24
Journal of Medical Physics / Association of Medical Physicists of India J Med Phys. 35(3): 154-163 Quantitation of normal metabolite concentrations in six brain regions by in-vivo 1 H-MR spectroscopy Ludovico Minati 12 , Domenico Aquino 2 , Maria Grazia Bruzzone 2 , Alessandra Erbetta 2 1. Scientific Department Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy 2. Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy Address for correspondence: Ludovico Minati, Scientific Department and Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milano, Italy. E-mail: [email protected] © Journal of Medical Physics DOI: 10.4103/0971-6203.62128 Published in print: Jul-Sep2010 Abstract This study examined the concentrations of brain metabolites visible to in-vivo 1 H- Magnetic Resonance Spectroscopy ( 1 H-MRS) at 1.5 T in a sample of 28 normal subjects. Quantitation was attempted for inositol compounds, choline units, total creatine and N-acetyl moieties, using open-source software. Six brain regions were considered: frontal and parietal white matter, medial temporal lobe, thalamus, pons and cerebellum. Absolute concentrations were derived using tissue water as an internal reference and using an external reference; metabolite signal intensity ratios with respect to creatine were also calculated. The inter-individual variability was smaller for absolute concentrations (internal reference) as compared to that for signal intensity ratios. Significant regional variability in concentration was found for all metabolites, indicating that separate normative values are needed for different brain regions. The values obtained in this study can be used as reference in future studies, provided the same methodology is followed; it is confirmed that despite unsuccessful attempts in the past, smaller coefficients of variation can indeed be obtained through absolute quantification. Introduction In proton magnetic resonance spectroscopy ( 1 H-MRS), the signal intensity i s not only proportional to

Quantitation of normal metabolite concentrations in six brain regions

  • Upload
    hathuan

  • View
    222

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Quantitation of normal metabolite concentrations in six brain regions

JournalofMedicalPhysics/AssociationofMedicalPhysicistsofIndiaJMedPhys.35(3):154-163

Quantitationofnormalmetaboliteconcentrationsinsixbrainregionsbyin-vivo1H-MRspectroscopyLudovicoMinati12,DomenicoAquino2,MariaGraziaBruzzone2,AlessandraErbetta2

1.ScientificDepartmentFondazioneIRCCSIstitutoNeurologicoCarloBesta,Milano,Italy2.NeuroradiologyUnit,FondazioneIRCCSIstitutoNeurologicoCarloBesta,Milano,Italy

Addressforcorrespondence:LudovicoMinati,ScientificDepartmentandNeuroradiologyUnit,FondazioneIRCCSIstitutoNeurologicoCarloBesta,viaCeloria11,20133Milano,Italy.E-mail:[email protected]

© JournalofMedicalPhysicsDOI:10.4103/0971-6203.62128Publishedinprint:Jul-Sep2010

Abstract

Thisstudyexaminedtheconcentrationsofbrainmetabolitesvisibletoin-vivo1H-MagneticResonanceSpectroscopy(1H-MRS)at1.5Tinasampleof28normalsubjects.Quantitationwasattemptedforinositolcompounds,cholineunits,totalcreatineandN-acetylmoieties,usingopen-sourcesoftware.Sixbrainregionswereconsidered:frontalandparietalwhitematter,medialtemporallobe,thalamus,ponsandcerebellum.Absoluteconcentrationswerederivedusingtissuewaterasaninternalreferenceandusinganexternalreference;metabolitesignalintensityratioswithrespecttocreatinewerealsocalculated.Theinter-individualvariabilitywassmallerforabsoluteconcentrations(internalreference)ascomparedtothatforsignalintensityratios.Significantregionalvariabilityinconcentrationwasfoundforallmetabolites,indicatingthatseparatenormativevaluesareneededfordifferentbrainregions.Thevaluesobtainedinthisstudycanbeusedasreferenceinfuturestudies,providedthesamemethodologyisfollowed;itisconfirmedthatdespiteunsuccessfulattemptsinthepast,smallercoefficientsofvariationcanindeedbeobtainedthroughabsolutequantification.

Introduction

Inprotonmagneticresonancespectroscopy(1H-MRS),thesignalintensityisnotonlyproportionalto

Page 2: Quantitation of normal metabolite concentrations in six brain regions

metaboliteconcentrationbutisalsoaffectedbyalargenumberofvariables,includingmetaboliterelaxationrates,pulsesequenceparametersandradio-frequencycoilsensitivity.Asaconsequenceoftheinherentdifficultiesinobtainingreliableabsoluteconcentrations,themajorityofin-vivoMRspectroscopystudiesofthebrainreportrelativemeasurements,calculatedassumingthattheconcentrationofcreatineisconstantandtakingitssignalasreference.However,theinterpretationofrelativedatacanbeambiguouswhentheconcentrationofcreatinechanges,suchasinearlydevelopmentandinbraintumors.[12]Inadditiontoremovinginterpretationambiguities,theprovisionofabsolutemeasurementsconsiderablysimplifiesthecomparisonofdatarecordedunderdifferentexperimentalconditionsandthecomparisonwithin-vitrobiochemicalmeasurements.[3]

Absolutemetaboliteconcentrationsmaybederivedusinganinternalreference,usuallyunsuppressedtissuewater,oranexternalreference,generallywaterorsodiumacetatecontainedinatubepositionednexttotheheadofthepatient.Bothmethodshaveimportantlimitations:theformercansufferfrombiasduetoalteredtissuewatercontent,forexamplecausedbyedema,andthelatterisassociatedwithlargeinter-subjectvariabilityduetocoilsensitivityinhomogeneities.Othermethodsbasedonreplacementphantomsandcoil-loadingmeasurementsalsoexistbutarelessfrequentlyused.[4–8]

Inordertoobtainabsoluteconcentrations,itisalsonecessarytodeterminetherelaxationratesofthemetabolitesofinterestinordertocorrectfortransverseandlongitudinalmagnetizationeffects.Directmeasurementwithrelaxometryisthemostaccurateoptionbutisoftenimpracticalduetoscantimelimitations.Asaconsequence,metaboliterelaxationratesarefrequentlyassumedtobeconstant,andstandardvaluesfromliteratureareused;thiscanbeasourceoferrorduetopathology-relatedchangesandregionaldifferences.[9–12]

Despitethesedifficulties,inrecentyearsquantitative1H-MRSofthebrainhasgainedincreasedacceptanceintheclinicaldomainandhasbeenappliedtothestudyofaging,seniledementia,epilepsy,multiplesclerosisandneuropsychiatricdisorders,amongothers;itprovidesatoolforquantitativemonitoringofdiseaseprogressionandtreatmentresponseandcansupportdifferentialdiagnosisbetweenconditionscharacterizedbysimilarimagingfindings.[13–17]

