1
Reactivity of polyfunctional alcohols towards atmospheric radicals in the aqueous solution D. Hoffmann and H. Herrmann Leibniz Institut für Troposphärenforschung, Permoserstr. 15, 04318 Leipzig, Germany ([email protected]) LEIBNIZ-INSTITUT FÜR TROPOSPHÄRENFORSCHUNG Motivation Motivation Poly-alcohols are wide-spread compounds used in many applications as antifreeze agent, engine coolant, moisturizer and plasticizer. [1] The oxidation of poly-alcohols by free radicals could represent an important process for the formation of dicarboxylic acids such as oxalic acid and succinic acid. These acids are known components of the water soluble organic carbon (WSOC) fraction on atmospheric particles. [2,3] Due to the high water solubility of alcohols oxidation reactions of these compounds will take place mainly in the aqueous solution. A fast conversion of alcohols to acids by aqueous phase oxidation reactions might influence the organic particle mass production and the aqueous solution acidity. Using the laser-flash photolysis setup, the reactivity of OH, NO 3 and SO 4 - radicals in aqueous solution was studied as a function of the temperature. The results will be used to better describe the atmospheric multiphase chemistry of poly- alcohols. References References Summary and Conclusion Summary and Conclusion Experimenta Experimenta l l [1] C.A. Staples, J.B. Williams, G.R. Craig and K.M. Roberts, Chemosphere, 2001, 43, 377-383; [2] P. Warneck, Atmos. Environ., 2003, 37, 2423-2427; [3] A. Tilgner, R. Wolke and H. Herrmann, CAPRAM modelling of the physico-chemical cloud processing of tropospheric aerosols, in Environmental simulation chambers - Application to atmospheric chemical processes : Proceedings of the NATO Advanced Research Workshop on Simulation and Assessment of Chemical Processes in a Multiphase Environment Alushta, Ukraine 1 September 2007, edited by I. Barnes and M. Kharytonov, Springer, Berlin ; Heidelberg ; New York, 2008, p. 540; [4] NIST Solution Kinetics Database Version 3.0, National Institute of Standards and Technology, Gaithersburg, 1998; [5] S.W. Benson, Thermochemical Kinetics, Wiley, New York, 2nd edn., 1976; [6] P. Gaillard de Semainville, D. Hoffmann, C. George and H. Herrmann, Phys. Chem. Chem. Phys., 2007, 9, 1-11; [7] A. Monod and J.F. Doussin, Atmos. Environ., 2008, 42, 7611-7622 log k H, OH = (22.4 ± 4.5) - (0.035 ± 0.012) · BDE [kJ mol -1 ] (n = 26; r = 0.77) Eqn. 1 Fig. 1: Scheme of the Laser Photolysis Long Path Absorption set-up. (3.1±0.1)·10 11 (2.0±0.1)·10 11 (5.2±0.5)·10 11 (3.9±0.3)·10 9 (1.4±0.1)·10 12 (2.8±0.2)·10 11 (2.5±0.2)·10 11 (1.2±0.1)·10 10 (6.8±0.2)·10 10 (1.9±0.2)·10 11 (3.7±0.2)·10 10 (7.1±1.1)·10 9 (9.0±0.3)·10 10 A M -1 s -1 10.6±2.8 10.0±1.8 13.3±7.0 11.7±4.2 28.7±2.4 12.3±4.0 11.4±6.3 13.8±3.2 21.8±2.3 11.5±8.6 12.1±3.3 17.6±8.3 9.9±2.0 E A kJ/mol 380 1 this work OH +SCN - LFP (2.3±0.4)·10 9 OH 1,2-butanediol 5 380 1 [4] OH +SCN - PR 2.2·10 9 OH 2,4-butanediol 7 383 4 this work OH +SCN - LFP (3.5±0.1)·10 9 OH 1,4butanediol 8 [4] OH +SCN - PR 3.2·10 9 OH 380 1 [4] OH +SCN - PR 2.2·10 9 OH 2,5-pentanediol 9 383 4 this work OH +SCN - LFP (4.4±0.7)·10 9 OH 1,5-pentanediol 10 [4] OH + C 2 H 5 OH GR 3.6·10 9 OH 383 4 [4] OH + C 2 H 5 OH GR 4.7·10 9 OH 1,6-hexanediol 11 380 2 [4] OH +SCN - PR 1.3·10 9 OH 2,3-butanediol 6 [4] OH + CO 3 2- PR 1.9·10 9 OH [4] OH +SCN - PR 1.5·10 9 OH this work Direct LFP (3.7±0.4)·10 7 SO 4 - [4] Direct PR 1.8·10 6 NO 3 this work Direct LFP (1.3±0.2)·10 7 NO 3 [4] OH + CO 3 2- PR 2.1·10 9 OH [4] OH + Fe(CN) 6 4- PR 2.1·10 9 OH [4] OH + Fe(CN) 6 4- PR 1.8·10 9 OH [4] OH +SCN - PR 2.0·10 9 OH 380 1 this work OH +SCN - LFP (1.9±0.3)·10 9 OH 1,2,3-propanetriol 4 [4] OH + C 2 H 5 OH GR 2.5·10 9 OH 383 4 this work OH +SCN - LFP (2.7±0.2)·10 9 OH 1,3-propanediol 3 this work Direct LFP (4.3±0.9)·10 7 SO 4 - this work Direct LFP (9.9±0.8)·10 6 NO 3 [4] OH +SCN - PR 1.7·10 9 OH 380 1 this work OH +SCN - LFP (1.7±0.3)·10 9 OH 1,2-propanediol 2 this work Direct LFP (2.7±0.3)·10 7 SO 4 - [4] Direct FP 7.6·10 5 NO 3 [4] Direct PR 1.6·10 6 NO 3 this work Direct LFP (6.6±2.8)·10 6 NO 3 [4] OH +SCN - PR 1.4·10 9 OH [4] OH + CO 3 2- PR 1.7·10 9 OH [4] OH + Fe(CN) 6 4- PR 1.7·10 9 OH [4] OH + Fe(CN) 6 4- PR 2.4·10 9 OH 385 4 this work OH +SCN - LFP (17±0.3)·10 8 OH 1,2-ethanediol 1 BDE* kJ/mol n H Ref. Method Technique k 298K M -1 s -1 Radical Compound No. Good agreement with data from pulse and gamma radiolysis studies. Reactivity order: OH >> SO 4 - > NO 3 Reactivity of the reactants increases linearly with the temperature (Fig.1). Compounds with two terminal OH-groups reacts faster than the vicinal diols. Reactivity of compounds with terminal hydroxyl-groups increases linearly with the number of carbon atoms in the molecule (Fig. 2). The same applies to the reactivity of primary alcohols (Fig. 2). log k H, NO3 = (39.9 ± 5.4) - (0.087 ± 0.014) · BDE [kJ mol -1 ] (n = 38; r = 0.90) Eqn. 2 Figure 1: Arrhenius plots for the reactions of () NO 3 , () SO 4 - and (Δ) OH radicals with 1,2,3-propanetriol in the aqueous solution. Figure 2: Reactivity of several primary alcohols and diols with two terminal hydroxyl-groups towards OH radicals in aqueous solution at room temperature. () diols - laser flash photolysis (this work); () diol - gamma radiolysis (Table 1); (Δ) primary alcohols - pulse radiolysis Figures 3 and 4: Evans-Polanyi type correlation (log(k H ) vs. BDE) for H-abstraction reactions of OH radicals (left picture) and NO 3 radicals (right picture, [6]) in aqueous solution. () poly-alcohols (Table 1); () data coming from the literature. Rate constants of OH reactions in Table 2 (k 2nd,SAR,calc. ) were calculated applying a structure activity method (SAR) published by Monod and Doussin [7]. The obtained data for different alcohols were compared to measured rate constants as well as rate constants derived based on equation 2 and the corresponding C-H bond strengths of the compounds (k 2nd,Benson,calc. ). Table 2: Comparison between measured rate constants at T = 298 K with calculated values using the SAR method and the incremental method of Benson [5] applying Equation 1. Table 