21
Proiect Masini Electrice II

Proiect Masini electrice

Embed Size (px)

Citation preview

Page 1: Proiect Masini electrice

Proiect Masini Electrice II

Autor:Rusu Gabriel An III ET grupa 3/1

Page 2: Proiect Masini electrice

AUTOR :RUSU GABRIEL, GRUPA 3/1

TIMISOARA 2007

CUPRINS

I. Tema de proiectare.........................................................................3II. Memoriu de prezentare.................................................................4III. Rezultate din MATLAB..............................................................5IV.Caracteristici de functionare;........................................................9V. DESEN DE GABARIT..............................................................11VI.Sectiuni.......................................................................................12

Dimensiuni crestatura statorica.................................................................13Dimensiuni cresatatura rotorica:...............................................................13

VII.Calcul de incalzire.....................................................................14VIII.Bibliografie..............................................................................17

2

Page 3: Proiect Masini electrice

AUTOR :RUSU GABRIEL, GRUPA 3/1

I. Tema de proiectare

Sa se proiecteze un motor asincron trifazat cu rotor in colivie in scurtcircuit , in constructie cu talpa care sa aiba urmatoarele caracteristici:

- puterea nominala : PN = 22 [kW] ;

- turatia sincrona : n1 = 3000 [rpm] ;

- tensiunea nominala : UN = 400 [V] ;

- frecventa nominala : fN = 50 [Hz] ;

- randament nominal : ηN = 92.8 [%];

- factorul de putere : cosφN = 0.89 ;

- curentul de pornire raportat :

- cuplul de pornire raportat :

- cuplul maxim raportat :

- conexiune stea ;

- clasa de izolatie F dar cresterea temperaturii va fi corespunzatoare clasei B;

3

Page 4: Proiect Masini electrice

AUTOR :RUSU GABRIEL, GRUPA 3/1

II. Memoriu de prezentare

In urma proiectarii au rezultat urmatoarele caracteristici tehnice:

- randament nominal : ηN =91.6 [%]

- factorul de putere : cosφN = 0,885

- cuplul nominal : MN= 70.028 [Nm];

- curentul nominal : IN= 42.87 [A] ;

- curentul de pornire : IP=308.16 [A] ;

- cuplul de pornire : MP=171.5 [Nm] ;

- curentul de pornire raportat : ;

- cuplul de pornire raportat : ;

- cuplul maxim raportat : ;

- dimensiune de gabarit = 160M [mm];

III. Rezultate din MATLAB% Parameters of Electrical machine % This is a results file generated by e7_or.m using save_par.m

4

Page 5: Proiect Masini electrice

AUTOR :RUSU GABRIEL, GRUPA 3/1

% Generated at: 19-May-2007 11:38:47 % Rated parameters

Pn=22.000000; % kW rated Power nb=3000.000000; % rpm rated synchronous (base) speed Vn=400.000000; % V rated line Voltage m=3.000000; % Phase number conex='y'; % Stator windings connectionspoles=2.000000; % numbers of poles rpos='i'; % rotor position: i -inner rotor, o - outer rotorrwkind='s'; % kind of rotor windings: s - shortcircuit cagedesignAs='m'; % Design as: m-motor, g-generatorVfn=230.940108; %VIn=42.871731; %A Rated Current fn=50.000000; %Hz Rated frequency Torq=70.028175; %Nm Rated Torque Mmax=182.653902; %Nm Peak Torque nn=2850.519568; %rpm Rated speed nslip=0.049827; % Rated slip kslip=0.287496; % critical slip rJ=0.153853; %kg*m^2 Inertial moment of rotor Tmn=0.655793; %s Mechanical time constant (rated tork) Tmk=0.264622; %s Mechanical time constant (peak torq) P1n=24.530665; %kW Rated Electric power etan=0.916837; % Rated efficiency cosphin=0.885881 % Rated power factor etamax=0.932458; % Maximum of efficiency cosphimax=0.912258 % Maximum of power factor lcpertau=3.000000; % length per pole tau (for start design)sDeltaT=100.000000; %C Temperature rise in stator windingrDeltaT=140.000000; %C Temperature rise in rotor windingBoltHoles =1.000000; % Factor to allow for bolt holes in stator coreFW = 110.000000; %W Friction and windage loss at full load speed

