35
References Abramowitz, M., & Stegun, I. H. (1972). Handbook of mathematical functions. New York: Dover Publications, Inc. Alexandrov, A. V., & Potapov, V. D. (1990). The fundamentals of the theory of elasticity and plasticity. Moscow: Izd-vo Vyshaya Shkola (in russo). Almen, J. O., & Black, P. H. (1963). Residual stresses and fatigue in matals. New York: McGraw-Hill Book Company, Inc. Almroth, B. O.(1966) Influence of edge conditions on the stability of axially compressed cylindrical shells. Journal of the American Institute of Aeronautics and Astronautics, 4(1). Amerio, L. (1977). Analisi matematica con elementi di analisi funzionale (Vol. 2). Torino: UTET. Annaratone, A. (1998). Generatori di vapore. Milano: Edizioni Libreria CLUP. Annaratone, A. (1998). Recipienti in pressione. Milano: Edizioni Libreria CLUP. Aron, H. (1874). Das Gleichgewicht und die Bewegung einer unendlich dünnen, beliebig gekrümmten, elastischen Schale. Journal Für reine und angewandte Mathematik, 78. ASM Handbook. (1990). Proprierties and selection: Iron, steel and high performance alloys. Materials Park: ASM International. Bach, C. (1909). Versuche über die tatsächliche Widerstandsfähigkeit von Balkan mit [-förmigem Kuerschnitt. Zeitschrift des Vereines Deutscher Ingenieure, 53(44), 1790–1795. Bach, C. (1910). Versuche über die tatsächliche Widerstandsfähigkeit von Trägern mit [-förmigem Kuerschnitt. Zeitschrift des Vereines Deutscher Ingenieure, 54(10), 382–387. Bailey, R. W. (1935). The utilisation of creep test data in engineering design. Proceedings of Institutions of Mechanical Engineers, 131, 209–284. Baker, E. H., Cappelli, A. P., Kovalevsky, L., Rish, F. L., & Verette, R. M. (1968). Shell analysis manual. North American Aviation, Inc., NASA CR-912, Washington, DC. Banerjee, P. K., & Butterfield, R. (1981). Boundary element methods in engineering science. London: McGraw-Hill. Barber, J. R. (1999). Elasticity. Dordrecht: Kluwer Academic Publishers. Bassett, A. (1890). On the extension and flexure of cylindrical and spherical thin elastic shells. Philosophical Transactions of the Royal Society, Series A, 181(6), 433–480. Bassett, A. (1890). On the extension and flexure of thin elastic shells. Philosophical Transactions of the Royal Society, Series A, 179. Batdorf, S. B. (1947). A simplifield method of elastic stability analysis for thin cylindrical shells. Technical Report, No. 874, Washington, DC: NACA. Batdorf, S. B., & Budiansky, B. (1949). A mathematical theory of plasticity based on the concept of slip. Technical Note, no. 1871, Washington, DC: NACA. Bell, J. F. (1984). Mechanics of solids: The experimental foundation of solid mechanics. New York: Springer. Belloni, G., & Bernasconi, G. (1984). Sforzi, deformazioni e loro legami. Milano: Edizioni Spiegel. V. Vullo, Circular Cylinders and Pressure Vessels, Springer Series in Solid and Structural Mechanics 3, DOI: 10.1007/978-3-319-00690-1, ȑ Springer International Publishing Switzerland 2014 353

References - Springer978-3-319-00690-1/1.pdf · References Abramowitz, M., & Stegun ... Circular Cylinders and Pressure Vessels, ... & Ruiz, C. (1967). Pressure vessel design and

  • Upload
    domien

  • View
    224

  • Download
    4

Embed Size (px)

Citation preview

References

Abramowitz, M., & Stegun, I. H. (1972). Handbook of mathematical functions. New York: DoverPublications, Inc.

Alexandrov, A. V., & Potapov, V. D. (1990). The fundamentals of the theory of elasticity andplasticity. Moscow: Izd-vo Vyshaya Shkola (in russo).

Almen, J. O., & Black, P. H. (1963). Residual stresses and fatigue in matals. New York:McGraw-Hill Book Company, Inc.

Almroth, B. O.(1966) Influence of edge conditions on the stability of axially compressedcylindrical shells. Journal of the American Institute of Aeronautics and Astronautics, 4(1).

Amerio, L. (1977). Analisi matematica con elementi di analisi funzionale (Vol. 2). Torino:UTET.

Annaratone, A. (1998). Generatori di vapore. Milano: Edizioni Libreria CLUP.Annaratone, A. (1998). Recipienti in pressione. Milano: Edizioni Libreria CLUP.Aron, H. (1874). Das Gleichgewicht und die Bewegung einer unendlich dünnen, beliebig

gekrümmten, elastischen Schale. Journal Für reine und angewandte Mathematik, 78.ASM Handbook. (1990). Proprierties and selection: Iron, steel and high performance alloys.

Materials Park: ASM International.Bach, C. (1909). Versuche über die tatsächliche Widerstandsfähigkeit von Balkan mit [-förmigem

Kuerschnitt. Zeitschrift des Vereines Deutscher Ingenieure, 53(44), 1790–1795.Bach, C. (1910). Versuche über die tatsächliche Widerstandsfähigkeit von Trägern mit

[-förmigem Kuerschnitt. Zeitschrift des Vereines Deutscher Ingenieure, 54(10), 382–387.Bailey, R. W. (1935). The utilisation of creep test data in engineering design. Proceedings of

Institutions of Mechanical Engineers, 131, 209–284.Baker, E. H., Cappelli, A. P., Kovalevsky, L., Rish, F. L., & Verette, R. M. (1968). Shell analysis

manual. North American Aviation, Inc., NASA CR-912, Washington, DC.Banerjee, P. K., & Butterfield, R. (1981). Boundary element methods in engineering science.

London: McGraw-Hill.Barber, J. R. (1999). Elasticity. Dordrecht: Kluwer Academic Publishers.Bassett, A. (1890). On the extension and flexure of cylindrical and spherical thin elastic shells.

Philosophical Transactions of the Royal Society, Series A, 181(6), 433–480.Bassett, A. (1890). On the extension and flexure of thin elastic shells. Philosophical Transactions

of the Royal Society, Series A, 179.Batdorf, S. B. (1947). A simplifield method of elastic stability analysis for thin cylindrical shells.

Technical Report, No. 874, Washington, DC: NACA.Batdorf, S. B., & Budiansky, B. (1949). A mathematical theory of plasticity based on the concept

of slip. Technical Note, no. 1871, Washington, DC: NACA.Bell, J. F. (1984). Mechanics of solids: The experimental foundation of solid mechanics. New

York: Springer.Belloni, G., & Bernasconi, G. (1984). Sforzi, deformazioni e loro legami. Milano: Edizioni

Spiegel.

V. Vullo, Circular Cylinders and Pressure Vessels, Springer Series in Solidand Structural Mechanics 3, DOI: 10.1007/978-3-319-00690-1,� Springer International Publishing Switzerland 2014

353

Belloni, G., & Lo Conte, A. (2002). Costruzione di macchine: Resistenza dei materiali esicurezza. Milano: Hoepli.

Belluzzi, O. (1971). Scienza delle costruzioni (Vols. 1–4). Bologna: Zanichelli.Bernardini, C., Ragnisco, O., & Santini, P. M. (2002). Metodi Matematici della Fisica. Roma:

Carocci Editore.Bernasconi, G., & Piatti, G. (1979). Creep of engineering materials and structures. London:

Applied Science Publication Ltd.Bickell, M. B., & Ruiz, C. (1967). Pressure vessel design and analysis. London: Macmillan.Biezeno, C. B., & Grammel, R. (1953). Technische Dynamik, Erster Band, Grundlagen und

Einzelne Maschinenteile. Berlin: Springer.Bland, D. R. (1960). Theory of linear viscoelasticity. Oxford: Pergamon Press.Boley, B. A., & Weiner, J. H. (1997). Theory of thermal stresses. Mineola: Dover Publications

Inc.Boller, C., & Seeger, T. (1987). Materials science monographs, 42 B, materials data for cyclic

loading, part B: Low-alloy steels. Amsterdam: Elsevier.Boresi, A. P., & Chong, K. P. (2000). Elasticity in engineering mechanics. New York: Wiley.Brownell, L. E., & Young, E. H. (1968). Process equipment design. New York: Wiley.Bruhn, E. F. (1973). Analysis and design of flight vehicle structures. NP: Jacobs Publishing Inc.Brush, D. O., & Almroth, B. O. (1975). Buckling of bars, plates, and shells. New York: McGraw-

Hill.Budiansky, B., & Sanders, J. L. (1963). On the ‘‘best’’ first-order linear shell theory. Progress in

applied mechancs (pp. 129–140). New York: McMillan.Burr, A. H. (1982). Mechanical analysis and design. New York: Elsevier.Byrne, R. (1944). Theory of small deformations in a thin elastic shell. Seminar Report in

Mathematics, University of California, Publication in Mathematics (Vol. 2(1), pp. 103–152).Caboni, F. (1971). Costruzione di macchine. Bologna: Pitagora Editrice.Calderale, P. M., Vullo, V., Bracco, G., & Uslenghi, P. (1981). Analisi delle tensioni in un

soffietto soggetto a carico non assialsimmetrico e verifica sperimentale. Progetto, Rivista diProgettazione di Macchine, 3(8/9), 45–50.

Calladine, C. R. (2001). A shell-buckling paradox resolved. In D. Durban, D. Givoli, & J.G. Simmonds (Eds.), Advances in the mechanics of plates and shells (pp. 119–134).Dordrecht: Kluwer Academic Publishers.

Calladine, C. R. (1985). Plasticity for engineers. Chichester: Ellis Horwood Limited Publishers.Capurso, M. (1971). Analisi limite: Strutture Bidimensionali. In R. Baldacci, G. Cerandini & E.

Giangreco (Eds.), Plasticità (Vol. 2). Collana Tecnico-Scientifica per la Progettazione diStrutture in Acciaio. Genova: Italsider.

Carslaw, H. S., & Jaeger, J. C. (1959). Conduction of heat in solids (2nd ed.). London: OxfordUniversity Press.

Cauchy, A. L. (1828). Sur l’equilibre et le mouvement d’une plaque solide. Exercise deMathématique, 3, 328.

Chaboche, J. L. (1986). Time-independent constitutive theories for cyclic plasticity. InternationalJournal of Plasticity, 2(2), 149–188.

Chajes, A. (1974). Principles of structural stability theory. Englewood Cliffs: Prentice-Hall Inc.Chen, F. Y. (1976). Mohr’s circle and its applications to engineering design. Paper 76—DET-99,

ASME, September 1976.Christensen, R. M. (1971). Theory of viscoelasticity: An introduction. New York: Academic

Press.Cicala, P. (1997). An engineering approach to the calculus of variations, with complete

bibliography of the author (2nd ed.). Torino: Libreria Editrice Universitaria Levrotto & Bella.Cicala, P. (1977). Asymptotic approach to linear shell theory (p. 129). AIMETA Research

Report, No. 6.Cicala, P. (1940). La stabilità elastica del cilindro in parete sottile. L’Aerotecnica, 20(5),

355–373.

354 References

Cicala, P. (1940). La stabilità elastica del cilindro in parete sottile, Parte I, Parte II, Parte III.L’Aerotecnica, 20(6), 460–479, (7), 595–612 and (10), 735–746.

Cicala, P. (1981). La teoria non lineare d’elasticità. Quaderno n. 1, Torino: Istituto di Scienzadelle Costruzioni, Politecnico di Torino.

Cicala, P. (1971). Le strutture a guscio, parte prima, la teoria lineare. Torino: Libreria EditriceUniversitaria Levrotto & Bella.

Cicala, P. (1978). Linear shell, theories, an asymptotic approach. Torino: Libreria EditriceUniversitaria Levrotto & Bella.

Cicala, P. (1963). Scienza delle Costruzioni, Parte Prima, Travature e Parte seconda, Teoriadelle Travi. Torino: Libreria Editrice Universitaria Levrotto & Bella.

Cicala, P. (1940). Sulla stabilità dell’equilibrio elastico. Atti dell’Accademia delle Scienze diTorino, 75, 185–222.

Cicala, P. (1973). Sulla teoria non lineare del guscio elastico. L’Aerotecnica, Missili e Spazio, 5,325–331.

Cicala, P. (1950). Sulle deformazioni plastiche. Rendiconti dell’Accademia delle Scienze diTorino, 8(6), 583–586.

Cicala, P. (1974). Sulle tensioni critiche nelle strutture a guscio. Torino: Istituto di Scienza delleCostruzioni, Politecnico di Torino.

Cicala, P. (1965). Systematic approximation approach to linear shell theory. Torino: LibreriaEditrice Universitaria Levrotto & Bella.

Cicala, P. (1965). Teoria Lineare della Parete Sottile. Torino: Libreria Editrice UniversitariaLevrotto & Bella.

Cicala, P. (1966). The calculation of axially symmetric vessels. Meccanica, 1–2, 58–60.Coates, W. M. (1930). The state of stress in full heads of pressure vessels. Transactions of the

American Society Mechanical Engineers, 52, 117–131 (APM 52-12).Coates, W. M. (1929). The state of stress in thin-walled pressure vessels. Transactions of the

American Society Mechanical Engineers, 51, 829.Cockcroft, R. D. H. (1969). Creep in materials subjected to variable loading. In Bi-axial stress

PhD Dissertation, University of Cambridge.Codazzi, D. (1868–1869). Sulle coordinate curvilinee d’una superficie dello spazio. Annali di

Matematica Pura ed Applicata, 2, 101–119.Colladine, C. R. (2001). A shell-buckling paradox resolved. In D. Durban, D. Givoli, & J.

G. Simmonds (Eds.), Advances in the mechanics of plates and shells (pp. 119–134).Dordrecht: Kluwer Academic Publishers.

Collins, J. A. (1981). Failure of materials in mechanical design, analysis, prediction, prevention.New York: Wiley.

Como, M. (1973). Sull’imbozzamento elasto-plastico dei contenitori cilindrici. Quaderni de ‘‘LaRicerca Scientifica’’ (Vol. 78, pp. 42–56). Roma: Consiglio Nazionale delle Ricerche.

Cook, R. D. (1981). Concepts and applications of finite element analysis (2nd ed.). New York:Wiley.

Cook, R. D., & Young, W. C. (1999). Advanced mechanics of materials (2nd ed.). EnglewoodCliffs: Prentice-Hall Inc.

Corradi Dell’Acqua, L. (1992). Meccanica delle strutture. Milano: McGraw-Hill Libri Italia.Coulomb, C. A. (1773). Essai sur une application des règles des maximis et minimis à quelques

problèmes de statique relatifs à l’architecture (Vol. 7, pp. 343–382). Paris: Mémoire présentéà l’Académie royale des sciences.

Crossland, B., & Bones, J. A. (1955). The ultimate strength of thick-walled cylinders subjected tointernal pressure. Engineering, 80–83 and 114–117.

Crossland, B., & Bones, J. A. (1958). The ultimate strength of thick-walled cylinders.Transactions of the ASME, 80.

Crossland, B., Jorgensen, S. M., & Bones, J. A. (1959). The strength of thick-walled cylinders.Journal of Engineering for Industry, 81.

References 355

Dawson, V. C. D. (1960). Elastic and plastic stress equations for hollow cylinders. NavordReport No. 6786.

Dawson, V. C. D., & Seigel, A. E. (1963). Reverse yielding of a fully autofrettaged tube of largewall ratio. Meryland: United States Naval Ordnance Laboratory. Unclassified report NOLTR63-123.

Den Hartog, J. P. (1952). Advanced strength of materials (1st ed.). New York: McGraw Hill.Desai, C. S., & Sirilwardane, H. J. (1984). Constitutive laws for engineering materials.

Englewood Cliffs: Prentice-Hall Inc.Deutschman, A. D., Michels, W. J., & Wilson, C. E. (1975). Machine design theory and practice.