1: Summary of aqueous phase rate constants, activation parameters, number of most easily abstractable H- atoms (n H ) and bond dissociation energies (BDE) of poly-alcohols from this work and literature studies. PR = pulse radiolysis, LFP = laser flash photolysis, GR = gamma radiolysis, FP = flash photolysis * calculated using Benson incremental method [5] Mono-functional alcohols are well described by the SAR approach. The reactivity of poly- alcohols is in general overestimated by the SAR. Largest deviations from the measured data are shown by the non-vicinal diols. Poly-alcohols can act as effective radical scavengers in the tropospheric aqueous phase and subsequently influence the overall tropospheric oxidation budget. Aqueous phase oxidation reactions of alcohols are potential precursors for particle-bound acids such as oxalic acid, pyruvic acid, malonic acid, succinic acid and glyoxylic acid. Model simulations with CAPRAM 3.0i shows that the aqueous phase conversion of ethylene glycol can contribute considerably to the formation of oxalic acid under remote (up to 1.7%) and urban (up to 9.5%) conditions. [3] The SAR method appears to be a very useful tool in addition to established Evans-Polanyi correlations to estimate rate constants for OH radical reactions in aqueous solution. Results and Discussion Results and Discussion BDE / kJ mol -1 380 390 400 410 log(k H / M -1 s -1 ) 8.0 8.5 9.0 9.5 1 3 8 10 11 6 5,7,9 4 2 BDE / kJ mol -1 350 360 370 380 390 400 410 420 log(k H / M -1 s -1 ) 3 4 5 6 7 8 1 4 2 1/T [10 -3 in K -1 ] 3.1 3.2 3.3 3.4 3.5 3.6 log (k 2nd / M -1 s -1 ) 7.0 7.5 9.2 9.4 compound k 2nd, meas. M -1 s -1 k 2nd,SAR calc. M -1 s -1 % k 2nd,Benson calc. M -1 s -1 % mono-alcohols ethanol 1.9·10 9 2.10·10 9 10 1.22·10 9 -36 1-propanol 2.8·10 9 2.95·10 9 5 1.68·10 9 -40 1-butanol 4.2·10 9 4.02·10 9 -4 3.37·10 9 -20 2-propanol 1.9·10 9 2.25·10 9 18 1.16·10 9 -39 2-butanol 3.5·10 9 3.08·10 9 -12 1.16·10 9 -67 t-butanol 6.0·10 8 7.43·10 8 24 1.01·10 9 68 1-pentanol 3.9·10 9 5.21·10 9 34 2.26·10 9 -42 1-hexanol 7.0·10 9 6.36·10 9 -9 3.01·10 9 -57 1-heptanol 7.4·10 9 7.51·10 9 2 3.76·10 9 -49 1-octanol 7.7·10 9 8.67·10 9 13 4.51·10 9 -41 iso-butanol 3.3·10 9 3.60·10 9 9 8.41·10 8 -75 average 13 49 poly-alcohols 1,2-ethanediol 1.7·10 9 1.60·10 9 -6 3.37·10 9 98 1,2-propanediol 1.7·10 9 1.85·10 9 9 1.26·10 9 -26 1,3-propanediol 2.7·10 9 4.00·10 9 48 3.95·10 9 46 1,2,3-propanetriol 1.9·10 9 2.00·10 9 5 1.26·10 9 -34 1,2-butanediol 2.3·10 9 2.60·10 9 13 1.26·10 9 -45 2,3-butanediol 1.3·10 9 2.00·10 9 54 2.52·10 9 94 2,4-butanediol 2.2·10 9 4.10·10 9 86 1.26·10 9 -43 1,4-butanediol 3.5·10 9 4.70·10 9 34 3.95·10 9 13 2,5-pentanediol 2.2·10 9 4.90·10 9 123 1.26·10 9 -43 1,5-pentanediol 4.4·10 9 5.90·10 9 34 3.95·10 9 -10 1,6-hexanediol 4.7·10 9 7.00·10 9 49 3.95·10 9 -16 erythritol 1.9·10 9 2.30·10 9 21 2.52·10 9 33 arabitol 1.6·10 9 2.50·10 9 56 1.26·10 9 -21 mannitol 1.6·10 9 2.70·10 9 69 2.52·10 9 57 average 43 41 average (all) 30 45 Number of C-Atoms 0 1 2 3 4 5 6 7 8 9 k 2nd / M -1 s -1 10 9 2.0 4.0 6.0 8.0

