Author
suba-florin
View
228
Download
0
Embed Size (px)
Proiect Masini Electrice II
AUTOR :RUSU GABRIEL, GRUPA 3/1
Proiect Masini Electrice II
Autor:Rusu Gabriel An III ET grupa 3/1 TIMISOARA 2007CUPRINS 3I. Tema de proiectare
4II. Memoriu de prezentare
5III. Rezultate din MATLAB
9IV.Caracteristici de functionare;
11V. DESEN DE GABARIT
12VI.Sectiuni
13Dimensiuni crestatura statorica
13Dimensiuni cresatatura rotorica:
14VII.Calcul de incalzire
17VIII.Bibliografie
I. Tema de proiectare
Sa se proiecteze un motor asincron trifazat cu rotor in colivie in scurtcircuit , in constructie cu talpa care sa aiba urmatoarele caracteristici:
puterea nominala : PN = 22 [kW] ; turatia sincrona : n1 = 3000 [rpm] ; tensiunea nominala :
UN = 400 [V] ; frecventa nominala :
fN = 50 [Hz] ; randament nominal : N = 92.8 [%];
factorul de putere :
cosN = 0.89 ;
curentul de pornire raportat :
cuplul de pornire raportat :
cuplul maxim raportat :
conexiune stea ; clasa de izolatie F dar cresterea temperaturii va fi corespunzatoare clasei B;II. Memoriu de prezentare
In urma proiectarii au rezultat urmatoarele caracteristici tehnice:
- randament nominal : N =91.6 [%] - factorul de putere : cosN = 0,885- cuplul nominal : MN= 70.028 [Nm];
- curentul nominal : IN= 42.87 [A] ; - curentul de pornire : IP=308.16 [A] ;
- cuplul de pornire : MP=171.5 [Nm] ;
- curentul de pornire raportat : ;- cuplul de pornire raportat : ;- cuplul maxim raportat : ;- dimensiune de gabarit = 160M [mm];III. Rezultate din MATLAB% Parameters of Electrical machine
% This is a results file generated by e7_or.m using save_par.m
% Generated at: 19-May-2007 11:38:47
% Rated parameters
Pn=22.000000;
% kWrated Power
nb=3000.000000;
% rpm rated synchronous (base) speed
Vn=400.000000;
% Vrated line Voltage
m=3.000000;
%Phase number
conex='y';
%Stator windings connections
poles=2.000000;
%numbers of poles
rpos='i';
%rotor position: i -inner rotor, o - outer rotor
rwkind='s';
%kind of rotor windings: s - shortcircuit cage
designAs='m';
%Design as: m-motor, g-generator
Vfn=230.940108;
%V
In=42.871731;
%ARated Current
fn=50.000000;
%HzRated frequency
Torq=70.028175;
%NmRated Torque
Mmax=182.653902;
%NmPeak Torque
nn=2850.519568;
%rpmRated speed
nslip=0.049827;
%Rated slip
kslip=0.287496;
%critical slip
rJ=0.153853;
%kg*m^2 Inertial moment of rotor
Tmn=0.655793;
%sMechanical time constant (rated tork)
Tmk=0.264622;
%sMechanical time constant (peak torq)
P1n=24.530665;
%kWRated Electric power
etan=0.916837;
%Rated efficiency
cosphin=0.885881
%Rated power factor
etamax=0.932458;
%Maximum of efficiency
cosphimax=0.912258
%Maximum of power factor
lcpertau=3.000000;
%length per pole tau (for start design)
sDeltaT=100.000000;
%CTemperature rise in stator winding
rDeltaT=140.000000;
%CTemperature rise in rotor winding
BoltHoles =1.000000;
%Factor to allow for bolt holes in stator core
FW = 110.000000;
%WFriction and windage loss at full load speed
%
Stator windings
N1=30;
%Turns per stator phase
ParallelPaths=1;
layers=2;