% Stator windings N1=30; % Turns per stator phaseParallelPaths=1;layers=2;sSlotsPerPolPerPhase=3;% Stator Slots Per Pole Per PhasesStep=0.888889; % Stator coil step sb_c=5.033466; % Turns per coils in stator windings from calculussb=5.000000; % Chose turns per coils in stator windings as integer number CpS=10.000000; % Conductors per slot in stator fws=0.959795; % Distribution factor for stator windingfchs=0.996993; % Shorting factor fw=0.945214; % Stator windings factor sOverhangLength=315.102944; %mm, Stator over hang lengthMLC=974.102944; %mm, Length of the mean conductorsdelcc=0.745840; %mm, diameter of elementary conductor from calculatinselc=22; % Stator elementary conductor on coilsdelc=0.750000; %mm, it is standard diameter around sdelccsdelc_ins=0.832000; %mm, diameter of insulated elementary conductorsacu=9.719302; % area of stator equivalent conductorsacu_ins=11.960772; % area of insulated stator equivalent conductorsWireBareD =3.517812; % equivalent diameter of stator wiresWireCovD =3.902426; % equivalent diameter of insulated stator wire

% Rotor windings rWireBareD=1.140359e+001; %mm Diameter of rotor barerEndRingCSA =276.760344; %mm^2 End of ring arearhRing =24.000000; %mm radial ring height fwr =0.956000; % Winding factor for squirrel-cage motor

5

Page 6: Proiect Masini electrice

AUTOR :RUSU GABRIEL, GRUPA 3/1

% Stator main dimensions sDo=218.000000; %mm, Stator ODsDi=139.000000; %mm, Stator bore diameter sSlots=18.000000; % No. of stator slots BoltHoles=1.000000; % There are not exactly bolt holeslc=659.000000; %mm, Core length lcEff=612.870000; %mm, Effective iron length tauPole=218.340689; %mm, pole pitch C0=42.217713; %kVAs/m^3 Machines constant, used for design startlgMin=0.348136; %mm minimum length of air-gap from calculuslg=0.400000; %mm, air-gap length

% Stator slots - Primary dimensions sMs=2.600000; %mm, Mouth of stator slot sh4=0.800000; %mm, height of slot mouthsW3=18.108571; %mm, width of top slotssh3=3.211930; %mmsW2=18.108571; %mmsh2=0.000000; %mmsW1=19.154616; % bottom slots width mmsh1=2.695724; %mm sR1=9.577308; %mm, radius of bottom of stator slotsht=2.966208; %mm, distance from bottom circle center to air gapshOA=16.284962; %mm, over all slot height sAlpha=22.500000; %degrees sSlotAlpha=0.349066; %rad, angle between two stator slotstauSslot=24.260077; %mm, stator slot pitch at boresSlotArea=254.550126; %mm^2 sSlotWindingArea=248.264630; %mm^2, Slot area need for windings

% Stator slot insulation slotInsulThick=0.150000; %mm, Thickness of slot insulationslotClosureThick=0.500000; %mm, Thickness of slot closure (wedge)

% Rotor main dimension rSlots=18.000000; % Number of rotor slots rDi=80.000000; %mm, rotor bore diameter rDo=138.200000; %mm, rotor outer diameter rrJ=57.815974 %mm, rotor inertial radius

% Rotor slots dimensions rMs=1.200000; %mmrh4=5.514008; %mm, height of mouth of rotor slotrh3=0.000000; %mm rh1=0.500000; %mmrhOA=11.528015; %mmrW1=11.028015; %mmrW2=11.028015; %mm

% Stator magnetic circuit dimensions sToothTop=7.446873; %mm, width at tooth root sToothBot=7.551933; %mm, width nearest air-gap sCoreDepth=23.215038; %mmDx=187.046616; %mm, effective diameter of magnetic length path in stator core

% Rotor magnetic circuit dimensions rToothTop=12.917902; %mm, width of root of rotor Tooth rToothBot=9.068399; %mm, width of rotor tooth nearest air-gap Dy=103.429313; %mm, effective diameter of magnetic length path in rotor corerCoreDepth=17.571985; %mm