New York: Macmillan Publishing Co. Inc.Dieter, G. E. (1988). Mechanical metallurgy, metric editions materials science and metallurgy.

London: McGraw-Hill Book Company.Dill, E. H. (2007). Continuum mechanics: Elasticity, plasticity, viscoelasticity. Boca Raton: CRC

Press, Taylor & Francis Group.Donnell, L. H. (1934). A new theory for the buckling of thin cylinders under axial compression

and bending. Transactions of the ASME, 56, 795–806.Donnell, L. H. (1933). Stability of thin walled tubes under torsion. Report no. 479. Washington,

DC: NACA.Donnell, L. H., & Wan, C. C. (1950). Effect of imperfections on buckling of thin cylinders.

Journal of Applied Mechanics, pp. 75–83.Dorn, J. E. (1955). Some fundamental experiments on high temperature creep. Journal of

Mechanics, Physics and Solids, 3.Dowling, N. E. (1999). Mechanical behavior of materials (2nd ed.). Upper Saddle River: Pearson

Education Inc.Drucker, D., & Shield, R. (1958). Limit analysis of symmetrically loaded thin shells of

revolution. Journal of Applied Mechanics, 25.Dubbel, H. (1983). Taschenbuch für den Maschinenbau (Vol. 15). Berlin Heidelberg: Springer.Evans, R. W., & Wilshire, B. (1985). Creep of metals. London: Institute of Metals.Faupel, J. H. (1964). Engineering design: A synthesis of stress analysis and materials

engineering. New York: Wiley.Faupel, J. H., & Furbeck, A. R. (1953). Influence of residual stresses on behaviour of thick-walled

closed-end cylinders. Transactions of the ASME, 75, 345–354.Faupel, J. H. (1955). Residual stresses in heavy-wall cylinders (Vol. 259, pp. 405–419). Int.

Franklin Institute.Faupel, J. H. (1956). Yield and bursting characteristics of heavy-walled cylinders. Transactions

of the ASME, 78(5), 1031–1064.Favretti, G. (1967). Corpi cilindrici e serbatoi in parete spessa. Quaderno n. 36 de ‘‘La Ricerca

Scientifica: Stato delle conoscenze sul dimensionamento dei recipienti in pressione’’, Roma.Fazekas, G. A. (1967). A note on the bending of Euler beams. Journal of Engineering Education,

57(5).Feinberg, S. (1939). On the problem of the construction of an approximate theory of thin shells of

arbitrary shape. Studies in the Theory of Structures, Gosstroiizdat.Fenner, D. N. (1987). Engineering stress analysis: A finite element approach with FORTRAN 77

software. Chichester: Ellis Horwood Limited Publishers.Fenner, R. T. (1986). Engineering elasticity: Application of numerical and analytical techniques.

Chichester: Ellis Horwood Limited.Fenner, R. T. (1975). Finite element methods for engineers. London: The Macmillan Press Ltd.Feodosyev, V. (1973). Strength of materials (2nd ed.). Moscow: MIR Publishers.Filonenko-Borodich, M. (1968). Theory of elasticity. Moscow: MIR Publishers.Findley, W. N., Lai, J. S., & Onaran, K. (1976). Creep and relaxation of nonlinear viscoelastic

materials. Amsterdam: North-Holland Publishing Co.Finnie, I., & Heller, W. R. (1959). Creep of engineering materials. New York: McGraw-Hill.Flügge, W. (1932). Die stabilität der Kreiszylinderschale. Ing-Arch, 3, 463–506.

356 References

Flügge, W. (1960). Stresses in shells (2nd ed.). Berlin: Springer (reprint of 1973).Ford, H., & Alexander, J. M. (1977). Advanced mechanics of materials (2nd ed.). Chichester:

Ellis Horwood Limited.Forsyth, A. R. (1996). A treatise on differential equations (6th ed.). Mineola, New York: Dover

Pubblications Inc.Franciosi, V. (1979). Calcolo a Rottura: Lo Stato Limite Ultimo da Meccanismo. Napoli: Liguori

Editore.Franciosi, V. (1981). Fondamenti di Scienza delle Costruzioni, Teoria dell’Elasticità (Vol. I).

Napoli: Liguori Editore.François, D., Pineau, A., & Zaoui, A. (1998). Mechanical behaviour of materials. Dordrect:

Kluwer Academic Publishers.Frost, H. J., & Ashby, M. F. (1982). Deformation mechanism maps: The plasticity and creep of

metals and ceramics. Oxford: Pergamon Press.Fung, Y. C. (1969). A first course in continuum mechanics. Englewood Cliffs, NJ: Prentice-Hall

Inc.Galerkin, B. G. (1934). On the theory of elastic cylindrical shells. DAN SSSR, 4(5–6).Garofalo, F. (1965). Fundamentals of creep and creep-rupture in metals. New York: McMillan

Publishing Company.Garro, A. (1992). Progettazione Strutturale del Motore. Torino: Levrotto & Bella.Gauss, K. F. (1965). Disquisitiones Generales circa Superficies Curvas (in Latin), Communication

Society Science Gottingen, 4, 1828. English translation: General Discussions about CurvedSurfaces (A. Hiltebeitel & J. Morehead, Trans.). New York: Raven Press.

Geckeler, J. (1915). Uber die Festigkeit Achsensymmetrischer schalen (p. 276). Forschungsarbe-iten auf dem Gebiete des Ingenieurwesens, Berlin.

Geckeler, J. (1930). Die festigkeit achsensymmetrischer schalen. Ing-Arch, 1, 22–71.Genta, G. (1996). Calcolo di Resistenza degli Organi Rotanti e dei Recipienti Cilindrici. Torino:

Levrotto & Bella.Gere, J. M., & Timoshenko, S. P. (1997). Mechanics of materials (4th ed.). Boston: PWS

Publishing Company.Giacosa, D. (2000). Motori Endotermici (15th Edizione) aggiornata da A. Garro (Ed.). Milano:

Editore Ulrico HOEPLI.Gibbs, C. W. (Ed.). (1971). New compressed air and gas data (2nd ed.). Phillipsburg: Ingersoll-

Rand Co.Giovannozzi, R. (1965). Costruzione di Macchine (4th ed., Vols. 1–2). Bologna: Pàtron.Gittus, J. (1975). Creep, viscoelasticity and creep fracture in solids. London: Applied Science

Publishers Ltd.Godono, G., & De Iorio, A. (1973). Sull’impiego dei criteri energetici per la definizione dello

stato viscoplastico dei corpi cilindrici di forte spessore. Quaderni de ‘‘La Ricerca Scientifica’’(Vol. 78, pp. 57–70). Roma: Consiglio Nazionale delle Ricerche.

Gol’denweizer, A. L. (1963). Derivation of an approximate theory of shells by means ofasymptotic integration of the equations of theory of elasticity. PriklMat Mekh, AkademiyaNauk. SSSR, 30, 593–608.

Gol’denweizer, A. L. (1940). The equations of the theory of shells. Prikl Mat Mekh, AkademiyaNauk SSSR, 4(2).

Gol’denweizer, A. L. (1961). Theory of elastic shells. New York: Pergamon Press.Gola, M. M., & Vullo, V. (1976). Analisi Teorica di Fondi Curvi di Forma Superellittica. In Atti

del III Congresso Nazionale AIMETA, Associazione Italiana di Meccanica Teorica edApplicata, Cagliari, 13–16 ottobre 1976.

Goodier, J. N., & Hodge, P. G. (1958). Elasticity and plasticity. New York: Wiley.Gormann, D. J. (1967). Plastic-elastic stress distributions in partially yielded thick-wall cylinders.

Journal of Applied Mechanics, 509.Gradshteyn, I. S., & Ryzhik, I. M. (2000). Tables of integrals, series and products. San Diego:

Academic Press.

References 357

Graham, A., & Walles, K. F. A. (1955). Relations between long and short time properties of acommercial alloy. Journal of the Iron and Steel Institute, 179.

Green, A. E., & Zerna, W. (1963). Theoretical elasticity. Oxford: Oxford University Press.Haddad, Y. M. (2000). Mechanical behaviour of engineering materials (Vol. 1). Dordrecht (NE):

Kluwer Academic Publishers. (Static and Quasi-Static Loading).Hartmann, L. (1896). Distribution des deformations dans les métaux soumis à des efforts, Paris.Haupt, P. (2000). Continuum mechanics and theory of materials. Berlino: Springer.Hill, R. (1950). Mathematical theory of plasticity. Oxford: Clarendon Press.Hodge, P. G. (1963). Limit analysis of rotationally symmetric plates and shells. Englewood Cliffs:

Prentice-Hall.Hoff, N. J., & Rehfield, L. W. (1964). Buckling of axially compressed circular cylindrical shells

at stresses smaller than the classical critical value. Stanford University, Department ofAeronautics and Astronautics, Report SUDAER, No. 191, May 1964.

Hoff, N. J. (1958). Stress distribution in the presence of creep. In N. J. Hoff (Ed.), Hightemperature effects in aircraft structures. Oxford: Pergamon.

Hoffmann, O., & Sachs, G. (1953). Introduction to the theory of plasticity for engineers. NewYork: McGraw-Hill Co.

Houghton, D. S. (1960). Discontinuity problems in shell structures, in Nuclear reactorcointainment buildings and pressure vessels. Glasgow, Scotland, Butterworths, London:The Royal College of Science and Technology.

Huggaenberger, A. (1925). Calculation of the plate thickness of dished heads with knucklesaccording tot the hamburg rules. Z Ver deal Ing, 69(6), 159–162.

Huggaenberger, A. (1927). Calculation of the plate thickness of dished heads with knucklesaccording tot the hamburg rules. Mech Eng, 49(6), 629.

Hult, J. A. H. (1973). Creep strength of structures. Udine: CISM.Iurzolla, E. (1981). Il Calcolo dei Recienti a Pressione (2nd ed.). Padova: Edizioni Libreria

Cortina.Ivanov, A. B. (2001). Peterson-codazzi equations. In M. Hazewinkel (Ed.), Encyclopedia of

mathematics. Berlin: Springer.Jaward, M. H., & Farr, J. R. (1989). Structural analysis and design of process equipment (2nd

ed.). New York: Wiley.Johns, R. H., & Orange, T. W. (1961). Theoretical elastic stress distributions arising from

discontinuities and edge loads in several shell-type structures. Technical Report R-103.Washington, DC: NASA.

Johnson, A. E., Henderson, J., & Kahn, B. (1963). Multiaxial creep strain/complex stress/timerelations for metallic alloys with some applications to structures. In ASME/ASTM/I Mech E,Procedings Conference on Creep. New York, London: Institute of Mechanical Engineering.

Jorgensen, S. M. (1958). Overstrain and bursting strength of thick-walled cylinders. Transactionsof the ASME, 80.

Juvinall, R. C. (1967). Engineering consideration of stress, strain and strength. New York:McGraw Hill.

Juvinall, R. C. (1983). Fundamentals of machine components design. Wiley, New York.Kalnins, A., & Updike, D. P. (2001). Limit pressures of cylindrical and spherical shells. Journal

of Pressure Vessel Technology, 123, 288–292.Katchanov, L. M. (1975). Éléments de la Théorie de la Plasticité. Moscou: Éditions MIR.Katchanov, L. M. (1967). In A. J. Kennedy (Ed.), The theory of creep. Boston: National Lending

Library.Katchanov, L. M. (1986). Introduction to continuum damage mechanics. Amsterdam: Martinus

Nijhoff Publishers.Kennedy, A. J. (1963). Process of creep and fatigue in metals. New York: Wiley.Kil’chevskii, N. A. (1939). A generalization of contemporary shell theory. Prikl Mat Mekh,

Akademiya Nauk SSSR, 2(4).

358 References

Kirchhoff, G. R. (1850). Uber das gleichgewichi und die bewegung einer elastishem scheibe. JFuer die Reine und Angewandte Mathematik, 40, 51–88.

Kline, M. (1972). Mathematical thought from ancient to modern times. UK: Oxford UniversityPress.

Koiter, W. T. (1970). The stability of elastic equilibrium (Chap. 5: Shell theory for finitedeflections). Dissertation, Technical Report, AFFDL-TR-70-25, Air Force System Command,Wright-Patterson AFB.

Kraus, H. (1980). Creep analysis. New York: Wiley.Krauss, F. (1929). Über die Grundgleichungen der Elastizitätstheorie schwachdeformierter

Schalen. Mathematische Annalen, 101(1), 61–92.Krempl, E. (1987). Models of viscoplasticity some comments on equilibrium (back) stress and

drag stress. Acta Mechanica, 69, 25–42.Kreyszig, E. (1993). Advanced engineering mathematics (7th ed.). New York: Wiley.Krylov, A. N. (1902). On stresses experienced by a ship in a sea way (p. 44). London: Trans

Institute Naval Architects.Laforgia, A. (2001). Equazioni Differenziali Ordinarie. Roma: Accademica S.r.l.Laforgia, A. (1999). Successioni e Serie di Funzioni. Roma: Accademica S.r.l.Lagrange, J. L. (1811). Mécanique analytique. Paris: Tome Premier, MME VE Courcier.Lamé, G., & Clapeyron, B. P. E. (1833). Mémoire sur l’équilibre intérieur des solides homogènes.

Mémoires de l’Académie des Sciences, 7, 465–562.Lamé, G. (1852). Leçons sur la théorie mathématique de l’élasticité des corps solides. Parigi:

Bachelier.Larson, F. R., & Miller, J. (1952). A Time-temperature relationship for rupture and creep stress.

Transactions of the ASME, 174.Lévy, M. (1870). Mémoire sur les équations générales des mouvements intérieurs des corps

solides ductiles au-delà des limites où l’élasticité pourrait les ramener à leur premier état.Comptes Rendus de l’ Academie des Sciences Paris,70, 1323–1325.

Lévy, M. (1871). Mémoire sur les équations générales des mouvements intérieurs des corpssolides ductiles au-delà des limites où l’élasticité pourrait les ramener à leur premier état.Journal de Mathématiques Pures et Appliquées, Séries II,16, 369–372.

Lévy, M. (1871). Sur l’intégration des équations aux différences partielles, relatives auxmouvements intérieur des corps solides ductiles, lorsque ces mouvements ont lieu par plansparallèles. Comptes Rendus de l’ Academie des Sciences, Séries A,73(16), 1098–1103.

Lidonnici, F. (2010). Confronto tra le varie normative applicabili nella costruzione degliapparecchi a pressione non soggeti a fiamma. Milano: Sant’Ambrogio Servizi IndustrialiSRL.

Liguori, A. (1983). Sul Calcolo dei Recipienti Cilindrici in Parete Spessa ParzialmentePlasticizzati. Napoli: Tipografia Pipola.

Lipson, C., & Juvinall, R. C. (1963). Handbook of stress and strength. New York: The MacMillanCompany.

Lockett, F. J. (1972). Nonlinear viscoelastic solids. New York: Academic Press.Love, A. E. H. (1888). On the small free vibrations and deformations in the elastic shells.

Philosophical Transactions of the Royal Society, 179A.Love, A. E. H. (1944). A treatise on the mathematical theory of elasticity (4th ed.). New York:

Dover Publication Inc.Lubahn, J., & Felgar, R. (1961). Plasticity and creep of metals. New York: Wiley.Lubliner, J. (2006). Plasticity theory. Berkeley: Pearson Education Inc., University of California.Lüders, W. (1860). Über die Äusserung der elasticität an stahlartigen Eisenstäben und

Stahlstäben, und über eine beim Biegen solcher Stäbe beobachtete Molecularbewegung.Dingler’s Polytechnisches Journal,155, 18–22.

Ludwik, P. (1909). Elemente der Technologischen Mechanik. Berlin: Julius Springer.Lur’e, A. I. (1940). The general theory of thin elastic shells. Prikl Mat Mekh, Akademiya Nauk

SSSR, 4(2).