sSlotsPerPolPerPhase=3;%Stator Slots Per Pole Per Phase
sStep=0.888889;
%Stator coil step
sb_c=5.033466;
%Turns per coils in stator windings from calculus
sb=5.000000;
%Chose turns per coils in stator windings as integer number
CpS=10.000000;
%Conductors per slot in stator
fws=0.959795;
% Distribution factor for stator winding
fchs=0.996993;
% Shorting factor
fw=0.945214;
%Stator windings factor
sOverhangLength=315.102944;%mm, Stator over hang length
MLC=974.102944;
%mm, Length of the mean conductor
sdelcc=0.745840;
%mm,diameter of elementary conductor from calculatin
selc=22;
% Stator elementary conductor on coil
sdelc=0.750000;
%mm, it is standard diameter around sdelcc
sdelc_ins=0.832000;
%mm, diameter of insulated elementary conductor
sacu=9.719302;
%area of stator equivalent conductor
sacu_ins=11.960772;
%area of insulated stator equivalent conductor
sWireBareD =3.517812;
%equivalent diameter of stator wire
sWireCovD =3.902426;
%equivalent diameter of insulated stator wire
%
Rotor windings
rWireBareD=1.140359e+001;%mm Diameter of rotor bare
rEndRingCSA =276.760344; %mm^2 End of ring area
rhRing =24.000000;
%mmradial ring height
fwr =0.956000;
% Winding factor for squirrel-cage motor
% Stator main dimensions
sDo=218.000000;
%mm, Stator OD
sDi=139.000000;
%mm, Stator bore diameter
sSlots=18.000000;
%No. of stator slots
BoltHoles=1.000000;
%There are not exactly bolt holes
lc=659.000000;
%mm, Core length
lcEff=612.870000;
%mm, Effective iron length
tauPole=218.340689;
%mm, pole pitch
C0=42.217713;
%kVAs/m^3Machines constant, used for design start
lgMin=0.348136;
%mm minimum length of air-gap from calculus
lg=0.400000;
%mm, air-gap length
% Stator slots - Primary dimensions
sMs=2.600000;
%mm, Mouth of stator slot
sh4=0.800000;
%mm, height of slot mouth
sW3=18.108571;
%mm, width of top slots
sh3=3.211930;
%mm
sW2=18.108571;
%mm
sh2=0.000000;
%mm
sW1=19.154616;
%bottom slots width mm
sh1=2.695724;
%mm
sR1=9.577308;
%mm, radius of bottom of stator slot
sht=2.966208;
%mm, distance from bottom circle center to air gap
shOA=16.284962;
%mm, over all slot height
sAlpha=22.500000;
%degrees
sSlotAlpha=0.349066;
%rad, angle between two stator slots
tauSslot=24.260077;
%mm, stator slot pitch at bore
sSlotArea=254.550126;
%mm^2
sSlotWindingArea=248.264630;%mm^2, Slot area need for windings
% Stator slot insulation
slotInsulThick=0.150000;%mm, Thickness of slot insulation
slotClosureThick=0.500000; %mm, Thickness of slot closure (wedge)
%
Rotor main dimension
rSlots=18.000000;
%Number of rotor slots
rDi=80.000000;
%mm, rotor bore diameter
rDo=138.200000;
%mm, rotor outer diameter
rrJ=57.815974
%mm, rotor inertial radius
% Rotor slots dimensions
rMs=1.200000;
%mm
rh4=5.514008;
%mm, height of mouth of rotor slot
rh3=0.000000;
%mm
rh1=0.500000;
%mm
rhOA=11.528015;
%mm
rW1=11.028015;
%mm
rW2=11.028015;
%mm
%
Stator magnetic circuit dimensions
sToothTop=7.446873;
%mm, width at tooth root
sToothBot=7.551933; %mm, width nearest air-gap
sCoreDepth=23.215038;
%mm
Dx=187.046616;
%mm, effective diameter of magnetic length path in stator core