Thereremains,however,arelativepaucityofnormativestudiescoveringmultiplecorticalandsubcorticalbrainregions,aswellasalargeinter-studyvariabilityinreportedmetaboliteconcentrations(forthecerebralhemispheres,intherange4-8mMforinositolcompounds,1-5mMforcholineunits,6-14mMfortotalcreatine,and10-25mMforN-acetylmoieties)andinter-subjectvariationcoefficients(betweenabout10%andmorethan50%).[35–8]Ithasbeenshownthatdifferencesindataprocessingareadominantsourceofinter-studyvariability;forexample,LCModel

Page 3: Quantitation of normal metabolite concentrations in six brain regions

andAMARES,twowidelyusedcommerciallyavailablespectroscopytoolkits,mayperformdifferentlyintermsofsensitivitytonoise,linewidthandbaseline.[1819]

Recently,anopen-sourcetoolforquantitationofshortecho-timespectra,knownasAQSES,hasbecomeavailable.InAQSES,thequantitationproblemisformulatedasaseparablenonlinearleast-squaresfittingproblem,andfacilitiesforbaselinefitting,removalofresidualwaterandfilteringareprovided.[20]

Inordertocorroborateandextendtheexistingliterature,inthisstudywedeterminedthenormalabsoluteandrelativemetaboliteconcentrationsinanextendedsetofbrainregions:frontalandparietalwhitematter,medialtemporallobe,thalamus,ponsandcerebellum.Importantly,anotheraimwastocomparetheinter-subjectvariabilityofabsoluteconcentrationscalculatedusingtheinternalandexternalreferenceswiththatofrelativeconcentrations.Thiswasdonewiththepurposeofdeterminingwhetherperformingabsolutequantificationistrulyjustified,inspiteoftheneedtoapplymultiplecorrectionsinvolvingparameterswhichinjectmeasurementuncertainty.

MaterialsandMethods

Participants

Twenty-eightright-handedhealthyvolunteers,14femaleand14male,aged41.2±11.9years(mean±SD),wereenrolled.Allsubjects,unpaid,wereinformedaboutthepurposeandclinicalrelevanceofthestudy,andwritteninformedconsentwasobtainedfromthemaccordingtoinstitutionallyapprovedproceduresandregulations.Noneofthemhadapositiveanamnesisforneurologicalorpsychiatricdisorders,andallhadnormalmagneticresonanceimagingfindings(seebelow).

Dataacquisition

DataacquisitionwasperformedwithaSiemensMagnetomAvanto1.5Tscanner(SiemensAG,Erlangen,Germany)equippedwithatransceiverbirdcageheadcoil.Forthepurposeofpositioningthevoxelsforspectroscopyandtoexcludepathology,allsubjectswereimagedwithaxial,coronalandsagittalT2-weightedturbospin-echosequences,withTR=6270ms,TE=113ms,field-of-view

260×190mm,25slices,slicethickness4mmandnogap.Acoronalfluid-attenuatedinversion-recovery(FLAIR)sequencewasalsoused,withTR=8700ms,TE=121ms,TI=2400ms,field-of-view240×190mm,20slices,slicethickness4mmandnogap.High-resolutionT1-weighted

volumetricimageswereacquiredbymeansofaninversion-recoveryrapidgradient-echosequencewithTR=1160ms,TE=4.1ms,TI=600ms,field-of-view270×203mm,192slices,slicethickness1.1

Page 4: Quantitation of normal metabolite concentrations in six brain regions

mmandnogap.

Spectroscopyofthe1Hnucleuswasperformedusingasingle-voxel(SVS)point-resolvedspectroscopy(PRESS)sequence,withTR=1500ms,TE=30msandvoxelsize20×20×20mm[withtheexceptionofthemedialtemporalloberegion(seebelow),forwhichitwas40×10×20mm];foreachvoxel,1024datapointswereacquiredwithadwelltimeof1msand128averages.Metabolitespectrawereobtainedsuppressingthewatersignalbymeansofachemicalshift-selectivesaturation(CHESS)pulsewithbandwidth35Hz.Foreachspectroscopyvoxel,thesignalofunsuppressedwaterwasalsoacquired,with16averages.First-(X,YandZ),aswellassecond-order(XY,ZX,XY,Z2andX2-Y2),shimmingwasperformedautomaticallybymeansofafieldmap-basedalgorithmandthenrefinedmanuallybyanexperiencedoperator;thewidthathalfheightofthewaterpeakwasgenerallybelow10Hz(7±2.2Hz).A50-mLpolystyrenetubecontainingdistilledwater,positionedincontactwiththeheadnexttotheleftearlobe,servedasexternalreference;thecorrespondingwatersignalwasacquiredusinga10×10×10-mmvoxel.

Thestaticfieldhomogeneity,coilsensitivitymaps,tuningandsignal-to-noiseratio,radio-frequencychainlinearityandgradientperformancewereroutinelycheckedusingthestandardsoftwareandproceduresprovidedbythescannermanufacturer,withtheprescribedperiodicity.

Sixspectroscopyvoxelswerepositionedinthefollowingregions,showninFigure1,togetherwiththecorrespondingstereotacticcoordinatesgiveninMontrealNeurologicalInstitute(MNI)format:frontalwhitematter(FWM),parietalwhitematter(PWM),medialtemporallobe(MTL),thalamus(THAL),pons(PONS)andcerebellarhemisphere(CEREB).Notably,asaconsequenceofchoosingequalvolumeof8mLforallvoxels,itwasnotpossibletopositionthevoxelentirelywithintheponsandthalamus;asvisibleinFigure1,acontributionofsurroundingstructureswasalsopresent.TheNiewenhuysatlas[21]servedasanatomicalreference.Thespectroscopyvoxelswerenormallypositionedinthelefthemisphere;however,for9subjectsthecerebellarvoxelwasplacedintherighthemispherebecausemagneticsusceptibilityeffectsresultedinawaterpeakwidth>10Hzinthelefthemisphere.[22]For19subjects,spectrafromtherightmedialtemporallobewerealsoavailable;theywerenotacquiredforallsubjectsduetovariablescan-timelimitations.