References 359

Maddox, S. J. (2003). Assessment of pressure vessel design rules on the basis of fatigue test data.In W. M. Banks & D. H. Nash (Eds.), Pressure equipment technology-theory and practice(pp. 237–248). Bury St. Edmunds: Professional Engineering Publications Ltd.

Maddox, S. J. (1994). Fatigue aspects of pressure vessel design. In J. Spence & A. S. Tooth(Eds.), Pressure vessel design—concepts and principles (p. 337). London: E&FN Spon.

Maddox, S. J. (2000). Fatigue design rules for welded structures. Progress in StructuralEngineering and Materials,1(2), 102–109.

Maddox, S. J., & Razmjoo, G. R. (2001). Interim fatigue design recommendations for filletwelded joints under complex loading. Fatigue and Fracture of Engineering Materials andStructures,24, 329–337.

Mainardi, G. (1857). Su la teoria generale delle superficie. Giornale dell’Istituto Lombardo diScienze, Lettere ed Arti e Biblioteca Italiana, 9(54), 385–404.

Malvern, L. E. (1969). Introduction to the mechanics of a continuous medium. Englewood Cliffs:Prentice-Hall Inc.

Manna, F. (1983). Corpi cilindrici e contenitori in parete spessa. Napoli: Pironti.Manna, F. (1967). Sui recipienti cilindrici in parete spessa parzialmente plasticizzati. Rassegna

Internazionale di Meccanica,3, 17.Manna, F. (1973). Sulla diretta definizione dello stato visco-plastico d’un cilindro di forte

spessore. Quaderni de ‘‘La Ricerca Scientifica’’ (Vol. 78, pp. 71–73). Roma: ConsiglioNazionale delle Ricerche.

Manson, S. S. (1961). Creep under non-steady temperatures and stresses. In J. E. Dorn (Ed.),Mechanical behaviour of materials at elevated temperatures. London: McGraw-Hill.

Marin, J. (1962). Mechanical behaviour of engineering materials. Englewood Cliffs: Prentice-Hall Inc.

Marin, J., & Pao, Y. H. (1953). An analytical theory of the creep deformation of materials.Journal of Applied Mechanics, 20.

Marriott, D. L. (1970). A review of reference stress methods for estimating creep deformations.2nd IUTAM Symposium on Creep of Structures, Gothenburg, Berlin: Springer.

Marriott, D. L. (1968). Approximate analysis of transient creep deformation. Journal of StrainAnalysis,3(4), 288–296.

Martini, D. (1999). Calcolo Automatico di Recipienti in Pressione. Bologna: Pitagora Editrice.Maruyama, K., Tanaka, C., & Oikawa, H. (1990). Long-term creep curve prediction based on the

modified h projection concept. Journal of Pressure Vessel Technology, 112.Mase, G. E. (1970). Continuum mechanics. New York: McGraw Hill Book Company.Massa, E., & Bonfigli, L. (1981). Costruzione di Macchine (Vol. I). Milano: Masson Italia

Editori.Massa, E. (1981). Costruzione di Macchine (Vol. II). Milano: Masson Italia Editori.Massonnet, C., & Save, M. (1968). Calcolo a Rottura delle Strutture: Strutture Spaziali (Vol. II).

Bologna: Zanichelli.McVetty, P. G. (1943). Creep of Metals at Elevated Temperature – The Hyperbolic Sine Relation

Between Stress and Creep Rate. Transactions of the ASME, 65.Megyesy, E. F. (1984). Pressure vessel handbook. Tulsa: Publishing Corporation.Meissner, E. (1915). Uber elastizitat und festigkeit schalen Vierteljahrsschr d. Naturf., Gesellsch.,

Bd. 60, Zürich.Meissner, E. (1913). Das Elastizitätsproblem für dünne Schalen von. Ringflächen, Kugel-oder

Kegelform. Physikalische Zeitschrift,14, 343–349.Meissner, E. (1925). Zur festigkeitsberechnung von hochdruckkesseltrommeln. Schweizerische

Bauzeitung,86, 1–25.Melnikov, Y. A. (1995). Green’s functions in applied mechanics. Southampton and Boston:

Computational Mechanics Publications.Mendelson, A. (1988). Plasticity: Theory and application. Melbourne: R. E. Krieger Publishing

Co.

360 References

Meyer, R. R. (1961). Discontinuity stresses in shells: General model, ASTIA (Armed ServicesTechnical Information Agency), Arlington, Virginia. (Report AD-264-376).

Miller, A. K. (1987). Unified constitutive equations for creep and plasticity. New York: ElsevierApplied Science Publishers Ltd.

Mirolioubov, I., Engalytchev, S., Serguievski, N., Almamétov, F., Kouritsyne, N., Smirnov-Vassiliev, K., et al. (1973). Résistance des Matériaux. Éditions MIR, Moscou: Manuel deRésolution des Problèmes.

von Mises, R. (1913). Mechanik der festen Körper im plastisch-deformablen Zustand. GöttingerNachrichten, Akad. Wiss, Math.-Physik., Kl., 582–592.

Moaveni, S. (1999). Finite element analysis. Theory and application with ANSYS. Upper SaddleRiver: Prentice-Hall.

Mohr, O. (1906). Abhandlungen aus dem Gebiete der technischen Mechanik. Berlin: WilhelmErnst and Sohn.

Mohr, O. (1882). Über die Darstellung des Spannungszustandes und des Deformationszustandeseines Körperelementes, Zivilingenieur, p. 113.

Moradi, M., Ghorbanpour, A., Khademizadeh, H., & Loghman, A. (2001). Reverse yielding andBauschinger effect on residual stresses in thick-walled cylinders. Pakistan Journal of AppliedSciences,1(1), 44–51.

Moss, D. (2004). Pressure vessel design manual. Oxford: Elsevier.Mushtari, K. M. (1938). Certain generalizations of the theory oh thin shells. Izv. Kaz. fiz-mat. o-

va., pri Kaz Un-te, 11(8) (in Russian).Mushtari, K. M., & Galimov, K. Z. (1957). Nonlinear theory of thin elastic shells, Russian

translational series, NASA TT-F-62, Washington, DC: US Department of Commerce.Mushtari, K. M., & Galimov, K. Z. (1961). Nonlinear theory of thin shells. Jerusalem: The Israel

Program for Scientific Translations.Muskhelishvili, N. I. (1963). Some basic problems of the mathematical theory of elasticity (4th

ed.). Groningen: P. Noordhoff Ltd.Nadai, A. (1950). Theory of flow and fracture of solids (Vol. I). New York: McGraw Hill Book

Company.Nadai, A. (1963). Theory of flow and fracture of solids (Vol. II). New York: McGraw Hill Book

Company.Naghdi, P. M., & De Silva, C. N. (1954). Deformations of Elastic Ellipsoidal Shells of

Revolution, Proceedings of Second U.S. National Congress of Applied Mechanics,pp. 333–343.

Naghdi, P. M., & Nordgren, R. P. (1963). On the linear theory of shells under the Kirchhoffhypothesis. Quarterly of Applied Mathematics,21, 49–60.

Naghdi, P. M. (1960). Stress-strain relations in plasticity and thermoplasticity. In E. H. Lee & P.S. Symonds (Eds.), Plasticity (pp. 121–169). New York: Pergamon Press.

Navier, L. M. H. (1864). Résumé des Leçons données à l’école des ponts et chaussées surl’application de la mécanique à l’établissement des constructions et des machines, (3rd ed.)with notes and appendices by Saint-Venent, Paris.

Norton, F. H. (1929). The creep of steel at high temperatures. London: McGraw-Hill.Novozhilov, V. V. (1964). the theory of thin elastic shells. Groningen: P. Noordhoff LTS.Novozhilov, V. V. (1970). Thin shell theory (2nd ed.). Groningen: Wolters-Noordhoff Publishing.Obodan, N. I., Lebedeyev, O. G., & Gromov, V. A. (2013). Nonlinear behaviour and stability of

thin-walled shells, series: Solid mechanics and its applications (Vol. 199). Berlin: Springer.Odqvist, F. K. G. (1974). Mathematical theory of creep and creep rupture. Oxford: Clarendon

Press.Ohji, K., & Marin, J. (1964). Creep of metals under non-steady conditions of stress. Proceedings

Conference on Thermal Loading and Creep in Structures and Components, London:Institution of Mechanical Engineers.

Orowan, E., & Becker, R. (1953). In A. H. Cottrel (Ed.), Dislocations and plastic flow in crystals.Oxford: Oxford University Press.

References 361

Palumbo, N. (2006). Fondamenti Teorici delle Formule per il Calcolo dei Fasciami Cilindricinelle Attrezzature a Pressione. Convegno SAFAP, Roma: Confronto tra Codici diProgettazione.

Penny, R. K., & Marriott, D. L. (1995). Design for creep (1st ed.). UK: McGraw-Hill BookCompany (1971) and (2nd ed.). London: Chapman & Hall (1995).

Perzyna, P. (1966). Fundamental problems in viscoplasticity. Advances in Applied Mechanics,9,243–377.

Peterson, K. M. (1853). Über die Biegung der Flächen, Doctoral Thesis, Dorpat University.Peterson, R. E. (1974). Stress concentration factor. New York: Wiley.Petrov, V. V. (1975). The method of successive loadings in the nonlinear theory of plates and

shells. Izd-vo Saratov University, Saratov (S.S.S.R).Piobert, G., Morin, A. J., & Didion, I. (1842). Commission des Principes du Tir. Mémorial de

l’Artillerie,5, 501–552.Poincaré, H. (1892). Leçons sur la Théorie de L’ÉLASTICITÉ. Paris: Geoges Carré Éditeur.Poisson, S. D. (1829). Mémoire sur l’équilibre et le mouvement des corps solides. Mémories de

l’Academy Science Paris, 8, 357.Ponter, A., & Hayhurst, D. (1981). Creep in structures. New York: Springer.Popov, E. P. (1949). Bending of beams with creep. Journal of Applied Physics,20(3), 251–256.Popov, E. P. (1968). Introduction to mechanics of solids. Englewood Cliffs: Prentice-Hall Inc.Prager, W., & Hodge, P. G. (1951). Theory of perfectly plastic solids. New York: Wiley.Prager, W. (1961). Introduction to mechanics of continua. Boston: Ginn & Company.Prager, W. (1959). Introduction to plasticity. Massachusettes: Addison-Wesley Publishing Co.Prandtl, L. (1924). Spannungsverteilung in plastischen Körpen. In Proceeding 1st International

Congress of Applied Mechanics, (pp. 43–54). Delft.Prosciutto, A. (1952). Elementi di Costruzione di Macchine. Bologna: Pàtron.Przeminiecki, J. S. (1968). Theory of matrix structural analysis. New York: MeGraw-Hill Boock

Company.Rabotnov, Y. N. (1969). Creep problems in structural members. Amsterdam: North-Holland

Publishing Co.Rabotnov, Y. N. (1953). Some problems of the theory of creep. NACA, TM 1353.Rabotnov, Y. N. (1945). The boundary conditions in the theory of thin shells (Vol. XLVII, No. 5).

D.A.N., S.S.S.R.Rabotnov, Y. N. (1945). The fundamental equations of the theory of shells (Vol. XLVII, No. 2).

D.A.N., S.S.S.R.Ramberg, W., & Osgood, W. R. (1943). Description of stress-strain curves by three parameters.

NACA (National Advisory Committee for Aeronautics), Technical Note 902, July 1943.Reddy, J. N. (1985). An introduction to the finite element method. New York: McGraw-Hill Book

Company.Reissner, E. (1941). A new derivation of the equations of the deformation of elastic shells.

American Journal Math,63(1), 177–184.Reissner, E. (1952). On axisymmetrical deformation of thin shells of revolution. Proceedings of

Symposium Applied Mathematics, (Vol. 3, 27–52).Reissner, E. (1952). Stress-strain relations in the theory of thin elastic shells. Journal

Mathematics Physics,31, 105–119.Reissner, H. (1912). Spannungen in Kugelschalen. Breslau-Festscher: Müller.Rekach, V. G. (1978). Static theory of thin-walled space structures. Moscow: MIR Publishers.Reuss, A. (1930). Berücksichtigung der elastischen Formänderung in der Plastizitätstheorie.

Zeitschrift für angewandte Mathematik und Mechanik,10, 266–274.Rolfe, S. T., & Barson, J. M. (1977). Fracture and fatigue control in structure applications of

fracture mechanics. Englewood Cliffs: Prentice-Hall Inc.Roš, M., & Eichinger, A. (1949). Die Bruchgefahr fester Korper bei Ruhender. Beanspruchung,

Zurich: Statischer.

362 References

Rubnstein, M. F. (1966). Matrix computer analysis of structures. Englewood Cliffs: Prentice-HallInc.

Rutten, H. S. (1971). Asymptotic approximation in the three-dimensional theory of thin and thickelastic shells, Nederl. Boekdruk Ind., ‘s Hertogenbosch.

Saada, A. S. (1993). Elasticity: Theory and applications (2nd ed.). Malabor: Krieger PublishingCompany.

de Saint Venant, A. J. C. B. (1870). Mémoire sur l’établissement des équations différentielles desmouvements intérieurs opérés dans les corps solides ductiles au delà des limites où l’élasticitépourrait les ramener à leur premier état. Comptes Rendus Academy Science,70, 473–480.

Salvini, P., Amodio, D., Placidi, F., & Vullo, V. (1993). A machine for crashworthiness test onthin walled structures, ASME Winter Annual Meeting, November 28–December 3.

Salvini, P., Vullo, V., Mannucci, G., & Amodio, D. (1994). A new theoretical model describig theaxisymmetric crashworthiness of tubes and its experimental validation. In Basic metrologyand applications, Torino: Levrotto & Bella.

Sanders, J. L. (1959). An improved first-approxmation theory for thin shells, NASA Report, No.24.

Sanders, J. L. (1963). Nonlinear theories for thin shells. Quarterly of Applied Mathematics,21,21–36.

Serensen, S. V., Kogaev, V. P., & Shneiderovich, R. M. (1963). Nesushchaia sposobnost’Iraschety detalei mashin na prochnost’ (2nd ed.). Moskva: Mashigiz (in russo).

Shames, I. H., & Cozzarelli, F. A. (1997). Elastic and inelastic stress analysis. Philadelphia:Taylor & Francis Ltd.

Shames, I. H. (1980). Engineering mechanics—statics and dynamics (3rd ed.). Englewood Cliffs:Prentice-Hall Inc.

Shames, I. H. (1989). Introduction to solid mechanics (2nd ed.). Englewood Cliffs: Prentice-HallInc.

Shanley, F. R. (1946). The column paradox. Journal of the Aeronautical Sciences,13(12), 678.Shigley, J. E., Meschke, C. R., & Budynas, R. G. (2004). Mechanical engineering design (7th

ed.). New York: The McGraw-Hill Companies Inc.Sim, R. G. (1971). Evaluation of reference parameters for structures subject to creep. Journal of

Mechanical Engineering Sciences,13, 47–50.Sim, R. G., & Penny, R. K. (1971). Plane strain creep behaviour of thick-walled cylinders.

Journal of Mechanical Sciences,13, 987–1009.Sim, R. G. (1973). Reference stresses and temperatures for cylinders and spheres under internal

pressure and steady heat flow. Journal of Mechanical Sciences,15, 211–220.Simmond, J. G., & Danielson, D. A. (1972). Nonlinear shell theory with finite rotation and stress-

function vectors. Journal of Applied Mechanics,39, 1085–1090.Skrzypek, J. J., & Hetnarski, R. B. (1993). Plasticity and creep: Theory, examples, and problems.

