60

Click here to load reader

Protecao Comando

Embed Size (px)

DESCRIPTION

DN

Citation preview

Page 1: Protecao Comando

Série metalmecânica - eletromecânica

proteção e comandos

Page 2: Protecao Comando

CONFEDERAÇÃO NACIONAL DA INDÚSTRIA – CNI

Robson Braga de AndradePresidente

DIRETORIA DE EDUCAÇÃO E TECNOLOGIA (DIRET)

Rafael Esmeraldo Lucchesi RamacciottiDiretor de Educação e Tecnologia

Júlio Sérgio de Maya Pedrosa MoreiraDiretor Adjunto de Educação e Tecnologia

SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL (SENAI)

Conselho Nacional

Robson Braga de AndradePresidente

SENAI – Departamento Nacional

Rafael Esmeraldo Lucchesi RamacciottiDiretor-Geral

Gustavo Leal Sales FilhoDiretor de Operações

Sérgio MoreiraDiretor Adjunto

Page 3: Protecao Comando

Série metalmecânica - eletromecânica

proteção e comandos

Page 4: Protecao Comando

SENAI – DN

Serviço Nacional de Aprendizagem Industrial Departamento Nacional

Sede

Setor Bancário Norte • Quadra 1 • Bloco C • Edifício Roberto Simonsen • 70040-903 • Brasília – DF • Tel.: (0xx61) 3317-9001 Fax: (0xx61) 3317-9190 • http://www.senai.br

© 2014. SENAI – Departamento Nacional

© 2014. SENAI – Departamento Regional de Santa Catarina

A reprodução total ou parcial desta publicação por quaisquer meios, seja eletrônico, mecâ-nico, fotocópia, de gravação ou outros, somente será permitida com prévia autorização, por escrito, do SENAI.

Esta publicação foi elaborada pela equipe do Núcleo de Educação a Distância do SENAI de Santa Catarina, com a coordenação do SENAI Departamento Nacional, para ser utilizada por todos os Departamentos Regionais do SENAI nos cursos presenciais e a distância.

SENAI Departamento Nacional Unidade de Educação Profissional e Tecnológica – UNIEP

SENAI Departamento Regional de Santa Catarina Núcleo de Educação – NED

FICHA CATALOGRÁFICA _ _ _ _ ____ __ _ __ __ _

S491 Serviço Nacional de Aprendizagem Industrial. Departamento Nacional.

Proteção e comandos / Serviço Nacional de Aprendizagem Industrial. Departamento Nacional, Serviço Nacional de Aprendizagem Industrial. Departamento Regional de Santa Catarina. Brasília : SENAI/DN, 2014.

60 p. : il. color. (Série metalmecânica. Eletromecânica)

1. Disjuntores elétricos. 2. Instalações elétricas. 3. Mecanismo de distribuição elétrica. I. Título. II. Série. CDD 621.31924 CDU 621.316

Page 5: Protecao Comando

Lista de figuras e quadrosFigura 1 - Elementos de um contator .......................................................................................................................12Figura 2 - Diagrama esquemático de um contator ..............................................................................................13Figura 3 - Identificação de terminais de potência ................................................................................................13Figura 4 - Identificação dos contatos auxiliares ....................................................................................................13Figura 5 - Relés auxiliares ..............................................................................................................................................15Figura 6 - Diagrama de tempo do relé com retardo na energização ............................................................16Figura 7 - Diagrama de tempo de um relé com retardo na desenergização ..............................................17Figura 8 - Diagrama do relé de tempo estrela-triângulo ...................................................................................17Figura 9 - Tipos de botoeiras ........................................................................................................................................19Figura 10 - Lâmpada de sinalização ..........................................................................................................................20Figura 11 - Disjuntor monofásico ...............................................................................................................................24Figura 12 - Composição dos fusíveis D .....................................................................................................................25Figura 13 - Componentes do fusível Diazed ..........................................................................................................26Figura 14 - Fusível NH .....................................................................................................................................................26Figura 15 - Disjuntor motor ..........................................................................................................................................27Figura 16 - Lâmina bimetálica .....................................................................................................................................28Figura 17 - Representação dos relés de sobrecarga ............................................................................................29Figura 18 - Parametrização do relé de sobrecarga ...............................................................................................29Figura 19 - Identificação dos terminais do relé de sobrecarga ........................................................................30Figura 20 - Identificação dos terminais auxiliares ................................................................................................32Figura 21 - Exemplo de aplicação do contato de selo ........................................................................................32Figura 22 - Intertravamento de um circuito com reversão motor trifásico .................................................33Figura 23 - Exemplo de proteção de circuitos elétricos .....................................................................................34Figura 24 - Diagrama de potência e de comando ................................................................................................38Figura 25 - Ligação estrela com tensão de triângulo (UΔ) ................................................................................39Figura 26 - Ligação triângulo com tensão de triângulo .....................................................................................39Figura 27 - Diagrama de potência e comando partida estrela-triângulo ....................................................40Figura 28 - Diagrama de potência e de comando de uma partida compensadora .................................41Figura 29 - Inversor de frequência .............................................................................................................................42Figura 30 - Circuito de um inversor de frequência ...............................................................................................43Figura 31 - Curva representativa da variação U/f1 ................................................................................................44Figura 32 - IHM (Interface homem máquina) ........................................................................................................46Figura 33 - Soft-starter ....................................................................................................................................................47Figura 34 - Diagrama de blocos simplificados .......................................................................................................48Figura 35 - Rampa de tensão na aceleração ...........................................................................................................49Figura 36 - Curva de tensão na desaceleração ......................................................................................................49Figura 37 - Limitação de corrente ..............................................................................................................................50

Quadro 1 - Categorias de emprego de contatores conforme IEC 947-4 .......................................................15Quadro 2 - Identificação de botoeiras ......................................................................................................................19

Page 6: Protecao Comando

Quadro 3 - Identificação de sinaleiros ......................................................................................................................21Quadro 4 - Vantagens e desvantagens do método partida direta .................................................................38Quadro 5 - Vantagens e desvantagens do método partida estrela-triângulo ...........................................40

Page 7: Protecao Comando

Sumário

1 Introdução ..........................................................................................................................................................................9

2 Componentes para instalações elétricas industriais .........................................................................................112.1 Contatores ......................................................................................................................................................112.2 Relés auxiliares .............................................................................................................................................152.3 Relés de tempo ............................................................................................................................................162.4 Botoeiras e sinaleiros .................................................................................................................................183.1 Disjuntores .....................................................................................................................................................23

3 Componentes de proteção para instalações elétricas e circuitos de comando......................................233.2 Fusíveis ............................................................................................................................................................253.3 Disjuntor motor ............................................................................................................................................273.4 Relé de sobrecarga......................................................................................................................................283.5 Relé falta de fase ..........................................................................................................................................303.6 Relé de sequência de fase ........................................................................................................................313.7 Circuitos de comandos elétricos ............................................................................................................31

3.7.1 Simbologia numérica ..............................................................................................................313.7.2 Contato de selo ..........................................................................................................................323.7.3 Intertravamento ........................................................................................................................333.7.4 Proteção de circuitos elétricos .............................................................................................34

4 Chaves de partida ..........................................................................................................................................................374.1 Partida direta .................................................................................................................................................374.2 Partida estrela-triângulo ..........................................................................................................................394.3 Partida compensadora ..............................................................................................................................414.4 Chaves de partidas eletrônicas ...............................................................................................................42

4.4.1 Inversor de frequência ............................................................................................................424.4.2 Soft-starter...................................................................................................................................47

5 REFERÊNCIAS ...................................................................................................................................................................53

6 MINICURRÍCULO DO AUTOR ......................................................................................................................................55

7 Índice ..................................................................................................................................................................................57

Page 8: Protecao Comando
Page 9: Protecao Comando

1Introdução

Olá! Seja bem-vindo à unidade curricular Proteção e Comandos. Este conteúdo faz parte do módulo específico do curso de Atualização Tecnológica para Docentes em Eletromecânica (área de Metalmecânica) na Modalidade a Distância.

Nesta unidade curricular você aprenderá a interpretar projetos elétricos e automação in-dustrial para montagem e manutenção de sistemas elétricos industriais. Também saberá como dimensionar, selecionar e instalar componentes e acionamentos eletromecânicos para monta-gem e manutenção de sistemas elétricos industriais.

Ao final da unidade curricular, você também estará apto a interpretar e aplicar normas téc-nicas (NBRs e normas da concessionária para instalações elétricas industriais) regulamenta-doras e de preservação ambiental, além de interpretar desenhos técnicos eletromecânicos, catálogos, manuais e tabelas técnicas. Além disso, saberá identificar os dispositivos de siste-mas elétricos, os dispositivos de sistemas de automação e utilizar sistemas de medição. Out-ras competências adquiridas ao final deste estudo estão relacionadas à aplicação de softwares específicos, parametrização de inversores de frequência e soft-starter, elaboração de leiautes, diagramas e esquemas de sistemas elétricos e aplicação de conceitos de tecnologia dos mate-riais elétricos.

Bons estudos!