Viewlargerversion

Figure1.Positioningofthevoxelsusedforacquisitionofthespectra,shownonthetransverse,coronalandsagittalplanesforarandomlychosensubject.ThestereotacticcoordinatesofthevoxelcentersaregiveninMNIformat.Thepolystyrenetubepositionednexttotheleftearlobeisvisible

Page 5: Quantitation of normal metabolite concentrations in six brain regions

(1),

Preprocessingandquantitationof1Hspectra

SpectrawereprocessedbymeansofthefreelyavailableAQSESsoftware(KatholiekeUniversiteitLeuven,Leuven,Belgium)runningunderMatLab7(TheMathWorksInc.,Natick,MA,USA)onaSunUltra80workstation(SunMicrosystemsInc.,PaloAlto,CA,USA).[20]Thesignalwaszero-paddedto4096points,apodizedwithaGaussianfunctionandFourier-transformed.Zero-orderrephasingandfrequencycorrectionwereperformedmaximizingthesymmetryofthemetabolitepeaksandcenteringtheN-acetylmoietiespeak(seebelow)on2.02ppm.Theresidualwatersignal(4.7ppm)wasremovedintherange4.3-5.1ppmbymeansoftheHankel-Lanczossingular-valuedecomposition(HLSVDpro).[20]Remainingbaselinefluctuationswereremovedbyfittingwithafifth-degreepolynomial.AsshowninFigure2,themetabolitespectrumwasfitintherange1.2-4.3ppmwiththelinearsuperpositionoffivecomponents,correspondingtoinositolcompounds(MI),cholineunits(CHO),creatineandphosphocreatine(CR),glutamateandglutamine(GLX),andN-acetyl(NA)moieties.Theintensityofthemetabolitesignalswasdeterminedintegratingthefollowingresonancepeaks:3.50ppmforMI,3.20ppmforCHO,3.00ppmforCR,2.70-1.70(range)ppmforGLX,and2.02ppmforNA.[35–6]Thebasisset,providedwiththesoftware,wasderivedfromphantommeasurements.[20]

Viewlargerversion

Figure2.Measuredandfittedspectrafromarandomlychosenacquisition.Thecontributionofeachcomponent(MI,CHO,CR,GLXandNA),thebaselineandtheresultingresidualsarevisible

VolumetricimageswerenormalizedtotheMNIspaceandsegmentedusingtheSPM5program(WellcomeNeuroimagingDepartment,London,UK),andtherelativecontentofwhitematter(WM),graymatter(GM)andcerebrospinalfluid(CSF)ineachspectroscopyvoxelwasdetermined.

Absoluteconcentrations,expressedinmillimolarities(mmol/L,mM),werecalculatedforMI,CHO,CRandNA(notforGLX,duetotheinabilitytoseparateglutamateandglutamineatafieldstrengthof1.5T),usingtheintensityofunsuppressedwatersignalinthespectroscopyvoxel(internalreference)orinthepolystyrenetube(externalreference)asreference.MetaboliteconcentrationsCmetweredeterminedusing

.

Page 6: Quantitation of normal metabolite concentrations in six brain regions

(2),

wherekmetandkH2OarecorrectionfactorsforT1recoveryandT2relaxationofmetaboliteandwater

(seebelow),SmetandSH2Oarethesignalintensities,nmetandnH2Oarethenumbersofprotons(4for

MI,9forCHO,3forCRandNAand2forwater),fCSFisthefractionofcerebrospinalfluidinthe

spectroscopyvoxel,Vmetisthevolumeofthespectroscopyvoxel(8mL),VH2Oisthevolumeofthe

voxelusedforwatersignalacquisition(8mLforinternalreference,1mLforexternalreference),andCH2Oisthereferencewaterconcentration.

Thecorrectionfactorformetabolite,kmet,wasdeterminedusing

.

wherefGMandfWMarethefractionsofgrayandwhitematterinthespectroscopyvoxel,and,T1,met,

GM,T2,met,GM,T1,met,WM,andT2,met,WMaretherelaxationtimesforthemetabolite,obtained

from[5]andprovidedinTable1.Notably,thefactor1/(1-fCSF)appearsinbotheq.1andeq.2;

whereasineq.1itaccountsforthefactthatmetabolitesignalisnotreceivedfromCSF,ineq.2itaccountsforthefactthattheweighingfactorsfortherelaxationterms,fGMandfWM,maynotsumto

1.

Seefulltable

Table1.Assumptionsaboutrelaxationtimesandwaterconcentrationsmadeforabsolutequantificationofmetaboliteconcentrations

Forquantitationwiththeinternalreference,thecorrectionfactorforwater,kH2O,wasdetermined

using

Page 7: Quantitation of normal metabolite concentrations in six brain regions

(3),

(4),

.

whereT1,H2O,GM,T2,H2O,GM,T1,H2O,WM,T2,H2O,WM,T1,H2O,CSF,andT2,H2O,CSFaretherelaxation

timesforwater,providedinTable1.Forquantitationwiththeexternalreference,inthecalculationofkH2Otherelaxationtimesofcerebrospinalfluidwereused,withfGM=fWM=0andfCSF=1,andkH2Owasmultipliedbyafactorof0.80,determinedfromcoilsensitivitymapsacquiredduringqualityassessmentchecks,toaccountforthedifferenceincoilsensitivitybetweenthetwopositions:centeroftheheadandcoilandaveragepositionofthepolystyrenetube.

Forquantitationwiththeinternalreference,theconcentrationofwaterinthevoxel,CH2O,was

determinedusing

.cH2O = fGMcH2O,GM + fWMcH2O,WM + fCSFcH2O,CSF

whereCH2O,GM,CH2O,WM,andCH2O,CSFaretheconcentrationsofwateringraymatter,whitematter

andcerebrospinalfluid,providedinTable1.[8]Forquantitationwiththeexternalreference,inthecalculationofCH2Oweset

fGM = fWM = 0 and fCSF = 1

Inadditiontotheabsoluteconcentrations,thesignalintensityratiosMI/CR,CHO/CR,GLX/CRandNA/CRwerealsoobtained.Asthesewerenotnormallydistributed,theratioswerelogarithm-transformed.

Statisticalanalysis

Foreachparameterofinterest,meanandstandarddeviationwerecomputed.ToensurethattherewerenosignificantdeviationsfromGaussiandistribution,Kolmogorov-Smirnovnormalitytestswere

Page 8: Quantitation of normal metabolite concentrations in six brain regions

(5),

performed.

Inter-subjectcoefficientsofvariation(CVs)werecalculatedfortheabsoluteconcentrationsandforthesignalintensityratiosusingtheformulaCV=SD/mean,andaveragedforeachmetaboliteacrossthesixregions.Totestforsystematicdifferencesbetweenthemetaboliteconcentrationscalculatedwiththeinternalandexternalreferences,pairedt-testswereperformed.

ForthosesubjectsforwhomspectrawereavailableforboththeleftandtherightMTL,lateralizationindices(LIs)fortheconcentrationsofMI,CHO,CRandNA,determinedusingtheinternalreference,werecomputedwiththeformula

.LI = 2(cL - cR)/(cL + cR)

whereCLandCRrefertotheconcentrationsintheleftandrightvoxels;foreachmetabolite,the

statisticalsignificanceoflateralizationwasevaluatedbymeansofpairedt-tests.

Totestfordifferencesinmetaboliteconcentrations(internalreference)andsignalintensityratiosamongbrainregions,analysisofvariance(ANOVA)wasperformed,followedbyBonferroni-correctedpost-hoct-tests.

