baru diakhiri oleh ligasi. Perbedaan mutasi somatis dan germinal adalah : mutasi somatis : mutasi yang terjadi pada semua sel kecuali sel reproduksi dan tidak diwariskan keanaknya. mutasi germinal : mutasi yang terjadi pada sel germinal dan diwariskan keanaknya. Pengaruh sinar ultraviolet karena sinar UV memiliki pengaruh besar contohnya pada timin dimer yaitu saling terikatnya dua molekul timin yang berurutan pada untai DNA dengan adanya timin dimer replikasi akan terhalang pada posisi terjadinya timin dimer.

Fungsi ketiga materi genetik adalah fungsi evolusi, yang agar dapat melaksanakannya materi genetik harus mempunyai kemampuan untuk melakukan mutasi. Peristiwa mutasi atau perubahan materi genetik, di samping segregasi dan rekombinasi, akan menciptakan variasi genetik yang berguna untuk mengantisipasi perubahan kondisi lingkungan yang sewaktu-waktu dapat terjadi.

Pengaruh fenotipik yang ditimbulkan oleh mutasi sangat bervariasi, mulai dari perubahan kecil yang hanya dapat dideteksi melalui analisis biokimia hingga

3

Page 4: Referensi Mutasi

perubahan pada proses-proses esensial yang dapat mengakibatkan kematian sel atau bahkan organisme yang mengalaminya. Jenis sel dan tahap perkembangan individu menentukan besar kecilnya pengaruh mutasi. Selain itu, pada organisme diploid pengaruh mutasi juga bergantung kepada dominansi alel. Dalam hal ini, alel mutan resesif tidak akan memunculkan pengaruh fenotipik selama berada di dalam individu heterozigot karena tertutupi oleh alel dominannya yang normal.

Kita mengenal berbagai macam peristiwa mutasi sesuai dengan kriteria yang digunakan untuk mengelompokkannya. Pada organisme multiseluler dapat dibedakan antara mutasi germinal dan mutasi somatis. Mutasi germinal terjadi pada sel-sel germinal atau sel-sel penghasil gamet, sedangkan mutasi somatis terjadi pada sel-sel selain sel germinal. Mutasi somatis akan menyebabkan terbentuknya khimera, yaitu individu dengan jaringan normal dan jaringan yang terdiri atas sel-sel somatis mutan. Alel-alel hasil mutasi somatis tidak akan diwariskan kepada keturunan individu yang mengalaminya karena mutasi ini tidak mempengaruhi sel-sel germinal. Pada tanaman tingkat tinggi mutasi somatis justru sering kali menghasilkan varietas-varietas yang diinginkan dan untuk perbanyakannya harus dilakukan secara vegetatif.Mekanisme Molekuler Mutasi

Meskipun tidak selalu, perubahan urutan asam amino pada suatu protein dapat menyebabkan perubahan sifat-sifat biologi protein tersebut. Hal ini karena pelipatan rantai polipeptida sebagai penentu struktur tiga dimensi molekul protein sangat bergantung kepada interaksi di antara asam-asam amino dengan muatan yang berlawanan. Contoh yang paling sering dikemukakan adalah perubahan sifat biologi yang terjadi pada molekul hemoglobin.

Hemoglobin pada individu dewasa normal terdiri atas dua rantai polipeptida α yang identik dan dua rantai polipeptida β yang identik juga. Namun, pada penderita anemia bulan sabit (sickle cell anemia) salah satu asam amino pada polipeptida β, yakni asam glutamat, digantikan atau disubstitusi oleh valin. Substitusi asam glutamat, yang bermuatan negatif, oleh valin, yang tidak bermuatan atau netral, mengakibatkan perubahan struktur hemoglobin dan juga eritrosit yang membawanya. Hemoglobin penderita anemia bulan sabit akan mengalami kristalisasi ketika tidak bereaksi dengan oksigen sehingga akan mengendap di pembuluh darah dan menyumbatnya. Demikian juga, eritrositnya menjadi lonjong dan mudah pecah.

Seperti dikatakan di atas, perubahan urutan asam amino tidak selalu menyebabkan perubahan sifat-sifat biologi protein atau menghasilkan fenotipe mutan. Substitusi sebuah asam amino oleh asam amino lain yang muatannya sama, misalnya substitusi histidin oleh lisin, sering kali tidak berpengaruh terhadap struktur molekul protein atau fenotipe individu. Jadi, ada tidaknya pengaruh substitusi suatu asam amino terhadap perubahan sifat protein bergantung kepada peran asam amino tersebut dalam struktur dan fungsi protein.

Setiap perubahan asam amino disebabkan oleh perubahan urutan basa nukleotida pada molekul DNA. Akan tetapi, perubahan sebuah basa pada DNA tidak selamanya disertai oleh substitusi asam amino karena sebuah asam amino dapat disandi oleh lebih dari sebuah triplet kodon (lihat Bab X). Perubahan atau mutasi basa pada DNA yang tidak menyebabkan substitusi asam amino atau tidak memberikan pengaruh fenotipik dinamakan mutasi tenang (silent mutation). Namun, substitusi asam amino yang tidak menghasilkan perubahan sifat protein atau perubahan fenotipik pun dapat dikatakan sebagai mutasi tenang.

Mutasi yang terjadi pada sebuah atau sepasang basa pada DNA disebut sebagai mutasi titik (point mutation). Mekanisme terjadinya mutasi titik ini ada dua macam, yaitu (1) substitusi basa dan (2) perubahan rangka baca akibat adanya penambahan basa (adisi) atau kehilangan basa (delesi). Mutasi titik yang disebabkan oleh substitusi basa dinamakan mutasi substitusi basa, sedangkan mutasi yang terjadi karena perubahan rangka baca dinamakan mutasi rangka baca (frameshift mutation) seperti telah disinggung pada Bab X.

4

Page 5: Referensi Mutasi

Apabila substitusi basa menyebabkan substitusi asam amino seperti pada kasus hemoglobin anemia bulan sabit, maka mutasinya dinamakan mutasi salah makna (missense mutation). Sementara itu, jika substitusi basa menghasilkan kodon stop, misalnya UAU (tirosin) menjadi UAG (stop), maka mutasinya dinamakan mutasi tanpa makna (nonsense mutation) atau mutasi terminasi rantai (chain termination mutation).

Substitusi basa pada sebuah triplet kodon dapat menghasilkan sembilan kemungkinan perubahan triplet kodon karena tiap basa mempunyai tiga kemungkinan substitusi. Sebagai contoh, kodon UAU dapat mengalami substitusi basa menjadi AAU (asparagin), GAU (asam aspartat), CAU (histidin), UUU (fenilalanin), UGU (sistein), UCU (serin), UAA (stop), UAG (stop), dan UAC (tirosin). Kita bisa melihat bahwa perubahan yang terakhir, yakni UAC, tidak menghasilkan substitusi asam amino karena baik UAC maupun UAU menyandi asam amino tirosin.

Mutasi substitusi basa dapat dibedakan menjadi dua kelompok, yaitu transisi dan transversi. Pada transisi terjadi substitusi basa purin oleh purin atau substitusi pirimidin oleh pirimidin, sedangkan pada transversi terjadi substitusi purin oleh pirimidin atau pirimidin oleh purin. Secara skema kedua macam substitusi basa tersebut dapat dilihat pada Gambar 11.1.

A

T C

G Gambar 11.1. Skema substitusi basa nukleotida transisi transversi

Sementara itu, mutasi rangka baca akan mengakibatkan perubahan rangka baca semua triplet kodon di belakang tempat terjadinya mutasi tersebut. Akan tetapi, adisi atau pun delesi sebanyak kelipatan tiga basa pada umumnya tidak akan menimbulkan pengaruh fenotipik mutasi rangka baca. Demikian pula, seperti dikatakan pada Bab X adisi satu basa yang diimbangi oleh delesi satu basa di tempat lain, atau sebaliknya, akan memperbaiki kembali rangka baca di belakang tempat tersebut. Selain itu, apabila adisi atau delesi terjadi pada daerah yang sangat dekat dengan ujung karboksil suatu protein, maka mutasi rangka baca yang ditimbulkannya tidak akan menyebabkan sintesis protein nonfungsional. Dengan perkataan lain, mutasi tidak memberikan pengaruh fenotipik. Mutasi Spontan

Perubahan urutan basa nukleotida berlangsung spontan dan acak. Tidak ada satu pun cara yang dapat digunakan untuk memprediksi saat dan tempat akan terjadinya suatu mutasi. Meskipun demikian, setiap gen dapat dipastikan mengalami mutasi dengan laju tertentu sehingga memungkinkan untuk ditetapkan peluang mutasinya. Artinya, kita dapat menentukan besarnya peluang bagi suatu gen untuk bermutasi sehingga besarnya peluang untuk mendapatkan suatu alel mutan dari gen tersebut di dalam populasi juga dapat dihitung.

Terjadinya suatu peristiwa mutasi tidak dapat dikatakan sebagai hasil adaptasi sel atau organisme terhadap kondisi lingkungannya. Kebanyakan mutasi memperlihatkan pengaruh yang sangat bervariasi terhadap tingkat kemampuan adaptasi sel atau organisme, mulai dari netral (sangat adaptable) hingga letal (tidak adaptable). Oleh karena itu, tidak ada korelasi yang nyata antara mutasi dan adaptasi. Namun, pemikiran bahwa mutasi tidak ada sangkut pautnya dengan adaptasi tidak diterima oleh sebagian besar ahli biologi hingga akhir tahun 1940-an

5

Page 6: Referensi Mutasi

ketika Joshua dan Esther Lederberg melalui percobaannya pada bakteri membuktikan bahwa mutasi bukanlah hasil adaptasi.

Dengan teknik yang dinamakan replica plating koloni-koloni bakteri pada kultur awal (master plate) dipindahkan ke medium baru (replica plate) menggunakan velvet steril sehingga posisi setiap koloni pada medium baru akan sama dengan posisinya masing-masing pada kultur awal. Medium baru dibuat dua macam, yaitu medium nonselektif seperti pada kultur awal dan medium selektif yang mengandung lebih kurang 109 fag T1. Hanya koloni-koloni mutan yang resisten terhadap infeksi fag T1 (mutan T1-r) yang dapat tumbuh pada medium selektif ini. Dari percobaan tersebut terlihat bahwa koloni-koloni mutan T1-r yang tumbuh pada medium selektif tidak terbentuk sebagai hasil adaptasi terhadap kehadiran fag T1, tetapi sebenarnya sudah ada semenjak pada kultur awal. Dengan demikian, teknik selektif semacam itu hanya akan menyeleksi mutan-mutan yang telah ada sebelumnya di dalam suatu populasi.

master plate

transfer

replica plate replica plate (medium nonselektif) (medium selektif) Gambar 11.2. Percobaan transfer koloni (replica plating) = koloni mutan T1-r

Teknik selektif seperti yang diuraikan di atas memberikan dasar bagi pemahaman tentang munculnya resistensi berbagai populasi hama dan penyakit terhadap senyawa kimia yang digunakan untuk mengendalikannya. Sebagai contoh, sejumlah populasi lalat rumah saat ini nampak sangat resisten terhadap insektisida DDT. Hal ini menunjukkan betapa seleksi telah memunculkan populasi lalat rumah dengan kombinasi mekanisme enzimatik, anatomi, dan perilaku untuk dapat resisten terhadap atau menghindari bahan kimia tersebut. Begitu pula, gejala peningkatan resistensi terhadap antibiotik yang diperlihatkan oleh berbagai macam bakteri penyebab penyakit pada manusia tidak lain merupakan akibat proses seleksi untuk

6

Page 7: Referensi Mutasi

memunculkan dominansi strain-strain mutan tahan antibiotik yang sebenarnya memang telah ada sebelumnya.Laju mutasi

Laju mutasi adalah peluang terjadinya mutasi pada sebuah gen dalam satu generasi atau dalam pembentukan satu gamet. Pengukuran laju mutasi penting untuk dilakukan di dalam genetika populasi, studi evolusi, dan analisis pengaruh mutagen lingkungan.