Boca Raton: CRC Press (English Edition).Smirnov, V. (1970). Cours de Mathematiques Superieures. Tome II, Editions MIR, Moscow.Smirnov, V. (1972). Cours de Mathematiques Superieures. Tome III, deuxième partie, Editions

MIR, Moscow.Smith, J. O., & Sidebottom, O. M. (1965). Inelastic behavior of load-carrying members. New

York: Wiley.Soare, M. (1962). Application des equations aux differences Finis au Calcul des Coques. Paris:

Eyrolles.Soderberg, C. R. (1936). The interpretation of creep tests for machine design. Transactions of the

ASME,58, 733–43.Sokolnikoff, I. S. (1956). Mathematical theory of elasticity. New York: McGraw-Hill Book

Company.Soler, A. I., & Caldwell, S. (1990) A proposed ASME Section VIII, Division 1, tubesheet design

procedure. In Proceedings of the 1990 ASME PVP Conference (Vol. 186) (HOO 605).Nashville.

References 363

Sonsino, C. M. (1999). An overview of the state of the art on multiaxial fatigue of welds. In E.Macha, W. Bedkowski, & T. Lagoda (Eds.), Multiaxal fatigue and fracture (Vol. 25,pp. 195–217). ESIS Publication.

Steele, M. C. (1952). Partially plastic thick-walled cylinder theory. Journal of AppliedMechanics,19(2), 133–140.

Southwell, R. V. (1913). On the general theory of elastic stability. Philosophical Transactions ofthe Royal Society of London, Series A,213, 187–244.

Swift, H. W. (1952). Plastic instability under plane stress. Journal of the Mechanics and Physicsof Solids,1, 1–18.

Tabakman, H. D., & Lin, Y. J. (1978). Quick way to calculate thermal stresses in cylindricalshells. Machine Design,50, 138–143.

Taira, S., Tanaka, K., & Ohji, K. (1960). A mechanism of deformation of metals at hightemperatures with special reference to the tension test and creep test. Bulletin of the JSME,3(10), 228–234.

Timoshenko, S. P. (1953). History of strength of materials. New York: McGraw-Hill BookCompany Inc.

Timoshenko, S. P., & Gere, J. M. (1961). Theory of elastic stability (2nd ed.). Tokio: McGraw-Hill Kogakusha Ltd.

Timoshenko, S. P., & Goodier, J. N. (1970). Theory of elasticity (3rd ed.). New York: McGrawHill.

Timoshenko, S. P. (1956) Strength of materials. (3rd ed., part I and part II). Princeton (NJ): D.Van Nostrand Co.

Timoshenko, S. P., & Woinowsky-Krieger, S. (1959). Theory of plates and shells (2nd ed.).Singapore: McGraw-Hill Book Company.

Tresca, H. E. (1864). Mémoire sur l’écoulement des corps solides. Comptes Rendushebdomadalres des Academy of Science,59, 754–758.

Tricomi, F. G. (1967). Equazioni differenziali (4th ed.). Torino: Boringhieri.Tsui, E. Y. W. (1968). Stresses in shells of revolution. Menlo Park: Pacific Cost Publishers.Ugural, S. C., & Fenster, S. K. (2003). Advanced strength and applied elasticity (4th ed.). Upper

Saddle River: Prentice Hall.Van Den Broek, J. A. (1948). Theory of limit design. New York: Wiley.Ventsel, E., & Krauthammer, T. (2001). Thin plates and shells: Theory, analysis, and

applications. New York: Marcel Dekker Inc.Verein Deutscher Eisenhüttenleute. (1969). Stahl im Hochbau, Handbuch für Entwurf,

Berechnung und Ausführung von STAHLBAUTEN. Düsseldorf: Verlag Sthaleisen M.B.H.Vivio, F., & Vullo, V. (2010). Closed form solutions of axisymmetric bending of circular plates

having non-linear variable thickness. International Journal of Mechanical Sciences,52(9),1234–1252.

Vlasov, V. Z. (1944). The fundamental differential equations of the general theory of elasticshells. Prikl. Mat. Mekh., Akademiya Nauk. S.S.S.R, (Vol. VIII, No. 2) (also NACA T.M.,No. 1241).

Vlasov, V. Z. (1964). General theory of shells and its applications in engineering. NASATechnical Translation TTF-99 (trans from Russian), Washington, DC.

Von Karman, T., & Tsien, H. S. (1941). The buckling of thin cylindrical shells under axialcompression. Journal of the Aeronautical Sciences,8(8), 302–312.

Vullo, V., & Vivio, F. (2013). Rotors: Stress analysis and design. Milan: Springer.Watts, G. W., & Lang, H. A. (1952). The stresses in a pressure vessel with a flat head.

Transactions of the ASME,74, 1083.Webster, G. A., & Piercey, B. J. (1967). An interpretation of the effect of stress and temperature

on the creep proprieties of a nickel-base superalloy. Metal Science Journal,1, 97–104.Weertmann, R. (1951). On elastic continua with hereditary characteristics. Journal of Applied

Mechanics,18, 273–279.Westergaard, H. M. (1952). Theory of elasticity and plasticity. New York: Wiley.

364 References

Winkler, E. (1867). Die Lehre von der Elastizition und Festigkeit. Prague,141, 182–184.Zaslavsky, A. (1982). A note on Saint-Venant’s principle. Israel Journal of Technoly,20,

143–144.Zhao, J., & Wang, G. (2010). Unloading and reverse yielding of a finite cavity in a bounded

cohesive-frictional medium. Computers and Geotechnics,37, 239–245.Zick, L. P. (1951). Stresses in large horizontal cylindrical pressure vessels on two saddle

supports. Welding Journal Research Supplement, 30.Zienkiewitcz, D. C. (1969). The finite element method in engineering science. New York:

McGraw-Hill.Zudans, Z., Yen, T. C., & Steigelmann, W. H. (1965). Thermal stress techniques in the nuclear

industry, The Franklin Institute Research Laboratories Philadelphia. New York: AmericanElsevier Publishing Company, Inc.

Reference Standards and Similar

AD—Merkblatt S 1: Semplified Analysis for Fatigue Loading, AD 2000 Code, issued by VdTÜV,Carl Heymanns Verlag.

AD—Merkblatt 2000 edition, English translation, Carl Heymans Verlag KG, D-50939 Köln.ANCC-ISPESL, Raccolta M: Impiego di materiali nella costruzione e riparazione degli

apparecchi a pressione, Revisione 1995.ANCC-ISPESL, Raccolta S: Impiego della saldatura nella costruzione e riparazione di

apparecchi a pressione, Revisione 1995.ANCC-ISPESL, Raccolta VSG, Specificazioni Tecniche per la Verifica della Stabilità dei

Generatori di Vapore d’Acqua, Revisione 1995.ANCC-ISPESL, Raccolta VSR, Specificazioni Tecniche per la Verifica della Stabilità dei

Recipienti in Pressione, Revisione 1995.API (American Petroleum Institute) Standards (2002). Recommended rules for design and

construction of large, welded, low-pressure storage tanks, (10th Ed.). API 620, API:Washington, DC.

ASME (American Society of Mechanical Engineers) (2010). Boiler and pressure vessel code, AnAmerican National Standard, Section VIII, Rules for construction of pressure vessels,Division 1, New York: ASME.

ASME (American Society of Mechanical Engineers) (2010) Boiler and pressure vessel code, AnAmerican National Standard, Section VIII, Rules for construction of pressure vessels,Division 2, Alternative Rules, New York: ASME.

ASME (American Society of Mechanical Engineers) (2010). Boiler and pressure vessel code, AnAmerican National Standard, Section VIII, Rules for Construction of Pressure Vessels,Division 3, Alternativerules for construction of high pressure vessels, New York: ASME.

ASME (American Society of Mechanical Engineers) (2010). Boiler and pressure vessel code, AnAmerican National Standard, Section I, Rules for construction of power boilers, New York:ASME.

ASME (American Society of Mechanical Engineers) (2010). Boiler and pressure vessel code, AnAmerican National Standard, Section II: Materials—Part A—ferrous material specifications,New York: ASME.

British Standards Institute (2009). PD 5500/2009, Specification for unfired fusion weldedpressure vessels. London: BSI Standards.

BS 5500 (1997). Unfiredfusion welded pressure vessels. British Standard.BS PD 5500 (2000). Specification for unfired fusion welded pressure vessels. London: BSI

Standards.CNR (1997). Bollettino Ufficiale, Parte IV, Norme Tecniche: Bollettino Ufficiale N. 182/97,

Roma.

References 365

CNR-Consiglio Nazionale delle Ricerche (1997). Bollettino Ufficiale n. 182 Costruzioni diAcciaio: Istruzioni per il calcolo, l’esecuzione, il collaudo e la manutenzione (CNR 10011/97), Roma.

CODAP French code for the construction of pressure vessels, SNCT, F-92400 Courbevoie.CODAP 2005 (2009). French code for construction of unfired pressure vessels, Ed. 2005,

Division 1 and Division 2, with Addedum 09/07, September 2007, and Addedum 03/09,March 2009, SNCT Publications, Paris.

CODAP 95 (1999) Code français de construction des appareils à pression: Section C7. RevisedJanuary 1, 1999.

CR ISO/TR 15608/1999(E), Welding: Guidelines for a metallic grouping system for fabricationpurposes.

CSES, Centre for Strategy and Evaluation Service. (2012). Evaluation oft he pressure equipmentdirective, Executive summary, UK.

CSES, Centre for Strategy&Evaluation Service. (2012). Evaluation oft he pressure equipmentdirective, Final Report, UK.

CTI, Comitato Termotecnico Italiano. (2005). Raccomandazioni per l’Uso delle RaccolteISPESL, Revisione 1995, nell’ambito della Direttiva 97/23/CE, Ed. Maggio.

Directive 2009/105/EC of the European Parliament and of the Council of 16 September 2009concerning: Simple pressure vessels (SPVD).

Directive 75/324/EEC of the European Parliament and of the Council of 20 May 1975concerning: Aerosol dispensers (ADD).

Directive 97/23/EC of the European Parliament and of the Council of 29 May 1997 concerningpressure equipment and gas appliances: Pressure equipment directive (PED).

Directive 99/36/EC of the European Parliament and of the Council of 29 April 1999 concerning:Transportable pressure equipment (TPED).

EN 13445-1 (2009). Unfired pressure vessels, Part 1: General.EN 13445-1 (2009). Unfired pressure vessels, Part 2: materials.EN 13445-1 (2009). Unfired pressure vessels, Part 3: Design.EN 13445-1 (2009). Unfired pressure vessels, Part 4: Fabrication.EN 13445-1 (2009). Unfired pressure vessels, Part 5: Inspection and testing.EN 13445-1 (2009). Unfired pressure vessels, Part 6: Requirements for the design and

fabrication of pressure vessels and pressure parts constructed from spheroidal graphite castiron.

EN 13445-1 (2009). Unfired pressure vessels, Part 8: Additional requirements for pressurevessels of aluminium and aluminium alloys.

EN 1990 (2002). Eurocode: Basis of structural design with appendix A1: 2005.EN 1991 (2002/2006). Eurocode 1: Actions on structures.EN 1993-1-1 (2005). Eurocode 3: Design of steel structures- Part 1-1: General rules and rules

for buildings.EN 1993-1-3 (2006). Eurocode 3: Design of steel structures- Part 1-3: General rules-

supplementary rules for cold-formed members and sheeting.EN 1993-1-5 (2006). Eurocode 3: Design of steel structures- Part 1-5: Plated structural elements.EN 764-1 (2004). Pressure equipment: Part 1: Terminology—pressure, temperature, volume,

nominal size.EN 764-2 (2002). Pressure equipment: Part 2: Quantities, symbols and units.EN 764-3 (2002). Pressure equipment: Part 3: Definition of parties involved.EN CEN/TR 13445-1 (2009). Unfired pressure vessels, Part 9: Conformance of EN 13445 Series

to ISO 16528.EN CR 13445-1 (2009). Unfired pressure vessels, Part 7: Guidance of the use of conformity

assessment procedures.EPERC Bulletin Nr 2. (October 1999). European approach to pressure equipment inspection. In J.

B. Veyret, & G. Baylac (Ed.), European Commission JRC, NL-1755 ZG Petten, S.P.I. 192.

366 Reference Standards and Similar

EPERC Bulletin Nr 4. (June 2001). European R&D on fatique strength and hydrotest for pressureequipment, European Commission JRC, NL-1755 ZG Petten, S.P.P. 01.42.

Report 5, Assessment Procedures for the High Temperature Response of Structures. UK: NuclearElectric, 1991.

Report 6, Assessment of the Integrity of Structures Containing Defects. UK: Nuclear Electric,1991.

Report ASME STP—PT—007 (2006). Comparison of pressure vessels codes ASME Section VIIIand EN 13445, Technical, Commercial, and Usage Comparison, Design Fatigue LifeComparison, ASME Standards Techcnology, LLC.

TEMA (Tubular Exchanger Manufacturers Association, Inc.) Standards. (2007). Shell and tubeheat exchanger codes and standards, (9th ed.). TEMA Standards.

Reference Standards and Similar 367

Name Index

AAbramovitz, M., 175Alexander, J. M., 109Alexandrov, A. V., 180Almroth, B. O., 41, 42Aron, H., xxvi

BBach, C., 95Bailey, R. W., 243, 246Baker, E. H., 55, 141, 277, 308Barber J. R., xxiiBatdorf, S. B., 23, 180Bassett, A., xxviBauschinger, J., xxv, 60, 180Becker, R., 245Beltrami, E., 94Benarjee, P. K, xxviiiBelloni, G., 15, 141, 171Belluzzi, O., 4, 23, 41, 51, 55, 58, 73, 109Bernasconi, G., 15, 240Bernoulli, G., 73Bessel, F. W., 175, 176Bickell, M. B., 1, 73Biezeno, C. B., xxviiBland, D. R., 245Boley, B. A., 141Boltzmann, L., 243Bones, J. A., 73, 179Boresi, A. P., xxiBresse, M., 29, 33Brownell, L. E., 321Bruhn, E. F., 23, 41, 55Brush, D. O., 41Budiansky, B., 180Burr, A. H., 1, 73, 109, 141Butterfield, R., xxviiiByrne, R., xxvii

CCarnot, L. N. M., 28Cauchy, A. L., xxviCaboni, F., 73, 109Capurso, M., 179Carslaw, H. S., 141Chaboche, J. L., 245Chajes, A., 41Chen, F. Y., 8Chong, K. P., xxiCicala, P., xxviiCoates, W. M., 336, 337, 339Codazzi, D., 311Colladine, C. R., 180Como, M., 55Cook, R. D., xxviii, 141Crossland, B., 73, 179Coulomb, C. A., 9, 181Crockcroft, R. D. H., 247

DDanielson D. A., xxviiDawson, V. C. D., 222De Iorio, A., 245Den Hartog, J. P., 73Desai, C. S., 15Dieter, G. E., 185Donnell, L., 283Dorn, J. E., 242, 243Dowling, N. E., 180Drucker, D., 41Dubbel, H., 109

EEichinger, A., 184Euler, L., 43, 44, 46Evans, R. W., 245

V. Vullo, Circular Cylinders and Pressure Vessels, Springer Series in Solidand Structural Mechanics 3, DOI: 10.1007/978-3-319-00690-1,� Springer International Publishing Switzerland 2014

369

FFaupel, J. H., 217Feinberg, S., xxviFeodosyev, V., 122Filonenko-Borodich, M., xxiiFinnie, I., 245Flügge, W., 281Forsyth, A. R., 282Fourier, J. B. J., 154François, D., 180Furbek, A. R., 219

GGadolin, 122Galerkin, B. G., xxviGalileo, G., 8, 9Galimov, K. Z., xxviiGarro, A., 157Garofalo, F., 244, 245, 247Gauss, K. F., 311Geckeler, J., xxi, xxii, 340Gere, J. M., 10, 23, 26, 29, 33, 41, 56Giacosa, D., 157Gibbs, C. W., 157Giovannozzi, R., 96, 109, 141Godono, G., 245Golovin, H., 26Goodier, J. N., xxi, xxii, 4, 180Gola, M. M., 343Gol’denweizer, A. V., xxviGormann, D. J., 179Gromov, V. A., 41Graham, A., 245, 247Grammel, R., xxviiGrashof, F., 26Green, A. E., 398Guest, J. J., 9, 181