Page 10: Protecao Comando
Page 11: Protecao Comando

2

Componentes para instalações elétricas industriais

Neste capítulo você conhecerá os componentes elétricos que são aplicados em instalações elétricas residenciais e industriais. Fique ligado, pois é muito importante entender o funciona-mento e a aplicação dos componentes que serão abordados a seguir.

Ao final deste capítulo, você terá subsídios para:

a) conhecer o funcionamento dos componentes elétricos;

b) aplicar corretamente cada um desses componentes.

Inicialmente você conhecerá o contator, que é um dos componentes mais utilizados em instalações elétricas industriais.

2.1 Contatores

O contator é caracterizado como uma chave não manual, eletromagnética, com uma única posição de repouso, capaz de estabelecer, conduzir e interromper correntes em condições nor-mais nos circuitos.

É constituído de uma bobina que, quando alimentada, cria um campo magnético no núcleo fixo, que atrai o núcleo móvel, fechando assim o circuito. Tirando a alimentação dos terminais da bobina, o campo magnético é interrompido, provocando o retorno do núcleo por molas. Observe na figura a seguir os elementos que compõem os contatores.

Page 12: Protecao Comando

proteção e comandos12

Contator1

Blocos de contatosauxiliares laterais2

Temporizador pneumático8

Relé de sobrecarga9Blocos de contatosauxiliares laterais

2

Bloco de contatoauxiliar frontal 4

Temporizadoreletrônico

5

Bloco supressor 6

Bloco de retenção mecânica 7

Intertravamentomecânico

3

Figura 1 - Elementos de um contatorFonte: http://ge.bpsinternet.com.br/produtos/reles-contatores/cl/

Analisada a figura anterior, você pôde perceber que um contator é composto por vários elementos e acessórios. Os quatro elementos principais são: bobina, núcleo de ferro, contato e mola. Veja na figura a seguir as características básicas de cada um deles:

•Bobina: representa a entrada de controle do contator em que, ao ser liga-da a uma fonte de tensão, circula uma corrente elétrica, criando um campo magnético que envolve o núcleo de ferro. No momento de energização da bobina, ocorre um pico de corrente aproximadamente dez vezes maior que a corrente nominal da bobina.

•Núcleo de ferro: composto de uma parte fixa e uma parte móvel; o núcleo móvel é atraído para dentro da bobina por meio da ação de um campo mag-nético; nele estão acoplados os contatos móveis. (FRANCHI, 2008, p. 135).

•Contato: é composto pelos contatos fixos e contatos móveis; com o movi-mento do núcleo móvel os contatos móveis são atraídos para os fixos, mu-dando, assim, a condição inicial dos mesmos.

•Mola: responsável por levar de volta o contato móvel à posição de repouso quando a bobina for desenergizada; quando cessa o campo magnético, cria-do pela bobina, a mola torna-se mais forte que o núcleo forçando o mesmo a retornar à posição inicial. A figura a seguir representa o esboço de um con-tator.

Page 13: Protecao Comando

2 Componentes para instalações elétriCas industriais 13

Bobina

Mola

Ip

Ip

Ip Núcleo Fixo

Núcleo Móvel

Contato Fixo

Contato Móvel

Figura 2 - Diagrama esquemático de um contatorFonte: Franchi (2008)

Num contator podemos definir dois tipos principais de circuitos utilizados em acionamentos eletromecânicos:

I. Circuito principal: os contatos principais em estado fechado desempenham a função de ligação entre a rede e a carga conduzindo a corrente ao circuito prin-cipal. Os contatos principais nos contatores geralmente serão em número de três, quatro eventualmente e, em casos específicos, dois e até um. (VAZ, 2010, p. 66).

REDE

CARGA

1L1

2T1 4T2 6T3

3L2 5L3

Figura 3 - Identificação de terminais de potênciaFonte: Vaz (2010)

II. Circuito auxiliar: os contatos auxiliares são dimensionados para exercer a função de comutação de circuitos auxiliares de comando, sinalização e intertra-vamento. Podem ser do tipo NA (normalmente aberto), ou NF (normalmente fe-chado).

13

14 22 32 44

21 31 43

Figura 4 - Identificação dos contatos auxiliaresFonte: Adaptado de Weg (2007a)

Page 14: Protecao Comando

proteção e comandos14

Os contatores de força devem ser compatíveis com a potência e o tipo da car-ga que eles irão acionar, caso contrário, poderão ser danificados. Observe o qua-dro a seguir:

TIpo de CorrenTe

CaTegorIas de emprego aplICações TípICas

CA

AC – 1Manobras leves; carga ôhmica ou pouco indutiva (aquecedores, lâmpadas incandescentes e fluorescentes compensadas).

AC – 2Manobras leves; comando de motores com anéis coleto-res (guinchos, bombas, compressores). Desligamento em regime.

AC – 3Serviço normal de manobras de motores com rotor gaiola (bombas, ventiladores, compressores). Desligamento em regime.*

AC – 4

Manobras pesadas. Acionar motores com carga plena; comando intermitente (pulsatório); reversão à plena marcha e paradas por contracorrente (pontes rolantes, tornos etc.).

AC – 5aChaveamento de controle de lâmpadas de descargas elétricas.

AC – 5b Chaveamento de lâmpadas incandescentes.

AC – 6a Chaveamento de transformadores.

AC – 6b Chaveamento de bancos de capacitores.

AC – 7aAplicações domésticas com cargas pouco indutivas e aplicações similares.

AC – 7b Cargas motoras para aplicações domésticas.

AC – 8aControle de compressor-motor hermeticamente refrige-rado com reset manual para liberação de sobrecarga.**

AC – 8bControle de compressor-motor hermeticamente refrige-rado com reset automático para liberação de sobrecar-ga.**

AC – 12Controle de cargas resistivas e cargas de estado sólido com isolamento através de acopladores ópticos.

AC – 13Controle de cargas de estado sólido com transformadores de isolação.

AC – 14 Controle de pequenas cargas eletromagnéticas (< 72 VA).

AC – 15 Controle de cargas eletromagnéticas (> 72 VA).

CC

DC – 1Cargas não indutivas ou pouco indutivas (fornos de resistência).

DC – 3Motores CC com excitação independente: partindo em operação contínua ou em chaveamento intermitente. Frenagem dinâmica de motores CC.

DC – 5Motores CC com excitação série: partindo em operação contínua ou em chaveamento intermitente. Frenagem dinâmica de motores CC.

Page 15: Protecao Comando

2 Componentes para instalações elétriCas industriais 15

DC – 6 Chaveamento de lâmpadas incandescentes.

DC – 12Controle de cargas resistivas e cargas de estado sólido através de acopladores ópticos.

DC – 13 Controle de eletroímãs.

DC – 14Controle de cargas eletromagnéticas que têm resistores de economia no circuito.

* A categoria AC – 3 pode ser usada para regimes intermitentes ocasionais por um período de tempo limitado como em set-up de máquinas; durante tal período de tempo limitado o número de opera-ções não pode exceder cinco por minuto ou mais que dez em um período de dez minutos.** Motor-compressor hermeticamente refrigerado é uma combinação que consiste em um compres-sor e um motor, ambos enclausurados em um invólucro, com eixo não externo, sendo que o motor opera nesse meio refrigerante.

Quadro 1 - Categorias de emprego de contatores conforme IEC 947-4Fonte: Weg (2007a)

O quadro acima apresenta as categorias de aplicação para contatores. É muito importante que essas aplicações sejam seguidas para evitar que a vida útil do componente seja reduzida e para garantir o funcionamento correto do circuito.

2.2 relés auxiliares

Dentro dos circuitos de acionamento de máquinas, é comum encontrar relés auxiliares, que servem para executar a função de controle de acionamentos, alar-me, proteção, alimentação de solenoides etc. São de extrema importância para manobras de cargas elétricas, pois permitem a combinação lógica no comando, bem como a separação do circuito de potência e comando.

Figura 5 - Relés auxiliaresFonte: http://www.findernet.com/ro/node/42994

Page 16: Protecao Comando

proteção e comandos16

Os relés auxiliares são utilizados na automação de máquinas, processos indus-triais, especialmente em sequenciamento, interrupções de comandos e chaves de partida. (VAZ, 2010, p. 79).

CURIOSIDADE

Você já abriu um painel elétrico e se deparou com um relé auxiliar? Hoje existem relés auxiliares de vários formatos, e variam de fabricante para fabri-cante, sendo que alguns possuem mais ou menos contatos, dependendo da sua aplicação.

2.3 relés de tempo

Os relés de tempo são mais conhecidos como temporizadores. São dispositi-vos de controle de tempo de curta duração que têm como finalidade fornecer um sinal de saída conforme sua função e o tempo ajustado.

A seguir, você conhecerá os tipos mais comuns de relés de tempo utilizados na indústria:

I - relé de tempo com retardo na energização

Com a energização dos terminais de alimentação (A1-A2/A3-A2), inicia-se a contagem do tempo (t) ajustado no dial. Depois de transcorrido esse tempo, ocorrerá a comutação dos contatos de saída, permanecendo nessa posição até que a alimentação seja interrompida. (VAZ, 2010, p. 79).

