52
Reader & Tags Communication 建建建建建建建建建 建建建 2010

Reader & Tags Communication

Embed Size (px)

DESCRIPTION

Reader & Tags Communication. 建國科技大學資管系 饒瑞佶 2010. RFID 使用範例 1. Reader. RFID 使用範例 2. 天線. Reader. 多天線 多 Tags. 提高辨識率 可以進行定位. Reader & Tags 通訊示意圖. HF 以下使用感 應偶合 (Inductive Coupling). UHF 使用 後向散射偶合 (Backscatter Coupling). RFID 概論,陳昱仁. UHF 使用 後向散射偶合 (Backscatter Coupling). 天線種類. - PowerPoint PPT Presentation

Citation preview

Page 1: Reader & Tags Communication

Reader & Tags Communication

建國科技大學資管系饒瑞佶2010

Page 2: Reader & Tags Communication

RFID 使用範例 1

Reader

Page 3: Reader & Tags Communication

RFID 使用範例 2

天線

Reader

Page 4: Reader & Tags Communication

多天線 多 Tags

提高辨識率可以進行定位

Page 5: Reader & Tags Communication

Reader & Tags 通訊示意圖

Page 6: Reader & Tags Communication

HF 以下使用感應偶合 (Inductive Coupling)

Page 7: Reader & Tags Communication

UHF 使用後向散射偶合 (Backscatter Coupling)

RFID概論,陳昱仁

Page 8: Reader & Tags Communication

UHF 使用後向散射偶合 (Backscatter Coupling)

Page 9: Reader & Tags Communication

天線種類

天線的極化– 線性– 圓形

功能– mono-static– bi-static

Page 10: Reader & Tags Communication

天線角度與讀取範圍

Page 11: Reader & Tags Communication

圓形極化天線

產生圓形 RF訊號場,可以接收來自於水平與垂直面的訊號,但是訊號會有相位變化,強度會有點降低( 50%左右),非常適用於標籤讀取角度無法限制的場合

圓極化天線包括兩種,分別是右手與左手圓型化。右手圓型化所產生的 RF訊號場是順時鐘方向,反之左手圓型化產生的是逆時鐘方向 RF場

辨識區內可以同時使用右手與左手圓型化天線來提高辨識率

Page 12: Reader & Tags Communication

線性極化天線

不同於圓極化天線, RF訊號只能在一個平面上進行傳輸,所以相位的改變小,訊號衰減低,讀取效率優於圓極化

但是標籤也需要具備有相同極化方向才可以被讀取,也因為對於方向性的要求高,所以此種天線適合用於標籤具備有固定讀取方向的場合

Page 13: Reader & Tags Communication

電磁場方向

Page 14: Reader & Tags Communication

線性極化

Page 15: Reader & Tags Communication

圓形極化天線

Page 16: Reader & Tags Communication

圓形極化天線

Page 17: Reader & Tags Communication

線性極化天線

Page 18: Reader & Tags Communication

Mono-static 天線

同時具備有傳送與接收功能,搭配這種天線使用的讀取器都有切換器來切換傳送與接收功能

同時ㄧ次可以使用 4支天線,天線體積較為輕巧,但是運作上效率較低,所以很多製造商例如 Impinj致力於提高這種切換運作的效率

Page 19: Reader & Tags Communication

Bi-static 天線

這種天線不使用切換器,而是同時有接收及傳送天線,可以獨立運作,運作效率優於 mono-static天線

所以如果讀取器要跟使用 mono-static天現時ㄧ樣有四支天線,那就需要有 8個連接介面( Tx代表傳送, Rx代表接收)

Page 20: Reader & Tags Communication

讀取器結構

RF發射與接收模組控制模組天線通訊介面與頻道網路介面及其他相關週邊模組

Page 21: Reader & Tags Communication

讀取器- RF 發射模組

震盪器( oscillator):讀取器工作頻率產生的來源調變器(modulator):調變震盪器產生的固定頻率訊號,使訊號中可以同時攜帶有標籤需要的控制命令與資料

放大器( amplifier):訊號從震盪器產生經過調變後,要透過天線傳送之前會先經過訊號放大,再傳送到標籤

Page 22: Reader & Tags Communication

調變

許多電氣信號並無法在空氣中做遠距離的傳輸,所以必須要將其轉換成高頻無線電波信號以傳送至遠處,這樣的動作稱為調變

調變技術是將原始信號型態轉換成適合於傳輸介質的傳輸信號型態,以提高傳輸效能之技術

Page 23: Reader & Tags Communication

調變

將欲傳送的原始信號編碼放入一個載送的高頻電磁波中,而這個載送電磁波是適合在大氣自然環境中做遠距離傳送。– 這個高頻無線電波,稱為載波( carrier)– 原始信號被稱為進行調變的信號