Mutasi spontan biasanya merupakan peristiwa yang sangat jarang terjadi sehingga untuk memperkirakan peluang kejadiannya diperlukan populasi yang sangat besar dengan teknik tertentu. Salah satu teknik yang telah digunakan untuk mengukur laju mutasi adalah metode ClB yang ditemukan oleh Herman Muller. Metode ClB mengacu kepada suatu kromosom X lalat Drosophila melanogaster yang memiliki sifat-sifat tertentu. Teknik ini dirancang untuk mendeteksi mutasi yang terjadi pada kromosom X normal.

betina Bar ClB + jantan normal

ClB ? + ? ClB +

letal

betina Bar (dipilih untuk disilangkan dengan jantan normal)

ClB ? +

ClB + ? + ClB ?

letal letal jika X-nya membawa letal resesif Gambar 11.3. Metode ClB untuk mengestimasi laju mutasi = kromosom X yang berasal dari tetua jantan pada

persilangan pertama

7

Page 8: Referensi Mutasi

Kromosom X pada metode ClB mempunyai tiga ciri penting, yaitu (1) inversi yang sangat besar (C), yang menghalangi terjadinya pindah silang pada individu betina heterozigot; (2) letal resesif (l); dan (3) marker dominan Bar (B) yang menjadikan mata sempit (lihat Bab VII). Dengan adanya letal resesif, individu jantan dengan kromosom tersebut dan individu betina homozigot tidak akan bertahan hidup. Persilangan pertama dilakukan antara betina heterozigot untuk kromosom ClB dan jantan dengan kromosom X normal. Di antara keturunan yang diperoleh, dipilih individu betina yang mempunyai mata Bar untuk selanjutnya pada persilangan kedua dikawinkan dengan jantan normal. Individu betina dengan mata Bar ini jelas mempunyai genotipe heterozigot karena menerima kromosom ClB dari tetua betina dan kromosom X normal dari tetua jantannya. Hasil persilangan kedua yang diharapkan adalah dua betina berbanding dengan satu jantan. Ada tidaknya individu jantan hasil persilangan kedua ini digunakan untuk mengestimasi laju mutasi letal resesif.

Oleh karena pindah silang pada kromosom X dihalangi oleh adanya inversi (C) pada individu betina, maka semua individu jantan hasil persilangan hanya akan mempunyai genotipe + . Kromosom X pada individu jantan ini berasal dari tetua jantan awal (persilangan pertama). Sementara itu, individu jantan dengan kromosom X ClB selalu mengalami kematian. Meskipun demikian, kadang-kadang pada persilangan kedua tidak diperoleh individu jantan sama sekali. Artinya, individu jantan yang mati tidak hanya yang membawa kromosom ClB, tetapi juga individu yang membawa kromosom X dari tetua jantan awal. Jika hal ini terjadi, kita dapat menyimpulkan bahwa kromosom X pada tetua jantan awal yang semula normal berubah atau bermutasi menjadi kromosom X dengan letal resesif. Dengan menghitung frekuensi terjadinya kematian pada individu jantan yang seharusnya hidup ini, dapat dilakukan estimasi kuantitatif terhadap laju mutasi yang menyebabkan terbentuknya alel letal resesif pada kromosom X. Ternyata, lebih kurang 0,15% kromosom X terlihat mengalami mutasi semacam itu selama spermatogenesis, yang berarti bahwa laju mutasi untuk mendapatkan letal resesif per kromosom X per gamet adalah 1,5 x 10-3.

Pada metode ClB tidak diketahui laju mutasi gen tertentu karena kita tidak dapat memastikan banyaknya gen pada kromosom X yang apabila mengalami mutasi akan berubah menjadi alel resesif yang mematikan. Namun, semenjak ditemukannya metode ClB berkembang pula sejumlah metode lain untuk mengestimasi laju mutasi pada berbagai organisme. Hasilnya menunjukkan bahwa laju mutasi sangat bervariasi antara gen yang satu dan lainnya. Sebagai contoh, laju mutasi untuk terbentuknya tubuh berwarna kuning pada Drosophila adalah 10-4 per gamet per generasi, sementara laju mutasi untuk terbentuknya resitensi terhadap streptomisin pada E. coli adalah 10-9 per sel per generasi.

Asal-mula terjadinya mutasi spontanAda tiga mekanisme yang paling penting pada mutasi spontan, yaitu (1)

kesalahan selama replikasi, (2) perubahan basa nukleotida secara spontan, dan (3) peristiwa-peristiwa yang berkaitan dengan penyisipan (insersi) dan pemotongan (eksisi) unsur-unsur yang dapat berpindah (transposable elements).

Pada Bab IX telah kita bicarakan bahwa enzim Pol I dan Pol III adakalanya membuat kesalahan dengan menyisipkan basa yang salah ketika replikasi DNA sedang berlangsung. Namun, enzim-enzim DNA polimerase ini juga diketahui mempunyai kemampuan untuk memperbaiki kesalahan (proof reading) melalui aktivitas eksonukleasenya dengan cara memotong basa yang salah pada ujung 3’ untai DNA yang sedang dipolimerisasi.

Aktivitas penyuntingan oleh DNA polimerase boleh dikatakan sangat efisien meskipun tidak berarti sempurna benar. Kadang-kadang suatu kesalahan replikasi luput dari mekanisme penyuntingan tersebut. Akan tetapi, ada sistem lain yang berfungsi dalam perbaikan kesalahan replikasi DNA. Sistem ini dikenal sebagai

8

Page 9: Referensi Mutasi

sistem perbaikan salah pasangan (mismatch repair). Berbeda dengan sistem penyuntingan oleh DNA polimerase, sistem perbaikan salah pasangan tidak bekerja pada ujung 3’ untai DNA yang sedang tumbuh, tetapi mengenali kesalahan basa di dalam untai DNA. Caranya, segmen DNA yang membawa basa yang salah dibuang sehingga terdapat celah (gap) di dalam untai DNA. Selanjutnya, dengan bantuan enzim Pol I celah ini akan diisi oleh segmen baru yang membawa basa yang telah diperbaiki.

Sistem perbaikan salah pasangan, seperti halnya mekanisme penyuntingan oleh DNA polimerase, tidaklah sempurna sama sekali. Kadang-kadang ada juga kesalahan pasangan basa yang tidak dikenalinya. Jika hal ini terjadi, timbullah mutasi spontan.

5’ GAGTCGAATC 3’ untai cetakan 3’ CTCAGTTTAG 5’ untai baru

GAGTCGAATC CTC AG AG TTT segmen

dengan perbaikan eksisi basa yang

salah GAGTCGAATC CTCAGCTTAG untai yang telah diperbaiki

Gambar 11.4. Mekanisme perbaikan salah pasangan

Basa-basa tautomerik adakalanya dapat tergabung dengan benar ke dalam molekul DNA. Pada saat penggabungan berlangsung, basa tersebut akan membentuk ikatan hidrogen yang benar dengan basa pada untai DNA cetakan sehingga fungsi penyuntingan oleh DNA polimerase tidak dapat mengenalinya. Sistem perbaikan salah pasangan akan mengoreksi kesalahan semacam itu. Akan tetapi, jika segmen yang membawa kesalahan basa tersebut telah mengalami metilasi, maka sistem perbaikan salah pasangan tidak dapat membedakan antara untai cetakan dan untai baru. Hal ini akan menimbulkan mutasi spontan.

Sumber mutasi spontan lainnya adalah perubahan basa sitosin yang telah termetilasi menjadi timin karena hilangnya gugus amino. Sitosin yang seharusnya berpasangan dengan guanin berubah menjadi timin yang berpasangan dengan adenin sehingga terjadilah mutasi transisi (purin menjadi purin, pirimidin menjadi pirimidin). Dalam hal ini hilangnya gugus amino dari sitosin yang telah termetilasi tidak dapat dikenali oleh sistem perbaikan salah pasangan, dan basa timin yang seharusnya sitosin tersebut tidak dilihat sebagai basa yang salah.Mutasi Induksi

Laju mutasi spontan yang sangat rendah ternyata dapat ditingkatkan dengan aplikasi berbagai agen eksternal. Mutasi dengan laju yang ditingkatkan ini dinamakan mutasi induksi. Bukti pertama bahwa agen eksternal dapat meningkatkan laju mutasi diperoleh dari penelitian H. Muller pada tahun 1927 yang memperlihatkan bahwa sinar X dapat menyebabkan mutasi pada Drosophila. Agen yang dapat menyebabkan terjadinya mutasi seperti sinar X ini dinamakan mutagen.Semenjak penemuan Muller tersebut, berbagai mutagen fisika dan kimia digunakan untuk meningkatkan laju mutasi. Dengan mutagen-mutagen ini dapat diperoleh bermacam-macam mutan pada beberapa spesies organisme. Basa analog

9

Page 10: Referensi Mutasi

Basa analog merupakan senyawa kimia yang struktur molekulnya sangat menyerupai basa nukleotida DNA sehingga dapat menjadi bagian yang menyatu di dalam molekul DNA selama berlangsungnya replikasi normal. Hal ini karena suatu basa analog dapat berpasangan dengan basa tertentu pada untai DNA cetakan. Namun, bisa juga masuknya sebuah basa analog terkoreksi melalui mekanisme penyuntingan oleh enzim DNA polimerase.

Apabila suatu basa analog dapat membentuk ikatan hidrogen dengan dua macam cara, maka basa analog ini dikatakan bersifat mutagenik. Sebagai contoh, basa 5-bromourasil (BU) yang diketahui mudah sekali bergabung dengan DNA bakteri dan virus, dapat mempunyai dua macam bentuk, yaitu keto dan enol sehingga dapat membentuk ikatan hidrogen dengan dua macam cara. Basa ini analog dengan basa timin karena hanya berbeda pada posisi gugus metil yang diganti dengan atom bromium. Jika sel yang akan dimutasi ditumbuhkan pada medium yang mengandung BU dalam bentuk keto, maka selama replikasi DNA adakalanya timin digantikan oleh BU sehingga pasangan basa AT berubah menjadi ABU. Penggantian ini belum dapat dikatakan sebagai peristiwa mutasi. Akan tetapi, jika BU berada dalam bentuk enol, maka BU akan berpasangan dengan guanin (GBU), dan pada putaran replikasi berikutnya, molekul DNA yang baru akan mempunyai pasangan basa GC pada posisi yang seharusnya ditempati oleh pasangan basa AT. Dengan demikian, telah terjadi mutasi tautomerik berupa transisi dari AT ke GC (Gambar 11.5).

