of 21 /21
Proiect Masini Electrice II

Proiect Masini electrice

Embed Size (px)

Text of Proiect Masini electrice

Proiect Masini Electrice II

AUTOR :RUSU GABRIEL, GRUPA 3/1

Proiect Masini Electrice II

Autor:Rusu Gabriel An III ET grupa 3/1 TIMISOARA 2007CUPRINS 3I. Tema de proiectare

4II. Memoriu de prezentare

5III. Rezultate din MATLAB

9IV.Caracteristici de functionare;

11V. DESEN DE GABARIT

12VI.Sectiuni

13Dimensiuni crestatura statorica

13Dimensiuni cresatatura rotorica:

14VII.Calcul de incalzire

17VIII.Bibliografie

I. Tema de proiectare

Sa se proiecteze un motor asincron trifazat cu rotor in colivie in scurtcircuit , in constructie cu talpa care sa aiba urmatoarele caracteristici:

puterea nominala : PN = 22 [kW] ; turatia sincrona : n1 = 3000 [rpm] ; tensiunea nominala :

UN = 400 [V] ; frecventa nominala :

fN = 50 [Hz] ; randament nominal : N = 92.8 [%];

factorul de putere :

cosN = 0.89 ;

curentul de pornire raportat :

cuplul de pornire raportat :

cuplul maxim raportat :

conexiune stea ; clasa de izolatie F dar cresterea temperaturii va fi corespunzatoare clasei B;II. Memoriu de prezentare

In urma proiectarii au rezultat urmatoarele caracteristici tehnice:

- randament nominal : N =91.6 [%] - factorul de putere : cosN = 0,885- cuplul nominal : MN= 70.028 [Nm];

- curentul nominal : IN= 42.87 [A] ; - curentul de pornire : IP=308.16 [A] ;

- cuplul de pornire : MP=171.5 [Nm] ;

- curentul de pornire raportat : ;- cuplul de pornire raportat : ;- cuplul maxim raportat : ;- dimensiune de gabarit = 160M [mm];III. Rezultate din MATLAB% Parameters of Electrical machine

% This is a results file generated by e7_or.m using save_par.m

% Generated at: 19-May-2007 11:38:47

% Rated parameters

Pn=22.000000;

% kWrated Power

nb=3000.000000;

% rpm rated synchronous (base) speed

Vn=400.000000;

% Vrated line Voltage

m=3.000000;

%Phase number

conex='y';

%Stator windings connections

poles=2.000000;

%numbers of poles

rpos='i';

%rotor position: i -inner rotor, o - outer rotor

rwkind='s';

%kind of rotor windings: s - shortcircuit cage

designAs='m';

%Design as: m-motor, g-generator

Vfn=230.940108;

%V

In=42.871731;

%ARated Current

fn=50.000000;

%HzRated frequency

Torq=70.028175;

%NmRated Torque

Mmax=182.653902;

%NmPeak Torque

nn=2850.519568;

%rpmRated speed

nslip=0.049827;

%Rated slip

kslip=0.287496;

%critical slip

rJ=0.153853;

%kg*m^2 Inertial moment of rotor

Tmn=0.655793;

%sMechanical time constant (rated tork)

Tmk=0.264622;

%sMechanical time constant (peak torq)

P1n=24.530665;

%kWRated Electric power

etan=0.916837;

%Rated efficiency

cosphin=0.885881

%Rated power factor

etamax=0.932458;

%Maximum of efficiency

cosphimax=0.912258

%Maximum of power factor

lcpertau=3.000000;

%length per pole tau (for start design)

sDeltaT=100.000000;

%CTemperature rise in stator winding

rDeltaT=140.000000;

%CTemperature rise in rotor winding

BoltHoles =1.000000;

%Factor to allow for bolt holes in stator core

FW = 110.000000;

%WFriction and windage loss at full load speed

%

Stator windings

N1=30;

%Turns per stator phase

ParallelPaths=1;

layers=2;

sSlotsPerPolPerPhase=3;%Stator Slots Per Pole Per Phase

sStep=0.888889;

%Stator coil step

sb_c=5.033466;

%Turns per coils in stator windings from calculus

sb=5.000000;