Ta

Alimentação

Saída (contatos)

b

a - Instante de comutação dos contatos

b - Retorno para a posição de repouso

T - Temporização ajustado no dial

Figura 6 - Diagrama de tempo do relé com retardo na energizaçãoFonte: Franchi (2008)

II - relé de tempo com retardo na desenergização

Page 17: Protecao Comando

2 Componentes para instalações elétriCas industriais 17

Os temporizadores com retardo na desenergização comutam seus contatos após ser retirada a alimentação dos terminais da sua bobina (A1-A2/A3-A2) e mantêm-se durante o tempo (t) ajustado no dial. Observe a figura a seguir:

Ta

Alimentação

Saída (contatos)b

Figura 7 - Diagrama de tempo de um relé com retardo na desenergizaçãoFonte: Adaptado de Franchi (2008)

III - relé de tempo estrela-triângulo (Y-Δ)

Especialmente desenvolvido para ser utilizado em chaves de partida estrela--triângulo, possui dois circuitos de temporização em separado. O primeiro circui-to permite ajustar apenas o controle de tempo que executa a conexão estrela, e o segundo, com tempo preestabelecido e fixo (100ms), para o controle do contator que faz a ligação das bobinas em triângulo.

RT-RE

RT-RE

A1

25

16 18 A2

A2Y ∆

16 18 26 28

A1 A3 15 25

26 28

A315

Posi

ção

dos

term

inai

sD

iagr

ama

T1

T2

ba

ba

Alimentação

Tempo Y

Tempo ∆

Contator ∆

Contator Y

Alimentação: A1-A2/A3-A2.

Saída 1: Contato Estrela15 - Contato comum16 - Contato NF18 - Contato NA

Saída 2: Contato Triângulo25 - Contato comum26 - Contato NF28 - Contato NA

Figura 8 - Diagrama do relé de tempo estrela-triânguloFonte: Adaptado de Weg (2007a)

Entenda como ocorre seu funcionamento: com a energização dos terminais de alimentação A1-A2/A3-A2, o contato de saída estrela (15–18) comuta instantane-amente, permanecendo os terminais acionados durante todo o tempo (t1) ajus-tado no dial. Depois de transcorrida a temporização ajustada, o contato estrela

Page 18: Protecao Comando

proteção e comandos18

retorna ao repouso (15–16), iniciando a contagem do tempo (t2) fixo de 100ms; ocorrido o tempo (t2), os contatos de saída triângulo (25–28) serão acionados e permanecem acionados até que a alimentação seja interrompida.

Casos e relatos

manutenção no contator da partida estrela-triângulo

Um estudante que trabalhava com manutenção elétrica pegou os registros de manutenção de uma máquina e percebeu que era comum estragar um contator que faz a partida estrela-triângulo. Ele fez o questionamento para o professor e o professor perguntou: O temporizador é estrela-triângulo ou é com retardo na energização? O temporizador com retardo na energiza-ção não dá o tempo entre as trocas da ligação estrela para a triângulo. Isso sobrecarrega o contator e diminui a sua vida útil. O temporizador estrela--triângulo não provoca esse efeito, fazendo com que o contator dure mais tempo.

2.4 Botoeiras e sinaleiros

As botoeiras são chaves elétricas acionadas manualmente que apresentam, geralmente, um contato aberto e outro fechado. Possuem encaixe universal, nor-malmente três, para blocos de contatos NA ou NF. Alguns modelos possuem su-perfície translúcida para o encaixe de soquetes de lâmpadas, integrando a função de sinalizador. De acordo com o tipo de sinal a ser enviado ao comando elétrico, as botoeiras são caracterizadas como pulsadoras ou com trava.

As botoeiras pulsadoras invertem seus contatos mediante o pulso no botão, retirando a ação pulsante ele retorna, por meio de uma mola, para sua posição inicial.

As botoeiras com trava também invertem seus contatos mediante o aciona-mento, mas para retorná-la é necessário acioná-la novamente no sentido contrá-rio. Outro tipo de botoeira com trava, utilizado como botão de emergência, é o botão do tipo cogumelo, também conhecido como botão soco-trava.

Page 19: Protecao Comando

2 Componentes para instalações elétriCas industriais 19

Figura 9 - Tipos de botoeirasFonte: Do autor (2014)

Agora, observe no quadro a seguir a identificação de botões segundo IEC 73 e VDE 0199. Perceba que cada cor possui um significado diferente e é usada para sinalizar situações específicas.

Identificação de Botões segundo IeC 73 e Vde 0199

Cores sIgnIfICado aplICações TípICas

Vermelho• Parar, desligarEmergência

•Parada de um ou mais motores;•Parada de unidades de uma máquina;•Parada de ciclo de operação;•Parada em caso de emergência;•Desligar em caso de sobreaquecimento perigoso.

Verde•Partir, ligar, pulsar

•Partida de um ou mais motores;•Partir unidades de uma máquina;•Operação por pulsos;•Energizar circuitos de comando.

Preto•Amarelo• Intervenção

•Retrocesso;•Interromper condições anormais.

Azul• Qualquer função, exceto as acima

•Reset de relés térmicos;•Comando de funções auxiliares que não tenham correla-ção direta com o ciclo de operação da máquina. Branco•

Quadro 2 - Identificação de botoeirasFonte: Weg (2007a)

Page 20: Protecao Comando

proteção e comandos20

Já os sinaleiros são indicadores luminosos utilizados na sinalização visual de eventos ocorridos ou prestes a ocorrer.

Figura 10 - Lâmpada de sinalizaçãoFonte: Do autor (2014)

SAIBA MAIS

A Siemens é uma empresa alemã que fabrica diversos com-ponentes para comando e proteção. Saiba mais visitando o site <http://www.industry.siemens.com.br/automation/br/pt/dispositivos-baixa-tensao/Pages/dispositivos-baixa--tensao.aspx.>

Assim como nas botoeiras, os sinaleiros também identificam diferentes aplica-ções por meio de cores. Observe o quadro a seguir.

Page 21: Protecao Comando

2 Componentes para instalações elétriCas industriais 21

Identificação de sinaleiros segundo IeC 73 e Vde 0199

Cores sIgnIfICado aplICações TípICas

Vermelho• Condições anormais, perigo ou alarme

•Temperatura excede os limites de segurança.•Aviso de paralisação (ex.: sobrecarga).

Amarelo• Atenção, cuidado •O valor de uma grandeza aproxima-se de seu limite.

Verde• Condição de serviço segura

•Indicação de que a máquina está pronta para operar.

Branco• Circuitos sob tensão, funcionamento normal

•Máquina em movimento.

Azul• Informações espe-ciais, exceto as acima

•Sinalização de comando remoto.•Sinalização de preparação da máquina.

Quadro 3 - Identificação de sinaleirosFonte: Weg (2007a)

Vale ressaltar que os sinalizadores são empregados, geralmente, em locais de boa visibilidade que facilitem a sua visualização.

reCapitulando

Neste capítulo você conheceu o funcionamento e a aplicação dos dispo-sitivos mais utilizados em circuitos elétricos. No próximo capítulo você estudará os dispositivos para proteção desses circuitos; fique atento, pois este capítulo é muito interessante e importante para garantir a segurança e o bom funcionamento das instalações elétricas.

Page 22: Protecao Comando
Page 23: Protecao Comando

3

Componentes de proteção para instalações elétricas e

circuitos de comando

As instalações elétricas devem possuir dispositivos de proteção que sejam acionados no caso de acontecer alguma anomalia e/ou problema técnico. Para que essa proteção seja execu-tada de maneira efetiva é necessário que você conheça a aplicação correta de cada componen-te de proteção. Neste capítulo você conhecerá o funcionamento e a aplicação de cada um des-ses componentes, bem como conhecerá alguns passos importantes para elaborar e interpretar circuitos elétricos utilizados em automação.

Ao final deste capítulo, você terá subsídios para:

a) identificar corretamente qual a aplicação de cada componente;

b) efetuar ajustes e substituição de componentes com algum tipo de defeito;

c) elaborar circuitos elétricos;

d) identificar possíveis falhas em circuitos elétricos.

Inicialmente você conhecerá o funcionamento e a aplicação dos disjuntores, utilizados para executar a proteção dos circuitos elétricos.

3.1 Disjuntores

São os dispositivos de proteção de circuitos mais comuns em baixa tensão. Na maioria das aplicações, são termomagnéticos, equipados com disparo térmico (proteção contra sobrecarga – característica de longa duração) e disparo eletromagnético (proteção contra curto-circuito – característica instantânea). (BISONI, 2010, p. 26).

A figura a seguir apresenta as características construtivas dos disjuntores. Observe.

Page 24: Protecao Comando

proteção e comandos24

Figura 11 - Disjuntor monofásicoFonte: http://satech.com.br/disjuntores/disjuntor-interior/

Com relação ao seu funcionamento, os disjuntores são acionados por meio da aplicação de uma força externa sobre um elemento, que tem como função acionar um conjunto de contatos principais e auxiliares, ao mesmo instante em que comprime um jogo de molas de abertura. Ao final do percurso do mecanismo de acionamento, uma trava mantém o sistema de posição dos contatos fechado e as molas de abertura comprimidas. Um comando de abertura, diretamente no mecanismo ou por meio do sistema de disparo, provocará o destravamento do mecanismo que ocasionará a separação brusca dos contatos fechados devido à liberação das molas de abertura comprimidas. Com a abertura dos contatos prin-cipais, é ocasionada uma interrupção de corrente no circuito que tem valor máxi-mo denominado capacidade de interrupção.