( modulating signal)或基頻信號– 轉換成的高頻信號被稱為已調變的信號

( modulated signal),適合無線電波傳送

Page 24: Reader & Tags Communication

讀取器- RF 接收模組

解調變器( demodulator):將天線從標籤接收到經過調變的訊號中把有用的資料解調變出來

放大器:將解調變後的資料訊號放大,再送至控制單元進行後續處理

Page 25: Reader & Tags Communication

電磁波

波長頻率能量穿透性傳輸距離

Page 26: Reader & Tags Communication

調變

如果原始信號是類比信號,就需要類比調變( analog modulation & demodulation) 與解調變的技術。

如果原始信號是數位信號,一樣需要將數位信號轉成適合的特定通道傳送,這一類被稱為數位調變與解調變( digital modulation & demodulation) 。

Page 27: Reader & Tags Communication

類比調變

將類比信號載入無線電波傳送有多種方式,其原理都是嘗試改變載波某些特徵來表現原始的信號

載波有三個重要參數可做為調變的因素,即利用載波的振幅、頻率、或相位的變化來表示原始信號。

– 振幅調變( Amplitude Modulation , AM) – 頻率調變( Frequency Modulation , FM)– 相位調變( Phase Modulation , PM)

Page 28: Reader & Tags Communication

調變方式   

調幅

調頻調相

Page 29: Reader & Tags Communication

無線訊號傳輸碰撞 (collision)

一般而言, RFID的讀取器一次只能與一個標籤進行溝通,因而會有所謂訊號碰撞的問題。

RFID 的訊號碰撞( Collision)一般可分為標籤訊號碰撞以及讀取器訊號碰撞兩大類,前者是指同個讀取器同時收到多個標籤所返回的訊號,造成無法準確判讀或誤判,後者則是同個標籤同時收到多個讀取器所發出的命令以致於造成衝突。

Page 30: Reader & Tags Communication

無線訊號傳輸碰撞 (collision)

Tag collisionReader collisionDense reader mode

Readertag

Page 31: Reader & Tags Communication

如何解決訊號碰撞 (collision)

訊號碰撞會造成訊號傳遞失敗、流失,甚至訊號錯誤的解讀形成資料錯誤等等

近年來已經研究出許多的方法可以用以解決上述的訊號碰撞,一般統稱為防訊號碰撞( Anti-Collision)

防訊號衝突的方式可分為分址多工( SDMA)、分頻多工( FDMA)以及分時多工( TDMA)

Page 32: Reader & Tags Communication

分址多工( SDMA )

SDMA : Space Division Multiple Access分址多工是利用空間區隔的方式來避免訊號的衝突,多用以處理讀取器的訊號碰撞

依據讀取器與天線的有效距離將空間進行劃分,避免標籤被重複讀取的可能性,例如將部署被動式天線時將天線依據不同的方向錯開,或使用主動式的系統時,依據讀取器的接收範圍將空間劃分為不同的區域

Page 33: Reader & Tags Communication

分頻多工( FDMA )

FDMA : Frequency Division Multiple Access 利用訊號傳輸所使用的頻道進行區分來避免訊號碰撞讀取器可使用相同的頻率發送訊號與命令至標籤,但有多個標籤需同時回覆時,可採用不同的副載波頻率,將一定的頻率範圍(如 13.57MHz-13.59MHz)切分為更細的頻道( Channel)以分配給不同的標籤進行資料傳輸

Page 34: Reader & Tags Communication

分時多工( TDMA)

TDMA : Time Division Multiple Access 分時多工是防訊號碰撞中最常使用,也最成熟的一項技術,是利用時間的差異,將可使用的通訊時序分配給不同的標籤進行資料傳輸,排定先後順序後依序與讀取器進行溝通

排定順序的方式一般常見的有 (Slotted) ALOHA以及 Binary Search 兩種,前者是利用預設的時間區間,當標籤先後返回訊號的時間若有某標籤沒有與其他標籤衝突時,則將優先讀取;後者則是利用標籤所返回 UID 配合演算法進行二元搜尋,直至選取到唯一的標籤後優先讀取

Page 35: Reader & Tags Communication

讀取器防碰撞

在讀取器的硬體層,多半都已經提供基本的防訊號碰撞功能,確保讀取器在讀取多標籤的時候可以準確無誤的讀取

讀取器防訊號碰撞功能的好壞,也間接關係其讀取率(訊號接收的準確性)以及讀取速度(訊號處理所需的時間)

Page 36: Reader & Tags Communication

多的 tags 與多個 readers

需要解決訊號衝突 ( collisions) anti-collision protocol

– 先決定哪個 tag傳輸– 依序輪流

空間錯開時間錯開

– TTF (Tag Talk First) : ALOHA– RTF (Reader Talk First) : Binary search– LBT ( Listen Before Talk)