ResultsTheabsolutemetaboliteconcentrationsandintensityratiosaregiveninTable2,andthecorrespondingbarchartsareshowninFigure3.Allconcentrationsandlogarithm-transformedintensityratioswerenormallydistributed.Acrossthespectraoftheparticipants,thefollowingaveragemetabolitesignal-to-noiseratios(SNRs)wereobtained:32.1±5.1forCEREB,28.7±6.6forFWM,26.8±6.7forMTL,27.3±7.5forPONS,28.6±6.9forPWMand26.2±4.8forTHAL.

Seefulltable

Table2.Absoluteconcentrations(internalandexternalreferences)andlogarithm-transformedintensityratiosofthemetabolites,andrelativevoxelcontents

Page 9: Quantitation of normal metabolite concentrations in six brain regions

Viewlargerversion

Figure3.Barchartsoftheabsoluteconcentrations(internalreference)andlogarithm-transformedsignalamplituderatios.Theerrorbarscorrespondto1SD

Therewerenosignificantdifferencesbetweentheaveragemetaboliteconcentrationscalculatedwiththeinternalandexternalreferences.TheaverageCVsforconcentrationsdeterminedwiththeinternalreferencewere32%forMI,23%forCHO,20%forCRand15%forNA.Incomparison,theCVsobtainedwiththeexternalreferencewerelarger:50%forMI,44%forCHO,41%forCRand41%forNA.TheCVsforthecorrespondingsignalintensityratioswereintermediate:41%forMI/CR,27%forCHO/CR,28%forNA/CRand48%forGLX/CR.

ThelateralizationindicesfortheMTLwere0.01±0.18forMI,0.05±0.18forCHO,-0.01±0.18forCRand0.01±0.10forNA;therewasnosignificantlateralization.

Thedifferenceinmetaboliteconcentrations(internalreference)amongregionswaslargestforNA(F5,27=16.1,P<.001),intermediateforCR(F5,27=13.5,P<.001)andCHO(F5,27=11.0,P<.001),

andsmallestforMI(F5,27=5.0,P<.001).TheconcentrationofMIrangedbetween5.8mM(PWM)

and8.8mM(PONS),thatofCHOrangedbetween2.9mM(PWM)and4.7mM(PONS),thatofCRrangedbetween10.5mM(PONS)and15.7mM(CEREB),andthatofNArangedbetween14.0mM(PWM)and18.4mM(PONS).

ThedifferenceintransformedintensityratiosamongregionswaslargestforCHO/CR(F5,27=19.3,

P<.001),intermediateforNA/CR(F5,27=13.9,P<.001)andMI/CR(F5,27=7.4,P<.001),and

smallestforGLX/CR(F5,27=5.2,P<.001).Thetransformedintensityratioln(MI/CR)ranged

between–0.35(CEREB)and0.15(PONS),ln(CHO/CR)rangedbetween–0.29(CEREB)and0.33(PONS),ln(GLX/CR)rangedbetween1.07(THAL)and1.56(PONS),andln(NA/CR)rangedbetween0.10(CEREB)and0.66(PONS).

Theresultsofpost-hoccomparisonsbetweenregionsaregiveninTable3.

Page 10: Quantitation of normal metabolite concentrations in six brain regions

Seefulltable

Table3.Resultsofpost-hoccomparisonsforabsoluteconcentrations(internalreference)andsignalintensityratios(↑(higher)and↓(lower)indicatestatisticalsignificanceatP<.05;↑↑and↓↓indicatestatisticalsignificanceatP<.01)

DiscussionWhiletherewerenosystematicdifferencesbetweenthemetaboliteconcentrationsestimatedwiththeinternalandexternalreferences,theexternalreferencewasassociatedwithconsiderablylargerinter-individualvariability,reflectedincoefficientsofvariationabouttwiceaslarge.Thisfindingisinlinewiththeresultsobtainedatthemajorityofcentersthatparticipatedinapreviousmulti-centricstudy.[7]Imperfectrepeatabilityinthepositioningofthereferencetubeisthemainsourceofrandomerror,anditseffectisamplifiedbychangesinthecoilsensitivityprofilebetweensubjects,causedbyvaryingshapeandsizeofthehead.Itthereforeappearsgenerallypreferabletousetheinternalreferenceunlessalterationsintissuewatercontentareexpected;moresuccessfulresultswithexernalstandardshave,however,beenobtainedbysomegroups.[6723]

Theinter-subjectcoefficientsofvariationwerelarger(byabout40%)forthesignalintensityratiosthanforthecorrespondingabsoluteconcentrationsestimatedwiththeinternalreference.Thislikelyresultsfromthecombinationoftwofactors:1)theactualinter-individualvariabilityinconcentrationislowerforwater(asconfirmedbyprotondensity-mappingstudies)thanforcreatine,and2)thewaterpeakismuchlargerthanthecreatinepeakandthereforeassociatedwithasmallerrelativemeasurementerror.[24]

Onecommoncriticismtoabsolutequantificationisthatitinvolvestheuseofmultiplecorrectionparameters,namely,CH2O,fGM,fWM,fCSF,T1,met,GMT2,met,GM,T1,met,WM,T2,met,WMwhichcarry

uncertaintiesthataredifficulttoestimateandwhichgetpropagatedinthefinalmeasurementresult.Althoughthisisanimportantshortcoming,ourfindingsontheinter-subjectcoefficientsofvariation(representingrandomerror)demonstratethatperformingabsolutequantificationisneverthelessmotivated,potentiallyleadingtoincreasedsensitivitytopathologicalchangewhencomparedtometaboliteratios.

Severalstudiesreportedmetaboliteconcentrationsinthecerebralhemispheres:theaverageconcentrationsobtainedinthepresentwork(7mMforMI,3mMforCHO,11mMforCRand14mMforNA)andthecorrespondinginter-individualCVsarewithinthespreadofvaluesfoundinliterature

Page 11: Quantitation of normal metabolite concentrations in six brain regions

(4-8mMforMI,1-5mMforCHO,6-14mMforCRand10-25mMforNA).[35–8]