Reactivity of polyfunctional alcohols towards atmospheric ... · PDF filepoly-alcohols (Table 1); ... Rate constants of OH reactions in Table 2 (k ... and bond dissociation energies

Embed Size (px)

Citation preview

Page 1: Reactivity of polyfunctional alcohols towards atmospheric ... · PDF filepoly-alcohols (Table 1); ... Rate constants of OH reactions in Table 2 (k ... and bond dissociation energies

Reactivity of polyfunctional alcohols towards atmospheric radicals in the aqueous solution

D. Hoffmann and H. HerrmannLeibniz Institut für Troposphärenforschung, Permoserstr. 15, 04318 Leipzig, Germany ([email protected])LEIBNIZ-INSTITUT FÜR

TROPOSPHÄRENFORSCHUNG

MotivationMotivationPoly-alcohols are wide-spread compounds used in many applications as antifreeze agent, engine coolant, moisturizer and plasticizer. [1]The oxidation of poly-alcohols by free radicals could represent an important process for the formation of dicarboxylic acids such as oxalic acid and succinic acid. These acids are known components of the water soluble organic carbon (WSOC) fraction on atmospheric particles. [2,3]Due to the high water solubility of alcohols oxidation reactionsof these compounds will take place mainly in the aqueous solution. A fast conversion of alcohols to acids by aqueous phase oxidation reactions might influence the organic particle mass production and the aqueous solution acidity. Using the laser-flash photolysis setup, the reactivity of OH, NO3 and SO4

- radicals in aqueous solution was studied as a function of the temperature. The results will be used to better describe the atmospheric multiphase chemistry of poly-alcohols.

ReferencesReferences

Summary and ConclusionSummary and Conclusion

ExperimentaExperimentall

[1] C.A. Staples, J.B. Williams, G.R. Craig and K.M. Roberts, Chemosphere, 2001, 43, 377-383; [2] P. Warneck, Atmos. Environ., 2003, 37, 2423-2427; [3] A. Tilgner, R. Wolke and H. Herrmann, CAPRAM modelling of the physico-chemical cloud processing of tropospheric aerosols, in Environmental simulation chambers - Application to atmospheric chemical processes : Proceedings of the NATO Advanced Research Workshop on Simulation and Assessment of Chemical Processes in a Multiphase Environment Alushta, Ukraine 1 September 2007, edited by I. Barnes and M. Kharytonov, Springer, Berlin ; Heidelberg ; New York, 2008, p. 540; [4] NIST Solution Kinetics Database Version 3.0, National Institute of Standards and Technology, Gaithersburg, 1998; [5] S.W. Benson, Thermochemical Kinetics, Wiley, New York, 2nd edn., 1976; [6] P. Gaillard de Semainville, D. Hoffmann, C. George and H. Herrmann, Phys. Chem. Chem. Phys., 2007, 9, 1-11; [7] A. Monod and J.F. Doussin, Atmos. Environ., 2008, 42, 7611-7622

log kH, OH = (22.4 ± 4.5) - (0.035 ± 0.012) · BDE [kJ mol-1] (n = 26; r = 0.77) Eqn. 1

Fig. 1: Scheme of the Laser Photolysis Long Path Absorption set-up.

(3.1±0.1)·1011

(2.0±0.1)·1011

(5.2±0.5)·1011(3.9±0.3)·109

(1.4±0.1)·1012

(2.8±0.2)·1011

(2.5±0.2)·1011(1.2±0.1)·1010(6.8±0.2)·1010

(1.9±0.2)·1011(3.7±0.2)·1010

(7.1±1.1)·109

(9.0±0.3)·1010

AM-1s-1

10.6±2.8

10.0±1.8

13.3±7.011.7±4.2

28.7±2.4

12.3±4.0

11.4±6.313.8±3.221.8±2.3

11.5±8.612.1±3.3

17.6±8.3

9.9±2.0

EA

kJ/mol

3801this workOH +SCN-LFP(2.3±0.4)·109OH1,2-butanediol5

3801[4]OH +SCN-PR2.2·109OH2,4-butanediol73834this workOH +SCN-LFP(3.5±0.1)·109OH1,4butanediol8