%
Rotor magnetic circuit dimensions
rToothTop=12.917902;
%mm, width of root of rotor Tooth
rToothBot=9.068399; %mm, width of rotor tooth nearest air-gap
Dy=103.429313;
%mm, effective diameter of magnetic length path in rotor core
rCoreDepth=17.571985;
%mm
%
Stator weight
WeightIronUsed=227.183064;%kg, Weight of iron used
WeightStCoreIron=67.910614;%kg
WeightStTeethIron=10.508699;%kg
WeightStIron=78.419313;
%kg, Weight of stator Iron
WeightStCu=15.218222;
%kg, Copper weight
WeightSt=93.637535;
%kg, Stator weight
%
Rotor weight
WeightRtIron=38.891001;
%kg, Weight of Rotor Iron
WeightCage=7.135637;
%kg, Rotor Copper weight
WeightRt=46.026638;
%kg, Rotor weight
WeightM=139.664173;
%kg, Generator weight
%
Electrical parameter
sR=0.147872;
%Ohm, Stator resistance at 120.000000 grade C
rR=0.244374;
%Ohm, Rotor resistance at 160.000000 grade C
rm=351.641009;
%Ohm, Equivalent iron loss resistance
lh=0.076207;
%H
k_Carter=1.150417;
%Carter Factor
k_sat=2.723432;
% Saturated Factor
Js=3.955751;
%A/mm^2 Stator current density
Jr=4.000000;
%A.mm^2 Rotor current density
sSlotFill=0.613415;
%fill factor for stator
%
Magnetic induction
Bg_max=0.343346;
%Tair-gap magnetic induction
sBTooth=1.261657;
%Tmagnetic induction in stator tooth
sBCore=1.267994;
%Tmagnetic induction in stator yoke
rBTooth=0.884439;
%Tmagnetic induction in rotor
rBCore=1.579266;
%Tmagnetic induction in rotor yoke
%
Losses
spcu=815.361794;
%W, Stator windings losses
IronLoss=451.604701;
%W, Iron Loss
IronLossCore=391.095508; %W, Iron Loss
IronLossTeeth=60.509193; %W, Iron Loss
stLoss=1266.966495;
%W, Stator Loss
rpcu=859.179692;
%W, Rotor windings Loss
pmec=104.519051;
%W, Mechanical loss
%
Rotor mechanical stress
vmax=43.416810;
%m/s Maximum value of periphery speed
sigma_yoke=9.282569;
%N/mm^2 Yoke stress under itself weight
sigma_max=16.391962;
%N/mm^2 Maximum stress in rotor yoke
%
Torkue and power density
Tdn=0.527719;
%Nm/kg Rated torque per kilo
Tdk=1.307808;
%Nm/kg Peak torque per kilo
Pd=0.157521;
% kW/kg Power per kilo
%This outputs was produced using the next data as input:
%filename m1.m
%input parameter for induction machine design
Pn=22;
%kW,rated Power
nb=3000;
%rpm, rated (base) sped
nmax=2*nb;
Vn=400;
%V,rated line Votage
m=3;
%
Phase number
conex='y';
%
Stator windings conections
%
y for star and d for poligon conection
poles=2;
%
numbers of poles
etaSpec=0.928;
%
rated eficiency
cosPhiSpec=0.89;%
rated power factor
rpos='i';
%
rotor position: i -iner rotor, o - outer rotor
rwkind='s';
%
kind of rotor windings: s - shortchircuit
designAs='m';%
Design as: m-motor, g-generator
lg=.4;
%mm
length of airgap;
%Stator slots - Primary dimeuwnsions
sSlotShape = ['b'];% Stator slot shape
sMs=2.6;
%Mouth of stator slot mm.
sh4=0.8;
%height of slot mouth mm.sAlpha=22.5;
%degrees
sh2=0;
%in this case as winding fills slot
%Rotor slots - Primary dimensions
%rSlotSkew=27;%Rotor skew = 1/rSlotSkew of rotor periphery
rSlotShape= ['b'];%Rotor slot shape
rMs=1.2;
%Mouth of rotor slot mm.