HHaddad, Y. M., 180Hankel, H., 175Hartmann, L., 185Haupt, P., xxiHeller, W. R., 247Henckey, H., 9Henderson, J., 247Hill, R., xxii, 41Hodge, P. G., 224Hoff, N. J., 41Hoffmann, O., 180Hooke, R., xxvi, xxviii, 44

Hospital, G. F. A. de l’, v. L’Hôpital, G. F. A.de , 261, 264

Houghton, D. S., 275Huber, M. T., 182

IIurzolla, E., 1, 73, 96, 109, 141, 211Ivanov, A. B., 311

JJaeger, J. C., 141Jorgensen, S. M., 73, 211Johnson, A. E., 247Johnson, J. B., 46Johns, R. H., 325, 326Juvinall, R. C., 188

KKachanov, L. M., 247Kahn, B., 247Kalnins, A., 211Karman, T. von, 51Kennedy, A. J., 244, 245Kil’chevskii, N. A., xxviKirchhoff, G. R., xxvi, 283Kline, M., 311Kogaev, V. P., 248Koiter, W. T., xxviiKrauss, F., xxviKrauthammer, T., 281, 299Krempl, E., 245Krylov, A. N., 295

LLagrange, J. L., 133Lamé, G., 9Lang, H. A. , 324, 325, 327Larson, F.R., 245Lebedeyev, O. G., 41Liguori, A., 179Lin, Y. J., 141Lévy, M., 61L’Hospital, G. F. A. de, 259, 262Linné, C., von (Linnaeus)., 241Lo Conte, A., 141, 171Love, A. E. H., xxvi, 283Lubliner, J., 180Lüders, W., 185Lucretius, T., Carus., 254

370 Name Index

Ludwik, P., 260Lur’e, A. I., xxvii

MMainardi, G., 311Manna, F., 241Manson, S. S., 247Marin, J., 188, 191, 247Mariotte, E., 5, 17Marriott, D. L., 245Maruyama, K., 247Maxwell, J. C., 182McVetty, P. G., 247Megyesy, E. F., 307Meissner, E., xxvi, 340Melnikov, Yu. A., 298Meyer, R. R., 275Michell, J. H., 80Miller, A. K., 245Miller, J., 245Mises, R., von , 9, 182, 185Moaveni, S., xxviiiMoradi, M., 212Mohr, O., 8, 181Moss, D., 307Mushtari, Kh. M., xxvii, 283

NNadai, A., 185Naghdi, P. M., xxviiNavier, C. L. M. H., 73Nordgren, R. P., xxviiNorton, F. H., 244Novozhilov, V. V., xxvi, 22, 283

OObodan, N. I., 41Ohji, K., 247Oikawa, H., 247Orange, T. W., 325, 327Orowan, E., 247Osgood, W. R., 64, 67Ostenfeld, A., 46Ovidius, P., Naso., 5

PPao, Y. H., 247Pearson, K., 26Perzyna, P., 245

Penny, R. K., 245Peterson, K. M., 311Peterson, R. E., xxi, 320Petrov, V. V., xxviiiPiercey, B. J., 247Pineau, A., 180Piobert, G., 185Poisson, S. D., xxviPotapov, V. D., 180Popov, E. P., 248Prager, W., 224Prandtl, L., 248Prosciutto, A., 73, 109

RRabotnov, Y. N., xxvii, 247Ramberg, W., 64, 260Rankine, W. J. M., 9, 35, 182Reddy, J. N., xxviiiRehfield, L. W., 41Reissner, H., xxviReissner, E., 340Résal, H., 26Reuss, A., 248Reyto, 188Roš, M., 184Ruiz, C., 1, 73Rutten, H. S., xxviii

SSaada, A. S., 73Sachs, G., 180Saint-Venant, Barré de, A. J. C., 4, 155, 163,

182, 200Salvini, P., 51Sanders, J. L. , xxviiSeigel, A. E., 224Serensen, S. V. , 248Shield, R., 41Shneiderovich, R. M., 248Sidebottom, O. M., 180Simmond, J. G., xxviiSim, R. G., 245Sirilwardane, H. J., 15Skrzypek, J. J., 245Smirnov, V., 176Smith, J. O., 180Soare, M., xxviiiSokolnikoff, I. S., xxiSouthwell, R. V., 38Steele, M. C., 267

Name Index 371

Stegun, I. H., 176Stewart, R. T., 33Steigelmann, W. H., 141, 154Swift, H. W., 260

TTabakman, H. D., 141Taira, S., 247Tanaka, C., 247Tanaka, K., 247Taylor, B., 145Tetmajer, L., 47Timoshenko, S. P., 29, 172, 299Tresca, H., 9, 181, 183Tricomi, F. G., 282Tsien, H.S., 51

VVentsel, E., 281, 299Vivio, F., 128, 210, 260Vlasov, V. Z., xxvii, 283Vullo, V., 128, 210, 260, 343

WWalles, K. F. A., 245, 247

Wan, C. C., 35Wang, G., 212Watts, G. W., 324, 325Weber, H., 175, 176Webster, G. A., 247Weiner, J. H., 141Westergard, H. M., 180Wilshire, B., 247Winkler, E., 26, 313Woinowsky-Krieger, S., 172, 281

YYen, T. C., 141, 154Young, E. H., 325Young, T., 267Young, W. C., 141

ZZaoui, A., 180Zaslavsky, A., 4Zerna, W., 298Zhao, J., 212Zienkiewitcz, D. C., xxviiiZudans, Z., 141, 154

372 Name Index

Subject Index

AAbsolute maximum value, 83, 84, 87, 89Absolute value, 7, 24, 48, 82, 84, 85, 105, 120,

156, 158, 159, 167, 170, 183, 287, 293,286, 333, 343, 347, 350

Absolutely rigid built-in edge(s), 287, 288Absolutely rigid ring(s), 300Accordion-like waves, 42Accumulated creep strain, 244Activation energy, 243Actual length, 43, 51Additional bending moment(s), 309Additional radial displacement(s), 36Aeronautical and aerospace structures, 275Aeronautical, ship building, and submarine

industries, 275Aircraft fuselages, 51Allowable load, 48Allowable stress, 10, 32, 33, 48, 100Alloyed steel, 216Ambient temperature, 110, 189Analytical model(s), xxiAnalytical solution(s), xAngular acceleration, 115Angular coordinate, 20, 25, 55, 57, 74, 277,

281, 337Angular velocity, 127, 128, 210Annealing effect(s), 115Annular beam, 25, 27, 29, 31, 36, 39Approximate bending theory, xiiApproximate method(s), 45Aprioristic approach, 27ASME, 334Assembly temperature, 156Associated homogeneous equation, 29, 143,

280, 281, 295, 336Asymptotic approach, xxviiAsymptotic value(s), 39, 197

Autofrettage, 199, 200, 203, 204, 206,210–212, 215, 215–217, 221, 223, 236,228, 232–235

Autofrettage in a container, 200Autofrettage in closed-end conditions, 200Autofrettage pressure, 211–213, 217, 220–223,

225, 226, 234, 239Autofrettage pressure threshold, 221Autofrettage process, 199, 206, 211, 212, 215,

216, 222, 234, 252Autofrettage stress(es), xxvAutofrettage with a mobile seal equipment, 214Average shear stress, 345Axial compliance, 290Axial constraint(s), 156Axial coordinate, 3, 20, 55, 57, 172, 177, 282,

283, 293, 294, 302–304Axial dimension, 1, 74, 141, 142Axial direction, 6, 51, 71, 146, 166, 181, 278,

290Axial displacement, 11, 42, 152, 163, 164,

146, 164, 166, 288, 289Axial instability load, 68Axial membrane force(s), 278, 325Axial plane, 4, 44, 277–279, 281, 290, 301,

311, 313, 342Axial strain, 33, 60, 146, 163, 278Axial stress, 6–8, 15, 61–63, 66, 68, 71, 73, 80,

81, 83, 98, 151, 158, 161–163, 167, 172,198, 222, 290, 300, 314, 316, 317, 320,321, 327, 328

Axial stress resultant, 278, 324Axial symmetry, 21Axis of revolution, 20Axis of symmetry, 3, 31, 311Axis-symmetrically deformed shape, 25Axisymmetrical orthotropic material, 281Axisymmetric load(s), 294

V. Vullo, Circular Cylinders and Pressure Vessels, Springer Series in Solidand Structural Mechanics 3, DOI: 10.1007/978-3-319-00690-1,� Springer International Publishing Switzerland 2014

373

BBach’s theory, 96Bailey-Popov relation, 246Bathyscaphes, 23Bauschinger effect, 60, 180, 213, 220, 222Beam on elastic foundation, 342Bellows joints, 11Beltrami’s theory, 96Bending contribution, 314Bending effect(s), 158, 334Bending load(s), 41, 275, 342Bending moment(s), 3, 31, 37, 60, 172, 210,

277–279, 282, 288, 290, 294, 295,296–298, 301, 302, 308, 309, 311–313,316–318, 320, 326–328, 331, 338, 342,345, 346

Bending problem(s), 341Bending stiffness, 23Bending theory, 172, 308, 309, 325, 326, 335,

336, 343Bending theory of circular cylindrical shells,

279Bending theory of shells, 337Bernoulli-Navier hypothesis, 73Bessel differential equation, 175Bessel function(s), 175, 176Beyond yielding, 179, 192Biaxial stress state, 11, 68, 70, 96, 182, 187,

189, 191, 192, 278, 315Bi-logarithmic coordinates, 64Blind hole method, 217Body force(s), 80, 115Boilers, 5, 17, 275Boltzmann’s constant, 243Boring-out method, 217Boundary condition(s), 1, 21, 22, 29, 31, 55,

57, 80, 132Boundary element method(BEM), xxviiiBresse’s formula, 33Brittle fracture, 185, 190, 191Brittle material(s), 189, 199Brittleness, 115Buckled shape, 25Buckling, 3, 24, 31, 43, 44, 49–51, 56, 59, 156,

190, 302Buckling deflection shape(s), 32Buckling mode, 50Buckling of circular cylinder(s), 51, 56, 58Buckling of circular ring(s), 3Buckling of cylindrical shell(s), 3Buckling of tube(s), 3Built-in edge(s), 38, 287–289, 301Burst(ing) pressure, 41, 66, 214, 232Bursting strength, 215

CCalculation example, 316, 320Carnot’s theorem, 28Cartesian reference system, 25, 276Causes of failures, 41Center of gravity, 25Centerline of the ring, 25Central angle, 36Central half-angle, 328Centrifugal direction, 153Centrifugal force, 126, 127Centrifugal heat flow, 157–159, 166, 167,

170–173Centrifugal load, 115, 126, 128Centripetal direction, 59, 112, 282Centripetal heat flow, 157, 158, 159, 166, 168,

171, 172Centroid, 27, 41Change in angle, 26Change in volume, 184Change(s) in curvature(s), 278, 279Characteristic parameter(s), 111, 172Chemical and nuclear industries, 115, 275Chemical composition, 235Circular axis, 24Circular centerline, 24, 27, 29Circular cylinder of finite length, 149, 163,

164, 171Circular cylindrical liner(s), 153Circular cylindrical shell(s), 32, 51, 53–60,

275–277, 280–283, 287–289, 293, 295,297, 298, 300–305, 308

Circular plate, 84, 171, 312Circular sector, 328, 330Circumferential angle, 19Circumferential bending moment(s), 277, 305,

340, 341Circumferential direction, 56, 63, 158Circumferential normal in-plane forces, 19Circumferential seam(s), 349Circumferential stiffeners, 38, 39, 275Clamped edge(s), 158, 287, 289, 290Clamped end(s), 11, 32, 142, 151, 155, 159,

174, 193, 195, 196Classical plasticity theory, 245Classical plate theory, 311Classical theory of the plates, xxviCleavage, 185Clockwise rotation(s), 310Closed section, 56Close end(s), 7, 17, 62, 66, 68, 80, 81, 83,

89–91, 93, 94, 97, 182, 205, 206Closure absolutely rigid, 313Closure deformable, 314, 317

374 Subject Index

Closure(s), 4, 23, 24, 38, 275, 278, 288, 290,307, 308, 310, 314–320, 323, 324

Coates’ theory, 158Coaxial cylinders, 116Codazzi-Mainardi-Peterson (conditions of),

311Coefficient of linear thermal expansion, 110Coefficient of the friction, 130Coefficient of thermal conductivity, 153, 154Coefficient of thermal expansion, 73, 141Cohesive bond(s), 185Colatitude angle, 19, 337, 341Cold-formed, 51Collapse pressure, 35, 38Collapsing strength, 23Combined expression, 242Combined load, 63Combined theories, 245Commutative relation, 242Comparison between the four yield theories,

256Compatibility equation(s), 1, 73, 76, 77, 142,

146, 202, 350Compatibility of deflections, 275Compatibility of displacements and rotations,

275, 308, 310, 315, 318, 321Complementary solution, 281–283, 295Complex integration constants, 281Compliance analysis, xxComposite concentric cylinders, 109Composite light, xxviiComposite material(s), 109Composite multilayer structure(s), 237Composite structure(s), 109, 112, 115, 116,

121, 122, 125, 126, 265, 271Composite two-component structure, 94, 95Compression stress(es), 7, 79, 166, 191Compression test, 34, 180, 186, 187Compressive strain history, xxvCompressive yielding, 213Compressive yield point, 215, 223, 225Compressive yield stress, 216, 219, 220Concentrated bending moments and forces, 280Concentrated line load, 290, 291Conceptual design, xxiConcertina buckling, 42, 51Concertina mode, 3, 42, 51Condition of plastic flow, 67Condition(s) of compatibility, 310Cone(s), 307Connecting rod, 44Connecting rod-crank mechanism, 44Conservative strength theory, 101, 108, 271Constant stress test, 240

Constant temperature and load, 240, 241Constant volume, 246Constant-volume strain condition, 70Constitutive equations, 32, 89Constitutive law(s), 142, 147, 239, 246, 247,

252, 258Constitutive stress-strain law(s), 76Constrained end(s), 38, 146, 152, 166Constraint condition(s), 44, 81, 133, 148, 277Constraint equation(s), 133, 134Constraint reaction(s), 275, 287, 288Constructive solution(s), 324Contact pressure, 110, 115, 120, 138, 139Contact thermal resistance(s), 115Continuous elastic Winkler foundation, 281Continuous support(s), 281Continuum mechanics, 184Control rods, xixConventional limit for thin-walled cylinders, 3Conventional strains, 67, 181Conventional upper limit, 3Core, 223, 225, 228, 229Corrugations, 51Coulomb yield theory (criterion), 181Coulomb-Tresca-Guest yield theory, 182Counterclockwise rotation(s), 310Cover plate(s), 307Crashworthiness strength, 51Creep, 190, 240–243, 247, 251Creep behavior, 240–242Creep rate, 241Creep strain(s), 240, 242–245Creep test(s), 240, 241Creep theory(ies), 241, 243Critical bending moment, 59Critical buckling load, 43Critical condition(s), 63Critical diameter ratio, 220, 221Critical length, 24, 38Critical limit, 185Critical load, 43, 44, 48, 50, 53, 55Critical pressure, 23, 24, 29, 32, 33, 39, 102,

135, 221Critical stress, 3, 32–35, 44–48, 52, 302Critical torque, 57Critical twisting moment, 57Critical unit load, 52, 53, 56Cross-sectional height, 26Cross-sectional ovalization, 3Cross-section area, 27, 41, 44, 48, 50, 58, 305Cross-section ellipticity, 3Cross-section ovalization, 3Cross-section plane, 4, 5Cubical dilatation, 248

Subject Index 375

Cubic hyperbola(s), 17, 78, 81, 83, 86Cusps, 239, 252Curvature(s), 19, 25–27, 279, 308, 311, 332,

