56
Pressure measurements at high temperature: open issues and solutions Peter I. Dorogokupets Institute of the Earth’s Crust SB RAS, Irkutsk, Russia [email protected]

Pressure measurements at high temperature: open issues and solutions

  • Upload
    kolina

  • View
    33

  • Download
    0

Embed Size (px)

DESCRIPTION

Pressure measurements at high temperature: open issues and solutions. Peter I. Dorogokupets Institute of the Earth’s Crust SB RAS, Irkutsk, Russia [email protected]. Acknowledgments. Artem R. Oganov Lab. of Crystallography, ETH Zurich, Switzerland [email protected] - PowerPoint PPT Presentation

Citation preview

Page 1: Pressure measurements  at high temperature:  open issues and solutions

Pressure measurements at high temperature:

open issues and solutions

Peter I. DorogokupetsInstitute of the Earth’s Crust

SB RAS, Irkutsk, [email protected]

Page 2: Pressure measurements  at high temperature:  open issues and solutions

AcknowledgmentsArtem R. Oganov Lab. of Crystallography, ETH Zurich, Switzerland [email protected] Dewaele CEA/DPTA Bruyeres-le-Chatel, France [email protected] Loubeyre CEA/DPTA Bruyeres-le-Chatel, France

This work was supported by the Russian Foundation for Basic Research, Grant No. 05-05-64491.

Page 3: Pressure measurements  at high temperature:  open issues and solutions
Page 4: Pressure measurements  at high temperature:  open issues and solutions
Page 5: Pressure measurements  at high temperature:  open issues and solutions
Page 6: Pressure measurements  at high temperature:  open issues and solutions
Page 7: Pressure measurements  at high temperature:  open issues and solutions
Page 8: Pressure measurements  at high temperature:  open issues and solutions
Page 9: Pressure measurements  at high temperature:  open issues and solutions

Outline:

Intro.

Thermodynamics: EoS formulation

Best form of the ruby scale

EoS and thermodynamic behavior of Au, C, MgO, NaCl B1, NaCl B2, -Fe

Cross-check of EoS

Conclusion

Page 10: Pressure measurements  at high temperature:  open issues and solutions

IntroDorogokupets P.I., Oganov A.R. Ruby pressure scale: revision and alternatives // in Proceedings Joint 20th AIRAPT & 43th EHPRG Int. Conf. on High Pressure Science and Technology, June 27 to July 1, 2005, Karlsruhe, Germany (Forschungszentrum Karlsruhe, Karlsruhe, 2005). Дорогокупец П.И., Оганов А.Р. Уравнения состояния Al, Au, Cu, Pt, Ta и W и пересмотренная рубиновая шкала давлений // ДАН. 2006. Т. 410. № 2. 239–243. Dorogokupets P.I., Oganov A.R. Equations of State of Al, Au, Cu, Pt, Ta, and W and Revised Ruby Pressure Scale // Doklady Earth Scinces. 2006. V. 410. 1091-1095.Dewaele A., Loubeyre P., Occelli F., Mezouar M., Dorogokupets P.I., Torrent M. Quasihydrostatic equation of state of iron above 2 Mbar // Phys. Rev. Letters. 2006. V. 97. Art. No. 215504. Dorogokupets P.I., Oganov A.R. Ruby, metals, and MgO as alternative pressure scales: A semiempirical description of shock-wave, ultrasonic, x-ray, and thermochemical data at high temperatures and pressures // Phys. Rev. B 2007

Page 11: Pressure measurements  at high temperature:  open issues and solutions

ThermodynamicsHelmholtz free energy

),(

),(

),(

),(

)(0

TVF

TVF

TVF

TVF

VE

UF

def

el

anh

qh

U0 is the reference energy

E(V) is the cold part

Eqh(V,T) is the quasiharmonic part

Eanh(V,T) is the intrinsic anharmonicity

Eel(V,T) is the electronic contribution

Edef(V,T) is the thermal defects

Page 12: Pressure measurements  at high temperature:  open issues and solutions

Cold energy (Vinet form)

V

VPVKVK

V

VEVP

dP

dKxVVy

eyVKVE

T

y

d

)(d)(

d

)(d)(

12

3,)/(

,))1(1(11

9)(

3/13/10

)1200

Page 13: Pressure measurements  at high temperature:  open issues and solutions

Total quasi-harmonic energy:

Kut’in model

Einstein model

Page 14: Pressure measurements  at high temperature:  open issues and solutions

Kut’in model:see Kut’in et al.Rus. J. Phys. Chem. 72, 1567, 1998

11lnexp

11lnR

Tdd

TmFB

Bqh

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200

Temperature, K

He

at

cap

aci

ty

d =1

d =10

d =3

Page 15: Pressure measurements  at high temperature:  open issues and solutions

Intrinsic anharmonicity(Oganov, Dorogokupets, 2004)

.

12

1

6R

22/

/2

2

/

,,2

1

,,

,

,,

,

Te

e

e

axmF

T

T

T

T

jiji

m

jijianh

ji

jiji

ji

Page 16: Pressure measurements  at high temperature:  open issues and solutions

Electronic contribution(Zharkov, Kalinin, 1971)

.R2

3

R2

3),(

20

2

Txen

eTnTVF

g

el

Thermal defects contribution

T

HxSxTnF

hf

def expR2

3

Page 17: Pressure measurements  at high temperature:  open issues and solutions

Thermodynamic functions

S = –(F/T)V, E=F + TS,

P = –(F/V)T, H=E+PV, G=F+PV,

CV = (E/T)V, KT = –V(P/V)T,

(P/T)V = KT,

CP=CV+2TVKT, KS=KT+VT(KT)2/CV,

Page 18: Pressure measurements  at high temperature:  open issues and solutions

Hugoniot pressure

xx

EVEV

VPPH

2)1(1

])([)( 0

Page 19: Pressure measurements  at high temperature:  open issues and solutions

We use input data are unbiased by calibration

22 parameters to fit!