rh1=0.5;
%charge of materials
Js=4;
%A/mm^2Stator current density
Jr=4;
%A/mm^2Rotor current density
Jendring=4;
%A/mm^2Current denssity in rotor end ring of rotor cage
elsp=16;
%kA/m
Specificate electric load
sBToothsp=1.4;%T
Specificate magnetic inductin in stator Tooth
sBYokesp=1.3;%T
Specificate magnetic inductin in stator yokerBToothsp=1.7;%T
Specificate magnetic inductin in rotor Tooth
rBYokesp=1.7;%T
Specificate magnetic inductin in rotor yoke
Bagsp=0.4 ;
%T
Specificate magnetic inductin in air gap
sSlotFills=0.6;%
Specificate stator sllot fill
%******************************--------*************************************
%Secondary data prescriptin
ParallelPaths=1;
lcpertau=3;
sSlotsPerPolPerPhase=3;
%
Slots per pole per phase
layers=2;
sStep=(m*sSlotsPerPolPerPhase-1)/(m*sSlotsPerPolPerPhase);%
Stator coill step
sOvehang_ins=2;%mm Stator overhang insulated, minimum distance between axe and overhang
delcmax=.75;
%mmMaximum diameter for elementary conductor in stator
rSlots=18;
sDeltaT=100;%Temperature rise in stator winding
rDeltaT =140;%Temperature rise in rotor winding
BoltHoles = 1;% Factor to allow for bolt holes in stator core
% = 1 if no bolt holes
% = 1.05 if bolt holes
FW = 5*Pn;
%W Friction and windage loss at full load
% Assumed 0.5% from Pn
M0=30*FW/(pi*nb);
constant;
%
get constant
dk66_65;
%
get magnetc features of lamination
file_results='rusur.m';
trun_file='tm1'; %Files in 'mat' format to save results for diffrent speed and voltage
IV.Caracteristici de functionare;
V. DESEN DE GABARIT
VI.Sectiuni
Dimensiuni crestatura statorica
Dimensiuni cresatatura rotorica:
VII.Calcul de incalzire Partile motorului care se dezvolta caldura sunt:infasurarile pachetul de tole si lagarele.
Pierderile de putere care apar in motor la functionarea acestuia in regimul nominal sunt:
- PCu1 = 815.36 ;
- PFe = 451.6 ;
- PAl2 = 859.17 ;
- Pmec = 104.51 ;
Se calculeaza incalzirea carcasei fata de mediul ambiant:
Unde :
;
unde Lv=1.73*B=440 mmAm ales KL=3,5Intre suprafata exterioara a pachetului de tole statoric si suprafata interioara a carcasei se formeaza un interstitiu , prin care se transmit pierderile din pachetul de tole statoric PFe si infasurarea statorica Pcu1;
Incalzirea pachetului de tole statoric fata de carcasa este:
Unde:
Incalzirea pachetului de tole statoric fata de mediul ambiant este:
Avem :
Incalzirea infasurarii statorului fata de mediul ambiant:
Acest motor are nevoie de o racire suplimentara cu ventilator fixat pe arbore;
Daca incalzirea motorului este suflata de aerul de racire(functionarea motorului cu ventilator), calculul anterior se va corecta astfel:
Deoarece suprafata S1 este suflata cu aer , in aceasta zona apare o imbunatatire a transmisiei de caldura.Viteza aerului se apreciaza la V=6-18 m/s, corespunzator turatiilor de 750-3000 rpm.Coeficientul de transmisie a caldurii pe partea suflata este:
;
am ales v=18 m/s corespunzator turatiei de 3000 rpmIncalzirea carcasei fata de mediul ambiant devine:
ceea ce conduce la modificarea incalzirii infasurarii statorice si a pachetului de tole statoric fata de mediul ambiant .
Incalzirile corespund claselor de izolatie B;VIII.Bibliografie
- I. Cioc, C. Nica : Proiectarea masinilor electrice
- Toma Dordea : Proiectarea masinilor electrice vol I+II
Constructia masinilor electrice
- I. Sora , I. Novac : Indrumator de proiectare
PAGE 6
_1241082059.unknown
_1241769395.unknown
_1241769489.unknown
_1241769790.unknown
_1241769872.unknown
_1241769636.unknown
_1241769406.unknown
_1241082164.unknown
_1241087256.unknown
_1241087576.unknown
_1241087109.unknown
_1241082083.unknown
_1241080243.unknown
_1241080261.unknown
_1210522058.unknown
_1211059671.unknown
_1241080232.unknown
_1210850896.unknown
_1210521328.unknown