Os disjuntores apresentam uma curva específica que define a sua característi-ca de disparo. Acompanhe.

Curva B: tem como característica o disparo instantâneo para correntes de três a cinco vezes a corrente nominal. Com esta característica, tem sua aplicação prin-cipal voltada para a proteção de cargas resistivas. Exemplo: chuveiros, torneiras elétricas etc.

Curva C: têm como característica o disparo instantâneo para correntes de cin-co a dez vezes a corrente nominal. Com esta característica, possuem a função de proteger cargas indutivas. Exemplo: lâmpadas fluorescentes, circuitos com cargas motrizes etc.

FIQUE ALERTA

Para especificar tecnicamente um disjuntor há a necessi-dade de informar a corrente nominal, capacidade de inter-rupção de curto-circuito e a curva de disparo (B ou C).

Page 25: Protecao Comando

3 Componentes de proteção para instalações elétriCas e CirCuitos de Comando 25

3.2 Fusíveis

Têm como função principal a proteção contra curto-circuito, atuam também como limitadores das correntes de curto-circuito. Seu funcionamento baseia-se na fusão de um elemento fusível devidamente projetado que abre o circuito elé-trico no caso da ocorrência de algum curto-circuito.

O fusível é formado basicamente por um fio ou uma lâmina, geralmente de cobre, prata, chumbo, estanho ou outra liga, alojado no interior do seu corpo, que é geralmente de porcelana, inteiramente fechado, de maneira que não deixe pe-netrar o ar; pode assumir diversas formas, de acordo com a sua corrente nominal.

Os fusíveis possuem ainda um elemento indicador de operação, possibilitando ao profissional observar seu estado de funcionamento. É envolvido por completo por um material granulado extintor, utilizando-se, em geral, areia de quartzo com granulometria adequada.

Existem alguns critérios para classificar um fusível, os mais utilizados são o da tensão de alimentação (baixa ou alta tensão) e o das características de interrup-ção (retardados ou ultrarrápidos). Também podem ser classificados de acordo com sua forma construtiva; basicamente existem duas formas, tipo D (diametral) e tipo NH (alta capacidade, baixa tensão).

Sinalizador

Areia deQuartzo

Contato inferiorinterno

Elo fusível

Corpo do fusível(Cerâmica)

Contato inferiorexterno

Figura 12 - Composição dos fusíveis DFonte: Adaptado de Weg (2007a)

Os fusíveis tipo D (diametral) estão disponíveis em diversas correntes nor-malizadas (dependendo do fabricante), com capacidade de ruptura de acordo com a corrente do fusível de 100kA, 70kA e 50kA e tensão máxima de 500V. A figura a seguir mostra um fusível tipo D.

Page 26: Protecao Comando

proteção e comandos26

Figura 13 - Fusível DiazedFonte: http://www.luxtil.com.br/images/FUSIVEL_DIAZED_16A_RETARDADO_500V__.jpg?osCsid=64ff7a296d1549a7917f959

d6fe089d7

Já os fusíveis NH têm sua aplicação mais específica na indústria, em que são utilizados em circuitos com picos de corrente e onde existem cargas indutivas e capacitivas; suportam elevações de corrente durante certo tempo sem que ocorra a ruptura do elemento fusível. Estão disponíveis em diversos valores de correntes normalizadas (dependendo do fabricante), com capacidade de ruptura de 120kA e tensão máxima de 500V.

SAIBA MAIS

Saiba mais sobre os fusíveis no catálogo da Weg: <http://ecatalog.weg.net/files/wegnet/WEG-fusiveis-ar-e-gl--gg-50009817-catalogo-portugues-br.pdf>.

Figura 14 - Fusível NHFonte: http://www.intereng.com.br/media/imagens/upload/familia/678/fusivelbaixatensao_tipo-nh_jpg_600x400_q100.jpg

Conforme você pôde observar na figura anterior, os fusíveis NH são montados em bases com contatos facas e fabricados de 4 até 630A, porém seu custo é maior que o fusível tipo D. Para efetuar sua remoção há a necessidade de se usar um sacador especial.

Page 27: Protecao Comando

3 Componentes de proteção para instalações elétriCas e CirCuitos de Comando 27

3.3 Disjuntor motor

São dispositivos de seccionamento e proteção contra sobrecarga e curto-circuito. Possuem as mesmas características de um disjuntor termomagnético convencional, juntamente com a característica de retardo dos fusíveis retardados e um ajuste de corrente utilizado para efetuar o desarme no caso de sobrecarga.

Figura 15 - Disjuntor motorFonte: https://www.webeletrica.com.br/index.php?src=view/detalheProduto&cdprd=MTE3

Para a proteção contra sobrecarga, seu funcionamento consiste em bimetáli-cos, que se baseia no princípio da dilatação térmica que os metais apresentam, ou seja, cada fase é ligada num componente bimetálico, que é formado por duas lâminas de metais diferentes soldadas entre si, quando há uma circulação de cor-rente, as lâminas se aquecem, por meio do efeito joule, e se dilatam. Como temos dois metais diferentes, a dilatação de cada um também será diferente, com isso eles forçam as lâminas a se envergarem, assim quando a corrente ultrapassar cer-to valor, um mecanismo de disparo faz com que o disjuntor seja desarmado.

O dispositivo contra curto-circuito é formado por uma bobina que, quando atravessada por uma corrente de grande intensidade, gera um campo magnético atraindo uma peça magnética que desarma o disjuntor.

Page 28: Protecao Comando

proteção e comandos28

FIQUE ALERTA

Sempre que um profissional capacitado for exercer algu-ma atividade em circuitos protegidos por disjuntor motor é necessário que o mesmo seja bloqueado com cadeado de segurança, pois ele possui um mecanismo de aciona-mento que possibilita seu bloqueio.

3.4 relé De sobreCarga

São dispositivos constituídos por um par de lâminas metálicas (um par por fase), com princípio de funcionamento baseado igual ao disjuntor motor. Tam-bém são constituídos por um mecanismo de disparo contido num invólucro iso-lante e com alta resistência térmica.

Figura 16 - Lâmina bimetálicaFonte: http://pt.wikipedia.org/wiki/Rel%C3%A9_t%C3%A9rmico

São aplicados na proteção de um possível superaquecimento dos equipamen-tos elétricos, como transformadores e motores.

É importante saber que o relé de sobrecarga não protege a linha no caso de acontecer um curto-circuito, portanto deve-se usá-lo sempre associado a fusíveis ou disjuntores para ter uma proteção completa do motor. A figura a seguir mostra

Page 29: Protecao Comando

3 Componentes de proteção para instalações elétriCas e CirCuitos de Comando 29

a representação esquemática de um relé térmico de sobrecarga e seus compo-nentes, observe:

L1T1

96

95

2

1

3

45

6

7

98 97

L2T2 L3T3

Para rearmeautomático

Para rearmemanual

1 - Botão de rearme

2 - Contatos auxiliares

3 - Botão de teste

4 - Lâmina bimetálica auxiliar

5 - Cursor de arraste

6 - Lâmina bimetálica principal

7 - Ajuste de corrente

Figura 17 - Representação dos relés de sobrecargaFonte: Franchi (2008)

Além dos componentes que você acabou de observar, ele ainda possui um bo-tão localizado na parte central, que permite parametrizar a sua atuação de acordo com as seguintes funções, apresentadas na figura a seguir:

A

AUTO

HAND

H

Somente rearme automático

Rearme automático e possibilidade de teste

Rearme manual e possibilidade de teste

Somente rearme manual

Figura 18 - Parametrização do relé de sobrecargaFonte: Franchi (2008)

Seguindo a norma IEC 974, os terminais do circuito principal dos relés de so-brecarga deverão ser identificados da mesma forma que os terminais de potência dos contatores. Já os terminais dos circuitos auxiliares deverão ser marcados da mesma forma que os de contatores, com funções específicas. O número de sequ-

Page 30: Protecao Comando

proteção e comandos30

ência deve ser o “9” e, se uma segunda sequência existir, será identificada com o “0”. Acompanhe, na figura a seguir, a identificação dos terminais de potência e os auxiliares:

Duplo contato

Simbologia

Circuito Auxiliar Circuito de Potência

CARGA

REDE

9698

95

97

1L1

2T1 4T2 6T3

3L2 5L3

Figura 19 - Identificação dos terminais do relé de sobrecargaFonte: Do autor (2014)

CURIOSIDADE

Você sabia que, com a criação do disjuntor motor, os fusíveis e relés de sobrecarga estão caindo em desuso? O disjuntor motor faz o mesmo tipo de proteção e ocupa menos espaço. Além disso, no caso de uma falha, não é necessário trocar o fusí-vel.

3.5 relé Falta De Fase

É um modelo de relé que supervisiona a rede trifásica, detectando se há fal-ta de uma ou mais fases; quando isso acontece, ele desliga o circuito efetuando assim a proteção. Possui um retardo de aproximadamente cinco segundos, para que ele não atue de forma desnecessária na partida de um motor ou numa possí-vel falta de fase em um pequeno intervalo de tempo.