A=T

substitusi T oleh BU (keto)

A=BU

replikasi 1

A=T G=BU pengikatan G oleh BU (enol)

replikasi 2

A=T A=T G=C A=BU transisi

Gambar 11.5. Mutasi tautomerik (transisi) akibat basa analog 5-bromourasil

Percobaan-percobaan berikutnya menunjukkan bahwa mekanisme mutagenesis BU dapat terjadi dengan cara lain. Konsentrasi deoksinukleosida trifofat (dNTP) di dalam sel pada umumnya diatur oleh konsentrasi deoksitimidin trifosfat (dTTP). Artinya, konsentrasi dTTP akan menentukan konsentrasi ketiga dNTP lainnya untuk keperluan sintesis DNA. Apabila suatu saat dTTP terdapat dalam jumlah yang sangat berlebihan, maka akan terjadi hambatan dalam sintesis dCTP. Sementara itu, BU sebagai basa yang analog dengan timin juga dapat menghambat sintesis dCTP. Jika BU ditambahkan ke dalam medium pertumbuhan, maka dTTP akan disintesis dalam jumlah normal tetapi sintesis dCTP akan sangat terhambat. Akibatnya, nisbah dTTP terhadap dCTP menjadi sangat tinggi dan frekuensi salah pasangan GT, yang seharusnya GC, akan meningkat. Mekanisme penyuntingan dan perbaikan salah pasangan sebenarnya dapat membuang basa timin yang salah berpasangan dengan guanin tersebut. Akan tetapi, keberadaan BU ternyata menyebabkan laju perbaikan menjadi tertinggal oleh laju salah pasangan. Pada putaran replikasi berikutnya basa timin pada pasangan GT akan berpasangan dengan adenin sehingga posisi yang seharusnya ditempati oleh GC sekarang diganti dengan AT. Dengan perkataan lain, BU telah menginduksi mutasi tautomerik berupa transisi GC menjadi AT. Mutagen – Mutagen Kimia

10

Page 11: Referensi Mutasi

Berbeda dengan basa analog yang hanya bersifat mutagenik ketika DNA sedang melakukan replikasi, mutagen kimia dapat mengakibatkan mutasi pada DNA baik yang sedang bereplikasi maupun yang tidak sedang bereplikasi. Beberapa di antara mutagen kimia, misalnya asam nitros (HNO2), menimbulkan perubahan yang sangat khas. Namun, beberapa lainnya, misalnya agen-agen alkilasi, memberikan pengaruh dengan spektrum yang luas.

HNO2 bekerja sebagai mutagen dengan mengubah gugus amino (NH2) pada basa adenin, sitosin, dan guanin menjadi gugus keto (=O) sehingga spesifisitas pengikatan hidrogen pada basa-basa tersebut juga mengalami perubahan. Deaminasi adenin akan menghasilkan hipoksantin (H), yang berpasangan dengan sitosin. Hal ini mengakibatkan terjadinya transisi AT menjadi GC melaui HC. Dengan mekanisme serupa, deaminasi sitosin yang menghasilkan urasil akan mengakibatkan transisi GC menjadi AT melalui AU.

Agen alkilasi etilmetan sulfonat (EMS) dan mustard nitrogen merupakan mutagen-mutagen kimia yang banyak digunakan dalam penelitian genetika. Kedua-duanya akan memberikan gugus etil (C2H5) atau sejenisnya kepada basa DNA. Jika HNO2 terbukti sangat bermanfaat pada sistem prokariot, maka agen-agen alkilasi sangat efektif untuk digunakan pada sistem eukariot.Alkilasi pada basa G atau T akan menyebabkan terjadinya salah pasangan yang mengarah kepada transisi AT→ GC dan GC → AT. Selain itu, EMS dapat juga bereaksi dengan A dan C.

O CH2 - CH2 - Cl

CH3 - CH2 – O – S - CH3 HN

O CH2 - CH2 - Cl etilmetan sulfonat mustard nitrogen Gambar 11.6. Struktur molekul dua agen alkilasi yang umum digunakan

Fenomena lain yang dapat muncul akibat terjadinya alkilasi guanin adalah depurinasi, yaitu hilangnya basa purin yang telah mengalami alkilasi tersebut dari molekul DNA karena patahnya ikatan yang menghubungkannya dengan gula deoksiribosa. Depurinasi tidak selalu bersifat mutagenik karena celah yang terbentuk dengan hilangnya basa purin tadi dapat segera diperbaiki. Akan tetapi, garpu replikasi sering kali terlebih dahulu telah mencapai celah tersebut sebelum perbaikan sempat dilakukan. Jika hal ini terjadi, maka replikasi akan terhenti tepat di depan celah dan kemudian dimulai lagi dengan menyisipkan basa adenin pada posisi yang komplementer dengan celah tersebut. Akibatnya, setelah replikasi basa adenin di posisi celah tersebut akan berpasangan dengan timin atau terjadi pasangan TA. Padahal seharusnya pasangan basa pada posisi celah tersebut adalah GC (bukankah yang hilang adalah G?). Oleh karena itu pada posisi celah tersebut terjadi perubahan dari GC menjadi TA atau purin-pirimidin menjadi pirimidin-purin. Perubahan ini tidak lain merupakan mutasi tautomerik jenis transversi.Interkalasi

Senyawa kimia akridin, yang salah satu contohnya adalah proflavin (Bab X), memiliki struktur molekul berupa tiga cincin sehingga sangat menyerupai pasangan basa purin - pirimidin atau pirimidin - purin. Dengan struktur yang sangat menyerupai sebuah pasangan basa, akridin dapat menyisip di antara dua pasangan basa yang berdekatan pada molekul DNA. Peristiwa penyisipan semacam ini dinamakan interkalasi.

Pengaruh interkalasi terhadap molekul DNA adalah terjadinya perenggangan jarak antara dua pasangan basa yang berurutan. Besarnya perenggangan sama dengan tebal molekul akridin. Apabila DNA yang membawa akridin tadi melakukan replikasi, maka untai DNA hasil replikasi akan ada yang mengalami adisi dan ada yang mengalami delesi pada posisi terjadinya interkalasi. Dengan demikian, mutasi yang ditimbulkan bukanlah mutasi tautomerik, melainkan mutasi rangka baca.

11

Page 12: Referensi Mutasi

Iradiasi ultravioletSinar ultraviolet (UV) dapat menghasilkan pengaruh, baik letal maupun

mutagenik, pada semua jenis virus dan sel. Pengaruh ini disebabkan oleh terjadinya perubahan kimia pada basa DNA akibat absorpsi energi dari sinar tersebut. Pengaruh terbesar yang ditimbulkan oleh iradiasi sinar UV adalah terbentuknya pirimidin dimer, khususnya timin dimer, yaitu saling terikatnya dua molekul timin yang berurutan pada sebuah untai DNA. Dengan adanya timin dimer, replikasi DNA akan terhalang pada posisi terjadinya timin dimer tersebut. Namun, kerusakan DNA ini pada umumnya dapat diperbaiki melalui salah satu di antara empat macam mekanisme, yaitu fotoreaktivasi, eksisi, rekombinasi, dan SOS.Fotoreaktivasi

Mekanisme perbaikan ini bergantung kepada cahaya. Dengan adanya cahaya, ikatan antara timin dan timin akan terputus oleh suatu enzim tertentu. Sebenarnya enzim tersebut telah mengikat dimer, baik ketika ada cahaya maupun tidak ada cahaya. Akan tetapi, aktivasinya memerlukan spektrum biru cahaya sehingga enzim tersebut hanya bisa bekerja apabila ada cahaya.Eksisi

Perbaikan dengan cara eksisi merupakan proses enzimatik bertahap yang diawali dengan pembuangan dimer dari molekul DNA, diikuti oleh resintesis segmen DNA baru, dan diakhiri oleh ligasi segmen tersebut dengan untai DNA. Ada dua mekanisme eksisi yang agak berbeda. Pada mekanisme pertama, enzim endonuklease melakukan pemotongan (eksisi) pada dua tempat yang mengapit dimer. Akibatnya, segmen yang membawa dimer akan terlepas dari untai DNA. Pembuangan segmen ini kemudian diikuti oleh sintesis segmen baru yang akan menggantikannya dengan bantuan enzim DNA polimerase I. Akhirnya, segmen yang baru tersebut diligasi dengan untai DNA sehingga untai DNA ini sekarang tidak lagi membawa dimer.Pada mekanisme yang kedua pemotongan mula-mula hanya terjadi pada satu tempat, yakni di sekitar dimer. Pada celah yang terbentuk akibat pemotongan tersebut segera terjadi sintesis segmen baru dengan urutan basa yang benar. Pada waktu yang sama terjadi pemotongan lagi pada segmen yang membawa dimer sehingga segmen ini terlepas dari untai DNA. Seperti pada mekanisme yang pertama, proses ini diakhiri dengan ligasi segmen yang baru tadi dengan untai DNA.Rekombinasi

Berbeda dengan dua mekanisme yang telah dijelaskan sebelumnya, perbaikan kerusakan DNA dengan cara rekombinasi terjadi setelah replikasi berlangsung. Oleh karena itu, mekanisme ini sering juga dikatakan sebagai rekombinasi pascareplikasi. Ketika DNA polimerase sampai pada suatu dimer, maka polimerisasi akan terhenti sejenak untuk kemudian dimulai lagi dari posisi setelah dimer. Akibatnya, untai DNA hasil polimerisasi akan mempunyai celah pada posisi dimer. Mekanisme rekombinasi pada prinsipnya merupakan cara untuk menutup celah tersebut menggunakan segmen yang sesuai pada untai DNA cetakan yang membawa dimer. Untuk jelasnya, skema mekanisme tersebut dapat dilihat pada Gambar 11.8.

DNA yang membawa dimer pada kedua untainya melakukan replikasi (Gambar 11.8.a) sehingga pada waktu garpu replikasi mencapai dimer akan terbentuk celah pada kedua untai DNA yang baru (Gambar 11.8.b). Celah akan diisi oleh segmen yang sesuai dari masing-masing untai DNA cetakan yang membawa dimer. Akibatnya, pada untai DNA cetakan terdapat segmen yang hilang. Jadi, sekarang kedua untai DNA cetakan selain membawa dimer juga mempunyai celah, sedangkan kedua untai DNA baru tidak mempunyai celah lagi (Gambar 11.8.c). Akhirnya, segmen penutup celah akan terligasi dengan sempurna pada masing-masing untai DNA baru (Gambar 11.8.d).

Mekanisme SOS

12

Page 13: Referensi Mutasi

Mekanisme perbaikan DNA dengan sistem SOS dapat dilihat sebagai jalan pintas yang memungkinkan replikasi tetap berlangsung meskipun harus melintasi dimer. Hasilnya berupa untai DNA yang utuh tetapi sering kali sangat defektif. Oleh karena itu, mekanisme SOS dapat dikatakan sebagai sistem perbaikan yang rentan terhadap kesalahan.

dimer pemotongan di dua tempat pemotongan di satu tempat di sekitar dimer

resintesis segmen baru oleh Pol I

pemotongan segmen

ligasi yang membawa dimer

ligasi

Gambar 11.7. Mekanisme eksisi untuk memperbaiki DNA

Ketika sistem SOS aktif, sistem penyuntingan oleh DNA polimerase III justru menjadi tidak aktif. Hal ini dimaksudkan agar polimerisasi tetap dapat berjalan melintasi dimer. Untai DNA yang baru akan mempunyai dua basa adenin berurutan pada posisi dimer (dalam kasus timin dimer). Dengan sendirinya, kedua adenin ini tidak dapat berpasangan dengan timin karena kedua timin berada dalam bentuk dimer. Sistem penyuntingan tidak dapat memperbaiki kesalahan ini karena tidak aktif, sedangkan sistem perbaikan salah pasangan sebenarnya dapat memperbaikinya. Namun, karena jumlah dimer di dalam setiap sel yang mengalami

13

Page 14: Referensi Mutasi

iradiasi UV biasanya begitu banyak, maka sistem perbaikan salah pasangan tidak dapat memperbaiki semua kesalahan yang ada. Akibatnya, mutasi tetap terjadi. Pengaruh mutagenik iradiasi UV memang hampir selalu merupakan akibat perbaikan yang rentan terhadap kesalahan.

a) b)

d) c)

Gambar 11.8. Skema mekanisme rekombinasi pascareplikasi = pirimidin dimer = penutupan celah oleh segmen dari untai DNA cetakan yang membawa dimer

Radiasi pengionRadiasi pengion mempunyai energi yang begitu besar sehingga molekul air

dan senyawa kimia lainnya yang terkena olehnya akan terurai menjadi fragmen-fragmen bermuatan listrik. Semua bentuk radiasi pengion akan menyebabkan pengaruh mutagenik dan letal pada virus dan sel. Radiasi pengion meliputi sinar X beserta partikel-partikelnya dan radiasi yang dihasilkan oleh unsur-unsur radioaktif seperti partikel α, β, dan sinar γ.