336, 340, 341Curved beam, 24Curved pipe fitting, 4Curvilinear coordinate(s), 337–339, 346Curvilinear segment(s), 347Cusped curves, 265Cyclic re-pressurizing, xiCylindrical hinge, 44Cylindrical membrane shell, 1Cylindrical rod(s), 174, 176, 177

Dde L’Hospital’s theorem, 259, 262Decay distance, xiiDeflected centerline, 25Deflected shapes, 31Deflected surface, 310, 311, 313, 318Deflection curve, 25, 27, 29, 31, 32, 36, 44, 51,

53, 54, 287, 292, 297, 342Deflection mode, 51, 56Deflection(s), 23, 30, 33, 38, 42, 44, 49, 172,

190, 275, 280, 281, 294, 296–298, 300,326, 327

Deformable stiffening ring(s), 301Deformation(s), 1, 10, 15, 16, 25, 55, 56, 59,

60, 73, 76, 142, 180, 192, 206, 241, 242,246, 248, 277, 279, 290, 294, 309, 334

Deformed elastic line, 24, 25Degree of safety, 13Density, 127Design, 4, 5, 10, 11, 13, 15, 18, 22, 31, 35, 41,

46, 48, 49, 59, 65, 94, 98, 118, 119, 124,125, 128, 129, 153, 154, 159, 188–192,232, 233, 235, 238, 240, 241, 321, 324, 335

Design analysis, 2, 8, 10, 33, 41, 95, 96, 98,106, 242, 328, 349

Design analysis relation(s), 98, 106, 134Design axial load, 49Design considerations, 48, 92, 209Design function(s), 240Design objectives, 109Design optimization, 127Design purpose(s), 38, 170, 239, 240Design resistance, 49Developable surface(s), 276, 307Deviator invariant(s), 184, 185Diameter plane, 4Diameter ratio, 2, 157, 170, 193, 194, 198,

206, 208, 210–212, 216, 220–222, 225,226, 232–236, 256, 257, 264, 271

Diameter’s expansion, 15, 16Diametral interference, 111, 113, 129Differential element, 278, 279, 337, 338Differential equation, 25, 27, 29, 36, 51, 53, 78,

155, 248, 249, 252, 260, 280–282, 336, 338Differential operator, 64, 247Dimensionless external load, 264Dimensionless principal stress(es), 251Dimensionless ratio, 11, 13, 43, 81, 94, 100,

102, 194, 197, 209, 225, 273Dimensionless temperature, 157, 158, 171Dimensional tolerance(s), 115Directrix circumference, 277, 300Directrix(ices), 276, 277Discontinuity area(s), 275Discontinuity in shape, 308Discontinuity load(s), 275, 311, 318, 342, 343,

349, 350Discontinuity stresses, 308, 309, 325, 335Discontinuity stress resultants, 308, 309Discontinuity(ies), 314, 317, 325, 326, 335,

344–346Discontinuity(ies) in the stress gradient, 239Dished end(s), xiiDished head(s), 308, 332, 335, 336, 348Disk-shaped member(s), 127Dislocation(s), 185Displacement compatibility condition, 75Displacement field, 78, 91, 93, 143, 283, 285,

288, 291, 293, 308, 327Displacement(s), 1, 18, 21, 26, 28, 29, 36, 37,

42, 55, 57, 74, 76–78, 90–93, 111, 112,127, 128, 141, 142, 145, 147, 148, 164,166, 275, 277, 278, 283, 288, 294, 297,303, 309–311, 318, 319, 326, 329, 340, 350

Dissimilar material(s), 115Distillation columns, 275Distortion, 10, 96, 101, 103, 108, 116, 123,

125, 135, 137, 148, 156, 167, 181, 182,184–186, 188–193, 198, 201, 208–212,214, 220, 221, 226, 237, 238, 245, 255,257, 264, 265, 268–272, 274

Donnell-Mushtari-Vlasov theory, 283Dorn’s exponential function, 242Dorn’s observation, 243Double curvature surface(s), 337Double-walled composite structure, 120, 235,

236Double-walled structure, 113, 119, 124, 134Double-walled vessel(s), 299, 302Drill pipes, xixDuctile fracture, 185, 191Ductile material(s), 117, 198, 199Ductility, 62, 189

376 Subject Index

EEccentricity, 31, 317Eccentric load, 317Eccentric meridian forces, 309Edge bending moment, 172Edge condition(s), 308Edge effect differential equation, 336Edge effect(s), 172, 288, 290, 310, 314, 327,

330, 342, 344–346, 348, 351Edge(s), 41, 53, 163, 172–174, 282, 283, 285,

287, 288, 310–312, 314, 315, 318, 325,336, 342

Effective area, 27, 41, 44, 48, 50, 65, 203, 207,209, 307

Effective strain(s), 61Effective stress(es), 61, 239Elastic breakdown pressure, 192, 194, 195,

223, 237, 238Elastic imperfections of the material, 85Elastic instability response analysis, 32Elastic limit, 3, 32, 49, 68, 85, 116, 120, 125,

179, 180, 189, 202, 209, 239, 258Elastic limit stress, 74Elastic magnitude(s), 77, 80, 91, 93, 112, 258Elastic potential energy, 42Elastic recovery, 217Elastic region, 181, 204–206, 214, 218, 227,

254, 262Elastic strain(s), 61, 181, 240Elastic strength property(ies), 233Elastic-plastic boundary, 94, 264Elasto-plastic and plastic field, 45Elasto-plastic behavior, 240Elasto-plastic or plastic instability, 45Elasto-plastic state, 264Elbow pipe fitting, 4Elemental strip-beam, 281Elementary arc, 58, 339Elementary force(s), 74Elementary longitudinal strip, 51, 52Elementary radial force, 75Elementary slice of shell, 338Elementary tangential force, 75Ellipse of plasticity, 182, 186, 188Ellipse’s flattening factor(s), 331Ellipsoid(s), 311Elongation at failure, 62Empirical formulas, 45–47End closure(s), 288, 324, 331End constraint(s), 59, 156, 289, 312End face(s), 282, 288, 289, 297End(s), 4, 6, 7, 10, 17, 23, 31, 38, 43, 51, 54,

55, 59, 60, 62, 66, 68, 76, 81, 89–91, 94,98, 111, 146–149, 152, 153, 156, 158, 163,

164, 166, 167, 171, 199, 206, 222, 290,293, 295, 296–298, 307, 309

Energy losses per unit volume, 180, 258Energy method, 51Energy sinks, 153Energy sources, 153Energy theories, 96, 101, 125, 257, 270, 271Engineering strains, 142, 181Envelope, 186Equations of thermo-elasticity, 141Equatorial radius, 325, 334Equilibrium condition(s), 4, 17, 80, 147, 162,

171, 185, 277Equilibrium equation(s), 1, 73–75, 77, 79,

141–143, 146, 148, 202, 223, 229, 247,249, 252, 261, 277, 279, 339

Equilibrium method, 51Equivalent column length, 43–45, 50Equivalent combined stress-strain curve, 65Equivalent plastic strain, 61Equivalent quantity(ies), 245Equivalent residual stress, 213, 216, 219, 220,

223, 230Equivalent strain, 246, 247, 258Equivalent strain increment, 245Equivalent stress, 2, 8, 10, 11, 13, 16, 18, 24,

61, 65–67, 69, 85, 96–98, 102, 105, 106,116, 122, 132, 133, 179, 185, 192, 208,209, 220, 226, 227, 237, 245–248, 251,258, 265, 267, 268, 272, 273

Equivalent uniaxial problem, 245Euler buckling, 42, 51, 56Euler critical load, 43Euler instability, 11, 41, 42Euler’s critical buckling load, 43Euler’s cubic hyperbola, 45–47Euler’s formula, 43Euler’s relations, 44, 281, 295Euler’s stress, 47Evaporators, 23Even function, 296Expansion loops, 11Expansions of the variable(s), xxviiExpected service life, 240Experimental data, 182, 186, 188, 190–192,

240, 242–244, 265, 337Experimental evidence(s), 189, 191, 239, 244Experimental procedure(s), 309Experimental result(s), 117, 182, 188, 191,

192, 198Exponentially amplified trigonometric func-

tion(s), 283Exponentially damped trigonometric func-

tion(s), 283, 285, 346

Subject Index 377

Extension of the radius, 308External load per unit of length, 27External pressure, 1, 3–5, 7, 8, 10, 11, 13, 14,

16, 23, 29, 31–33, 35–38, 73, 82, 85, 87,88, 90–93, 95, 97, 98, 105, 106, 108, 111,113, 115, 138, 181, 183, 184, 192–196,197, 199, 210, 237, 238, 246, 249, 250,262, 265, 268, 275, 299, 302

Extinction length, xii

FFailure mechanics, 185Failure strength, 179Failure stress, 65Final temperature, 109Finite Difference Method (FDM), xxviiiFinite Element Method (FEM), xxviiiFirst invariant of the strain tensor, 90, 92, 148First invariant of the stress tensor, 148First loading beyond yielding, 202First-order approximation shell theory, xxviiFirst order differential equation, 75, 77, 202,

312First quadratic form of a surface, 311First stage creep, 243Fixed seal(s), 200Flange(s), xxFlanged connection(s), 179Flat end(s), xiiFlat-plate closure(s), 275, 309–311, 313, 321,

323Flattened semielliptical head, 333Flexural ovalization buckling, 58, 59Flexural rigidity, 23, 36, 58, 172, 297Flow rule(s), 61, 246Flow surface, 153Force-fit assembly, xiForce-fit pressure, 87Force fit(s), 109Formed closure(s), 307, 308Formed head(s), 23, 38, 275, 307–309Forth order differential equation, 51, 53, 342Foundation modulus, 338Fourier’s equation, 153, 154Fourier’s law, 153, 155, 159, 166, 174Fracture strength, 65, 191Free and unloaded ends, 10, 147Free closed ends, 10, 11, 13, 193, 195,

209–211, 217, 218, 220, 221, 223, 246,248, 249, 252, 257, 265, 277, 301, 302

Free end(s), 6, 63, 128, 142, 161, 163, 164,166, 167, 171, 172, 174

Free length, 43

Free open ends, 62, 193–196, 209, 218,220–222, 225, 300

Friction coefficient in torsion, 129Full autofrettage, 216, 219, 233Full overstrain, 216, 218Full plastic state, 248Full yield, 198, 247Fully plastic state, 179, 198, 204, 205,

207–210, 212, 214, 219, 220, 222, 226,239, 252, 254, 273

Fully yield, 222, 223Functions ;1; ;2; ;3 and ;4, 290Funicular curve, 31, 36Fuselage shell structures, 299

GGadolin’s conditions, 122Gage length, 62Garofalo’s hyperbolic sine function, 244Gauss (condition of), 311Gaussian curvature, 307General formulation, 344Generalized axisymmetry, 3, 4, 80, 142Generalized Hooke’s laws, 247Generalized Hooke’s relations, 15Generalized plane strain state, 4, 179General solution, 29, 281, 282, 295General theory of shells, 329General yielding, 198Generating meridian curve, 336, 338Generator(s), 7, 16, 21, 51, 53, 59, 276, 277,

279, 284, 286, 287, 298, 301–303, 308,310, 325, 335, 339, 349

Geometric assumption, 283Geometrical axisymmetry, 1Geometrical cylindrical axisymmetry, xixGeometrical discontinuity(ies), xxGeometrical non-linearity, 27Geometrical pitch, 57Geometric parameter, 280Global instability, xiGoverning differential equation, 280, 295, 336Grain boundary(ies), 185Green’s functions, 294Gross cross-sectional area, 50Guest yield theory (criterion), 181

HHalf-wavelength, 285, 286Hamburg formula, 2, 12, 101–103, 198Hand holes, 307Hankel function(s), 175

378 Subject Index

Hardness, 115Hartmann’s lines, 185Head(s), 4, 6, 307, 308, 324–326, 328–331,

334, 336, 339, 345Heat conduction, 141Heat exchanger tubes, 23, 153Heat exchanger(s), 275Heat flow, 81, 115, 141, 153, 154, 156, 166,

167, 171, 174, 177Heat transfer, 141Heat treatment(s), 94, 115, 118, 126, 192, 216,

217Hemisphere(s), 311, 313, 328, 343Hemispherical dished head(s), 324, 331, 335Hemispherical meridian curve, 324Hencky yield theory (criterion), 182Hexagon of plasticity, 184, 188Higher-order approximation shell theory, xxviiHigher-order buckling deflection curves, 31Higher-order infinitesimal(s), 75, 174High performance structure(s), 212High strength-to-weight ratio, 109Hinge(s), 44, 312, 314History of deformation, 240Hole(s), 85, 94, 179, 190Homogeneous and isotropic material(s), 76,

109, 110, 142, 145, 148, 309Homogeneous equation, 281–283, 338, 339Homogeneous material(s), 153, 190Homogeneous second order differential equa-

tion, 28, 77Hooke’s law(s), 44, 152, 259, 278, 315Hooke’s relations, 78Hoop membrane force, 325Hoop normal stress, xxiiHoop strain, 60–62, 278Hoop stress, 4, 5, 7, 8, 15, 17, 18, 24, 61–63,

66, 68, 71, 73, 82–85, 87, 88, 105, 116,117, 122, 156, 158, 159, 167, 173, 182,183, 185, 202, 204, 205, 212, 213, 222,225, 227, 251, 261, 287, 297, 300, 304,305, 316, 320, 328, 330, 332–335, 348, 349

Hoop stress ratio, 88, 89Hoop stress resultant, 304, 305, 325, 327Hooping sleeve, 223–225Horizontal asymptote, 81, 83, 86, 101, 270Huber yield theory (criterion), 182Hull(s), 23, 275, 302Hydraulic and pneumatic cylinders, 4Hydroelectric powerplants, 275, 299Hydrostatic head, 4Hydrostatic stress state, 184, 185

Hyperstatic unknown(s), 111, 113, 287, 289,291, 303, 310, 313, 315, 316, 318–320,322, 327, 342–344, 350, 351

Hypervelocity launchers, 212Hysteresis cycle, 180, 258

IIdeal stress, 2, 185Idealized clamped edge(s), 288, 290Idealized constraint(s), 287Immaterial surface, 85Impact absorbers, 51Imperfection factor, 50Incompressibility condition, 60Incompressible material, 246Incremental plastic flow theory, 246Indefinitely large wall-thickness, 84, 85Inertia force(s), 141Inextensional condition, 30Infinitesimal angle, 75Infinitesimal elementary portion, 75Inflection point(s), 43, 44Influence functions, 294Initial condition(s), 60, 67, 175Initial curvature, 25, 27, 36Initial deformation, 61, 62Initial dimension(s), 61, 62Initial ductile yielding, 190Initial ellipticity, 35, 36Initial geometrical imperfections, 35Initial out-of-roundness, 35Initial temperature, 109, 110Initial yielding, 198, 199, 201, 212, 221, 222,

226, 233–235Innermost cylinder (or liner), 130Innermost fiber(s), 82, 192, 193, 195, 201Inner plastic region, 211Inner radius, 2, 5, 7, 17, 21, 74, 81–85, 87–90,

92, 94, 98, 103, 106, 111, 116, 125, 126,131, 133, 135, 152–154, 156–158, 166,167, 169–172, 174, 179, 183, 189,192–198, 201, 202, 206, 208, 211, 213,215–221, 223, 229, 238, 267, 268, 273

In-plane circumferential force(s), 277In-plane displacement(s), 279In-plane meridian stress resultant(s), 278, 338In-plane resultant forces, 19In-plane stress resultants, 277, 324Inside diameter, 2, 5, 6, 10, 15, 60, 68Instability, 3, 13, 32, 35, 38, 41, 42, 45, 46, 48,

50, 51, 54–56, 60, 6971

Subject Index 379

Instability condition, 64, 66, 69, 70Instability of columns, 3Instability pressure, 63Instantaneous plastic strain, 245Instantaneous value(s), 60, 62Integration constant(s), 22, 29, 31, 78, 79, 81,

90, 96, 98, 105, 143, 150, 154, 163, 202,249, 253, 260, 282, 283, 292, 295, 312,315, 339, 340, 342