Esse tipo de relé possui um dial onde é possível fazer o ajuste da sua sensi-bilidade, essa sensibilidade pode variar entre 70 a 90%. O percentual ajustado definirá o percentual de queda de uma fase em relação às outras.

Page 31: Protecao Comando

3 Componentes de proteção para instalações elétriCas e CirCuitos de Comando 31

3.6 relé De sequênCia De Fase

É utilizado para controle da sequência de fase em circuitos trifásicos e detecta quando há inversão da sequência de fases R, S e T. Quando as fases estiverem invertidas, seu contato (15 – 18) não comuta, acontecendo assim o bloqueio do circuito de comando no qual ele está sendo utilizado. Obrigatoriamente o circuito de comando deverá ser ligado no contato aberto (15 – 18), pois quando as fases estiverem na sequência correta esse contato vai comutar permanecendo fechado até que sua alimentação trifásica seja interrompida.

Agora que você aprendeu sobre os componentes de proteção para instalação elétrica, você terá oportunidade de aprender a montar e interpretar circuitos elé-tricos. Siga em frente!

3.7 CirCuitos De ComanDos elétriCos

Para ter uma interpretação correta dos circuitos elétricos é indispensável que você relembre a aplicação e o funcionamento de todos os dispositivos elétricos estudados anteriormente. Nesse contexto, conheça e compreenda algumas das simbologias mais utilizadas na elaboração de circuitos elétricos (conforme norma NBR, IEC, DIN).

3.7.1 Simbologia numérica

Todo o dispositivo de comando tem sua simbologia específica, assim como uma identificação alfanumérica, que deve seguir um padrão definido pela norma NBR 5280 ou a IEC 1132. Acompanhe, a seguir, alguns exemplos:

a) Numeração dos contatos de potência

•1, 3 e 5 – Circuito de entrada

•2, 4 e 6 – Circuito de saída

b) Numeração dos contatos auxiliares

•1 e 2 – Contato normalmente fechado, 1 entrada e 2 saída

•3 e 4 – Contato normalmente aberto, 3 entrada e 4 saída

Os contatos auxiliares do contator são identificados por dois números, o pri-meiro indica a sequência do contato e o segundo indica se ele é NA ou NF, por exemplo: 31 – terceiro contato indicando que é NF.

Page 32: Protecao Comando

proteção e comandos32

Função (NF)

Número de Função (NA)Número de sequência (1º contato)

Sequência (2º contato)

-1 -3

-4-2

Figura 20 - Identificação dos terminais auxiliaresFonte: Adaptado de Weg (2007a)

Os terminais das bobinas dos relés e contator são identificados de forma alfa-numérica A1 e A2.

Agora que você conheceu um pouco mais sobre as simbologias utilizadas em circuitos elétricos, conheça alguns conceitos básicos utilizados em comandos elé-tricos.

3.7.2 contato de Selo

De forma simples o contato de selo memoriza o pulso gerado num botão pul-sante, ou seja, é utilizado um contato, geralmente de um contator, ligado em pa-ralelo com o botão liga. Observe a figura a seguir.

Fusível

Contato auxiliarrelé de sobrecarga

Botão desliga

Botãoliga

Bobina docontator

contatode selo

F1

FT1

S0

S1 K1

K1 H1

Figura 21 - Exemplo de aplicação do contato de seloFonte: Do autor (2014)

Page 33: Protecao Comando

3 Componentes de proteção para instalações elétriCas e CirCuitos de Comando 33

Perceba que, quando o botão liga for acionado, o contator recebe a tensão na sua bobina, e mesmo após o botão ser liberado, mantém a bobina energizada por meio do contato de selo.

3.7.3 intertravamento

Utilizado para evitar a ligação de um dispositivo antes que o outro dispositivo permita que isso aconteça, ou seja, um dispositivo fica dependente da manobra do outro. Acompanhe na figura a seguir.

M3 ~

R

S

T

F1

FT1

FT1

K1

K1

N

K1

K1

Q1

S1

S1S2

S2

S

S0

H1 H2K2

K2

K2

Figura 22 - Intertravamento de um circuito com reversão motor trifásicoFonte: Do autor (2014)

No exemplo anterior, está apresentada uma partida reversora, em que fica de-talhada a importância do intertravamento (na figura apresentada foi executado o intertravamento entre os contatos auxiliares das contatoras e um intertravamen-to com as botoeiras), onde um contator só poderá ser acionado quando o outro não estiver atuando.

Page 34: Protecao Comando

proteção e comandos34

Casos e relatos

Importância do esquema elétrico e da simbologia numérica dos cir-cuitos

Em uma empresa de fabricação de máquinas, foram feitas melhorias em vários painéis e descobriu-se que um deles não possuía o esquema elétrico. Para desenhar o esquema elétrico do painel e também adequá-lo à NR10, o eletricista teve que seguir todos os fios e fazer verificação com o multíme-tro. Com isso ele percebeu a importância do esquema elétrico e da simbo-logia numérica dos circuitos.

3.7.4 Proteção de circuitoS elétricoS

Todos os dispositivos de segurança utilizados para proteger o circuito elétri-co, tais como relé de sobrecarga, disjuntor, fusível, botão de emergência, entre outros, deverão ser interligados em série, quando qualquer um deles for atuado o circuito deverá ser interrompido imediatamente. A figura a seguir mostra um exemplo de interligação de segurança.

Fusível

Relé de Sobrecarga

Botão desliga1

Botão desliga2

F1

R

FT1

S01

S02

51

K1

K1

N

Figura 23 - Exemplo de proteção de circuitos elétricosFonte: Do autor (2014)

Na figura anterior, foi apresentado um exemplo de partida direta; nele você pôde compreender como devem ser interligados os dispositivos de segurança.

Page 35: Protecao Comando

3 Componentes de proteção para instalações elétriCas e CirCuitos de Comando 35

Note que se qualquer um dos quatro dispositivos for atuado desliga imediata-mente o contator K1, fazendo o desligamento do motor.

reCapitulanDo

Neste capítulo você aprimorou seu conhecimento a respeito do funcio-namento e da aplicação dos dispositivos de proteção como, por exemplo: fusíveis, disjuntores, relés aplicados e os dispositivos aplicados na prote-ção dos motores. Além disso, você conheceu alguns passos para mon-tar e interpretar um circuito elétrico, bem como conheceu a simbologia utilizada nos componentes aplicados nesses circuitos. Agora é a hora de conhecer os métodos utilizados para efetuar a partida dos motores elé-tricos. Fique ligado!

Page 36: Protecao Comando
Page 37: Protecao Comando

4Chaves de partida

Os motores elétricos apresentam uma corrente de partida muito elevada, isso acontece por-que o motor tem uma mudança do estado de inércia em que se encontra, podendo chegar de seis a oito vezes a corrente nominal, levando em consideração partida em vazio. Sob carga, este valor pode chegar até dez vezes o valor da corrente nominal, com isso tem-se a necessidade de dimensionar o cabeamento com diâmetro bem maior, levando em consideração este pico de corrente. Outro item importante que deve ser analisado é o fator de potência, que é monitora-do pela concessionária. Como picos de corrente, pode haver uma queda no fator de potência, por um instante, elevando o valor a ser pago na conta de energia. Para minimizar este pico de corrente no momento da partida, existem alguns métodos de acionamentos que podem ser aplicados, os quais você estudará a seguir.

Assim, ao final deste capítulo, você terá subsídios para:

a) efetuar a partida de um motor elétrico;

b) identificar um possível problema que possa acontecer no circuito de partida do motor;

c) conhecer o funcionamento e a aplicação de um inversor de frequência e de uma soft-starter;

d) parametrizar um inversor de frequência ou uma soft-starter.

Inicialmente você estudará sobre chave de partida direta. Vamos lá!

4.1 Partida direta

Neste método, utilizado para efetuar a partida do motor, existe um único contator que exe-cuta a manobra, ligando as três fases diretamente nos terminais de conexão do motor; esse método não elimina o pico de corrente na partida. Para o motor esse é o melhor método já que sua partida tem valores da tensão e conjugados nominais.

A partida direta só poderá ser utilizada para partir motores de até 5cv, pois um motor com potência superior pode causar eventuais danos às instalações elétricas. Na figura a seguir você pode observar o circuito de comando e potência de uma partida direta.

Page 38: Protecao Comando

proteção e comandos38

RST

Q1

K1

FT1

FT1

S0

S1 K1

K1

N

H1

F1 Fusível

Contato auxiliarrelé de sobrecarga

Botãodesliga

Botãoliga

Bobina docontator

contatode selo

Disjuntortrifásico

Contatos depotência K1

Relé de sobrecarga

M3 ~

Figura 24 - Diagrama de potência e de comandoFonte: Do autor (2014)

Esse método de partida apresenta algumas vantagens e desvantagens, acom-panhe:

vantagens desvantagens

Simples e de fácil construção; conjugado de parti-da elevado; partida rápida; baixo custo.