%Chose turns per coils in stator windings as integer number

CpS=10.000000;

%Conductors per slot in stator

fws=0.959795;

% Distribution factor for stator winding

fchs=0.996993;

% Shorting factor

fw=0.945214;

%Stator windings factor

sOverhangLength=315.102944;%mm, Stator over hang length

MLC=974.102944;

%mm, Length of the mean conductor

sdelcc=0.745840;

%mm,diameter of elementary conductor from calculatin

selc=22;

% Stator elementary conductor on coil

sdelc=0.750000;

%mm, it is standard diameter around sdelcc

sdelc_ins=0.832000;

%mm, diameter of insulated elementary conductor

sacu=9.719302;

%area of stator equivalent conductor

sacu_ins=11.960772;

%area of insulated stator equivalent conductor

sWireBareD =3.517812;

%equivalent diameter of stator wire

sWireCovD =3.902426;

%equivalent diameter of insulated stator wire

%

Rotor windings

rWireBareD=1.140359e+001;%mm Diameter of rotor bare

rEndRingCSA =276.760344; %mm^2 End of ring area

rhRing =24.000000;

%mmradial ring height

fwr =0.956000;

% Winding factor for squirrel-cage motor

% Stator main dimensions

sDo=218.000000;

%mm, Stator OD

sDi=139.000000;

%mm, Stator bore diameter

sSlots=18.000000;

%No. of stator slots

BoltHoles=1.000000;

%There are not exactly bolt holes

lc=659.000000;

%mm, Core length

lcEff=612.870000;

%mm, Effective iron length

tauPole=218.340689;

%mm, pole pitch

C0=42.217713;

%kVAs/m^3Machines constant, used for design start

lgMin=0.348136;

%mm minimum length of air-gap from calculus

lg=0.400000;

%mm, air-gap length

% Stator slots - Primary dimensions

sMs=2.600000;

%mm, Mouth of stator slot

sh4=0.800000;

%mm, height of slot mouth

sW3=18.108571;

%mm, width of top slots

sh3=3.211930;

%mm

sW2=18.108571;

%mm

sh2=0.000000;

%mm

sW1=19.154616;

%bottom slots width mm

sh1=2.695724;

%mm

sR1=9.577308;

%mm, radius of bottom of stator slot

sht=2.966208;

%mm, distance from bottom circle center to air gap

shOA=16.284962;

%mm, over all slot height

sAlpha=22.500000;

%degrees

sSlotAlpha=0.349066;

%rad, angle between two stator slots

tauSslot=24.260077;

%mm, stator slot pitch at bore

sSlotArea=254.550126;

%mm^2

sSlotWindingArea=248.264630;%mm^2, Slot area need for windings

% Stator slot insulation

slotInsulThick=0.150000;%mm, Thickness of slot insulation

slotClosureThick=0.500000; %mm, Thickness of slot closure (wedge)

%

Rotor main dimension

rSlots=18.000000;

%Number of rotor slots

rDi=80.000000;

%mm, rotor bore diameter

rDo=138.200000;

%mm, rotor outer diameter

rrJ=57.815974

%mm, rotor inertial radius

% Rotor slots dimensions

rMs=1.200000;

%mm

rh4=5.514008;

%mm, height of mouth of rotor slot

rh3=0.000000;

%mm

rh1=0.500000;

%mm

rhOA=11.528015;

%mm

rW1=11.028015;

%mm

rW2=11.028015;

%mm

%

Stator magnetic circuit dimensions

sToothTop=7.446873;

%mm, width at tooth root

sToothBot=7.551933; %mm, width nearest air-gap

sCoreDepth=23.215038;

%mm

Dx=187.046616;

%mm, effective diameter of magnetic length path in stator core

%

Rotor magnetic circuit dimensions

rToothTop=12.917902;

%mm, width of root of rotor Tooth

rToothBot=9.068399; %mm, width of rotor tooth nearest air-gap

Dy=103.429313;

%mm, effective diameter of magnetic length path in rotor core

rCoreDepth=17.571985;