Intensitas radiasi pengion dinyatakan secara kuantitatif dengan beberapa macam cara. Ukuran yang paling lazim digunakan adalah rad, yang didefinisikan

14

Page 15: Referensi Mutasi

sebagai besarnya radiasi yang menyebabkan absorpsi energi sebesar 100 erg pada setiap gram materi.

Frekuensi mutasi yang diinduksi oleh sinar X sebanding dengan dosis radiasi yang diberikan. Sebagai contoh, frekuensi letal resesif pada kromosom X Drosophila meningkat linier sejalan dengan meningkatnya dosis radiasi sinar X. Pemaparan sebesar 1000 rad meningkatkan frekuensi mutasi dari laju mutasi spontan sebesar 0,15% menjadi 3%. Pada Drosophila tidak terdapat ambang bawah dosis pemaparan yang yang tidak menyebabkan mutasi. Artinya, betapapun rendahnya dosis radiasi, mutasi akan tetap terinduksi.

Pengaruh mutagenik dan letal yang ditimbulkan oleh radiasi pengion terutama berkaitan dengan kerusakan DNA. Ada tiga macam kerusakan DNA yang disebabkan oleh radiasi pengion, yaitu kerusakan pada salah satu untai, kerusakan pada kedua untai, dan perubahan basa nukleotida. Pada eukariot radiasi pengion dapat menyebabkan kerusakan kromosom, yang biasanya bersifat letal. Akan tetapi, pada beberapa organisme terdapat sistem yang dapat memperbaiki kerusakan kromosom tersebut meskipun perbaikan yang dilakukan sering mengakibatkan delesi, duplikasi, inversi, dan translokasi.

Radiasi pengion banyak digunakan dalam terapi tumor. Pada prinsipnya perlakuan ini dimaksudkan untuk meningkatkan frekuensi kerusakan kromosom pada sel-sel yang sedang mengalami mitosis. Oleh karena tumor mengandung banyak sekali sel yang mengalami mitosis sementara jaringan normal tidak, maka sel tumor yang dirusak akan jauh lebih banyak daripada sel normal yang dirusak. Namun, tidak semua sel tumor mengalami mitosis pada waktu yang sama. Oleh karena itu, iradiasi biasanya dilakukan dengan selang waktu beberapa hari agar sel-sel tumor yang semula sedang beristirahat kemudian melakukan mitosis. Diharapkan setelah iradiasi diberikan selama kurun waktu tertentu, semua sel tumor akan rusak. Mutasi Balik dan Mutasi Penekan

Kebanyakan mutasi yang telah kita bicarakan hingga saat ini adalah perubahan dari bentuk alami atau normal ke bentuk mutan, atau sering dikatakan sebagai mutasi ke depan (forward mutation). Namun, seperti telah disinggung pada Bab X, mutasi dapat juga berlangsung dari bentuk mutan ke bentuk normal. Mutasi semacam ini dinamakan mutasi balik atau reversi. Ada dua mekanisme yang berbeda pada mutasi balik, yaitu (1) perubahan urutan basa pada DNA mutan sehingga benar-benar pulih seperti urutan basa pada fenotipe normalnya dan (2) terjadinya mutasi kedua di suatu tempat lainnya di dalam genom yang mengimbangi atau menekan pengaruh mutasi pertama sehingga mutasi yang kedua tersebut sering disebut sebagai mutasi penekan (suppressor mutation).

Mekanisme mutasi balik berupa mutasi penekan jauh lebih umum dijumpai daripada mekanisme yang pertama. Mutasi penekan dapat terjadi di suatu tempat di dalam gen yang sama dengan mutasi pertama yang ditekannya. Dengan perkataan lain, terjadi penekanan intragenik. Akan tetapi, mutasi penekan dapat juga terjadi di dalam gen yang lain atau bahkan di dalam kromosom yang lain sehingga peristiwanya dinamakan penekanan intergenik. Kebanyakan mutasi penekan, baik intra- maupun intergenik, tidak dapat sepenuhnya memulihkan mutan ke fenotipe normalnya seperti yang akan diuraikan di bawah ini. Penekanan intragenik

Pada garis besarnya ada dua macam cara penekanan intragenik. Cara yang pertama telah kita jelaskan pada Bab X, yaitu perbaikan rangka baca dengan kompensasi adisi-delesi sehingga rangka baca yang bergeser sebagian besar dapat dikembalikan seperti semula. Jika bagian yang tidak dapat dipulihkan bukan merupakan urutan yang esensial, maka pembacaan rangka baca akan menghasilkan fenotipe normal.

Pada cara yang kedua tidak terjadi adisi dan delesi pada urutan basa, tetapi perubahan suatu asam amino yang mengakibatkan hilangnya aktivitas protein akan diimbangi oleh perubahan asam amino lainnya yang memulihkan aktivitas protein

15

Page 16: Referensi Mutasi

tersebut. Sebagai contoh dapat dikemukakan penekanan mutasi enzim triptofan sintetase pada E. coli, yang disandi oleh gen trpA pada. Salah satu di antara dua polipeptida yang menyusun enzim tersebut adalah polipeptida A yang terdiri atas 268 asam amino. Pada strain normal asam amino yang ke-210 adalah glisin. Jika asam amino glisin ini berubah menjadi asam glutamat, maka enzim triptofan sintetase menjadi tidak aktif. Perubahan glisin menjadi asam glutamat sebenarnya tidak menyebabkan inaktivasi enzim secara langsung karena glisin tidak terletak pada tapak aktif. Namun, perubahan ini mengakibatkan perubahan struktur pelipatan enzim sehingga secara tidak langsung akan mempengaruhi tapak aktifnya. Sementara itu, asam amino normal yang ke-174 adalah tirosin, yang interaksinya dengan asam amino ke-210 menentukan aktivitas enzim. Apabila tirosin berubah menjadi sistein, maka struktur pelipatan enzim yang telah berubah karena glisin digantikan oleh asam glutamat justru akan dipulihkan oleh interaksi sistein dengan asam glutamat. Dengan demikian, aktivitas enzim pun dapat dipulihkan. Jadi, perubahan glisin menjadi asam glutamat akan ditekan pengaruhnya oleh perubahan tirosin menjadi sistein. Begitu pula sebaliknya, jika perubahan tirosin menjadi sistein terjadi terlebih dahulu, maka pengaruhnya akan ditekan oleh perubahan glisin menjadi asam glutamat. Penekanan intergenik

Penekanan intergenik yang paling umum dijumpai adalah penekanan oleh suatu produk mutasi gen terhadap pengaruh mutasi yang ditimbulkan oleh sejumlah gen lainnya. Contoh yang paling dikenal dapat dilihat pada gen-gen penyandi tRNA. Pengaruh yang ditimbulkannya adalah mengubah kekhususan pengenalan kodon pada mRNA oleh antikodon pada tRNA.

Mutasi semacam itu pertama kali ditemukan pada strain-strain E. coli yang dapat menekan mutan-mutan fag T4 tertentu. Mutan-mutan ini gagal untuk membentuk plak (lihat Bab XII) pada strain bakteri standar tetapi dapat membentuk plak pada strain yang mengalami mutasi penekan. Strain yang mengalami mutasi penekan ini ternyata juga dapat menekan mutasi pada sejumlah gen yang terdapat pada genom bakteri sendiri.

Mutasi penekan intergenik dapat memulihkan baik mutasi tanpa makna (nonsense) maupun mutasi salah makna (missense). Penekanan mutasi tanpa makna disebabkan oleh mutasi gen penyandi tRNA sehingga terjadi perubahan antikodon pada tRNA yang memungkinkannya untuk mengenali kodon stop hasil mutasi. Sebagai contoh, salah satu kodon untuk tirosin, yakni UAC dapat berubah menjadi kodon stop UAG. Mutasi ini dapat ditekan oleh molekul tRNA mutan yang membawa triptofan dengan antikodon AUC. Antikodon pada molekul tRNA normal yang membawa triptofan adalah AAC. Dengan tRNA mutan, kodon UAG yang seharusnya merupakan kodon stop berubah menjadi kodon yang menyandi triptofan. Akibatnya, terminasi dapat dibatalkan, atau dengan perkataan lain, mutasi tRNA telah memulihkan mutasi tanpa makna.

Penekanan mutasi salah makna oleh mutasi penekan intergenik antara lain dapat dilihat contohnya pada pemulihan aktivitas protein yang hilang akibat perubahan valin (tidak bermuatan) menjadi asam aspartat (bermuatan negatif). Pemulihan terjadi karena asam aspartat digantikan oleh alanin (tidak bermuatan). Substitusi ini dapat terjadi dengan empat macam cara, yaitu (1) mutasi antikodon yang memungkinkan tRNA untuk mengenali kodon yang berbeda seperti halnya yang terjadi pada pemulihan mutasi tanpa makna, (2) mutasi pada tRNA yang mengubah sebuah basa di dekat antikodon sehingga tRNA dapat mengenali dua kodon yang berbeda, (3) mutasi di luar kala (loop) antikodon yang memungkinkan aminoasil sintetase mengenali tRNA sehingga terjadi asilasi yang menyebabkan tRNA ini membawa asam amino yang lain, dan (4) mutasi aminoasil sintetase yang kadang-kadang salah mengasilasi tRNA.

16

Page 17: Referensi Mutasi

Pada notasi konvensional, mutasi penekan diberi lambang sup diikuti dengan angka (atau kadang-kadang huruf) yang membedakan penekan yang satu dengan penekan lainnya. Sel yang tidak mempunyai penekan dilambangkan dengan sup0.Mutasi balik sebagai cara untuk mendeteksi mutagen dan karsinogen

Dewasa ini terjadi peningkatan jumlah dan macam bahan kimia yang mencemari lingkungan. Beberapa di antaranya dikenal potensial sebagai mutagen. Selain itu, kebanyakan karsinogen juga merupakan mutagen. Oleh karena itu, uji mutagenesis terhadap bahan-bahan kimia semacam ini perlu dilakukan.

Cara yang paling sederhana untuk melihat mutagenesis suatu bahan kimia adalah uji mutasi balik menggunakan mutan nutrisional pada bakteri. Senyawa yang dicurigai potensial sebagai mutagen ditambahkan ke dalam medium padat, diikuti dengan penaburan (plating) suatu mutan bakteri dalam jumlah tertentu. Banyaknya koloni revertan (fenotipe normal hasil mutasi balik) yang muncul dihitung. Peningkatan frekuensi revertan yang tajam apabila dibandingkan dengan frekuensi yang diperoleh di dalam medium tanpa senyawa kimia yang dicurigai tersebut mengindikasikan bahwa senyawa yang diuji adalah mutagen.