[4]OH +SCN-PR3.2·109OH3801[4]OH +SCN-PR2.2·109OH2,5-pentanediol93834this workOH +SCN-LFP(4.4±0.7)·109OH1,5-pentanediol10

[4]OH + C2H5OHGR3.6·109OH3834[4]OH + C2H5OHGR4.7·109OH1,6-hexanediol11

3802[4]OH +SCN-PR1.3·109OH2,3-butanediol6

[4]OH + CO32-PR1.9·109OH

[4]OH +SCN-PR1.5·109OH

this workDirectLFP(3.7±0.4)·107SO4-

[4]DirectPR1.8·106NO3

this workDirectLFP(1.3±0.2)·107NO3

[4]OH + CO32-PR2.1·109OH

[4]OH + Fe(CN)64-PR2.1·109OH

[4]OH + Fe(CN)64-PR1.8·109OH

[4]OH +SCN-PR2.0·109OH3801this workOH +SCN-LFP(1.9±0.3)·109OH1,2,3-propanetriol4

[4]OH + C2H5OHGR2.5·109OH3834this workOH +SCN-LFP(2.7±0.2)·109OH1,3-propanediol3

this workDirectLFP(4.3±0.9)·107SO4-

this workDirectLFP(9.9±0.8)·106NO3

[4]OH +SCN-PR1.7·109OH3801this workOH +SCN-LFP(1.7±0.3)·109OH1,2-propanediol2

this workDirectLFP(2.7±0.3)·107SO4-

[4]DirectFP7.6·105NO3

[4]DirectPR1.6·106NO3

this workDirectLFP(6.6±2.8)·106NO3

[4]OH +SCN-PR1.4·109OH[4]OH + CO3

2-PR1.7·109OH[4]OH + Fe(CN)6

4-PR1.7·109OH[4]OH + Fe(CN)6

4-PR2.4·109OH3854this workOH +SCN-LFP(17±0.3)·108OH1,2-ethanediol1

BDE*kJ/mol

nHRef.MethodTechniquek298K

M-1s-1

RadicalCompoundNo.

Good agreement with data from pulse and gamma radiolysis studies.Reactivity order: OH >> SO4

- > NO3

Reactivity of the reactants increases linearly with the temperature (Fig.1).Compounds with two terminal OH-groups reacts faster than the vicinal diols.Reactivity of compounds with terminal hydroxyl-groups increases linearly with the number of carbon atoms in the molecule (Fig. 2). The same applies to the reactivity of primary alcohols (Fig. 2).

log kH, NO3 = (39.9 ± 5.4) - (0.087 ± 0.014) · BDE [kJ mol-1] (n = 38; r = 0.90) Eqn. 2

Figure 1: Arrhenius plots for the reactions of (●) NO3, (○) SO4

- and (Δ) OH radicals with 1,2,3-propanetriol in the aqueous solution.

Figure 2: Reactivity of several primary alcohols and diols with two terminal hydroxyl-groups towards OH radicals in aqueous solution at room temperature. (●) diols - laser flash photolysis (this work); (○) diol -gamma radiolysis (Table 1); (Δ) primary alcohols - pulse radiolysis

Figures 3 and 4: Evans-Polanyi type correlation (log(kH) vs. BDE) for H-abstraction reactions of OH radicals (left picture) and NO3 radicals (right picture, [6]) in aqueous solution. (○) poly-alcohols (Table 1); (●) data coming from the literature.

Rate constants of OH reactions in Table 2 (k2nd,SAR,calc.) were calculated applying a structure activity method (SAR) published by Monod and Doussin [7]. The obtained data for different alcohols were compared to measured rate constants as well as rate constants derived based on equation 2 and the corresponding C-H bond strengths of the compounds (k2nd,Benson,calc.).

Table 2: Comparison between measured rate constants at T = 298 K with calculated values using the SAR method and the incremental method of Benson [5] applying Equation 1.