Page 37: Reader & Tags Communication

ALOHA(1970, Abramson)是一種隨機演算法,這種演算法多採取 TTF (Tag Talk First)的方式,即 tag進入 Reader的辨識區域就自動向 Reader發送其自身的 UID。但在通訊的過程中,若有其他 tag也在發送資料,那就會發生信號衝突(collision)。一旦發生衝突, Reader會發送命令讓 tag 停止發送,隨機等待一段時間後 tag再重新發送以減少衝突

Pure ALOHA (TTF)

分時多工

Page 38: Reader & Tags Communication

RTF(Reader Talk First)是指 Reader 主動啟動通訊的通訊模式,是另一種解決多個 tag 出現在同辨識區內時引起的通信衝突方法。當 Reader 檢測到辨識區有多個 tag同時回應時,靠 tag 的 UID過濾掉某些引起衝突的 tag(二元樹的遞迴檢索),縮小了衝突範圍,再逐次減少可能造成衝突的 tag 數量,直到辨識區內只有一個 tag處於可通訊的狀態.其餘的 tag 均暫時進入”休眠”狀態,待與 tag的通訊結束後, Reader再次發起另一次通訊,直到完成所有辨識區內 tag的通訊為止。

RTF

分時多工

Page 39: Reader & Tags Communication

TTF讀取多個 RFID的原理

Time Slotted-ALOHA

Page 40: Reader & Tags Communication

ID0 : Tag 本身臨時產生的亂數ID1 : Tag 本身記錄的一個亂數ID2:原始 UID

編出回應時槽的序號

序號之產生

Page 41: Reader & Tags Communication

Binary Search

Page 42: Reader & Tags Communication

Reader vs. Tag通訊過程中 RF 傳送示意圖

得出編碼與時槽序號

Binary search

Page 43: Reader & Tags Communication

這種以 Reader為主導的通訊方式.在辨識區內 tag個數少的時候演算時間足以應付,但當 tag 數量大量增加時,二元樹的遞迴檢索演算法所需時間會隨之增加而呈指數級數增加,變得不太可行。

RTF

Page 44: Reader & Tags Communication

用於 Dense Reader Mode以頻道方式區分通訊,當 Reader要透過某個頻道通訊時,會先監聽該頻道是否有人使用(透過天線的 RF能量強度),如果已經被使用, Reader將自動切換到其他頻道做通訊

Listen Before Talk(LBT)

分頻多工

Page 45: Reader & Tags Communication

在 EPC Gen2 標準中特別設計了所謂的Dense Reader Mode來防止在同一空間中使用許多讀取器所造成的訊號碰撞

讀取器天線所發出的無線電波強度可達標籤的數百萬倍,因此若兩者所使用的頻率接近,標籤所反射的無線電波很容易被干擾,因此需要將讀取器所使用的頻寬與標籤的區分開,並嚴格限制讀取器所使用的頻寬以避免對標籤的干擾

Dense Reader Mode

Page 46: Reader & Tags Communication

取自 EPCglobal之Class 1 Generation 2 UHF Air Interface Protocol Standard “Gen 2”標準

Page 47: Reader & Tags Communication

影響 RFID 讀取效果的因素有很多,訊號碰撞並不是造成讀取效果不佳或資料錯誤的唯一原因

很多的狀況下,環境的干擾或系統設計不良,軟體邏輯錯誤等等也有可能造成上述的問題

讀取率問題

Page 48: Reader & Tags Communication

Reader & Tag 傳輸距離

環境因素Four main contributors:

– Reader的功率– Tag的靈敏度– 天線大小– 訊號碰撞…

Page 49: Reader & Tags Communication

傳輸距離 vs. 能量

ERP(Effective radiated power)有效電磁波發射功率

一般國家法規往往僅允許發射 1W 之 ERP,因此在 10m以外的標籤僅可以接收到 0.8mW的能量

24 r

ERPP

Page 50: Reader & Tags Communication

傳輸距離 vs. 能量

反射與折射 (Reflection & Refraction)– 金屬全反射:法拉第箱 (Faraday cage)(如電梯 )

吸收與衰減 (Absorption & Attenuation)– 吸收:水分子 ( 微波爐 ),超高頻以上較易被吸收

介電效應 (Di-electric effects)– 電磁波產生頻率偏移

干涉 (Interference)– 相長 (constructive)與相消 (destructive)

Page 51: Reader & Tags Communication

傳輸距離 vs. 能量

Page 52: Reader & Tags Communication

能量表示

分貝 (deciBel, dB) d代表 1/10,所以 dB=1/10 Bel

基底 Y2=1mW/m2

所以若天線發送端強度 =1W/m2,那訊號強度 =

10×log(1/0.001)=30dB 若訊號強度減半,訊號衰減多少 dB?

)2

1log(10)(

Y

YdBX