Meskipun demikian, cara seperti tersebut di atas tidak dapat digunakan untuk memperlihatkan mutagenesis sejumlah besar karsinogen yang potensial. Hal ini karena banyak sekali senyawa kimia yang tidak langsung bersifat mutagenik / karsinogenik, tetapi harus melalui beberapa reaksi enzimatik terlebih dahulu sebelum menjadi mutagen. Reaksi-reaksi enzimatik tersebut terjadi di dalam organ hati hewan dan tidak ada kesepadanannya di dalam sel bakteri. Fungsi normal enzim-enzim itu adalah melindungi organisme dari berbagai bahan beracun dengan cara mengubahnya menjadi bahan yang tidak beracun. Akan tetapi, ketika enzim-enzim itu bertemu dengan bahan kimia tertentu, maka mereka akan mengubah bahan tersebut dari sifatnya yang semula tidak mutagenik menjadi mutagenik. Enzim-enzim tersebut terdapat di dalam komponen sel-sel hati yang dinamakan fraksi mikrosomal. Pemberian fraksi mikrosomal yang berasal dari hati tikus ke dalam medium pertumbuhan bakteri memungkinkan dilakukannya deteksi mutagenisitas. Perlakuan ini mendasari teknik pemeriksaan karsinogen menggunakan metode yang dinamakan uji Ames.

Di dalam uji Ames mutan-mutan bakteri Salmonella typhimurium yang memerlukan pemberian histidin eksternal atau disebut dengan mutan His- digunakan untuk menguji mutagenisitas senyawa kimia atas dasar mutasi baliknya menjadi His+. Mutan-mutan His- membawa baik mutasi tautomerik maupun mutasi rangka baca. Di samping itu, strain-strain bakteri tersebut dibuat menjadi lebih sensitif terhadap mutagenesis dengan menggabungkan beberapa alel mutan yang dapat menginaktifkan sistem perbaikan eksisi dan menjadikannya lebih permiabel terhadap molekul-molekul asing. Oleh karena beberapa mutagen hanya bekerja pada DNA yang sedang melakukan replikasi, maka medium pertumbuhan yang digunakan harus mengandung histidin dalam jumlah yang cukup untuk mendukung beberapa putaran replikasi tetapi tidak cukup untuk memungkinkan terbentuknya koloni yang dapat dilihat. Ke dalam medium tersebut kemudian ditambahkan mutagen potensial yang akan diuji. Fraksi mikrosomal dari hati tikus disebarkan ke permukaan medium, diikuti dengan penaburan bakteri. Apabila bahan kimia yang diuji adalah mutagen atau diubah menjadi mutagen, maka koloni bakteri akan terbentuk. Analisis kuantitatif terhadap frekuensi mutasi balik dapat dilakukan juga dengan membuat variasi jumlah mutagen potensial tersebut di dalam medium. Frekuensi mutasi balik ternyata bergantung kepada konsentrasi bahan kimia yang diuji, dan pada karsinogen tertentu juga nampak adanya korelasi dengan efektivitasnya pada hewan.

Uji Ames saat ini telah banyak digunakan pada beribu-ribu senyawa seperti pengawet makanan, pestisida, pewarna rambut, dan kosmetika. Frekuensi mutasi balik yang tinggi tidak serta-merta berarti bahwa senyawa yang diuji adalah karsinogen, tetapi setidak-tidaknya memperlihatkan adanya peluang seperti itu.

17

Page 18: Referensi Mutasi

Akibat dilakukannya uji Ames, banyak industri terpaksa mereformulasi produk-produknya.

Bukti terakhir tentang karsinogenisitas suatu bahan kimia ditentukan atas dasar hasil uji pembentukan tumor pada hewan-hewan percobaan. Jadi, uji Ames sebenarnya hanya berperan dalam mengurangi jumlah bahan kimia yang harus diuji menggunakan hewan percobaan. B. Macam-macam Mutasi Berdasarkan Sel yang Bermutasi

Mutasi somatik adalah mutasi yang terjadi pada sel somatik. mutasi ini tidak akan diwariskan pada keturunannya. Mutasi Gametik adalah mutasi yang terjadi pada sel gamet. Karena terjadinya di sel gamet, maka akan diwariskan oleh keturunannya.Pada umumnya, mutasi itu merugikan, mutannya bersifat letal dan homozigot resesif. namun mutasi juga menguntungkan, diantaranya, melalui mutasi, dapat dibuat tumbuhan poliploid yang sifatnya unggul. Contohnya, semangka tanpa biji, jeruk tanpa biji, buah stroberi yang besar,dll.Terbentuknya tumbuhan poliploid ini menguntungkan bagi manusia, namun merugikan bagi tumbuhan yang mengalami mutasi, karena tumbuhan tersebut menjadi tidak bisa berkembang biak secara generatif.Bahan-bahan yang menyebabkan terjadinya mutasi disebut MUTAGEN. Mutagen dibagi menjadi 3, yaitu:a. Mutagen bahan Kimia, contohnya adalah kolkisin dan zat digitonin. Kolkisin adalah zat yang dapat menghalangi terbentuknya benang-benang spindel pada proses anafase dan dapat menghambat pembelahan sel pada anafase.b. Mutagen bahan fisika, contohnya sinar ultraviolet, sinar radioaktif,dll. Sinar ultraviolet dapat menyebabkan kanker kulit.c. Mutagen bahan biologi, diduga virus dan bakeri dapat menyebabkan terjadinya mutasi. Bagian virus yang dapat menyebabkan terjadinya mutasi adalah DNA-nya.C Macam-macam mutasi berdasarkan bagian yang bermutasi1. Mutasi titik

Mutasi titik merupakan perubahan pada basa N dari DNA atau RNA. Mutasi titik relatif sering terjadi namun efeknya dapat dikurangi oleh mekanisme pemulihan gen. Mutasi titik dapat berakibat berubahnya urutan asam amino pada protein, dan dapat mengakibatkan berkurangnya, berubahnya atau hilangnya fungsi enzim. Teknologi saat ini menggunakan mutasi titik sebagai marker (disebut SNP) untuk mengkaji perubahan yang terjadi pada gen dan dikaitkan dengan perubahan fenotipe yang terjadi.contoh mutasi gen adalah reaksi asam nitrit dengan adenin menjadi zat hipoxanthine. Zat ini akan menempati tempat adenin asli dan berpasangan dengan sitosin, bukan lagi dengan timin.2. Aberasi

Mutasi kromosom,sering juga disebut dengan mutasi besar/gross mutation atau aberasi kromosom adalah perubahan jumlah kromosom dan susunan atau urutan gen dalam kromosom. Mutasi kromosom sering terjadi karena kesalahan meiosis dan sedikit dalam mitosis.a. Aneuploidiadalah perubahan jumlah n-nya. Aneuploidi dibagi menjadi 2, yaitu: 1. Allopoliploidi, yaitu n-nya mengganda sendiri karena kesalahan meiosis. 2. Autopoliploidi, yaitu perkawinan atau hibrid antara spesies yang berbeda jumlah set kromosomnya.b. Aneusomiadalah perubahan jumlah kromosom. Penyebabnya adalah anafase lag (peristiwa tidak melekatnya beneng-benang spindel ke sentromer) dan non disjunction (gagal berpisah).Aneusomi pada manusia dapat menyebabkan:1. Sindrom Turner, dengan kariotipe (22AA+X0). Jumlah kromosomnya 45 dan kehilangan 1 kromosom kelamin. Penderita Sindrom Turner berjenis kelamin wanita, namun ovumnya tidak berkembang (ovaricular disgenesis).

18

Page 19: Referensi Mutasi

2. Sindrom Klinefelter, kariotipe (22 AA+XXY), mengalami trisomik pada kromosom gonosom. Penderita Sindrom Klinefelter berjenis kelamin laki-laki, namun testisnya tidak berkembang (testicular disgenesis) sehingga tidak bisa menghasilkan sperma (aspermia) dan mandul (gynaecomastis) serta payudaranya tumbuh.3. Sindrom Jacobs, kariotipe (22AA+XYY), trisomik pada kromosom gonosom. Penderita sindrom ini umumnya berwajah kriminal, suka menusuk-nusuk mata dengan benda tajam, seperti pensil,dll dan juga sering berbuat kriminal. Penelitian di luar negeri mengatakan bahwa sebagian besar orang-orang yang masuk penjara adalah orang-orang yang menderita Sindrom Jacobs.4. Sindrom Patau, kariotipe (45A+XX/XY), trisomik pada kromosom autosom. kromosom autosomnya mengalami kelainan pada kromosom nomor 13, 14, atau 15.5. Sindrom Edward, kariotipe (45A+XX/XY), trisomik pada autosom. Autosom mengalami kelainan pada kromosom nomor 16,17, atau 18. Penderita sindrom ini mempunyai tengkorak lonjong, bahu lebar pendek, telinga agak ke bawah dan tidak wajar.6. Sindrom Down, kariotipe (45A+XX/45A+XY pada kromosom 21), trisomik pada autosom. Ciri anatominya: badan dan kaki pendek, jalan agak lambat, kepala bunder, bibir bawah tebal dan menjorok ke depan, mulut menganga, leher pendek dan besar, telinga kecil, tapak tangan seperti tangan monyet, keterbelakangan mental/idiotD. Berbagai Macam Mutasi Alami ( Natural Mutation )

Dalam bidang pemuliaan tanaman, teknik mutasi dapat meningkatkan keragaman genetik tanaman sehingga memungkinkan pemulia melakukan seleksi genotipe tanaman sesuai dengan tujuan pemuliaan yang dikehendaki. Mutasi induksi dapat dilakukan pada tanaman dengan perlakuan bahan mutagen tertentu terhadap organ reproduksi tanaman seperti biji, stek batang, serbuk sari, akar rhizome, kultur jaringan dan sebagainya. Apabila proses mutasi alami terjadi secara sangat lambat maka percepatan, frekuensi dan spektrum mutasi tanaman dapat diinduksi dengan perlakuan bahan mutagen tertentu. Pada umumnya bahan mutagen bersifat radioaktif dan memiliki energi tinggi yang berasal dari hasil reaksi nuklir.Bahan mutagen yang sering digunakan dalam penelitian pemuliaan tanaman digolongkan menjadi dua kelompok yaitu mutagen kimia (chemical mutagen) dan mutagen fisika (physical mutagen). Mutagen kimia pada umumnya berasal dari senyawa alkyl (alkylating agents) misalnya seperti ethyl methane sulphonate (EMS), diethyl sulphate (dES), methyl methane sulphonate (MMS), hydroxylamine, nitrous acids, acridines dan sebagainya (IAEA, 1977). Mutagen fisika bersifat sebagai radiasi pengion (ionizing radiation) dan termasuk diantaranya adalah sinar-X, radiasi Gamma, radiasi beta, neutrons, dan partikel dari aselerators.