Table 1: Summary of aqueous phase rate constants, activation parameters, number of most easily abstractable H-atoms (nH) and bond dissociation energies (BDE) of poly-alcohols from this work and literature studies.

PR = pulse radiolysis, LFP = laser flash photolysis, GR = gamma radiolysis, FP = flash photolysis* calculated using Benson incremental method [5]

Mono-functional alcohols are well described by the SAR approach.The reactivity of poly-alcohols is in general overestimated by the SAR.Largest deviations from the measured data are shown by the non-vicinal diols.

Poly-alcohols can act as effective radical scavengers in the tropospheric aqueous phase and subsequently influence the overall tropospheric oxidation budget.Aqueous phase oxidation reactions of alcohols are potential precursors for particle-bound acids such as oxalic acid, pyruvic acid, malonic acid, succinic acid and glyoxylic acid.Model simulations with CAPRAM 3.0i shows that the aqueous phase conversion of ethylene glycol can contribute considerably to the formation of oxalic acid under remote (up to 1.7%) and urban (up to 9.5%) conditions. [3]The SAR method appears to be a very useful tool in addition to established Evans-Polanyi correlations to estimate rate constants for OH radical reactions in aqueous solution.

Results and DiscussionResults and Discussion

BDE / kJ mol-1380 390 400 410

log(

k H /

M-1

s-1)

8.0

8.5

9.0

9.5

1

38

1011

6

5,7,942

BDE / kJ mol-1350 360 370 380 390 400 410 420

log(

k H /

M-1

s-1)

3

4

5

6

7

8

1

42

1/T [10-3 in K-1]3.1 3.2 3.3 3.4 3.5 3.6

log

(k2n

d / M

-1s-1

)

7.0

7.5

9.2

9.4compound k2nd, meas.

M-1s-1 k2nd,SAR calc.

M-1s-1 % k2nd,Benson calc.

M-1s-1 %

mono-alcohols ethanol 1.9·109 2.10·109 10 1.22·109 -36 1-propanol 2.8·109 2.95·109 5 1.68·109 -40 1-butanol 4.2·109 4.02·109 -4 3.37·109 -20 2-propanol 1.9·109 2.25·109 18 1.16·109 -39 2-butanol 3.5·109 3.08·109 -12 1.16·109 -67 t-butanol 6.0·108 7.43·108 24 1.01·109 68 1-pentanol 3.9·109 5.21·109 34 2.26·109 -42 1-hexanol 7.0·109 6.36·109 -9 3.01·109 -57 1-heptanol 7.4·109 7.51·109 2 3.76·109 -49 1-octanol 7.7·109 8.67·109 13 4.51·109 -41 iso-butanol 3.3·109 3.60·109 9 8.41·108 -75 average 13 49 poly-alcohols 1,2-ethanediol 1.7·109 1.60·109 -6 3.37·109 98 1,2-propanediol 1.7·109 1.85·109 9 1.26·109 -26 1,3-propanediol 2.7·109 4.00·109 48 3.95·109 46 1,2,3-propanetriol 1.9·109 2.00·109 5 1.26·109 -34 1,2-butanediol 2.3·109 2.60·109 13 1.26·109 -45 2,3-butanediol 1.3·109 2.00·109 54 2.52·109 94 2,4-butanediol 2.2·109 4.10·109 86 1.26·109 -43 1,4-butanediol 3.5·109 4.70·109 34 3.95·109 13 2,5-pentanediol 2.2·109 4.90·109 123 1.26·109 -43 1,5-pentanediol 4.4·109 5.90·109 34 3.95·109 -10 1,6-hexanediol 4.7·109 7.00·109 49 3.95·109 -16 erythritol 1.9·109 2.30·109 21 2.52·109 33 arabitol 1.6·109 2.50·109 56 1.26·109 -21 mannitol 1.6·109 2.70·109 69 2.52·109 57 average 43 41 average (all) 30 45

Number of C-Atoms0 1 2 3 4 5 6 7 8 9

k 2nd /

M-1

s-1 1

09

2.0

4.0

6.0

8.0