%mm

%

Stator weight

WeightIronUsed=227.183064;%kg, Weight of iron used

WeightStCoreIron=67.910614;%kg

WeightStTeethIron=10.508699;%kg

WeightStIron=78.419313;

%kg, Weight of stator Iron

WeightStCu=15.218222;

%kg, Copper weight

WeightSt=93.637535;

%kg, Stator weight

%

Rotor weight

WeightRtIron=38.891001;

%kg, Weight of Rotor Iron

WeightCage=7.135637;

%kg, Rotor Copper weight

WeightRt=46.026638;

%kg, Rotor weight

WeightM=139.664173;

%kg, Generator weight

%

Electrical parameter

sR=0.147872;

%Ohm, Stator resistance at 120.000000 grade C

rR=0.244374;

%Ohm, Rotor resistance at 160.000000 grade C

rm=351.641009;

%Ohm, Equivalent iron loss resistance

lh=0.076207;

%H

k_Carter=1.150417;

%Carter Factor

k_sat=2.723432;

% Saturated Factor

Js=3.955751;

%A/mm^2 Stator current density

Jr=4.000000;

%A.mm^2 Rotor current density

sSlotFill=0.613415;

%fill factor for stator

%

Magnetic induction

Bg_max=0.343346;

%Tair-gap magnetic induction

sBTooth=1.261657;

%Tmagnetic induction in stator tooth

sBCore=1.267994;

%Tmagnetic induction in stator yoke

rBTooth=0.884439;

%Tmagnetic induction in rotor

rBCore=1.579266;

%Tmagnetic induction in rotor yoke

%

Losses

spcu=815.361794;

%W, Stator windings losses

IronLoss=451.604701;

%W, Iron Loss

IronLossCore=391.095508; %W, Iron Loss

IronLossTeeth=60.509193; %W, Iron Loss

stLoss=1266.966495;

%W, Stator Loss

rpcu=859.179692;

%W, Rotor windings Loss

pmec=104.519051;

%W, Mechanical loss

%

Rotor mechanical stress

vmax=43.416810;

%m/s Maximum value of periphery speed

sigma_yoke=9.282569;

%N/mm^2 Yoke stress under itself weight

sigma_max=16.391962;

%N/mm^2 Maximum stress in rotor yoke

%

Torkue and power density

Tdn=0.527719;

%Nm/kg Rated torque per kilo

Tdk=1.307808;

%Nm/kg Peak torque per kilo

Pd=0.157521;

% kW/kg Power per kilo

%This outputs was produced using the next data as input:

%filename m1.m

%input parameter for induction machine design

Pn=22;

%kW,rated Power

nb=3000;

%rpm, rated (base) sped

nmax=2*nb;

Vn=400;

%V,rated line Votage

m=3;

%

Phase number

conex='y';

%

Stator windings conections

%

y for star and d for poligon conection

poles=2;

%

numbers of poles

etaSpec=0.928;

%

rated eficiency

cosPhiSpec=0.89;%

rated power factor

rpos='i';

%

rotor position: i -iner rotor, o - outer rotor

rwkind='s';

%

kind of rotor windings: s - shortchircuit

designAs='m';%

Design as: m-motor, g-generator

lg=.4;

%mm

length of airgap;

%Stator slots - Primary dimeuwnsions

sSlotShape = ['b'];% Stator slot shape

sMs=2.6;

%Mouth of stator slot mm.

sh4=0.8;

%height of slot mouth mm.sAlpha=22.5;

%degrees

sh2=0;

%in this case as winding fills slot

%Rotor slots - Primary dimensions

%rSlotSkew=27;%Rotor skew = 1/rSlotSkew of rotor periphery

rSlotShape= ['b'];%Rotor slot shape

rMs=1.2;

%Mouth of rotor slot mm.

rh1=0.5;

%charge of materials

Js=4;

%A/mm^2Stator current density

Jr=4;

%A/mm^2Rotor current density

Jendring=4;

%A/mm^2Current denssity in rotor end ring of rotor cage

elsp=16;

%kA/m

Specificate electric load

sBToothsp=1.4;%T

Specificate magnetic inductin in stator Tooth

sBYokesp=1.3;%T

Specificate magnetic inductin in stator yokerBToothsp=1.7;%T

Specificate magnetic inductin in rotor Tooth

rBYokesp=1.7;%T

Specificate magnetic inductin in rotor yoke

Bagsp=0.4 ;