TheNApeakisfrequentlyassumedtocorrespondtoN-acetylaspartate,acompoundofinterestasaputativeneuronalmarker.Ex-vivostudiesofthehumanandratbrainhavereportedconcentrationsintherange5-8mM,significantlybelowtheestimatesobtainedinthisstudyandinmostotherin-vivoMRSstudies.[2526]Itishypothesizedthatthisdiscrepancyarisesbecauseofunresolvedcompoundscontributingtothe2.02ppmNAresonanceobservedat1.5T,andpossiblyduetoN-acetylaspartatelossduringex-vivosamplepreparation.[35]TheCRpeakat3.00ppmcorrespondstothesuperpositionofcreatineandphosphocreatine,whichhavewell-knownrolesincellmetabolism,intheconcentrationratiodeterminedbyphosphokinaseequilibrium.[5]Ex-vivostudiesofthehumanandcaninebrainhavereportedconcentrationsintherange9-12mM,inlinewiththeresultsofthisstudyandotherin-vivoMRSstudies.[3527–28]TheCHOpeakat3.20ppmisthemostcomplex,receivingcontributionsfromarangeofcholine-containingcompounds,includingphosphocholine,glycerophosphocholine,freecholine,acetylcholine,phosphatidylcholineandcholine-plasmalogen;itsintensityisfrequentlytakenasanempiricalmarkerofthedensityandturnoverofcellmembranes.[35]Invitro,theconcentrationofphosphocholine,glycerophosphocholineplusfreecholinewasdeterminedtobeintherange1-2mM,inlineonlywithsomein-vivostudiesbutbelowtheestimatesofothers(includingthepresentone);thedeterminantsofthisdiscrepancyremainunclear.[35–6829]TheMIpeakat3.50ppmcorrespondstoarangeofcompounds,includingphosphatidylinositol,inositolpolyphosphatide,inositolmonophosphate,myo-inositoland,toasmallerextent,glycine;asinositoliselevatedwithinastrocytes,theintensityofthepeakisoftentakenasanempiricalmarkerofglialdensityandproliferation.Studiesonhumanbrainsampleshavereportedconcentrationsintherange5-7mM,inlinewiththeresultsofthisstudyandotherin-vivoMRSstudies.[682530]TheGLXcomplexintherange2.70-1.70ppmincludesmultipleoverlappingresonancesfromglutamateanditsprecursorglutamine;asthesecannotberesolvedat1.5T,quantitationwasnotattempted.[6]

Inagreementwiththeexistingliterature,significantregionaldifferenceswerefoundforallmetabolitesofinterest.[6822]ThesewerelargestforNA,intermediateforCRandCHO,andsmallestforMI.GiventhatN-acetylaspartateispresentinthesomaofneurons,indendritesandinaxons,itsregionalvariabilityislikelyrelatedtodifferencesinneuralarchitecture,populationanddensity;asimplelinearrelationshipwiththedensityofneuronsis,however,unlikelygiventhatitalsoreflectsreversiblemetabolicchanges.[31]Totalcreatineandcholinearelessspecificastheyincludecontributionsfrombothneuronsandglia,andtheirregionalvariabilityisprobablyrelatedtodifferencesinthedensityofthecellularmatrix;andinthecaseofcholine,alsointhelevelofmyelination.[32]Thevariabilityintheconcentrationofinositolcompoundscouldbemore

Page 12: Quantitation of normal metabolite concentrations in six brain regions

specificallyrelatedtotheglialpopulation,butitislikelyalsoinfluencedbyregionalmetabolicdifferences.[6]

TheconcentrationofN-acetylaspartatewashigherinthethalamus,ponsandcerebellumthaninthecerebralhemisphericregions;thiseffectcouldberelatedtohigherdensityofneuralsoma,axonsanddendritictreesintheseregions,andisfoundforthethalamusalsoin[8]butnotin.[6]Theconcentrationofcholineunitswasmarkedlyhigherintheponsthaninotherregions;thiseffectcouldberelatedtothehighmyelinationofthedenserostro-caudalpathwaysinthisregion[21]andisalsofoundin[6]and[8].Inagreementwiththesamestudies,theconcentrationofcholineunitswaslowestintheparietallobe;thesametrendwasobservedforinositol,andtheinterpretationisunclear.Theconcentrationofcreatinewasmarkedlyhigherinthecerebellumthaninotherregions;thiseffectcouldberelatedtotheveryhighdensityofneuralcellsinthecerebellum[21]andisalsofoundin[6]and[22].Thepresenceofsignificantregionaldifferencessignalstheneedtohaveseparatereferencevaluesforeachregionofinterest,especiallyforsubcorticalstructures.

Theconcentrationofmetabolitesinthehippocampuswasfoundtobesymmetrical,inlinewith[33]significantasymmetriesemergeinepilepsy,eveninabsenceoffrequentseizures.[15]

Thepresentstudyhasthreemainstrengths.First,incontrastwithseveralpreviousoneswhichconsideredspecificregionsonly,metaboliteconcentrationsweremeasured,forallsubjects,inanextendedsetofcorticalandsubcorticalbrainregions.Second,high-resolutionsegmentationwasperformedtocorrectforcerebrospinalfluidpartialvolumingandtoreportthewhite/graymattercontentsofeachvoxel.Third,afreelyavailablefittingprogramwasused,enablingcentersthatdonothaveaccesstocommercialspectroscopysoftwaretoreproduceourfindings.

Thereare,however,alsoseveralimportantlimitationsthatneedtobetakenintoconsideration.First,themetaboliterelaxationrateswerenotmeasured,duetoscan-timelimitationsrelatedtothelargenumberofvoxelsunderstudy,andthevaluesfromapreviousstudywereused.Whilethisisapotentialsourceoferror,itshouldbenotedthattheinter-studyvariabilityinrelaxationtimesisconsiderablysmaller(CV<20%)incomparisonwiththatinconcentrations.[9]Thereareknowndifferencesinrelaxivitiesamongbrainregions,whicharelessmarkedat1.5Tthanathigherfieldstrengths;thesewereindirectlytakenintoaccount,determining“effective”T1andT2foreach

metaboliteonthebasisofthecontentofeachvoxelandoftheaverageT1andT2valuesforwhiteand

graymatter.[59–11]Althoughthisapproachcannotrevealpathology-inducedchangesinthemetaboliteT2sasfound,forexample,instroke,thepotentialconfoundingeffectwasminimized

becausetheT2-weightingwasveryweak,giventhattheMRSechotime(30ms)wasconsiderably

Page 13: Quantitation of normal metabolite concentrations in six brain regions

shorterthanthemetaboliteT2s(200-500ms).[912]Second,theuncertaintyassociatedwitheach

correctionparameter(CH2O,fGM,fWM,fCSF,T1,met,GM,T2,met,GM,T1,met,WM,T2,met,WM)remains