Interaction between structural components,275

Interface, 110, 111, 115, 116, 127–129, 138,198, 217, 218, 223, 224, 229–231, 239,252, 267, 290, 302–304, 325, 330, 349

Interface circumference(s), 326Interface pressure, 117, 132Interface radius, 118Interference fit, 109, 110, 116, 120, 121, 212Interference shrink-fit(s), 126Internal force(s), 141, 277Internal friction yield theory, 188, 191, 199Internal pressure, 2–5, 7, 10, 11, 13, 16–19, 41,

60, 63, 66–68, 71, 82, 85, 87, 90–95, 98,100, 101, 105, 106, 108, 111, 113,119–126, 134, 135, 137, 138, 179,182–184, 189, 193, 195–202, 204–207,210–212, 214, 215, 217, 218, 223, 226,228–232, 235, 238, 246, 250, 252, 254,267, 275–277, 284, 287–289, 295, 297,299, 300, 302–305, 308, 310–314, 318,324, 328, 330, 331, 339, 342, 344, 346–351

Irregularity(ies), xx, xxiIsochronous stress-strain curve(s), 241Isothermal conditions, 244, 245Isotropic material(s), 153

JJacket, 23Jacketed vessels, 23Johnson’s formula, 47Junction interface, 327, 335Junction plane(s), 309–311, 313–315,

317–321, 323–326, 331, 334, 336, 338,343, 346–349

KKind(s) of instability, 41Kinematic relations, 278Kinematics of deformation, xxviiKirchhoff-Love assumptions, xxviiKirchhoff’s plate theory(s), 309, 311, 321Krylov’s functions, 295

LLagrange multipliers, 133Lagrange’s method, 133Lagrangian strains, xxiiiLamé-Rankine yield theory, 9, 182Lamé’s constant, 148Lamé’s equations, 78, 262Lamé’s relations, 253, 315Large deformations assumption, 181Large strains assumption, xxiiiLateral contraction, xxiiiLatitude angle, 337, 341Law(s) of heat transfer, 141Limit analysis design, xixLimit-design factor, 209, 210Limiting autofrettage pressure, 221, 222Limiting curve, 186, 192, 199, 222Limiting design condition, 221Limiting diameter ratio, 220, 221Limit of proportionality, 32, 33, 44, 45, 47, 49,

51, 53, 54, 57, 68, 116, 125, 180, 209, 239,259, 260, 265

Limit(s), 2, 13, 33, 34, 42, 45, 47, 49, 62, 63,68, 81, 83, 84, 88, 93, 101, 123, 157, 159,170, 174, 186, 197, 213, 240, 242–244,255, 257, 264, 266, 266, 272, 273, 298,308, 313, 321, 334, 343, 348

Linear elastic field, 1, 3, 19, 76, 80, 97, 119,142, 145, 146, 152

Linear elastic range, 141, 147, 208, 233, 275,278, 309, 344

Linear elastic stress state, xxLinear elastic-perfectly plastic behavior, 32,

180, 214, 252, 257, 258Linear formulas, 46, 47Linear velocity, 127Liner (or innermost cylinder), 157Linnaeus’ dictum, 239Loaded edge, 283, 286Load history, 258Loading and unloading process, 258Loading operation, 258Loading process, 258Load ratio(s), 82, 88, 89, 257Local bending, 283, 326, 328Local instability, 3, 42, 45, 51, 54, 55, 65Localized areas, 275Localized bending moment(s), 171–174, 275,

287, 325Localized shearing force(s), 288Local strain, 4Local stress, 4, 171Local stress resultant(s), 294, 304, 308, 309,

330, 331, 348, 349, 351

380 Subject Index

Logarithmic strain(s), xxLog-log coordinates, 64Long circular cylinder(s), 33, 38, 142, 149,

153, 156Long circular cylindrical shell(s), 282, 285,

286, 290, 291, 293, 295, 298, 299Long circular pipe, 282Long cylindrical shell(s), 294, 336Longitudinal direction, 38Longitudinal equilibrium, 247Longitudinal plane, 58Longitudinal stress, 4, 7, 17, 23, 97, 156, 164,

166, 218, 225, 248, 261, 287, 304, 305Long thin-walled circular cylinder(s), 283Long tube(s), 299Loosening, 128, 130Lucretius’ dictum, 254Lüders’ bands, 185Lüders’ lines, 185Ludwik’s law, 260

MMachining process(es), 115, 121Macrostructure, 185Main deflection, 31Main deformation, 58Major semi-axis, 331, 333, 334, 337Manholes, 56, 307Manufacturing drawings, 129Mariotte’s formulas, 5, 17Material constant(s), 242, 243, 245Material’s actual behavior, xxv, 241, 305Material’s elastic properties, 3, 281Material’s mechanical properties, xxi, xxii, 3,

277Material’s microstructure, 243Material’s stress-strain curve, 179, 180, 201,

260, 261Maximum bending moment, 37, 293Maximum deflection, 292Maximum distortion energy equivalence the-

ory, 2, 65–69, 101, 117, 121, 132, 135, 206,249

Maximum distortion energy strength theory, 2,65, 67, 68, 100, 117, 135

Maximum distortion energy yield theory, 181,182, 184, 191, 193, 210, 216, 228

Maximum internal pressure, 123Maximum modified strain energy theory, 96Maximum normal strain strength theory, 2, 10Maximum normal strain yield theory, 182, 186Maximum normal stress strength theory, 2

Maximum normal stress yield theory, 181,182, 186

Maximum octahedral shear stress yield theory,184, 185, 189, 191

Maximum performance, 116, 320Maximum principal stress, 67, 68, 70, 182Maximum shear stress equivalent theory, 245Maximum shear stress strength theory, 120,

135, 249Maximum shear stress yield theory, 181, 182,

184, 202, 210, 211Maximum shearing force, 293Maximum strain energy theory, 101Maximum stress, 8, 82, 84, 105, 314, 317, 320,

321, 328, 333, 349Maximum theoretical residual stress(es), 216,

219Maximum thickness, 101, 103, 271Maxwell yield theory (criterion), 9, 182Maxwell-Huber-von Mises-Hencky yield the-

ory, 182Mean circumference, 15, 16, 308Mean curvature, 307Mean generator(s), 326Mean meridian curve, 326Membrane circumferential force(s), 281, 312Membrane contribution, 304, 314Membrane of revolution, 19Membrane shearing force(s), 277Membrane stress(es), 158, 277, 284, 308, 314,

328, 330, 332, 344, 346Membrane stress state, 21Membrane theory, 21, 275, 308, 309, 324, 325,

331, 334, 343, 347Membrane theory of shell(s), 19, 21Membrane theory’s limits, 325Meridian angle, 19Meridian curve, 20, 328–330, 337–339, 347Meridian plane, 19, 20, 326, 335, 337, 338,

340, 341Meridian stress resultant, 324Method of successive approximations, xxviiiMethod of successive loadings, xxviiiMethod of superposition, 120, 138, 144, 150,

152, 223, 229, 278, 327, 344Method of variation of arbitrary constants, 286Method of variation of parameters, 282Michell’s theorem, 80Microstructure, 185Middle cross-section, 296, 297Middle diameter, 24Middle fiber, 24–26, 345Middle generator(s), 42

Subject Index 381

Middle meridian curve, 325Middle plane(s), 288, 300, 302, 310–312, 315,

317, 318, 320, 323, 324Middle surface, 51, 276, 278, 279, 299, 302,

307–309, 314, 318, 324, 331, 337–339,341, 348

Minimum creep rate, 243Minimum elastic potential energy configura-

tion, 334Minimum principal stress, 195Minimum total energy principle, 59Minimum weight, xxMinor semi-axis, 331, 334Mises yield theory (criterion), 181Missiles, 243, 279Mobile mandrel, 199Mobile piston(s), 4Mobile seal(s), 199Modified Beltrami’s theory, 96Modulus of elasticity in tension, 77Mohr’s cyrcle(s), 8, 184, 186, 187, 198Mohr’s plane, 184, 186, 187Mohr’s yield theory, 181, 186Moment of inertia of area, 44, 58, 59Moment of inertia of the effective cross-sec-

tional area, 27Mono-bloc-type construction, 124Monobloc-type structure, 125, 126, 235Monochromatic classes of solutions, xxviiMonolithic structure, 94, 119Multiaxial problem, 245Multiaxial stress state, 185, 245Multiaxial stress system, 245Multilayer composite structure, 223, 238Multilayer cylindrical structure(s), 130Multilayer structure(s), 117, 130, 132, 134,

135, 137, 238, 270, 271, 272Multilayer tanks, xixMultiply-connected body, 80

NNatural half-wave length, 53, 54Natural logarithm, 61Natural strain(s), 60, 181Necking down, 65Neutral axis, 26, 58, 59Neutral equilibrium, 29Neutral fiber, 345Nominal dimension(s), 110Nominal strain(s), 62Nominal unit elongation(s), 62Non-developable surface(s), 307Non-dimensional slenderness, 50

Non-hardening linear elastic behavior, 241Non-homogeneous forth order differential

equation, 284, 285, 340Non-linear problem(s), xiNonlinear theories, xxviiNon-linearity, xxviiNon-load edge, 287Non-rotating solid disk, 315Non-strain hardening behavior, xxvNon-zero Gaussian curvature, 307, 337, 338Normal compressive force, 27Normal strain(s), 2, 10, 16, 77, 95, 147, 149Normal stress(es), 77, 78, 80, 81, 94, 146, 147,

184, 284, 314, 320, 328, 338Norton’s power law, 242Notch effect(s), 190Notch(es), 179, 190Nozzles, 56Nuclear vessel(s), xix, 279Numerical model(s), xx

OOctahedral plane(s), 184Offset yield strength, 46, 233Oil refineries, 275Omega method, 49One-dimensional heat flow, 153One-dimensional problem, xxiiOne-dimensional tensile creep test(s), 241Onset of plastic flow, 192, 195–197, 199, 204,

205, 209, 210, 212, 217, 218, 262Onset of the plastic state, 125, 126, 189, 201,

210Onset of yield, 126, 235, 236Open cross-section(s), 56Open end(s), 62, 80, 83, 89, 91, 92, 95, 116Openings, 56Operating condition(s), 190Optimal geometry, 116, 117Optimal interference, 121Optimal thickness ratio, 325Optimization criterion, 116Optimized design, 116, 120Optimized preliminary pre-stressing process,

xiOptimum internal pressure, 123Optimum structure design, 133Osculating circumference, 186Osculating sphere, 333Outer elastic region, 208, 211Outer radius, 7, 17, 32, 82–85, 87–90, 92–95,

102, 103, 106, 111, 116, 126, 127, 131,135, 142, 151–154, 156–158, 163, 164,

382 Subject Index

166, 167, 170–174, 183, 199, 200,202–204, 207, 208, 211–214, 216, 218,220, 223, 227, 231, 238, 268, 276, 284,309, 314, 315, 317, 318, 327, 328, 345, 346

Outermost fiber(s), 37, 82Out-of-plane load(s), 314Out-of-plane radial displacement(s), 283Out-of-plane stress resultant(s), 330Outside diameter, 2, 4, 6Oval of plasticity, 188Overall buckling, 54Overall instability, 42, 44, 45, 48, 49, 51Overloading, 41Overspeeding, 210Overstrain, 216, 219, 226, 233, 234Overstressing, 211, 216Overstressing pressure, 211, 216

PParabolic formula, 46Parabolic function, 314, 345Parallel circle, 22, 333, 338Parallel plane, 277, 337Partial differential equation, 55, 57, 64, 69, 174Partial factor for resistance, 50Partially plastic state, 212, 252, 265Partial overstrain, 218Partial plasticization, 257Partial vacuum, 23Partial yield, 265Particular formulation, 344Particular integral, 281–283, 295Particular solution, 29, 282Penstocks, 275, 299Percentage autofrettage, 216, 234Percentage overstrain, 216, 234Perfect circular form, 35Perfectly elastic behavior, 180, 214Perfectly plastic behavior, 180Perfectly plastic material, 179, 212Peripheral velocity, 127Permanent plastic strain, 180, 258Permanent residual deformation(s), xxiiiPermanent residual strain(s), xxiii, xxivPermanent set, 46, 191, 211, 233Permissible error, 286Permissible stress, 290Perturbations at the edges, 4, 155Physical absurdity, 239, 252Physical constant(s), 243Physical non-linearity, xxviiPinned-end column, 43Piobert effect, 185

Piobert’s bands, 185Pipeline(s), xixPiping, 11, 153, 156Plane stress state, 71, 80, 126, 142, 146, 150,

171, 198Plastic adaptation, 257Plastic boundary, 211, 231, 252, 263Plastic constitutive laws, 61Plastic deformation(s), 61, 128, 185, 229Plastic-elastic interface, 181, 202, 204–208,

213, 214, 218–220, 222, 239, 256, 267Plastic expansion, 41Plastic flow, 41, 62, 64, 65, 70, 94, 115,

192–197, 209, 211, 212, 215, 217, 220,223, 232, 251, 257

Plastic flow equation, 66Plastic flow instability, 63, 64, 68Plastic flow laws, 67Plastic hinge, 210Plastic instability, 41Plastic material(s), 212, 265Plastic range, 63, 185, 203, 208, 247, 255, 258,

263Plastic region, 181, 202, 206, 208, 212–214,

218, 232, 261, 264Plastic reserve, 199, 209, 210, 215Plastic strain(s), 181, 240, 245Plate’s flexural rigidity, 311Point function, 45, 258Points of inflection of the deflection curve, 43,

44Poisson’s ratio(s), 77, 141, 268, 280, 296Polar coordinate reference system, 25Polynomial correlation, 258Post-buckling curvature, 26Power series, 153Power series expansion, 18, 168, 297Prandtl-Reuss laws, 246Press fit(s), 109Pressure equipment(s), 307Pressure load(s), 179, 344Pressure vessel(s), 2, 13, 210, 275, 307–309,

314, 316, 317, 319, 321, 322, 324, 328,330, 331, 335, 348, 349, 351

Pre-stressing procedure, xxivPrimary creep stage, 241Principal curvature(s), 311, 307, 340Principal direction(s), 1, 4, 146, 181, 245Principal plane(s) of curvature, 22, 315, 341,

342, 343, 350, 351Principal radius of the meridian, 19Principal radius of the parallel circle, 19Principal radius(ii) of curvature, 22, 311,

337–339, 346, 347

Subject Index 383

Principal strain(s), 10, 14, 15, 67, 68, 70, 71,90–92, 94, 148, 246, 247, 207

Principal stress(es), 3, 4, 7, 8, 10, 16, 21, 60,,82, 90, 98, 106, 151, 157, 158, 163, 164,166, 168, 170, 171, 181, 184, 185, 190,195, 198, 200, 202, 206, 208, 226, 229,239, 246, 247, 250, 251, 252, 263, 264

Principal true strain(s), 60Principal true stress(es), 63Principal unit elongation(s), 89, 91, 93, 205Processes control(s), 115Production cycle, 211Profiles, 276Pronounced yield point, 34Proof stress, 46Proof testing to failure, 179Proportional limit, 32, 33, 44, 45, 47, 49, 51,

53, 54, 68, 116, 120, 125, 180, 209, 238,257–259

Proportional range, 185, 259Pure shear, 84, 187, 198Pythagorean theorem, 28

QQuadratic formulas, 46Quasi-cylindrical portion, 339

RRadial and hoop stresses, 80, 83–87, 97, 111,

113, 131, 135, 152, 155, 159, 162, 164,314, 317, 320

Radial deflection(s), 29Radial direction, 74, 75, 146, 310Radial displacement(s), 16, 21, 25, 29–31, 75,

77, 80, 90, 92, 111, 126, 142, 144, 151,152, 155, 159, 163, 164, 172, 206, 250,282, 286, 287, 291, 292, 294, 296, 297,299, 300, 301, 303, 304, 310, 314, 315,318, 325, 326, 328, 334, 335, 338, 339