Baik mutagen kimia maupun mutagen fisika memiliki energi nuklir yang dapat merubah struktur materi genetik tanaman. Perubahan yang terjadi pada materi genetik dikenal dengan istilah mutasi (mutation). Secara relatif, proses mutasi dapat menimbulkan perubahan pada sifat-sifat genetis tanaman baik ke arah positif maupun negatif, dan kemungkinan mutasi yang terjadi dapat juga kembali normal

(recovery). Mutasi yang terjadi ke arah “sifat positif” dan terwariskan (heritable) ke generasi-generasi berikutnya merupakan mutasi yang dikehendaki oleh pemulia tanaman pada umumnya. Sifat positif yang dimaksud adalah relatif tergantung pada tujuan pemuliaan

19

Page 20: Referensi Mutasi

tanaman.Mutagen kimia dapat menimbulkan mutasi melalui beberapa cara. Gugusan

alkyl aktif dari bahan mutagen kimia dapat ditransfer ke molekul lain pada posisi dimana kepadatan elektron cukup tinggi seperti phosphate groups dan juga molekul purine dan pyrimidine yang merupakan penyusun struktur dioxiribonucleic acid (DNA). Seperti diketahui umum, DNA merupakan struktur kimia yang membawa gen. Basa-basa yang menyusun struktur DNA terdiri dari adenine, guanine, thyimine, dan cytosine. Adenine dan guanine merupakan basa bercincin ganda (double-ring bases) disebut purines, sedangkan thymine dan cytosine bercincin tunggal (single-ring bases) disebut pyrimidines. Struktur molekul DNA berbentuk pilitan ganda (double helix) dan tersusun atas pasangan spesifik Adenine-Thymine dan Guanine-Cytosine. Contoh mutasi yang paling sering ditimbulkan oleh mutagen kimia adalah perubahan basa pada struktur DNA yang mengarah pada pembentukan 7-alkyl guanine.

Seperti disebut di atas mutagen fisika bersifat sebagai radiasi pengion (ionizing radiation) yang dapat melepas energi (ionisasi), begitu melewati atau menembus materi. Mutagen fisika termasuk diantaranya sinar-X, radiasi Gamma, radiasi beta, neutrons, dan partikel dari akselerator sudah umum digunakan dalam pemuliaan tanaman. Begitu materi reproduksi tanaman diradiasi, proses ionisasi akan terjadi dalam jaringan dan dapat menyebabkan perubahan pada jaringan itu sendiri, sel, genom, kromosom, dan DNA atau gen. Perubahan yang ditimbulkan pada tingkat genom, kromosom, dan DNA atau gen dikenal dengan istilah mutasi (mutation).E. Berbagai Macam Mutasi Buatan a. Mutasi Genom (Genome Mutation)

Poliploidi pada tanaman mencerminkan bahwa satu atau lebih set kromosom ditambahkan pada kromosom diploid misalnya triploid disimbolkan 2x+x=3x, tetraploid 2x+2x=4x (dimana x adalah jumlah kromosom dasar). Haploidi (dari diploidi) atau polihaploidi (dari poliploidi) mencerminkan status tanaman yang memiliki separuh dari jumlah kromosom normal misalnya 2x-->x, 4x-->2x dan seterusnya. Aneuploidi mencerminkan status tanaman yang memiliki penambahan atau pengurangan kromosom dari pasangan normalnya, misalnya 2x+1, 2x–1, 3x+1, 4x–1, 4x+2 dan sebagainya. Pengaruh beberapa mutagen kimia, seperti colchicine atau nitrous oxide dapat merubah tingkat ploidi pada genom tanaman. Sebagai contoh mutasi genom, beberapa mutan tanaman sorghum yang diinduksi dengan colchicine telah dilaporkan sebagai hasil mutasi genom dengan pengurangan jumlah kromosom (haploidi) yang kemudian diikuti dengan diploidisasi. Sedangkan pengaruh mutagen fisika (radiasi sinar Gamma) pada mutasi genom telah dilaporkan pada mutan tanaman barley, dimana terjadi perubahan genom tanaman menjadi aneuploidi.b. Mutasi Kromosom (Chromosome Mutation)

Pengaruh bahan mutagen, khususnya radiasi, yang paling banyak terjadi pada kromosom tanaman adalah pecahnya benang kromosom (chromosome breakage atau chromosome aberation). Pecahnya benang kromosom dibagi dalam 4 kelompok yaitu translokasi (translocations), inversi (inversions), duplikasi (duplications), dan defisiensi ( deficiencies ).

Translokasi terjadi apabila dua benang kromosom patah setelah terkena energi radiasi, kemudian patahan benang kromosom bergabung kembali dengan cara baru. Patahan kromosom yang satu berpindah atau bertukar pada kromosom yang lain sehingga terbentuk kromosom baru yang berbeda dengan kromosom aslinya. Translokasi dapat terjadi baik di dalam satu kromosom (intrachromosome) maupun antar kromosom (interchromosome). Translokasi sering mengarah pada ketidakseimbangan gamet sehingga dapat menyebabkan kemandulan (sterility) karena terbentuknya chromatids dengan duplikasi dan penghapusan. Alhasil, pemasangan dan pemisahan gamet jadi tidak teratur sehingga kondisi ini

20

Page 21: Referensi Mutasi

menyebabkan terbentuknya tanaman aneuploidi. Translokasi dilaporkan telah terjadi pada tanaman Aegilops umbellulata dan Triticum aestivum yang menghasilkan mutan tanaman tahan penyakit. Inversi terjadi karena kromosom patah dua kali secara simultan setelah terkena energi radiasi dan segmen yang patah tersebut berotasi 180 o dan menyatu kembali. Kejadian bila centromere berada pada bagian kromosom yang terinversi disebut pericentric , sedangkan bila centromere berada di luar kromosom yang terinversi disebut paracentric . Inversi pericentric berhubungan dengan duplikasi atau penghapusan chromatid yang dapat menyebabkan aborsi gamet atau pengurangan frequensi rekombinasi gamet. Perubahan ini akan ditandai dengan adanya aborsi tepung sari atau biji tanaman, seperti dilaporkan terjadi pada tanaman jagung dan barley. Inversi dapat terjadi secara spontan atau diinduksi dengan bahan mutagen, dan dilaporkan bahwa sterilitas biji tanaman heterosigot dijumpai lebih rendah pada kejadian inversi daripada translokasi.

Duplikasi menampilkan cara peningkatan jumlah gen pada kondisi diploid. Dulikasi dapat terjadi melalui beberapa cara seperti: pematahan kromosom yang kemudian diikuti dengan transposisi segmen yang patah, penyimpangan dari mekanisme crossing-over pada meiosis (fase pembelahan sel), rekombinasi kromosom saat terjadi translokasi, sebagai konsekuensi dari inversi heterosigot, dan sebagai konsekuensi dari perlakuan bahan mutagen. Beberapa kejadian duplikasi telah dilaporkan dapat miningkatkan viabilitas tanaman. Pengaruh radiasi terhadap duplikasi kromosom telah banyak dipelajari pada bermacam jenis tanaman seperti jagung, kapas, dan barley.

Defisiensi adalah penghilangan satu atau lebih segmen gen pada kromosom. Penghilangan dapat terjadi pada segmen panjang lengan kromosom seperti yang dilaporkan pada tanaman gandum. Tergantung pada gen dan tingkat ploidi, defisiensi dapat menyebabkan kematian, separuh kematian, atau menurunkan viabilitas. Pada tanaman defisiensi yang ditimbulkan oleh perlakuan bahan mutagen (radiasi) sering ditunjukkan dengan munculnya mutasi klorofil. Kejadian mutasi klorofil biasanya dapat diamati pada stadia muda ( seedling stage ), yaitu dengan adanya perubahan warna pada daun tanaman. c. Mutasi Gen (Gene or Point Mutation)

Sesuai dengan konsep genetika, informasi genetik tersimpan dalam rangkaian polinukliotida yang membentuk struktur pilitan ganda ( double helix ) disebut DNA (RNA dalam kasus beberapa virus). Empat nukliotida yang berbeda terdiri dari basa purine (adenine dan gaunine) dan pyrimidine (thymine dan cytosine), dihubungkan bersama melalui ikatan fosfat dan gula (deoxyribose). Bahan mutagen tertentu dapat menginduksi perubahan spesifik susunan pasangan basa dalam struktur DNA. Perubahan yang terjadi disebut mutasi gen yang digolongkan menjadi dua katagori yaitu microlesions dan macrolesions . Microlesions adalah mutasi dimana terjadi substitusi pasangan basa, transisi atau transversi pasangan basa, dan penyisipan baru pasangan basa. Macrolesions adalah mutasi dimana terjadi penghapusan, duplikasi atau penyusunan kembali pasangan basa. Mutasi microlesions sering juga disebut mutasi titik ( point mutation ).

Mutagen kimia biasanya erat berhubungan dengan mutasi microlesions sedangkan mutagen kimia (radiasi) dengan mutasi macrolesions. Mutasi gen sering berasosiasi dengan fenomena sterilitas dan kematian, seperti misalnya dalam pengaruhnya mencegah terbentuknya bivalensi dalam meiosis. Pada mutan homosigot hal ini sangat berpengaruh terhadap penurunan produktivitas dan daya saing mutan sehingga dapat merugikan. Namun pada heterosigot mutan, mutasi gen dapat mengarah pada peningkatan viabilitas dan daya saing mutan, seperti yang telah diteliti dan dilaporkan pada tanaman jagung, barley, padi, tanaman bunga dan sebagainya. d. Mutasi diluar Inti Sel (Extranuclear Mutation)

21

Page 22: Referensi Mutasi

Pada kenyataannya tidak semua materi genetik (DNA) berada di dalam inti sel ( nucleus ). Hal tersebut terbukti setelah peneliti menjumpai bahwa beberapa sifat tanaman diturunkan dengan tidak menuruti pola hukum Mendel. Sampai pada akhirnya diketahui penurunan sifat lebih dikontrol oleh gen-gen yang berada di luar inti sel atau sitoplasma, dan penurunan sifat model ini dikenal dengan istilah extranuclear inheritance . Di dalam sitoplasma sel terdapat banyak organel diantaranya kloroplas ( chloroplast ) dan mitokondria (mitochondria) yang masing-masing berfungsi dalam proses fotosintesis dan sintesa adenosintriposfat (ATP).

Kloroplas dan mitokondria ternyata mengandung materi genetik (gen atau DNA) yang juga dapat termutasi. Mutasi gen kloroplas atau mitokondria sering disebut mutasi diluar inti atau extranuclear mutation . Mutasi pada gen kloroplas dapat menyebabkan kerusakan gen mutan (defective mutant genes) yang kemudian dapat mengganggu proses fotosintesis pada daun. Alhasil, dampak mutasi gen kloroplas sering diekspresikan dengan munculnya gejala warna belang pada daun tanaman, misalnya warna belang hijau-putih pada tanaman Pelargonium dan Mirabilis jalapa (bunga pukul empat). Warna belang pada daun sering memiliki nilai seni dan nilai ekonomis tersendiri bagi pemulia tanaman. Oleh karena itu, mutasi tipe ini sering sangat bermanfaat dalam pemuliaan tanaman hias (ornamental crops).

Seperti telah dilaporkan (Van Harten, 1998), mutasi di luar inti sel sering pula menimbulkan gejala pertumbuhan kerdil (dwarf growth), berubahan morfologi bunga dan penyimpangan morfologi lainnya, dan ketahanan terhadap herbisida, yang biasanya disandikan oleh gen mitokondria. Dalam beberapa studi, mutasi pada mitokondria gen telah menghasilkan tanaman jagung yang tahan penyakit bercak daun (Drechslera maydis) dan tanaman gandum yang tahan penyakit karat (Puccinia striiformis). Sementara itu, perhatian yang lebih besar telah diberikan untuk mutasi gen pada sitoplasma yang terkait dengan cytoplasmic male sterility (CMS) seperti pada tanaman jagung. Teknik CMS sangat bermanfaat dalam pemuliaan tanaman khususnya dalam produksi benih tanaman hibrida. Secara umum telah diketahui bahwa CMS adalah sifat yang disandikan oleh gen mitokondria (Lonsdale, 1987).