%T

Specificate magnetic inductin in air gap

sSlotFills=0.6;%

Specificate stator sllot fill

%******************************--------*************************************

%Secondary data prescriptin

ParallelPaths=1;

lcpertau=3;

sSlotsPerPolPerPhase=3;

%

Slots per pole per phase

layers=2;

sStep=(m*sSlotsPerPolPerPhase-1)/(m*sSlotsPerPolPerPhase);%

Stator coill step

sOvehang_ins=2;%mm Stator overhang insulated, minimum distance between axe and overhang

delcmax=.75;

%mmMaximum diameter for elementary conductor in stator

rSlots=18;

sDeltaT=100;%Temperature rise in stator winding

rDeltaT =140;%Temperature rise in rotor winding

BoltHoles = 1;% Factor to allow for bolt holes in stator core

% = 1 if no bolt holes

% = 1.05 if bolt holes

FW = 5*Pn;

%W Friction and windage loss at full load

% Assumed 0.5% from Pn

M0=30*FW/(pi*nb);

constant;

%

get constant

dk66_65;

%

get magnetc features of lamination

file_results='rusur.m';

trun_file='tm1'; %Files in 'mat' format to save results for diffrent speed and voltage

IV.Caracteristici de functionare;

V. DESEN DE GABARIT

VI.Sectiuni

Dimensiuni crestatura statorica

Dimensiuni cresatatura rotorica:

VII.Calcul de incalzire Partile motorului care se dezvolta caldura sunt:infasurarile pachetul de tole si lagarele.

Pierderile de putere care apar in motor la functionarea acestuia in regimul nominal sunt:

- PCu1 = 815.36 ;

- PFe = 451.6 ;

- PAl2 = 859.17 ;

- Pmec = 104.51 ;

Se calculeaza incalzirea carcasei fata de mediul ambiant:

Unde :

;

unde Lv=1.73*B=440 mmAm ales KL=3,5Intre suprafata exterioara a pachetului de tole statoric si suprafata interioara a carcasei se formeaza un interstitiu , prin care se transmit pierderile din pachetul de tole statoric PFe si infasurarea statorica Pcu1;

Incalzirea pachetului de tole statoric fata de carcasa este:

Unde:

Incalzirea pachetului de tole statoric fata de mediul ambiant este:

Avem :

Incalzirea infasurarii statorului fata de mediul ambiant:

Acest motor are nevoie de o racire suplimentara cu ventilator fixat pe arbore;

Daca incalzirea motorului este suflata de aerul de racire(functionarea motorului cu ventilator), calculul anterior se va corecta astfel:

Deoarece suprafata S1 este suflata cu aer , in aceasta zona apare o imbunatatire a transmisiei de caldura.Viteza aerului se apreciaza la V=6-18 m/s, corespunzator turatiilor de 750-3000 rpm.Coeficientul de transmisie a caldurii pe partea suflata este:

;

am ales v=18 m/s corespunzator turatiei de 3000 rpmIncalzirea carcasei fata de mediul ambiant devine:

ceea ce conduce la modificarea incalzirii infasurarii statorice si a pachetului de tole statoric fata de mediul ambiant .

Incalzirile corespund claselor de izolatie B;VIII.Bibliografie

- I. Cioc, C. Nica : Proiectarea masinilor electrice

- Toma Dordea : Proiectarea masinilor electrice vol I+II

Constructia masinilor electrice

- I. Sora , I. Novac : Indrumator de proiectare

PAGE 6

_1241082059.unknown

_1241769395.unknown

_1241769489.unknown

_1241769790.unknown

_1241769872.unknown

_1241769636.unknown

_1241769406.unknown

_1241082164.unknown

_1241087256.unknown

_1241087576.unknown

_1241087109.unknown

_1241082083.unknown

_1241080243.unknown

_1241080261.unknown

_1210522058.unknown

_1211059671.unknown

_1241080232.unknown

_1210850896.unknown

_1210521328.unknown