unknown,andthefindingofreducedinter-subjectcoefficientsofvariationdoesnotexcludethepresenceofsignificantsystematicerror,eventhoughtherewerenosystematicdifferencesbetweeninternalandexternalreferences.Thisisagenerallimitationofthetechniqueatthepresentstage,whichneedsaddressingthroughdedicatedrelaxometryandsegmentationstudies.Ourfindingsofreducedinter-subjectvariabilitymotivatesuchstudies.Third,withtheexceptionofthemedialtemporallobe,voxelswerepositionedinonehemisphereonly,preventingthedeterminationofpotentialmetabolicasymmetriesrelated,forexample,totheknowndifferenceinaxonaldensityinsomeregionsbetweenthedominantandthenon-dominanthemispheres;thislimitationisincommonwithmanyothersimilarstudies.[357–8]Fourth,thenumberofsubjectsandtheagerangeweretoosmalltoinvestigateage-relatedchanges.Theagerangeunderconsiderationis,however,relevanttoawiderangeofpathologies,andpreviousstudiesindicatethattheage-relatedchangesinmetaboliteconcentrationsarenegligibleuntiltheseventhdecade.[32]Anotherlimitationisthatthestudywasconductedat1.5T,whiletheuseofa3-TscannerwouldhaveprovidedbetterSNRandpeakseparation,reducingquantitationuncertainty;however,inthemajorityofcenters,clinicalspectroscopyisstillroutinelypracticedat1.5T.[34]Duetotheinabilitytoresolveglutamineandglutamateresonancesat1.5T,thedataontheGLX/CRratioshouldbeinterpretedwithcaution.Finally,thevoxelsize(8mL)wascomparativelylarge,especiallyconsideringtheponsandthalamusregions.Althoughwehavecorrectedforpartialvolumingwithfluid-containingspaces,inclusionofgrayandwhitematterfromsurroundingareasaffectedtheanatomicalspecificityofthemeasurements.Reducingvoxelvolume,e.g.,to4mL,wouldincreaseanatomicalspecificity,aswellaslimitsusceptibilityeffects.Inthisstudy,thechoiceof8mLwasmadeinordertomaximizeSNR,andallvoxelshadequalvolumetoavoidintroducingSNRdifferencesacrosstheregionalspectra.IthasbeenpreviouslyshownthatreducingtheSNRincreasesrandomerrorandmayalsoresultinsystematicconcentrationbiases.[1934]WhilecomprehensiveevaluationsoftheeffectsofSNRareavailableforLCModelandAMARES,atpresenttheseremainlackingforAQSES.[19]AdditionalworkisthereforenecessarybothtodeterminehowSNRchangesaffecttheaccuracyofconcentrationscalculatedusingtheproposedmethod,andtoderivefurtherreferencevaluesusingsmallervoxels.

Moregenerally,alimitationofthepresentstudy,whichisincommonwithallothersimilarnormativestudies,[35–8]isthatthereferencevaluesarevalidonlysolongasthesamemethodologyandconditionsareapplied.ReplicationofthequantificationprocedureemployedinthepresentstudyappearsunproblematicasafulldescriptionhasbeengivenandtheAQSESsoftwareisfreelyavailable.Theexactpositionofthevoxelsinnormalizedspacewasprovided[Figure1],andthe

Page 14: Quantitation of normal metabolite concentrations in six brain regions

acquisitionparametersarestandardforclinicalMRSat1.5T.Nevertheless,thereareanumberofpotentialsourcesoferror,suchasdifferencesinsignal-to-noiseratio,shimmingqualityandpulsesequenceimplementation,asaconsequenceofwhichourfindingscannotimmediatelybeusedasnormalreferenceeveninabsenceofexplicitmethodologicaldifferences;rather,theyshouldinitiallybecomparedwithlocallyacquiredcontrolvaluesandincludedasreferenceonlyafterconfirmingtheabsenceofstatisticallysignificantdifferences.Forsituationsinwhichthesamequantificationmethodologycannotbefollowed,forexamplewhenadifferentvalueoffieldstrengthisused,thepresentvaluescannotbeconsideredandtherelevanceofthepresentworkispurelymethodological.

Inconclusion,wehavereportedthenormalin-vivoconcentrationsofinositolcompounds,cholineunits,totalcreatineandN-acetylmoietiesinfrontalandparietalregions,medialtemporallobe,thalamus,ponsandcerebellum.Thesevaluescanbeusedasreferenceforfuturestudiesprovidedthesamemethodology,basedonopen-sourcesoftware,isfollowed.Theinter-individualcoefficientsofvariationwerelargestforquantitationbasedonanexternalreference,discouragingitsgeneraluse;therewas,however,nosystematicbiaswithrespecttoquantitationbasedontissuewater.Theinter-individualcoefficientsofvariationwerelargerformetaboliteratiosthanforabsoluteconcentrations,confirmingthepotentialusefulnessofquantitativeMRSinspiteofthecomplexityofthecorrectionprocess.Significantdifferencesinmetaboliteconcentrationswerefoundamongbrainstructures.Whiletheirexactdeterminantscannotbedeterminedbyin-vivostudiessuchasthepresentone,theyarehypothesizedtoberelatedtoregionalvariabilityinneuralandglialpopulation,andinmyelination.Separatereferencevaluesareneededfordifferentbrainregions.

AcknowledgmentsWearegratefultoEmmaLisaStanleyforheroperationalcontributioninthepreprocessingandfittingofthespectra.WewouldalsoliketoexpressourgratitudetoDr.FaustoCevolani,whosupportedthepreparationofsomephantomsthatwereusedforpreliminarytests.Thisworkisdedicatedtohismemory.Wethanktwoanonymousreviewersforprovidinginsightfulfeedbackonanearlierversionofthemanuscript.

FootnotesSourceofSupport:Nil

ConflictofInterest:Nonedeclared.

Page 15: Quantitation of normal metabolite concentrations in six brain regions

ArticlesfromJournalofMedicalPhysicsareprovidedherecourtesyofMedknowPublications

PMCCopyrightNotice

ThearticlesavailablefromthePMCsiteareprotectedbycopyright,eventhoughaccessisfree.CopyrightisheldbytherespectiveauthorsorpublisherswhoprovidethesearticlestoPMC.UsersofPMCareresponsibleforcomplyingwiththetermsandconditionsdefinedbythecopyrightholder.

UsersshouldassumethatstandardcopyrightprotectionappliestoarticlesinPMC,unlessanarticlecontainsanexplicitlicensestatementthatgivesauseradditionalreuseorredistributionrights.PMCdoesnotallowautomated/bulkdownloadingofarticlesthathavestandardcopyrightprotection.

SeethecopyrightnoticeonthePMCsite,https://www.ncbi.nlm.nih.gov/pmc/about/copyright/,forfurtherdetailsandspecificexceptions.

References1. TongZY,ToshiakiY,WangYJ,authors.Protonmagneticresonancespectroscopyofnormalhumanbrainandglioma:A

quantitativeinvivostudy.ChinMedJ.2005;118:1251–7.[PubMed]

2. DezortovaM,HajekM,authors.(1)HMRspectroscopyinpediatrics.EurJRadiol.2008;67:240–9.[PubMed]

3. BarkerPB,SoherBJ,BlackbandSJ,ChathamJC,MathewsVP,BryanRN,authors.QuantitationofprotonNMRspectraofthehumanbrainusingtissuewaterasaninternalconcentrationreference.NMRBiomed.1993;6:89–94.[PubMed]

4. ChristiansenP,HenriksenO,StubgaardM,GideonP,LarssonHB,authors.Invivoquantificationofbrainmetabolitesby1H-MRSusingwaterasaninternalstandard.MagnResonImag.1993;11:107–18

5. KreisR,ErnstT,RossBD,authors.Absolutequantitationofwaterandmetabolitesinthehumanbrain.II:Metaboliteconcentrations.JMagnReson.1993;102:9–19