Apresenta queda de tensão na rede de alimenta-ção, podendo ocasionar interferência nos outros equipamentos interligados na mesma rede; tem-se a necessidade de superdimensionar os dispositivos e cabos, encarecendo os custos de instalação; imposição das concessionárias que limitam a queda de tensão na rede.

Quadro 4 - Vantagens e desvantagens do método partida diretaFonte: Do autor (2014)

CURIOSIDADE

Você sabia que a partida direta é o melhor tipo de partida para o motor elétrico? Ela permite que o motor trabalhe com fator de potência e rendimen-to nominal. No entanto, ela pode prejudicar outros equipamentos conectados na rede, por isso, ela só é recomendada para motores com menos do que 5CV de potência.

Page 39: Protecao Comando

4 Chaves de partida 39

Sabendo que a partida direta tem suas limitações, e não diminui o pico de cor-rente no momento da partida, há então a necessidade de utilizar outro método que venha reduzir esta desvantagem. É o que você vai ver na próxima seção.

4.2 Partida estrela-triângulo

Neste método de partida do motor uma tensão reduzida é utilizada para ali-mentar as bobinas do motor durante sua partida. Na partida as bobinas são fecha-das em estrela, recebendo 58% da tensão nominal. A figura a seguir mostra um motor seis pontas com o fechamento das bobinas em estrela.

1 S

4 56

3T

2

U∆=UY.0,58

Figura 25 - Ligação estrela com tensão de triângulo (UΔ)Fonte: Adaptado de Weg (2007a)

Depois de decorrido certo tempo, em média 10s, as bobinas do motor deverão ser ligadas em triângulo, assumindo a tensão nominal da rede de alimentação. A figura a seguir mostra um motor de seis pontas com o fechamento das bobinas em triângulo.

R

6

3

T52

4

S

1

U∆

Figura 26 - Ligação triângulo com tensão de triânguloFonte: Adaptado de Weg (2007a)

Page 40: Protecao Comando

proteção e comandos40

Esse método proporciona uma redução de corrente de partida de aproxima-damente 33% de seu valor normal. Deve ser utilizada em máquinas que possuam um conjugado resistente de partida, até 1/3 do conjugado de partida do motor. É indicado para partir máquinas em vazio ou com pouca carga; a carga total só poderá ser aplicada após o motor ter atingido a rotação nominal, e recebendo a tensão total da rede.

No instante da comutação, a corrente não deve atingir valores inaceitáveis (muito elevados), pois dessa forma a redução de corrente do primeiro instante não ocorre no segundo momento, e também o conjugado resistente da carga não deve ultrapassar o conjugado de partida do motor. Lembre que para poder efetuar a ligação estrela-triângulo o motor deverá ter dupla tensão (220/380V, 380/660V, 440/760V - esta informação você poderá identificar na placa do motor), e ainda possuir no mínimo seis cabos. A figura a seguir mostra um diagrama de potência e de comando de uma partida estrela-triângulo.

M3 ~

R

S

T

N

F1

F4

R

FT1

FT1

KT1

K1

K1

K1S1

S0

KT1

KT1

K1

H1

K2

K2

K2

K2

K3

K3

K3

K3

F2 F3

Y∆

Y

K1 e K2Fechamentoem triângulo

K1 e K3Fechamento

em estrela

Figura 27 - Diagrama de potência e comando partida estrela-triânguloFonte: Do autor (2014)

Lembre-se de que o relé de sobrecarga deve ser dimensionado levando em consideração a corrente que passa pelo contator K1.

vantagens desvantagens

Baixo custo; ocupa pequeno espaço; não possui um limite máximo de manobras.

O motor tem que atingir no mínimo 90% da sua rotação nominal, na comutação para triângulo, se isso não ocorrer o pico de corrente é quase o mesmo que o da partida direta; o motor deve possuir pelo menos seis terminais de ligação; o valor da tensão de rede deve ser o mesmo valor de tensão da ligação triângulo, identificada na placa do motor.

Quadro 5 - Vantagens e desvantagens do método partida estrela-triânguloFonte: Do autor (2014)

Page 41: Protecao Comando

4 Chaves de partida 41

4.3 Partida ComPensadora

Este método de partida alimenta as bobinas do motor com uma tensão redu-zida. Essa redução se dá por meio da utilização de um autotransformador que é ligado em série com as bobinas. Depois de decorrido um tempo, as bobinas são alimentadas com a tensão nominal da rede. É utilizado para efetuar o acionamen-to de motores em plena carga.

FIQUE ALERTA

Esse método de partida é pouco utilizado devido ao custo elevado do autotransformador e devido à ocupação de muito espaço dentro do painel elétrico, além de possuir limitação no número de manobras.

A figura a seguir mostra o diagrama de potência e comando de uma partida compensadora.

R

S

T

N

F1 FusíveisF2 F3

M3 ~

K1 K2 K3

AutotransformadorRelé deSobrecarga

FT1

FT1F4R

T180%

80%

80%

80% 10

0%

100%

100%

0%0%0%

H2 H1K3

K3 K3

N

K2

K2

K2S1

S0

K1

K1

K1

K1KT1

KT1

Figura 28 - Diagrama de potência e de comando de uma partida compensadoraFonte: Do autor (2014)

Note que o autotransformador utilizado para fazer essa redução possui, ao longo do seu enrolamento, TAP’s operacionais nas alturas de tensões de 50%, 65% e 80% da tensão aplicada na fase. O TAP de 80% reduz a corrente, no mo-mento da partida, 64% do seu valor normal, no TAP de 65% obtém uma redução de 42% da corrente de partida, já no TAP de 50% a redução é de 25%.

Page 42: Protecao Comando

proteção e comandos42

4.4 Chaves de Partidas eletrôniCas

Agora que você estudou sobre as chaves de partida eletromecânicas é hora de conhecer as chaves de partidas eletrônicas, outro modelo utilizado para partida de motores e que é um dos métodos mais modernos e que apresenta uma grande vantagem ao motor. Esse método possibilita que o motor tenha uma aceleração de forma gradativa reduzindo consideravelmente seu pico de corrente durante a partida. Acompanhe.

4.4.1 Inversor de frequêncIa

Há alguns anos o controle de velocidade dos motores só era possível por meio da utilização de motores de corrente contínua. Porém, esses motores apresentam algumas particularidades que fazem com que sua utilização seja bem restrita, en-tre elas, o alto custo do motor aliado com a necessidade de retificar a tensão da rede para ser utilizada na sua alimentação.

Figura 29 - Inversor de frequênciaFonte: http://www.capacitech.com.br/SA/images/upload/fb530577dec5e126c6322f72fa3dafc9.jpg

Com o surgimento da chamada eletrônica de potência foi possível desenvol-ver alguns equipamentos que contribuíram para o desenvolvimento tecnológico e propiciaram um grande crescimento na indústria brasileira. Entre esses equipa-mentos está o inversor de frequência, que é o método mais eficiente e econômi-co para executar o controle de velocidade nos motores de indução trifásicos. A figura a anterior mostra um dos modelos de inversor de frequência encontrado no mercado.

Page 43: Protecao Comando

4 Chaves de partida 43

O inversor de frequência possui a função de controle da velocidade e do tor-que nos motores de corrente alternada a partir de um comando eletrônico; sua utilização apresenta vários benefícios tais como:

•redução do número de partidas e paradas bruscas diminuindo o desgaste mecânico nos equipamentos (com a utilização de rampas de aceleração e frenagem);

•redução de custo e paradas para manutenção (o motor assíncrono exige me-nos manutenção);

•redução de ruído em relação ao controle mecânico de velocidade e redução de energia.

Princípios básicos do inversor de frequência: em um motor de corrente alter-nada o valor da rotação é determinado pela frequência da rede e pelo número de polos do motor, obtida pela fórmula:

N = 120 . f/p

Legenda: N = rotação em RPM; f = frequência da rede, em Hz; p = números de polos

O inversor de frequência atua alterando a frequência de alimentação do mo-tor, então, pode-se considerá-lo uma fonte de tensão com frequência variável. Internamente, é formado por um circuito que contempla uma ponte retificadora trifásica e dois capacitores como filtro. Esse circuito utiliza o terra como referência, formando uma fonte CC simétrica.

MRST

+Vcc

-VccControle

Figura 30 - Circuito de um inversor de frequênciaFonte: Franchi (2008)

Page 44: Protecao Comando

proteção e comandos44

O barramento CC gerado alimenta um conjunto de seis transistores IGBTs que, comutados a partir de uma lógica de controle, criam uma forma de onda alterna-da (quadrada), cuja frequência varia em função da frequência de chaveamento.

Os pulsos de disparo dos IGBTs precisam ser distribuídos de forma a obter um sistema de tensão CA com defasagem de 120°.

SAIBA MAIS

Saiba mais sobre os inversores de frequência no site da YASKAWA, uma empresa japonesa fabricante de equipamen-tos para controle de motores: <http://catalogo.yaskawa.com.br/category/inversores-de-frequencia-baixa-tensao>.