6

Page 7: Proiect Masini electrice

AUTOR :RUSU GABRIEL, GRUPA 3/1

% Stator weight WeightIronUsed=227.183064; %kg, Weight of iron usedWeightStCoreIron=67.910614; %kgWeightStTeethIron=10.508699; %kgWeightStIron=78.419313; %kg, Weight of stator IronWeightStCu=15.218222; %kg, Copper weight WeightSt=93.637535; %kg, Stator weight % Rotor weight WeightRtIron=38.891001; %kg, Weight of Rotor IronWeightCage=7.135637; %kg, Rotor Copper weightWeightRt=46.026638; %kg, Rotor weight

WeightM=139.664173; %kg, Generator weight

% Electrical parameter sR=0.147872; %Ohm, Stator resistance at 120.000000 grade CrR=0.244374; %Ohm, Rotor resistance at 160.000000 grade Crm=351.641009; %Ohm, Equivalent iron loss resistance lh=0.076207; %Hk_Carter=1.150417; % Carter Factor k_sat=2.723432; % Saturated Factor Js=3.955751; %A/mm^2 Stator current density Jr=4.000000; %A.mm^2 Rotor current density sSlotFill=0.613415; % fill factor for stator

% Magnetic induction Bg_max=0.343346; %T air-gap magnetic induction sBTooth=1.261657; %T magnetic induction in stator tooth sBCore=1.267994; %T magnetic induction in stator yoke rBTooth=0.884439; %T magnetic induction in rotor rBCore=1.579266; %T magnetic induction in rotor yoke

% Losses spcu=815.361794; %W, Stator windings losses IronLoss=451.604701; %W, Iron Loss IronLossCore=391.095508; %W, Iron Loss IronLossTeeth=60.509193; %W, Iron Loss stLoss=1266.966495; %W, Stator Loss rpcu=859.179692; %W, Rotor windings Loss pmec=104.519051; %W, Mechanical loss % Rotor mechanical stress vmax=43.416810; %m/s Maximum value of periphery speed sigma_yoke=9.282569; %N/mm^2 Yoke stress under itself weight sigma_max=16.391962; %N/mm^2 Maximum stress in rotor yoke% Torkue and power density Tdn=0.527719; %Nm/kg Rated torque per kilo Tdk=1.307808; %Nm/kg Peak torque per kilo Pd=0.157521; % kW/kg Power per kilo

%This outputs was produced using the next data as input:

%filename m1.m%input parameter for induction machine design

Pn=22; %kW, rated Powernb=3000; %rpm, rated (base) spednmax=2*nb;Vn=400; %V, rated line Votagem=3; % Phase numberconex='y'; % Stator windings conections

% y for star and d for poligon conectionpoles=2; % numbers of poles

7

Page 8: Proiect Masini electrice

AUTOR :RUSU GABRIEL, GRUPA 3/1

etaSpec=0.928; % rated eficiencycosPhiSpec=0.89; % rated power factorrpos='i'; % rotor position: i -iner rotor, o - outer rotorrwkind='s'; % kind of rotor windings: s - shortchircuitdesignAs='m'; % Design as: m-motor, g-generatorlg=.4; %mm length of airgap;

% Stator slots - Primary dimeuwnsionssSlotShape = ['b']; % Stator slot shapesMs=2.6; % Mouth of stator slot mm.sh4=0.8; % height of slot mouth mm.sAlpha=22.5; % degreessh2=0; % in this case as winding fills slot%Rotor slots - Primary dimensions%rSlotSkew=27;% Rotor skew = 1/rSlotSkew of rotor peripheryrSlotShape= ['b']; % Rotor slot shaperMs=1.2; % Mouth of rotor slot mm.rh1=0.5;%charge of materialsJs=4; %A/mm^2 Stator current densityJr=4; %A/mm^2 Rotor current densityJendring=4; %A/mm^2 Current denssity in rotor end ring of rotor cageelsp=16; %kA/m Specificate electric load sBToothsp=1.4; %T Specificate magnetic inductin in stator ToothsBYokesp=1.3; %T Specificate magnetic inductin in stator yokerBToothsp=1.7; %T Specificate magnetic inductin in rotor ToothrBYokesp=1.7; %T Specificate magnetic inductin in rotor yokeBagsp=0.4 ; %T Specificate magnetic inductin in air gapsSlotFills=0.6;% Specificate stator sllot fill