6. MichaelisT,MerboldtKD,BruhnH,HänickeW,FrahmJ,authors.Absoluteconcentrationsofmetabolitesintheadulthumanbraininvivo:QuantificationoflocalizedprotonMRspectra.Radiology.1993;187:219–27.[PubMed]

7. KeevilSF,BarbiroliB,BrooksJC,CadyEB,CaneseR,CarlierP,etal.,authors.AbsolutemetabolitequantificationbyinvivoNMRspectroscopy:II,Amulticentretrialofprotocolsforinvivolocalisedprotonstudiesofhumanbrain.MagnResonImaging.1998;16:1093–106.[PubMed]

8. TongZ,YamakiT,HaradaK,HoukinK,authors.InvivoquantificationofthemetabolitesinnormalbrainandbraintumorsbyprotonMRspectroscopyusingwaterasaninternalstandard.MagnResonImag.2004;22:1017–24

9. RutgersDR,vanderGrondJ,authors.Relaxationtimesofcholine,creatineandN-acetylaspartateinhumancerebralwhitematterat1.5T.NMRBiomed.2002;15:215–21.[PubMed]

10. BriefEE,WhittallKP,LiDK,MacKayA,authors.ProtonT1relaxationtimesofcerebralmetabolitesdifferwithinandbetweenregionsofnormalhumanbrain.NMRBiomed.2003;16:503–9.[PubMed]

11. TräberF,BlockW,LamerichsR,GiesekeJ,SchildHH,authors.1Hmetaboliterelaxationtimesat3.0tesla:MeasurementsofT1andT2valuesinnormalbrainanddeterminationofregionaldifferencesintransverserelaxation.JMagnResonImaging.2004;19:537–45.[PubMed]

12. WalkerPM,BenSalemD,LalandeA,GiroudM,BrunotteF,authors.TimecourseofNAAT2andADCwinischaemicstrokepatients:1HMRSimaginganddiffusion-weightedMRI.JNeurolSci.2004;220:23–8.[PubMed]

Page 16: Quantitation of normal metabolite concentrations in six brain regions

13. BrexPA,ParkerGJ,LearySM,MolyneuxPD,BarkerGJ,DavieCA,etal.,authors.Lesionheterogeneityinmultiplesclerosis:AstudyoftherelationsbetweenappearancesonT1weightedimages,T1relaxationtimes,andmetaboliteconcentrations.JNeurolNeurosurgPsychiatry.2000;68:627–32.[PubMed]

14. BrooksJC,RobertsN,KempGJ,GosneyMA,LyeM,WhitehouseGH,authors.Aprotonmagneticresonancespectroscopystudyofage-relatedchangesinfrontallobemetaboliteconcentrations.CerebCortex.2001;11:598–605.[PubMed]

15. VarhoT,KomuM,SonninenP,LähdetieJ,HolopainenIE,authors.QuantitativeHMRSandMRIvolumetryindicateneuronaldamageinthehippocampusofchildrenwithfocalepilepsyandinfrequentseizures.Epilepsia.2005;46:696–703.[PubMed]

16. ZhuX,SchuffN,KornakJ,SoherB,YaffeK,KramerJH,etal.,authors.EffectsofAlzheimerdiseaseonfronto-parietalbrainN-acetylaspartateandmyo-Inositolusingmagneticresonancespectroscopicimaging.AlzheimerDisAssocDisord.2006;20:77–85.[PubMed]

17. AydinK,UcokA,CakirS,authors.QuantitativeprotonMRspectroscopyfindingsinthecorpuscallosumofpatientswithschizophreniasuggestcallosaldisconnection.AJNRAmJNeuroradiol.2007;28:1968–74.[PubMed]

18. DeBeerR,BarbiroliB,GobbiG,KnijnA,KügelH,LangenbergerKW,etal.,authors.AbsolutemetabolitequantificationbyinvivoNMRspectroscopy:III,Multicentre1HMRSofthehumanbrainaddressedbyoneandthesamedata-analysisprotocol.MagnResonImaging.1998;16:1107–11.[PubMed]

19. KanowskiM,KaufmannJ,BraunJ,BernardingJ,TempelmannC,authors.Quantitationofsimulatedshortechotime1HhumanbrainspectrabyLCMODELandAMARES.MagnResonMed.2004;51:904–12.[PubMed]

20. PoulletJB,SimaDM,SimonettiAW,DeNeuterB,VanhammeL,LemmerlingP,etal.,authors.AnautomatedquantitationofshortechotimeMRSspectrainanopensourcesoftwareenvironment:AQSES.NMRBiomed.2007;20:493–504.[PubMed]

21. NiewenhuysR,author.TheHumanCentralNervousSystem:ASynopsisandAtlas.1996.NewYork:Springer-Verlag;

22. JacobsMA,HorskáA,vanZijlPC,BarkerPB,authors.QuantitativeprotonMRspectroscopicimagingofnormalhumancerebellumandbrainstem.MagnResonMed.2001;46:699–705.[PubMed]

23. HenriksenO,author.InvivoquantitationofmetaboliteconcentrationsinthebrainbymeansofprotonMRS.NMRBiomed.1995;8:139–48.[PubMed]

24. WarntjesJB,DahlqvistO,LundbergP,authors.Novelmethodforrapid,simultaneousT1,T*2,andprotondensityquantification.MagnResonMed.2007;57:528–37.[PubMed]

25. PetroffOA,SpencerDD,AlgerJR,PrichardJW,authors.High-fieldprotonmagneticresonancespectroscopyofhumancerebrumobtainedduringsurgeryforepilepsy.Neurology.1989;39:1197–202.[PubMed]

26. BurriR,BiglerP,StraehlP,PosseS,ColomboJP,HerschkowitzN,authors.Braindevelopment:1Hmagneticresonancespectroscopyofratbrainextractscomparedwithchromatographicmethods.NeurochemRes.1990;15:1009–16.[PubMed]

27. LowryOH,BergerSJ,ChiMM,CarterJG,BlackshawA,OutlawW,authors.Diversityofmetabolicpatternsinhumanbraintumors-I:Highenergyphosphatecompoundsandbasiccomposition.JNeurochem.1977;29:959–77.[PubMed]

28. NiokaS,ChanceB,HilbermanM,SubramanianHV,LeighJSJr,VeechRL,etal.,authors.RelationshipbetweenintracellularpHandenergymetabolismindogbrainasmeasuredby31P-NMR.JApplPhysiol.1987;62:2094–102.[PubMed]

29. DrossK,KewitzH,authors.Concentrationandoriginofcholineintheratbrain.NaunynSchmiedebergsArchPharmacol.1972;274:91–106.[PubMed]

30. StokesCE,GillonKR,HawthorneJN,authors.Freeandtotallipidmyo-inositolconcentrationsdecreasewithageinhumanbrain.BiochimBiophysActa.1983;753:136–8.[PubMed]