Classificação dos inversores de frequência

A estrutura eletrônica de potência dos inversores de frequência que trabalham com modulação por largura de pulso é praticamente a mesma, independente do fabricante. A única diferença entre eles são as variações que ocorrem no seu cir-cuito de comando. Então podemos ter, de acordo com sua estrutura de comando, dois tipos de inversores:

I. Inversor com controle escalar: possui um sistema que tem como caracte-rística manter o torque do motor constante, mesmo quando esse apresentar uma variação da sua velocidade. Os motores utilizados para serem acionados por esse modelo de inversor devem atender as exigências normais e seu controle é feito em malha aberta, ou seja, sem realimentação. Esse modelo de inversor geralmen-te trabalha com frequência operada de 10 a 60Hz.

TENSÃO

60 f

Un

Figura 31 - Curva representativa da variação U/f1

Fonte: Weg (2007b)

Perceba que existe uma relação constante entre tensão e frequência, até o limite de 60Hz, em que é atingida a tensão máxima. A partir desse ponto a corren-

1 U/f:

Relação entre tensão e frequência do motor, que é mantida constante pelo inversor, para manter o torque constante no eixo.

Page 45: Protecao Comando

4 Chaves de partida 45

te e o torque do motor diminuirão, ou seja, terá um aumento da velocidade do motor, mas com menor intensidade de corrente e com um menor torque.

Para frequências abaixo de 30Hz também ocorre a redução da corrente e a consequente redução do torque do motor, portanto, pode-se concluir que a uti-lização do controle escalar nos inversores de frequência deve se dar para apli-cações que não sejam críticas e que não necessitem de controle de torque ou grande precisão.

II. Inversor com controle vetorial: há algum tempo apenas o motor de cor-rente contínua, com sistemas de controle em malha fechada, propiciava um con-trole de velocidade com respostas rápidas e de alta precisão. Entretanto, com o avanço das técnicas vetoriais de controle, a regulação dos motores trifásicos tornou-se mais precisa e mais próxima dos resultados alcançados pelos motores CC. Sua aplicação é voltada para onde há a necessidade de se ter uma grande precisão no parâmetro de velocidade e uma resposta rápida do motor elétrico.

No inversor com controle vetorial, um sinal vindo de um encoder acoplado ao eixo do motor fornece um pulso executando o controle em malha fechada, sendo o inversor capaz de receber este sinal, processar e fazer o controle da velocidade e do torque do motor.

Dentre as principais vantagens na utilização do inversor com controle veto-rial estão: precisão de regulação de velocidade; torque linear para aplicações de posição; torque linear para aplicações de tração; baixa oscilação de torque com a variação de carga.

Blocos que compõem o inversor de frequência

Agora que você já conheceu um pouco mais sobre inversores de frequência, é hora de conhecer os blocos que compõem o inversor. Acompanhe.

Bloco 1 – CPU (Unidade Central de Processamento): armazena todos os parâ-metros e dados do sistema, e é por meio dela que é executada a geração de pul-sos de disparo para os IGBTs, isso acontece por meio de uma lógica de controle coerente.

Bloco 2 – IHM (Interface Homem/Máquina): é por meio deste componente que o usuário tem acesso a todas as informações do inversor: tensão, corrente, alarme, frequência de trabalho. Também pode-se parametrizá-lo de acordo com sua aplicação.

Bloco 3 – Interfaces: entradas digitais e analógicas que têm a função de con-trolar a velocidade de rotação do motor.

Page 46: Protecao Comando

proteção e comandos46

Bloco 4 – Etapa de potência: é formada por um circuito retificador, denomina-do barramento DC, que alimenta o circuito de saída do inversor.

Parâmetros do inversor de frequência

Os parâmetros do inversor de frequência permitem ao usuário ler as mensa-gens que nele aparecem e programar valores e ajustes aplicáveis a uma determi-nada operação a ser implementada. Esses parâmetros estão acessíveis ao usuário através da interface homem máquina (IHM), conforme mostra a figura a seguir:

Figura 32 - IHM (Interface homem máquina)Fonte: Do autor (2014)

Os parâmetros do inversor de frequência são subdivididos de acordo com suas características: parâmetros de leitura, de regulação, de configuração do motor. Acompanhe, na sequência, mais informações sobre cada um deles.

Parâmetros de leitura: por meio deste parâmetro o usuário visualiza os valo-res programados nos outros parâmetros; esses valores visualizados não podem ser alterados pelo usuário. Exemplos: corrente, frequência, velocidade, tensão do motor, são alguns dos valores encontrados neste parâmetro.

Parâmetros de regulação: valores que podem ser alterados pelo usuário de acordo com o tipo de acionamento que se deseja. Exemplos: tempo de acelera-ção e desaceleração, referência mínima e máxima, são algumas das opções en-contradas neste parâmetro.

Parâmetros do motor: parâmetros nos quais o usuário deve informar ou pa-rametrizar todas as informações referentes ao motor que será utilizado no aciona-mento. Exemplos: corrente nominal, tensão, rotação e potência.

Page 47: Protecao Comando

4 Chaves de partida 47

Casos e relatos

Índice de desgaste elevado dos contatos de potência

Em uma empresa, um tecnólogo elaborou um estudo para saber o porquê de em um determinado equipamento haver um índice de desgaste eleva-do dos contatos de potência da contactora utilizada em uma partida direta; aliado a isso ele descobriu que em um ano foram trocados dois motores, todos com uma das bobinas abertas. Ele verificou que o equipamento tinha em média 15 partidas por hora e estava trabalhando com o relé térmico mal dimensionado. Então ele decidiu substituir o modelo de partida que estava sendo utilizado por uma soft-starter. Depois desta melhoria o equi-pamento apresenta uma rampa de aceleração e desaceleração bem suave, sem provocar sobrecarga no motor. Já faz mais de um ano e até o momen-to não apresentou mais nenhuma parada por problemas no motor ou na soft-starter.

4.4.2 soft-starter

São chaves de partida estáticas que asseguram uma aceleração e desacele-ração progressiva, executando assim uma partida com o aumento gradativo da tensão, possibilitando uma partida sem golpes, minimizando o pico elevado de corrente. Isso é obtido por meio de um circuito que é composto por tiristores1 em antiparalelo, montados dois a dois em cada uma das fases do circuito trifásico. A figura a seguir apresenta um dos modelos de soft-starter encontrado no mercado.

Figura 33 - Soft-starterFonte: Do autor (2014)

Page 48: Protecao Comando

proteção e comandos48

O aumento gradativo da tensão permite que se tenha um controle na rampa de aceleração, trazendo grandes benefícios para o motor, entre eles podemos citar os mais importantes:

•controle das características de funcionamento durante o período de partida e parada do motor;

•proteção térmica do motor e da soft-starter;

•proteção mecânica do equipamento a ser movimentado por redução dos golpes.

Além disso, apresenta a vantagem de não possuir partes móveis ou que gerem arco elétrico, como nas chaves eletromecânicas.

O funcionamento da soft-starter está baseado na utilização de uma ponte ti-ristorizada numa configuração antiparalelo. Este controle é executado por uma placa eletrônica que tem a finalidade de ajustar a tensão de saída, cujo valor é obtido conforme a programação feita pelo usuário.

M3 ~3

REDE

PF

~

UR TC

TCS

T

V

W

+-

+-

CARTÃOELETRÔNICO

DE CONTROLECCS 1.00

ENTRADAANALÓGICA

SAÍDAANALÓGICA

SAÍDAS A RELÉRL1.RL2.RL3

ENTRADASDIGITAIS

1

2

Figura 34 - Diagrama de blocos simplificadosFonte: Franchi (2008)

A figura anterior mostra a tensão da rede sendo controlada por meio de um circuito de potência, que é formado por SCRs. Quando se varia o ângulo de dis-paro dos SCRs, há também a variação do valor da tensão eficaz que é aplicada no motor.

2 TIRISTORES:

Componente eletrônico de três terminais que quando recebe um sinal em um dos terminais (gatilho) polariza a junção efetuando o chaveamento do circuito.

Page 49: Protecao Comando

4 Chaves de partida 49

A seguir você irá conhecer algumas das funções encontradas na soft-starter:

I Rampa de tensão na aceleração: função responsável por realizar o aumento gradativo e contínuo da tensão eficaz, até que se atinja o valor da tensão inicial de partida adequada. Quando a tensão de partida é ajustada num valor (Up), e em um tempo de partida (Tp), a tensão aumenta a um valor (Up) até atingir a tensão nominal da rede, em um intervalo de tempo, o que possibilita que o motor parta suavemente.

TensãoRampa de subida da tensão

UNom

Up

TempoTp

Figura 35 - Rampa de tensão na aceleraçãoFonte: Adaptado de Weg (2007a)

II Rampa de tensão na desaceleração: o motor pode ter sua parada realizada de duas formas: por inércia ou uma parada controlada. Na parada executada por inércia, a soft-starter leva a tensão de saída imediatamente a zero, forçando o mo-tor a ir perdendo velocidade gradativamente. O tempo de parada é relacionado à energia cinética da carga que está sendo movimentada. Já na parada controlada, a soft-starter reduz gradualmente o valor da tensão até um valor mínimo predefi-nido, permitindo assim uma parada suave do motor.