%******************************--------*************************************%Secondary data prescriptinParallelPaths=1;lcpertau=3; sSlotsPerPolPerPhase=3; % Slots per pole per phaselayers=2;sStep=(m*sSlotsPerPolPerPhase-1)/(m*sSlotsPerPolPerPhase); % Stator coill step sOvehang_ins=2; %mm Stator overhang insulated, minimum distance between axe and overhang delcmax=.75; %mm Maximum diameter for elementary conductor in statorrSlots=18;sDeltaT =100; % Temperature rise in stator windingrDeltaT =140; % Temperature rise in rotor windingBoltHoles = 1; % Factor to allow for bolt holes in stator core

% = 1 if no bolt holes% = 1.05 if bolt holesFW = 5*Pn; %W Friction and windage loss at full load % Assumed 0.5% from PnM0=30*FW/(pi*nb);constant; % get constantdk66_65; % get magnetc features of laminationfile_results='rusur.m';trun_file='tm1'; %Files in 'mat' format to save results for diffrent speed and voltage

8

Page 9: Proiect Masini electrice

AUTOR :RUSU GABRIEL, GRUPA 3/1

IV.Caracteristici de functionare;

9

Page 10: Proiect Masini electrice

AUTOR :RUSU GABRIEL, GRUPA 3/1

V. DESEN DE GABARIT

10

Page 11: Proiect Masini electrice

AUTOR :RUSU GABRIEL, GRUPA 3/1

11

Page 12: Proiect Masini electrice

AUTOR :RUSU GABRIEL, GRUPA 3/1

VI.Sectiuni

12

Page 13: Proiect Masini electrice

AUTOR :RUSU GABRIEL, GRUPA 3/1

Dimensiuni crestatura statorica

Dimensiuni cresatatura rotorica:

13

Page 14: Proiect Masini electrice

AUTOR :RUSU GABRIEL, GRUPA 3/1

VII.Calcul de incalzire

Partile motorului care se dezvolta caldura sunt:infasurarile pachetul de tole si lagarele.

Pierderile de putere care apar in motor la functionarea acestuia in regimul nominal sunt:- PCu1 = 815.36 ;- PFe = 451.6 ;- PAl2 = 859.17 ;- Pmec = 104.51 ;

Se calculeaza incalzirea carcasei fata de mediul ambiant:

Unde :

;

unde Lv=1.73*B’=440 mmAm ales KL=3,5Intre suprafata exterioara a pachetului de tole statoric si suprafata interioara a carcasei se formeaza un interstitiu , prin care se transmit pierderile din pachetul de tole statoric PFe si infasurarea statorica Pcu1;

Incalzirea pachetului de tole statoric fata de carcasa este:

14

Page 15: Proiect Masini electrice

AUTOR :RUSU GABRIEL, GRUPA 3/1

Unde:

Incalzirea pachetului de tole statoric fata de mediul ambiant este:

Avem :

Incalzirea infasurarii statorului fata de mediul ambiant:

Acest motor are nevoie de o racire suplimentara cu ventilator fixat pe arbore;Daca incalzirea motorului este suflata de aerul de racire(functionarea motorului cu

ventilator), calculul anterior se va corecta astfel:Deoarece suprafata S1 este suflata cu aer , in aceasta zona apare o imbunatatire

a transmisiei de caldura.Viteza aerului se apreciaza la V=6-18 m/s, corespunzator turatiilor de 750-3000 rpm.Coeficientul de transmisie a caldurii pe partea suflata este:

;

am ales v=18 m/s corespunzator turatiei de 3000 rpmIncalzirea carcasei fata de mediul ambiant devine:

15

Page 16: Proiect Masini electrice

AUTOR :RUSU GABRIEL, GRUPA 3/1

ceea ce conduce la modificarea incalzirii infasurarii statorice si a pachetului de tole statoric fata de mediul ambiant .

Incalzirile corespund claselor de izolatie B;

VIII.Bibliografie

- I. Cioc, C. Nica : „Proiectarea masinilor electrice”

- Toma Dordea : „Proiectarea masinilor electrice vol I+II”

16

Page 17: Proiect Masini electrice

AUTOR :RUSU GABRIEL, GRUPA 3/1

„Constructia masinilor electrice”

- I. Sora , I. Novac : „Indrumator de proiectare”

17