Radial equilibrium, 238, 247Radial expansion, 199, 217, 287, 301Radial heat flow, 142, 143Radial interference, 111, 117, 118, 123, 127,

129, 130Radial interference fit, 109, 110Radial strain, 18, 60, 70, 75, 278Radial stress, 4, 7, 8, 15–18, 32, 61, 68, 81–84,

116, 138, 152, 156, 157, 159, 166, 168,183, 198, 202, 204, 205, 212, 214, 217,222–224, 229, 248, 261–263, 315, 321

Radius of curvature, 25, 158Radius of gyration, 43, 48

Radius of the parallel circle, 19, 20Ram, 199Ramberg and Osgood formula, 64, 67Ramberg and Osgood’s law, 260Range of uniform flow, 65Range of unstable flow, 65Rankine’s formula, 35Rate of deformation, 240Rate-independent plasticity, 245Reactive circumferential membrane force(s),

281Reactor liner(s), xixReciprocating machines, 153Recoverable elastic strain, 258Redistribution of stresses, 179, 190Reduction factor for the relevant buckling

mode, 50Reduction of area, 62Reference system, 276, 283, 325, 336Reference temperature, 156, 166, 174Reinforced vessels, 23Residual internal stress(es), 179Residual state of coaction, 179Residual stress(es), 115, 179, 192, 195, 199,

212, 213, 216–223, 225–227, 229, 230,235, 239

Residual stress state, 212, 213, 215, 217, 220Response analysis, 2, 10, 33, 41, 48, 98, 106Response analysis relation, 134Restoring moment, 29Reverse yielding, 212, 214, 217, 220–223,

225–228, 231, 234Reverse-yield boundary, 223, 225, 228Reyielded core, 223, 226, 227Reyielded region, 225, 229Reyielding, 220, 223, 231Rhombus of plasticity, 186Ribbed hulls, 299Ribbed monocoque fuselages, 275Ribbed structures, 279Ring attachment(s), 302Ring frames, 299Ring(s), 1, 23, 25–27, 30, 31, 38, 141–143,

146, 149, 304, 305Risk of failure, 8, 189Roll formed tubular segments, 351Roš-Eichinger-Nadai yield theory, 184Rotating disk, 210, 315Rotational equilibrium, 27Rotational speed(s), 128Rotation angle, 58, 303, 310, 311, 313Rotation axis, 19, 20Rotation of the normal, 286, 311, 315, 318,

327, 341

384 Subject Index

SSafety factor, 32, 33, 35, 47, 48, 129, 156, 167,

192, 199Safety requirement(s), xxSaint-Venant’s principle, 4Saint-Venant’s yield theory, 182Secondary creep stage, 241, 243Secondary deflection, 48Secondary deformation, 58, 59Second degree algebraic equation, 255Second moment of area, 44, 58Second order differential equation, 77, 143,

148, 175Second quadratic form of a surface, 311Second stage creep, 241, 243Second-order approximation shell theory,

xxviiSelf-diffusion, 243Self-hooping, 199, 211Self-hooping force, xxivSemielliptical dished head(s), 332, 334, 335,

339, 341, 342, 344–348Semielliptical meridian curve, 331, 332,

335–338, 348, 349Semi-infinite circular cylindrical shell(s), 290Separable variable, 202, 312Separation criterion, 242Serensen’s relation, 246Series expansion(s), 145, 169, 175–177Service condition(s), 119, 192, 212, 239, 246Service load(s), 115, 195, 199Shear stress(es), 4, 8, 57, 116, 118, 120, 147,

184, 185, 189, 201, 209, 238, 314Shear stress resultant, 280Shearing strain(s), 4, 76Shearing stress(es), 76, 85Shell(s) of revolution, 21, 276, 307, 308, 325,

336Shell’s flexural rigidity, 36, 52, 53, 279Short circular cylindrical shell(s), 295, 298Short cylindrical shell(s), xiiShort-life items, 241Shrink fit(s), 109, 111, 112, 114, 115, 118,

121, 124, 126, 128, 210Shrink-fit assembly(ies), 115, 117, 118, 120,

126–128, 130Shrink-fit diameter(s), 110Shrink-fit interface, 111, 121, 130Shrink-fit pressure, 87, 110, 111, 113, 114,

119–123, 128–130Shrink-fit process, 110, 115, 217Shrink-fit shaft/hub assembly(ies), 111, 113,

129

Shrinking, 109Sign convention(s), 279, 303, 310, 313, 315,

319, 343, 349, 350Significant quantities, 292, 295Significant strain(s), 61Significant stress(es), 61, 347Simple support, 315, 318Simple tensile creep test(s), 240, 241Simplified Mohr’s criterion, 186Simplifying assumption(s), 4, 141, 239, 265,

308Simply plasticity theory, 245Simply supported edge(s), 38, 55, 57, 287, 288Single-walled structure, 120, 124, 125Singularity problem(s), 81, 255, 269, 315Singularity(ies), 81, 82, 145, 152, 164, 270Sinusoids, 51Slender column(s), 42, 44Slenderness ratio, 43–45, 47–49Slip band(s), 185Slip limit, 129Slip plane(s), 185, 188Slope, 64, 287Slope of the deflection curve, 286, 290, 294,

310Small deformation(s), 181, 247Small deformations assumption, 181Small displacement assumption(s), 42, 283,

315Small displacement(s), 42, 279, 311Small element, 4, 17, 20, 25, 26, 36, 74, 153,

238, 277, 278, 290, 337, 338Small-parameter method, xxviiSmall strains assumption, 181, 249Small terms, xxviiSmokestacks, 153, 167Solid circular cylinder, 87, 152, 159, 164, 174Solid circular plate(s), 309–312, 315, 318, 319Solid fuel elements, xixSolid shaft, 118, 119, 129Southwell’s formula, 35Sphere(s), 328Spherical coordinate(s), 19, 337Spherical shape, 334Spherical surface, 311Spiral layers, 265Square of plasticity, 186Stabilization heat treatment, 235Stable equilibrium, 29Standard specimen, 34, 64, 180, 190, 239, 242State of coaction, 211, 265, 273, 274Static assumption, 279Static equivalent load system, 321

Subject Index 385

Steady-state condition(s), 153, 154, 247Steady-state creep, 241, 243Steady-state creep rate, 241, 243Steady-state viscous behavior, 246Steady-state viscous creep, 246Steady-state viscous flow, 250, 251Steady-state viscous state, 251, 257Steel grade(s), 51, 62Stiffener(s), 23, 24, 300, 302Stiffening ring effect, 54Stiffening ring(s), 23, 38, 39, 275, 299–305Stiffness response, 308Straight beams, 27Strain components, 142, 147Strain gage measurement(s), 309Strain hardening, 180, 185, 214, 235, 245Strain hardening behavior, 179–180, 216, 248Strain hardening material(s), 222, 258Strain hardening phenomenon, 258Strain hardening plastic behavior, 246Strain hardening theory, 244Strain offset, 46, 233Strain state, 1, 6, 14, 21, 73, 76, 81, 89–92,

111, 128, 142, 144, 146, 147, 162, 164,171, 181, 205, 217, 248, 250, 264

Strain-aging effect, 216, 235Strain-hardening coefficient, 64Strain-hardening material, 240Strength, 2, 3, 7, 8, 11–14, 16, 46, 83, 96–98,

100–103, 105, 106, 108, 116, 118, 120,122, 125, 135, 137, 156, 211, 216, 232,233, 235, 269, 271, 272, 274

Strength coefficient, 64Strength criterion(s), 8, 96Strength limit stress, 238Strength limit value, 3Strength property(ies), 194, 216Strength theory(ies), 8, 10, 12–14, 18, 96, 101,

102, 103, 108, 116, 117, 137, 156, 167,189, 237, 250, 265, 268–271, 274

Stress and strain state, 1, 115, 130, 141, 171,174, 176, 201, 240, 245, 246, 275, 278,295, 308, 309, 336

Stress components, 147Stress concentration factor, 111, 190, 320, 321Stress concentration(s), 189, 190, 228, 308Stress distribution(s), 113, 121, 200, 201, 206,

208, 275, 314Stress field, 84, 87, 105, 171, 179Stress intensifications factors, 351, 352Stress peak(s), 83, 84, 87, 189, 325Stress resultants per unit length, 281Stress state, 1, 8, 18, 19, 68, 73, 81, 83, 84, 89,

94–96, 110, 111, 113, 119, 120, 132, 142,

144, 146, 149, 151, 152, 155, 156, 158,159, 161, 163, 164, 166, 167, 171, 177,179, 184–186, 189–191, 197–200,202–204, 206, 207, 212, 214, 215, 223,229, 249, 250, 253, 254, 261–263, 286,293, 302, 315, 317, 320, 346

Stress-strain law, 240Structural collapse, xxStructural strength, 82Structure of revolution, 74Submarines, 23, 299Successive maxima and minima, 286Successive yield cycles, 212Summation function, 133Surface force distributions, 152, 163, 164Surface force(s), 22, 74, 76, 81, 84, 85, 88,

141, 144, 146, 149, 150, 152, 164, 246,282, 315

Swage autofrettage, 200Swift’s law, 260Symmetrical deformation, 280Symmetry conditions, 31, 277System of orthogonal curvilinear coordinate,

307

TTangential direction, 277Tangential displacement(s), 30, 76, 90, 277,

278Tangential force per unit of surface area, 129Tangential strain, 75, 94, 95, 151Tangent modulus, 34, 45, 53, 258Technical theory of the shells, xxviiTemperature distribution(s), 141, 149, 153,

155, 157–159, 164, 166, 168, 171, 176Temperature gradient, 148, 150–153, 163, 164,

171, 174, 247Tensile strain history, xxvTensile strength, 103, 167Tensile stress(es), 59, 79, 116, 156, 157, 166,

167, 170, 179, 190, 229, 314, 317, 327,330, 348

Tensile test, 64, 117, 180, 190, 191, 233, 239Tensile yield point, 215Tensile yielding, 213Tensor invariant(s), 184Tertiary creep stage, 241Test temperature, 240Tetmajer’s formula, 47Theorem of minimum work, 59Theoretical circular shape, 35Theoretical method(s), xTheoretical model(s), 182, 189, 243

386 Subject Index

Theories for creep, 242, 243Theory(ies) of failure, 8Theory(ies) of the shells, 19, 21, 280, 329,

335, 341Theory of curved beams, 26Theory of plasticity, 321Thermal gradients, 115Thermal load(s), 7, 11, 17, 76, 81, 142, 146,

155, 156, 159, 161, 163, 164, 166, 167,171, 173, 174

Thermal stress(es), 73, 80, 115Thermoelasticity relation(s), 142, 147–150Thermoelastic stress-strain relations, 15Thermomechanical magnitude(s), 149Thickness, 1–4, 7, 10, 13, 14, 16, 17, 22, 24,

27, 38, 44, 48, 51, 60, 63, 66–68, 70, 73,78, 83–86, 89, 93, 94, 100, 101, 102, 103,106, 116, 119, 126, 135, 142, 145, 157,158, 168, 170–172, 198, 208, 211, 212,214, 215, 217, 218, 220–222, 225, 226,232, 233, 264, 265, 272, 273, 276, 288,300, 302, 308–310, 312–314, 314, 315,324, 325, 328, 331, 345, 349

Thickness discontinuity, 349, 351Thickness ratio(s), 321Thick-walled circular cylinder(s), 2, 13, 18,

19, 34, 35, 80, 89, 94, 95, 97, 98, 101–103,106, 179, 181–183, 189, 199, 201, 210,227, 241, 248

Thick-walled tubes, 189Thick-walled vessel(s), 210Thin-walled annular ring(s), 33Thin-walled circular cylinder(s), 1–4, 6–8, 10,

11, 13, 14, 16, 17, 19, 23, 35, 38, 41, 44,58, 60, 63, 80, 96, 100–103, 108, 171, 198,210, 276

Thin-walled circular ring(s), 1, 32Thin-walled rings, 24Thin-walled structures, 41, 56, 309Third order differential equation, 316Third stage creep, 243Threshold value(s), 220, 221, 240Time-dependent magnitude(s), 141Time-dependent strain(s), 242Time hardening theory, 244Tolerable limits, 35Torsional buckling, 3, 56, 57Torsional rigidity, 56Total critical load, 52Total radial displacement(s), 36, 152, 342Total radial interference, 112Total strain, 240, 241Transient thermal load, 141Transitional region, 265

Transmittable torque, 129Transverse displacement(s), 312, 321Transverse shearing force(s), 277–279, 312,

337Tresca yield theory (criterion), 181Triaxial stress state, 4, 10, 65, 95, 96, 97, 128,

135, 147, 181, 191, 199, 201, 202, 247Trigonometric functions, 281, 299True hoop stress, 60, 62True radial stress, 60True strain(s), 45, 63, 64, 181True stress(es), 64, 192True stress-true strain curve, 64Tubing, 33, 153, 156Tubular shell structure(s), 275Tubular structure(s), 1, 41, 44, 48, 82, 179Twist, 279Twisting couple, 56Twisting moments, 21, 277Two-dimensional problem, xxviTwo-walled composite structure, 125

UUltimate limit state, 65Ultimate strain, 62Ultimate stress, 46, 64, 65, 179, 199, 214Ultimate tensile strength, 62Unalloyed steel, 216Uniaxial stress state, 18, 198Uniaxial tensile test, 243Uniaxial tension stress-strain curve, 65Uniform axial translation, 146, 147, 162, 164,

171Uniform normal pressure per unit of length, 27Uniform plastic flow, 65Unitary axial length, 17, 36, 153, 174Unit elongation(s), 30, 146, 206, 207Unit normal elongation(s), 80, 149Unit shear strain(s), 4Unloading and loading cycle, 180Unload open ends, 4Unstable elastic equilibrium, 43, 85Unstable equilibrium, 29

VVacuum columns, 23Vacuum condensers, 23Vacuum crystallizers, 23Variable plastic compliance, xixVerification analysis, 8, 10, 95Vertical asymptote, 81Virgin material, 202, 215, 217

Subject Index 387

Virgin state, 258Viscous behavior, 240Viscous flow, 247, 251Viscous flow theory of creep, 246Viscous range, 247Viscous state, 248, 253, 259Volume element, 74, 75, 130Volume expansion, 60, 148, 206, 248

WWavelength, 42, 51, 54, 285Wave(s), 31, 38Weber function(s), 175Wedge-shaped layers, 265Weld beads, ix, xxiWelded junction, 308Welded seam, 308, 351Winkler’s beam, 26, 285Winkler’s theory, 96Winkler-type foundation, 285, 51Work, 3, 42, 115Working conditions, 48, 137, 217, 240Working pressure, 7, 119, 120, 179, 195, 212,

215, 217, 233, 307Working stress(es), 13, 98, 212Wrinkles, 56Wrinkling, 51

YYield criterion, 181, 186–188, 190, 191, 202,

205Yield ellipse, 183, 189Yield hexagon, 184, 189Yielding, 14, 37, 60, 179, 181, 184–186, 191,

192, 198, 201, 210, 215, 217, 220, 221,235, 239, 263, 292

Yielding onset, 186Yield point, 23, 24, 32, 116, 125, 179, 185,

238, 240Yield-point stress, 34, 37, 41, 48, 64, 68, 180,

209, 213, 214, 221–223, 226, 258, 321Yield rhombus, 186Yield square, 186Yield strength, 62, 65, 94, 117, 119, 123, 124,

126, 179, 180, 189, 216, 227, 230, 232–236Yield stress, 37, 47, 65, 93, 115, 125, 156, 182,

199, 206, 208, 220, 238Yield theory, 179, 181–183, 185, 188–193,

195, 196, 198, 199, 208, 210, 212–214,216, 220, 221, 223, 226, 229, 231, 238,254, 256, 257, 264

Young’s modulus, 27, 34, 43, 45, 53, 141, 258

ZZero Gaussian curvature, 276, 307, 337

388 Subject Index