Mutasi dan rekombinasi DNA mitokondria merupakan dasar kejadian CMS alami. 2. Fasilitas dan Prosedur Kerja

Untuk mendukung penelitian pemuliaan tanaman dengan teknik mutasi, di BATAN tersedia fasilitas penelitian berupa Gamma chamber, Gamma cell, Gamma room, laboratorium, laboratorium kultur jaringan, ruang tumbuh, rumah

kaca, kebun percobaan dan sawah. Gamma chamber model 4000A memiliki sumber sinar gamma dari Cobalt-60 dengan aktivitas awal sebesar 3474.6632 Curie. Gamma cell model GC-220 memiliki sumber sinar Gamma dari Cobalt-60 dengan

22

Page 23: Referensi Mutasi

aktivitas awal sebesar 10.697 Curie. Pada umumnya Gamma chamber dan Gamma cell digunakan untuk penelitian yang memerlukan perlakuan radiasi akut ( accute irradiation ), yaitu radiasi dengan laju dosis tinggi seperti pada biji-bijian atau materi reproduktif tanaman lainnya yang berukuran kecil. Sedangkan untuk penelitian yang memerlukan perlakuan radiasi kronik ( chronic irradiation ), yaitu radiasi dengan laju dosis rendah seperti terhadap tanaman pot atau tanaman dalam media kultur jaringan, dapat digunakan Gamma room. Gamma room model Panoramic Batch Irradiator yang ada di BATAN memiliki sumber sinar gamma dari Cobalt-60 dengan aktivitas awal sebesar 75.000 Curie. Setelah perlakuan radiasi dengan sinar gamma, materi reproduktif tanaman kemudian ditumbuhkembangkan di ruang tumbuh, rumah kaca, atau langsung di kebun percobaan. Analisa mutan tanaman dilakukan di laboratorium, biasanya dengan membandingkan sifat-sifat genetik, biologi dan agronominya terhadap tanaman kontrol. Analisa mutan dapat juga dilakukan baik secara visual fenotipa maupun secara biologi molekuler seperti dengan teknik RAPD atau bioteknologi lainnya. Secara ringkas prosedur kerja pemuliaan tanaman dengan teknik mutasi khusus untuk tanaman serealia berserbuk sendiri (termasuk gandum) disajikan dalam gambar di bawah ini.

3. Tanaman yang Diteliti

Tanaman yang diteliti dikelompokkan sebagai berikut: (1) Tanaman pangan: padi, kedelai, kc. hijau, kc.tanah, sorghum, dan gandum(2) Tanaman hortikultura: pisang, cabai, bawang merah, dan bawang putih(3) Tanaman industri: kapas, sorghum, dan gandum(4) Tanaman bunga: krisan dan anggrek, dan (5) Tanaman pakan ternak: sorghum.

4. Hasil-hasil Yang Telah Dicapai Salah satu kegiatan di bidang pertanian adalah penelitian pemuliaan tanaman

dengan menggunakan teknik mutasi ( mutation breeding ). Kejadian mutasi direfleksikan dalam munculnya keragaman genetik tanaman, yang kemudian melalui proses seleksi dan pengujian lebih lanjut, memungkinkan diperolehnya suatu varietas unggul tanaman. Penelitian pemuliaan mutasi di BATAN sebetulnya telah dimulai sejak tahun 1970, yaitu dengan program perbaikan varietas tanaman padi. Sampai kini BATAN telah menghasilkan beberapa mutan tanaman pangan yang dilepas sebagai varietas unggul oleh Departemen Pertanian.

Mutasi Spontan maksudnya yaitu saat replikasi menempel dapat membuat kesalahan dengan menyisipkan basa yang salah ketika replikasi berlangsung, tetapi

23

Page 24: Referensi Mutasi

dapat diperbaiki oleh DNA dengan bantuan exnuklease (membuang basa yang salah dari ujung 3′ dan menggantinya dengan yang benar).

Mutasi Nonsense, Ibarat Pedang Bermata DuaMutasi nonsense

Dalam genetika, mutasi nonsense adalah sebuah mutasi titik (point mutation) di dalam sekuens DNA yang menghasilkan 'kodon stop' prematur (juga dikenal dengan sebutan kodon nonsense) dalam mRNA transkripsi, serta kemungkinan menghasilkan protein yang terpotong dan umumnya tidak berfungsi (Answer.com).Contoh sederhana, pada sekuens DNA dengan panjang 24 basa nukleotida (8 triplet), dan diterjemahkan (translasi) menjadi protein yang tersusun dari 7 asam amino, ditambah satu perhentian (stop) pada triplet terakhir (triplet kedelapan), sebagai berikut:

TAC TGA GTG GCT CGC GCA TCG ACT => DNAAUG ACU CAC CGA GCG CGU AGC UGA => mRNAMet Thr His Arg Ala Arg Ser Stop => Protein

Seandainya ada mutasi nonsense, di dalam triplet keempat, pada sekuens DNA (GCT), G (guanosin) digantikan oleh A (adenosin) menjadi ACT, maka akan terjadi 'kodon stop' pada transkripsi mRNA (dikodekan dengan triplet UGA pada mRNA). Dengan adanya mutasi nonsense tersebut, DNA akan mentranskripsikan mRNA serta menerjemahkan protein sebagai berikut:

AUG ACU CAC UGA CGC CGU AGC UGA => mRNAMet Thr His Stop => Protein

Pada contoh kasus di atas, protein tersusun atas 3 asam amino hasil penerjemahan 3 triplet mRNA saja, karena pada triplet keempat ditemukan 'kodon stop' atau triplet perhentian penerjemahan. Hal inilah yang dimaksud dengan kegagalan translasi protein (menghasilkan 'kodon stop' prematur) akibat mutasi nonsense.

Bahaya mutasi nonsense

Jika mutasi nonsense terjadi pada gen normal, jelas akan sangat tidak menguntungkan bahkan bisa sangat berbahaya, karena ekspresi gen yang mengalami mutasi ini, tidak akan sempurna, dan mungkin akan menimbulkan penampakan (fenotipe) yang tidak normal. Misalnya sebagaimana yang disampaikan oleh Michael dkk (1996) atas mutasi nonsense pada gen 'lit' yang berperan dalam pembentukan hormon pertumbuhan di hipotalamus tikus, menghasilkan penampakan badan yang kerdil dibandingkan yang normal disertai beberapa gangguan metabolisme tubuh.

Mutasi nonsense ini juga secara alamiah ditemukan di dunia, misalnya pada gen resesif terpaut kromosom X penyebab 'duchenne muscular dystrophy' (DMD) dan gen resesif penyebab 'cystic fibrosis' (CF) pada manusia.

DMD adalah sebuah penyakit bawaan lahir yang hanya ditemukan pada anak laki-laki, ditandai dengan kelemahan otot berawal dari kaki dan panggul, membuat anak terlambat untuk mampu berdiri hingga lebih dari umur 6 tahun. Wagner dkk (2001) menyebutkan bahwa DMD ini disebabkan oleh mutasi pada gen terpaut kromosom X (bersifat resesif), yang menyebabkan penghentian prematur pada translasi distropin, yaitu salah satu protein yang berperan dalam pembentukan sel-sel tulang dan serat-serat otot.

CF adalah sebuah penyakit bawaan lahir pada kelenjar eksokrin, yang berakibat mempengaruhi paru-paru, kelenjar keringat, dan sistem pencernaan

24

Page 25: Referensi Mutasi

(gangguan pernapasan dan pencernaan kronis). Shoshani dkk (1992) menemukan bahwa pada pasien CF terdapat mutasi nonsense pada kromosom no 16 dan 22 dan diberi kode W1282X.

Tentu saja ketiga contoh di atas hanyalah sebagian kecil dari berbagai kasus mutasi nonsense yang ada.Memanfaatkan pengetahuan mutasi nonsense

Dengan adanya pengetahuan tentang mutasi nonsense ini, peneliti-peneliti sejak satu dekade yang lalu mencoba mendisain suatu proses terapi, dimana pada wilayah mutasi nonsense ini translasi protein bisa tetap berjalan, dan mengabaikan 'kodon stop' sehingga tidak perlu ada penghentian secara prematur. Proses ini diibaratkan menjalankan kendaraan menerobos lampu merah.

Akhirnya berhasil ditemukan suatu proses yang disebut 'nonsense mediated mRNA decay' (NMD). Hal ini dijelaskan secara jelas dalam review yang disampaikan oleh Wilkinson (2005) di jurnal 'Trends in Genetics'. Salah satu hasilnya adalah PTC124, calon obat terapi untuk menjalankan proses tersebut di dalam sel, yang saat ini sedang menunggu uji klinis.

E. Uji Mutagenesitas

Uji mutagenesitas adalah uji yang digunakan untuk mengetahui apakah suatu bahan bersifat karsinogenik, yaitu dapat menimbulkan sel kanker. Zat yang bersifat karsinogenik ini dapat dibagi dalam beberapa, yaitu hidrokarbon aromatik, polisiklik, amin aromatik, senyawa pengalkil, dan senyawa yang berasal dari alam. Sifat karsinogen senyawa kimia secara tidak langsung dapat ditentukan dengan cara uji mutagenisitas.

Beberapa metode dapat digunakan untuk menentukan sifat karsinogenik suatu senyawa kimia. Pengujian dapat dilakukan dengan cara menggunakan hewan percobaan, serangga, sel mamalia, atau dengan bakteri. Pengujian yang paling sering digunakan adalah uji mutagenisitas dengan menggunakan bakteri. Pengujian ini memerlukan waktu relatif singkat dan biaya yang lebih murah jika dibandingkan dengan cara-cara uji mutagenesitas lainnya. Uji mutagenesitas dengan menggunakan bakteri dikenal sebagai uji Ames yang menggunakan bakteri. Salmonellla thypimurium TA 97, TA 98, TA 100, dan TA 102. setiap galur mengandung gen mutasi histidin, mutasi rfa, mutasi uvrB, dan faktor R untuk meningkatkan kepekaan bakteri terhadap senyawa mutagenik. Selain itu, digunakan juga galur Eschericia coli WP2 yang mengandung gen mutasi uvrA.

Bakteri yang diggunakan adalah bakteri yang telah dimutasi terlebih dahulu sehingga tidak mampu menyintesis salah satu jenis asam amino esensial, misalnya histidin atau triptofan, untuk pertumbuhannya. Oleh karena itu, bakteri membutuhkan media yang mengandung histidin atau triptofan agar dapat tumbuh normal. Jika bahan uji yang diperiksa bersifat mutagenik, bakteri uji akan mengalami mutasi balik ke fungsinya yang semula. Dengan demikian, gen his dan gen trp yang termutasi akan mengalami mutasi balik sehingga dengan gen his dan gen trp tersebut kembali normal dan bakteri uji dapat menyintesis sendiri histidin dan triptofan yang dibutuhkan dalam pertumbuhan bakteri, yang ditunjukkan dengan pertumbuhan bakteri di dalam media yang kekurangan histidin atau triptofan.