Tensão

UNom

Up

TempoTd

Figura 36 - Curva de tensão na desaceleraçãoFonte: Adaptado de Weg (2007a)

III Limitação de corrente: esta função limita a corrente ao valor necessário para que seja vencida a inércia da carga, possibilitando a aceleração da mesma.

Page 50: Protecao Comando

proteção e comandos50

Esse recurso garante um acionamento suave e permite também que quando os sistemas de proteção atuarem não prejudiquem o restante da instalação.

Limitação Tempo

Corrente

TensãoI lim

Up

Figura 37 - Limitação de correnteFonte: Adaptado de Weg (2007a)

A soft-starter garante ao motor toda a proteção necessária, e quando uma das proteções atua uma mensagem é enviada, permitindo ao usuário visualizar na IHM a falha ocorrida. A seguir serão apresentados os principais tipos de proteções:

I sobrecorrente imediata na saída: máximo valor de corrente que a soft-star-ter permite que seja conduzida para o motor por período de tempo pré-ajustado.

II subcorrente imediata: mínimo valor de corrente que a soft-starter permite que seja conduzida para o motor num período de tempo pré-ajustado.

Além das proteções citadas anteriormente, a soft-starter pode apresentar mui-tos outros parâmetros de proteções, como por exemplo, sequência de fase in-vertida, falta de fase na rede e no motor e sobretemperatura nos tiristores; esses parâmetros podem ser encontrados apenas em alguns modelos, dependendo do fabricante.

III economia de energia: esta função é aplicada em situações em que o motor está trabalhando com carga reduzida, em vazio, por um longo período de tempo. Quando isso acontece, a tensão nos terminais é reduzida e, consequentemente, reduz-se a corrente e as perdas no entreferro. Como o conjugado do motor é proporcional ao quadrado da tensão aplicada, com a redução da tensão ocorre a redução do conjugado. É importante ressaltar que esta função não oferece van-tagem em situações em que o motor opere com carga reduzida por um pequeno intervalo de tempo.

Page 51: Protecao Comando

4 Chaves de partida 51

reCaPitulando

Neste último capítulo você conheceu os métodos de partidas efetuados em motores e principalmente em que condições cada uma delas pode ser aplicada. Além disso, você conheceu o funcionamento e a aplicação de outro método utilizado para dar partida em um motor, que são as cha-ves de partidas eletrônicas, bem como os parâmetros mais utilizados em inversores e soft-starters. Parabéns! Você acaba de concluir os estudos desta unidade curricular, agora está preparado para a próxima unidade que abordará a manutenção desses dispositivos. Bons estudos!

Page 52: Protecao Comando
Page 53: Protecao Comando

REFERÊNCIAS

BISONI, Paulo Roberto. Instalações elétricas em baixa tensão industrial: Florianópolis: SENAI/SC, 2010.

FRANCHI, Claiton Moro. Acionamentos Elétricos. 4. ed. São Paulo: Érica, 2008.

SENAI (2010)SIEMENS. Dispositivos de Baixa Tensão. Disponível em: <http://www.industry.siemens.com.br/automation/br/pt/dispositivos-baixa-tensao/Pages/dispositivos-baixa-tensao.aspx>. Acesso em: 11 set. 2014.

VAZ, Frederico Samuel de Oliveira. Manutenção elétrica. SENAI/SC, 2010. 134 p.

WEG. Catálogo de Disjuntores em Caixa Moldada. Jaraguá do Sul - SC: WEG, [200-]l.

WEG. Catálogo de fusíveis. Jaraguá do Sul - SC: WEG, [200-]g.

WEG. Catálogo de Mini Disjuntores. Jaraguá do Sul - SC: WEG, [200-]j.

WEG. Catálogo de Relés de Proteção e Temporizadores WEG. Jaraguá do Sul: WEG, 1999.

WEG. Catálogo de temporizadores. Jaraguá do Sul - SC: WEG, [200-]i.

WEG. Manual de Comando e Proteção: módulo 1 (APRESENTAÇÃO EM PPT). Jaraguá do Sul: WEG, [200-]k.

WEG. Manual de Comando e Proteção: módulo 1. Jaraguá do Sul: WEG, [200-]c. 314 p.

WEG. Manual de Contatores. Jaraguá do Sul - SC: WEG, [200-]h.

WEG. Manual de Geração de energia: módulo 4. Jaraguá do Sul: WEG, [200-]b. p.314.

WEG. Motores Elétricos. Jaraguá do Sul: WEG (A3,G3).

YASKAWA. Inversores de frequência de baixa tensão. Disponível em: <http://catalogo.yaskawa.com.br/category/inversores-de-frequencia-baixa-tensao>. Acesso em: 11 set. 2014.

______. Disjuntor monofásico. Disponível em: <http://satech.com.br/disjuntores/disjuntor-interior/>. Acesso em: 23 set. 2014.

______. Disjuntor motor. Disponível em: <https://www.webeletrica.com.br/index.php?src=view/detalheProduto&cdprd=MTE3>. Acesso em: 23 set. 2014.

______. Elementos de um contator. Disponível em: <http://ge.bpsinternet.com.br/produtos/reles-contatores/cl/>. Acesso em: 23 set. 2014.

______. Fusível Diazed. Disponível em: <http://www.luxtil.com.br/images/FUSIVEL_DIAZED_16A_RETARDADO_500V__.jpg?osCsid=64ff7a296d1549a7917f959d6fe089d7>. Acesso em: 23 set. 2014.

______. Fusível NH. Disponível em: <http://www.intereng.com.br/media/imagens/upload/familia/678/fusivelbaixatensao_tipo-nh_jpg_600x400_q100.jpg>. Acesso em: 23 set. 2014.

______. Inversor de frequência. Disponível em: <http://www.capacitech.com.br/SA/images/upload/fb530577dec5e126c6322f72fa3dafc9.jpg>. Acesso em: 23 set. 2014

Page 54: Protecao Comando

______. Lâmina bimetálica. Disponível em: <http://pt.wikipedia.org/wiki/Rel%C3%A9_t%C3%A9rmico>. Acesso em: 23 set. 2014.

______. Relés auxiliares. Disponível em: <http://www.findernet.com/ro/node/42994>. Acesso em: 23 set. 2014..

Page 55: Protecao Comando

MINICURRÍCULO DO AUTOR

Celso de Oliveira Araujo é técnico em eletrotécnica pela instituição CEDUP de Joinville, e téc-nico em Eletrônica, na mesma instituição. Graduado em Tecnólogo em Manutenção Industrial pela instituição Sociedade Educacional de Santa Catarina (Sociesc). Atua na área de manutenção elétrica há 16 anos, atualmente em uma empresa multinacional. Atua desde 2013 no SENAI SC na unidade de Joinville, na qual ministra aulas para o curso técnico em Eletromecânica.

Page 56: Protecao Comando
Page 57: Protecao Comando

ÍNDICE

A

Aceleração 42, 43, 46, 47, 48, 49

B

Botoeiras 18, 19, 20, 33

C

Comandos elétricos 31, 32, 33

Contatores 11, 13, 14, 15, 29

D

Desaceleração 46, 47, 49

Disjuntores 23, 24, 28, 35

F

Fusíveis 24, 25, 26, 27, 28, 30, 35

I

Inversor 9, 37, 42, 43, 44, 45, 46, 51

L

Lâminas 27, 28

M

Motores elétricos 35, 37

P

Parâmetros 45, 46, 50, 51

R

Relé 15, 16, 17, 19, 28, 29, 30, 31, 32, 34, 35, 40, 47

Relés auxiliares 15, 16

Relés de tempo 16

S

Soft-starter 9, 37, 47, 48, 49, 50, 51

Page 58: Protecao Comando
Page 59: Protecao Comando

DIRETORIA DE EDUCAÇÃO E TECNOLOGIA - DIRET

Rafael Esmeraldo Lucchesi RamacciottiDiretor de Educação e Tecnologia

SENAI - DEPARTAMENTO NACIONAL

Unidade de Educação Profissional e Tecnológica - UNIEP

Felipe Esteves Pinto MorgadoGerente Executivo de Educação Profissional e Tecnológica

Nina Rosa Silva AguiarGerente de Educação Profissional e Tecnológica

Sinara Sant’Anna CelistreGestora do Programa SENAI de Capacitação Docente

Nathália Falcão MendesAnalista de Desenvolvimento Industrial

SENAI - DEPARTAMENTO REGIONAL DE SANTA CATARINA

Selma KovalskiCoordenação do Desenvolvimento dos Livros no Departamento Regional

Raphael da Silveira GeremiasGerência de Educação no SENAI em Joinville

Carla Micheline IsraelCoordenação do Projeto

Michele Antunes Corrêa Coordenação Técnica de Desenvolvimento de Recursos Didáticos

Celso de Oliveira AraujoElaboração

Carlos Eduardo CarvalhoCelso Picolli FilhoRevisão Técnica

Daniela VivianiDesign Educacional

Tatiane HardtIlustrações e Tratamento de ImagensDiagramação

Page 60: Protecao Comando

Roseli Müller IzolanCRB-14/472Ficha Catalográfica

i-ComunicaçãoProjeto Gráfico

Jaqueline TartariContextuarRevisão Ortográfica e Gramatical

Jaqueline Tartari ContextuarNormalização