31. GasparovicC,ArfaiN,SmidN,FeeneyDM,authors.DecreaseandrecoveryofN-acetylaspartate/creatineinratbrainremotefromfocalinjury.JNeurotrauma.2001;18:241–6.[PubMed]

32. MinatiL,GrisoliM,BruzzoneMG,authors.MRspectroscopyfunctionalMRIanddiffusion-tensorimagingintheagingbrainAconceptualreview.JGeriatrPsychiatryNeurol.2007;20:3–21.[PubMed]

Page 17: Quantitation of normal metabolite concentrations in six brain regions

33. ChoiCG,FrahmJ,authors.LocalizedprotonMRSofthehumanhippocampus:Metaboliteconcentrationsandrelaxationtimes.MagnResonMed.1999;41:204–7.[PubMed]

34. MacrìMA,GarreffaG,GioveF,GuardatiM,AmbrosiniA,ColonneseC,etal.,authors.Invivoquantitative1HMRSofcerebellumandevaluationofquantitationreproducibilitybysimulationofdifferentlevelsofnoiseandspectralresolution.MagnResonImaging.2004;22:1385–93.[PubMed]

Page 18: Quantitation of normal metabolite concentrations in six brain regions

[Back]

Figure1.Positioningofthevoxelsusedforacquisitionofthespectra,shownonthetransverse,coronalandsagittalplanesforarandomlychosensubject.ThestereotacticcoordinatesofthevoxelcentersaregiveninMNIformat.Thepolystyrenetubepositionednexttotheleftearlobeisvisible

[Back]

Page 19: Quantitation of normal metabolite concentrations in six brain regions

[Back]

Figure2.Measuredandfittedspectrafromarandomlychosenacquisition.Thecontributionofeachcomponent(MI,CHO,CR,GLXandNA),thebaselineandtheresultingresidualsarevisible

[Back]

Page 20: Quantitation of normal metabolite concentrations in six brain regions

[Back]

Table1.Assumptionsaboutrelaxationtimesandwaterconcentrationsmadeforabsolutequantificationofmetaboliteconcentrations

T1,GM T2,GM cGM T1,WM T2,WM cWM T1,CSF T2,CSF cCSF

MI1130ms

279ms

-1200ms

197ms

- - - -

CHO1390ms

401ms

-1440ms

325ms

- - - -

CR1320ms

204ms

-1300ms

209ms

- - - -

NA1330ms

399ms

-1380ms

483ms

- - - -

H2O 670ms 76ms52.3mM

510ms 67ms45.8mM

2400ms

160ms

55.5mM

[Back]

Page 21: Quantitation of normal metabolite concentrations in six brain regions

[Back]

Table2.Absoluteconcentrations(internalandexternalreferences)andlogarithm-transformedintensityratiosofthemetabolites,andrelativevoxelcontents

FWM PWM MTL THAL PONS CEREB

Internalreference(absoluteconcentrationsinmM):

 MI 7.6±2.0 5.8±2.0 7.9±3.0 6.6±1.8 8.8±2.8 8.0±2.5

 CHO 3.6±0.8 2.9±0.4 3.6±1.1 3.4±0.8 4.7±1.1 3.9±0.9

 CR 11.5±2.4 10.7±1.5 12.0±4.0 12.0±1.1 10.5±3.2 15.7±2.1

 NA 14.2±2.0 14.0±1.8 14.1±2.5 16.3±2.0 18.4±3.0 16.4±2.8

Externalreference(absoluteconcentrationsinmM):

 MI 7.5±3.3 5.9±2.0 8.1±4.1 7.1±4.9 8.2±3.2 8.4±5.5

 CHO 3.8±1.8 3.0±0.8 3.8±2.0 3.5±1.6 4.6±1.9 4.1±2.1

 CR 11.9±4.9 11.0±3.2 12.4±5.9 12.6±5.2 10.3±4.3 16.6±7.1

 NA 14.8±6.4 14.3±3.7 14.6±6.5 17.4±8.6 18.2±6.8 17.4±7.5

Logarithm-transformedintensityratios:

 ln(MI/CR) -0.14±0.35 -0.32±0.43 -0.04±0.38 -0.30±0.28 0.15±0.43 -0.35±0.31

 ln(CHO/CR) -0.07±0.27 -0.21±0.17 -0.07±0.31 -0.19±0.26 0.33±0.26 -0.29±0.27

Page 22: Quantitation of normal metabolite concentrations in six brain regions

 ln(GLX/CR) 1.32±0.47 1.38±0.43 1.50±0.49 1.07±0.34 1.56±0.51 1.17±0.40

 ln(NA/CR) 0.27±0.20 0.32±0.15 0.26±0.36 0.36±0.15 0.66±0.36 0.10±0.20

Voxelcontent:

 %WM 80.4±8.1 81.9±7.1 34.4±10.5 14.0±4.7 48.8±19.1 39.0±15.7

 %GM 18.9±7.3 16.2±7.3 61.7±10.7 85.5±5.5 46.4±18.7 60.1±15.1

 %CSF 0.7±1.3 1.8±1.9 3.9±3.1 0.5±1.3 4.7±3.4 0.8±1.8

(valuesareexpressedasmean±SD)

[Back]

Page 23: Quantitation of normal metabolite concentrations in six brain regions

[Back]

Figure3.Barchartsoftheabsoluteconcentrations(internalreference)andlogarithm-transformedsignalamplituderatios.Theerrorbarscorrespondto1SD

[Back]

Page 24: Quantitation of normal metabolite concentrations in six brain regions

[Back]

Table3.Resultsofpost-hoccomparisonsforabsoluteconcentrations(internalreference)andsignalintensityratios(↑(higher)and↓(lower)indicatestatisticalsignificanceatP<.05;↑↑and↓↓indicatestatisticalsignificanceatP<.01)

FWM PWM MTL THAL PONS

vs.PWM

- - - -

vs.MTL

MI↓↓,CHO↓, - - -

MI/CR↓

vs.THAL

NA↓, NA↓↓NA↓↓,

GLX/CR↑↑- -

vs.PONS

CHO↓↓,NA↓↓,

CHO/CR↓↓,NA/CR↓↓

MI↓↓,CHO↓↓,NA↓↓,

MI/CR↓↓,CHO/CR↓↓,NA/CR↓↓

CHO↓↓,NA↓↓,

CHO/CR↓↓,NA/CR↓↓

MI↓,CHO↓↓,NA↓,MI/CR↓↓,CHO/CR↓↓,NA/CR↓↓,GLX/CR↓↓

vs.CEREB

CR↓↓,NA↓↓,

CHO/CR↑

MI↓,CHO↓↓,CR↓↓,NA↓↓,NA/CR↑

CR↓↓,NA↓↓,MI/CR↑↑,CHO/CR↑↑,GLX/CR↑

CR↓↓,NA/CR↑↑

CHO↑↑,CR↓↓,NA↑,MI/CR↑↑,CHO/CR↑↑,NA/CR↑↑,GLX/CR↑

[Back]