Setiap galur bakteri mengandung tipe mutasi berbeda terhadap gen histidin. Galur bakteri uji yang mengandung mutasi gen lain yang diperlukan untuk menaikkan kepekaan bakteri dalam mendeteksi mutagen. Mutasi rfa menyebabkan hilangnya sebagian sawar lipopolisakarida yang membungkus permukaan bakteri sehingga mengakibatkan naiknya permeabilitas terhadap molekul besar seperti benzo[a]piren yang tidak dapat berpenetrasi ke dalam sel normal.Mutasi lain, uvrB, adalah penghilangan gen pengode sistem excision repair DNA dan mutasi gen bio sehingga bakteri membutuhkan biotin untuk pertumbuhannnya.

Galur TA 102 tidak mengandung mutasi uvrB karena dibuat untuk mendeteksi

25

Page 26: Referensi Mutasi

mutagen yang membutuhkan sistem excision repair utuh. Galur bakteri uji standar TA 97, TA 98, TA 100, dan TA 102 mengandung plasmid faktor R, pKM 101. TA 102 juga mengandung multicopy plasmid, pAQ1, yang mengandung mutasi hisG428 dan gen resisten tetrasiklin.

Galur TA 100 mempunyai mutasi hisG46 , yaitu pada gen hisG yang mengodekan enzim pertama untuk biosintesis histidin. Mutasi ini dipastikan dengan analisis urutan DNA (DNA sequence), yaitu terjadinya substitusi leusin (-CTC-) menjadi prolin(-CCC-) dalam bakteri. TA 100 mendeteksi mutagen yang menyebabkan substitusi pasangan basa yang mula-mula terjadi pada salah satu pasangan G-C.

Mutasi hisD3052 pada TA 98 adalah gen hisD pengode histidinol dehidrogenase. Galur ini dapat mendeteksi beberapa mutagen frameshift. Mutagen dapat memantapkan pasangan tergeser yang sering terjadi pada pengulangan urutan DNA atau hot spot DNA yang menghasilkan mutasi frameshift yang memulihkan pembacaan frame yang benar untuk sintesis histidin. Mutais hisD3052 mempunyai urutan pengulangan –GC- ayng terdapat di dekat tempat mutasi frameshift a-1 pada gen hisD.

Galur frameshif baru, TA 97, mempunyai penambahan sitosin yang menghasilkan 6 sitosin pada tempat mutasi hisD6610, dan juga mempunyai hot spot kedua dari paangan GC berseling dekat sitosin. Galur TA 102 memiliki gen mutasi histidin yang berlokasi pada multicopy plasmid pAQ1. gakur ini terutama sensitif terhadap mutagen oksidatif dan senyawa penaut silang (cross-linking agent). Galur bakteri Escerichia coli WP2 mempunyai gen mutasi untuk biosintesis triptofan. Mutasi yang dimiliki bakteri ini dapat dreversi kembali oleh mutagen yang menyebabkan substitusi pasangan basa. Akan tetapi, bakteri ini tidak mempunyai mutasi rfa sehingga tidak mampu mendeteksi mutagen yang memiliki ukuran molekul besar. Bakteri uji yang akan digunakan untuk uji Ames harus mempunyai sifat genotip yang telah disyaratkan. Konfirmasi sifat genotip ini harus dilakukan:•segera setelah menerima biakan,•pada waktu pembuatan liofisilat,•pada saat revertan spontan per cawan terletak di luar rentang normal, dan•jika bakteri-bakteri tersebut kehilangan sensitivitas terhadap mutagen.

Konfirmasi genotip yang dilakukan adalah uji butuh histidin untuk Salmonella thypimurium, uji butuh triptofan untuk Escerichia coli, mutasi rfa dan mutasi uvrB untuk Salmonella thypimurium, dan mutasi uvrA utuk Escerichia coli, uji faktor R, uji plasmid pAQ1 untuk galur Salmonella thypimurium TA 102, dan uji reversi spontanSelain konfirmasi genotip, perlu juga dilakukan uji mutagen standar. Walaupun hasil konfirmasi sifat genotip tidak memenuhi syarat, tetapi jika mutagen standar tidak memberikan hasil positif, bakteri tersebut tidak dapat digunakan untuk pengujian. Mutagen standar yang sering digunakan adalah 4-nitrokuinolin-N-oksida (NQNO), 4-fluoro-3-nitrofenil azida (FNPA), 2-nitrofluoren (2NF), dan metil metan sulfonat (MMS), uji mutagen standar ini dapat memastikan kepekaan galur bakteri uji untuk mengalami mutasi balik jika berkontak dengan zat karsinogen. Untuk zat karsinogen yang tidak aktif sebelum bioaktivasi, pengujian memerlukan sistem bioaktivasi yang terdiri dari fraksi mikrosoma hati tikus atau hewan lain. Aktivitas enzim mikrosoma biasanya meningkat jika hewan diinduksi dengan zat penginduksi seperti fenobarbital. Selain itu, diperlukan penambahan kofaktor pada enzim sebelum diinkubasi.

F. Pemanfaatan MutasiPemanfaatan Mutasi sering dilakukan oleh para ahli seperti pemanfaatan

untuk menghasilkan tanaman poliploidi dan meradiasi tanaman dengan radioaktif.. Pemanfaatan minyak Jarak (Jatropha curcas L) sebagai bahan bio-diesel merupakan alternatif yang ideal untuk mengurangi tekanan permintaan bahan bakar minyak dan penghematan penggunaan cadangan devisa. Minyak Jarak Pagar selain

26

Page 27: Referensi Mutasi

merupakan sumber minyak terbarukan (reneweble fuels) juga termasuk non edible oil sehingga tidak bersaing dengan kebutuhan konsumsi manusia seperti pada minyak kelapa sawit, minyak jagung dll. Secara agronomis tanaman Jarak Pagar dapat beradaptasi dengan lahan dan agroklimat di Indonesia; bahkan pada kondisi kering dan pada lahan marginal/kritis. Akan tetapi ada permasalahan yang dihadapi, yaitu belum adanya varietas unggul dan teknik budidaya yang memadai.

Teknik Mutasi Buatan merupakan usaha merubah susunan atau jumlah materi genetik/DNA dengan menggunakan radiasi sinar radioaktif (sinar X, alpha, beta dan gamma) atau dengan senyawa kimia (kolkisin). Teknik mutasi dengan sinar gamma biasanya ditujukan untuk menghasilkan biji-biji tanaman padi dan palawija, agar berumur pendek (cepat dipanen), hasilnya banyak dan tahan terhadap serangan hama wereng. Selain itu, terdapat teknik mutasi buatan lainnya, yakni teknik perendaman biji-biji tanaman perkebunan dan pertanian dalam senyawa kolkisin, senyawa ini menyebabkan tanaman mempunyai buah yang besar dan tidak berbiji; misalnya buah semangka, pepaya, jeruk, dan anggur tanpa biji, seperti pada gambar 22 berikut. Namun sayangnya tanaman ini tidak dapat menghasilkan tanaman baru sebagai keturunannya, karena buah-buahan yang dihasilkan tidak memiliki organ reproduksi yaitu biji. Lalu bagaimanakah caranya bila kita menghendaki buah-buahan tanpa biji lagi? Ya benar, kita harus memulai lagi dari perendaman biji-biji (benih) dari buah yang memiliki biji, dengan senyawa kolkisin. Baru kemudian ditanam dan ditunggu hasil buahnya yang pasti tidak memiliki biji.

Gambar 22. Buah-buahan tanpa biji hasil mutasi buatan; (a) pepaya,(b) jeruk.

G. Kerugian MutasiSejumlah pasien penderita kanker payudara diperkirakan mengalami mutasi

genetika setelah mengkonsumi 'Tamoxifen' yang merupakan obat kanker payudara yang banyak digunakan secara luas. Demikian disampaikan oleh hasil penelitian Dr. Vered Stearns dari the Johns Hopkins Kimmel Cancer Center.

Mutasi gen supresor tumor mengganggu regulasi sel normal karena mutasi tersebut mampu menghilangkan restriction point yang seharusnya dilewati oleh setiap sel pada saat masuk ke siklus sel. Restriction point terjadi di antara fase G1 dan fase S siklus sel, berlangsung kira-kira dua hingga tiga jam sebelum DNA disintesa dalam fase S. Pathways yang teraktifkan sebagai respon kerusakan DNA merupakan sinyal bagi inaktifasi restriction point, sehingga siklus sel berhenti di fase G1. Apabila terjadi kerusakan DNA, siklus sel berhenti di fase G1 dan di fase G2. Pemberhentian di fase G1 berfungsi untuk mencegah DNA yang rusak direplikasi dan pemberhentian di G2 memungkinkan sel untuk menghindari pemisahan kromosom yang rusak.

Dari pembahasan diatas bisa kita simpulkan bahwa Mutasi adalah mendasar bagi teori evolusi, namun mutasi hanya dapat mengeliminasi sifat. Mutasi tidak dapat menghasilkan fitur baru. Sebaliknya, biologi telah mendokumentasi banyak perilaku yang dihasilkan oleh mutasi titik (perubahan pada posisi yang pasti dalam sebuah DNA organisme) -- contohnya, daya tahan bakteri terhadap antibiotika. Mutasi yang muncul pada keluarga homeobox (Hox) dari gen2 pengatur regulasi pada hewan dapat pula memiliki efek yang rumit. Gen2 Hox mengarahkan kemana kaki, sayap, antena dan segmen tubuh mesti tumbuh. Pada lalat buah, misalnya, mutasi yang disebut Antennapedia menyebabkan kaki tumbuh di tempat dimana seharusnya

27

Page 28: Referensi Mutasi

antena yang tumbuh. Anggota tubuh tak normal ini tidak fungsional, namun keberadaannya menunjukkan bahwa kesalahan genetik dapat menghasilkan struktur kompleks, yang untuk kemudian dapat di uji oleh seleksi alam apakah dapat berguna atau tidak. Lebih lanjut, biologi molekuler telah menemukan mekanisme untuk perubahan genetik yang terjadi lebih dari sekedar mutaasi titik, dan ini memperluas cara dimana sifat baru dapat muncul. Modul fungsional dalam gen dapat terpotong dalam cara yang tepat. Seluruh gen dapat secara tidak sengaja terduplikasi dalam sebuah DNA organisme, dan duplikasi ini bebas bermutasi menjadi gen2 untuk fitur2 baru yang rumit. Perbandingan DNA dari beragam organisme menunjukkan bahwa beginilah bagaiamana keluarga globin dari protein darah berevolusi selama jutaan tahun.

http://18bios1unsoed/files.wordpress.com/2008/03/buku-ajar-gen-11.dochttp://www.infonuklir.com/modules/news/index.php?storytopic=26http://www.beritaiptek.comhttp://faktaevolusi.blogspot.com/2008/02/mutasi-adalah-mendasar-bagi-teori.htmlhttp://organisasi.org/taxonomy_menu/2/10http://cuenk.blogspot.com/2008/01/mutasi.htmlhttp://www.nano.lipi.go.idhttp://situs.kesrepro.info/aging/index.htmhttp://id.wikipedia.org/wiki/Mutasihttp://www.e-dukasi.net/mol/mo_subject.php?kls_id=1&subject_id=3http://gerbangkota.multiply.com/reviewshttp://biogen.litbang.deptan.go.id/terbitan/prosiding/fulltext_pdf/prosiding2002_352-355_sudjadi.pdfhttp://iqbalali.com/2008/10/07/soal-jawab-seputar-mutasi/#more-233http://tigaserangkai.co.id/images/File/Seri-A-SMA/KTSP SAINS BIO SMA 3A/biologi 3A.pdfhttp://indah-web.blogspot.com/ Bahan Ajar Biologi_ Mutasi.mhthttp://www.saintpeter.sch.id/shs/sumarno/Bab 6 MUTASI.ppt

28