At zero pressure:Heat capacity and enthalpy

Thermal expansion coefficient or volume

Adiabatic bulk modulus (from ultrasonic measurements)

Temperature interval:

from 10 K to melting temperature

At high P-T:Shock wave data

Page 20: Pressure measurements  at high temperature:  open issues and solutions

Room T isotherms obtained after fitting:

Compared with static compression data with Mao 86 ruby calibration(A=1904, B=7.665)

Compared with static compression data with new ruby calibration (A=1885, B=10.4)

Page 21: Pressure measurements  at high temperature:  open issues and solutions

Best ruby pressure scale

0

0

/5.51

/1884

P

Aleksandrov form

Page 22: Pressure measurements  at high temperature:  open issues and solutions

Use of all available data

At zero pressure:Heat capacity and enthalpy Thermal expansion coefficient or volumeAdiabatic bulk modulus (from ultrasonic measurements)

Temperature interval:from 10 K to melting temperature

At high P-T:Shock wave dataPV and PVT measurements (at later stages of refinement)

Page 23: Pressure measurements  at high temperature:  open issues and solutions

Results

With our formalism we carry out a simultaneous processing of all the available measurements of the Cp, α, V, Ks and KT at zero pressure, static measurements of V on a room-temperature isotherm and at higher temperatures, shock-wave data, and calculate thermodynamic functions vs. T and P.

Ag, Al, Au, Cu, Pt, Ta, W, Mo, Pb, Fe, MgO, diamond, NaCl EoS have been calculated.

Page 24: Pressure measurements  at high temperature:  open issues and solutions

See Dorogokupets, Phys. Rev B, 2007

Page 25: Pressure measurements  at high temperature:  open issues and solutions

Comparison of calculated EoS and thermodynamic parameters with data

Page 26: Pressure measurements  at high temperature:  open issues and solutions

Au, heat capacity

-2

-1

0

1

2

0 50 100 150 200 250 300Temperature, K

(CP

exp-

CP

cal)/

CP

exp*

10

0, %

Geballe & Giauque (1952) Touloukiand & Buyco (1970)

S298=47.35 J/(mol K)AuB

Page 27: Pressure measurements  at high temperature:  open issues and solutions

Au, thermal expansion

3.E-05

4.E-05

5.E-05

6.E-05

7.E-05

100 300 500 700 900 1100 1300

Temperature, K

, 1/K

Touloukian et al (1975)

Novikova (1974)

AuC

Page 28: Pressure measurements  at high temperature:  open issues and solutions

Au, bulk moduli

120

130

140

150

160

170

180

0 300 600 900 1200

Temperature, K

Bul

k m

odul

i, G

Pa

Neighbours & Alers (1958) Chang & Himmel (1966) Collard & McLellan (1991) Shim et al (2002) Holzapfel et al (2001)

KS

KT

AuD

Page 29: Pressure measurements  at high temperature:  open issues and solutions

Au, 300 KK0=166.7 GPa, K′=6

-7

-5

-3

-1

1

3

0 20 40 60 80 100 120

Pressure (GPa)

P

(G

Pa

)

Dew aele et al (2004) Heinz & Jeanloz (1984) Takemura (2001) d111 Takemura (2001) d200 Chijioke et al. (2005) H2 Yagi et al. (2004)

Au

Page 30: Pressure measurements  at high temperature:  open issues and solutions

Au, 300 KK0=166.7 GPa, K′=6

-7

-5

-3

-1

1

3

0 50 100 150Pressure (GPa)

P

(G

Pa

)

Jamieson et al (1982) SWRI Anderson et al (1989) Chijioke et al (2005) SWRI Wang et al (2002) SWRI Shim et al (2002)Tsuchiya, 2003Boettger, 2003 Greeff & Graf (2004) Souvatzis et al. (2006)

Page 31: Pressure measurements  at high temperature:  open issues and solutions

Diamond, 300 K K0=443.16 GPa, K′=3.777

Diamond

-12

-10

-8

-6

-4

-2

0

2

0 50 100 150 200Pressure, GPa

P, G

Pa

Gillet et al (1999), original

Occelli, original, Mao ruby

Occelli, original, DO ruby

Page 32: Pressure measurements  at high temperature:  open issues and solutions

Diamond, heat capacity

5

10

15

20

25

30

300 700 1100 1500 1900 2300 2700

Temperature, K

CP,

CV,

J/(m

ol K

)

Gurvich et al. (1979) Robie et al. (1978) Victor (1962) Reeber & Wang (1996), Cv

Page 33: Pressure measurements  at high temperature:  open issues and solutions

Diamond, bulk moduli

350

370

390

410

430

450

0 500 1000 1500 2000 2500 3000Temperature, K

Bul

k m

odul

i, G

Pa

Zouboulis et al (1998)

McSkimin & Andreatch (1972)

KSKT

Page 34: Pressure measurements  at high temperature:  open issues and solutions

4.1

4.3

4.5

4.7

4.9

5.1

5.3

5.5

5.7

50 100 150 200 250 300 350Pressure (GPa)

Vol

ume

(cm

3 )Jephcoat et al. (1986)

Brown et al. (2000)

Mao et al. (1990)

Dewaele et al. (2006)

7000 K

5000 K

iron

Page 35: Pressure measurements  at high temperature:  open issues and solutions

-5

0

5

10

15

0 100 200 300Pressure, GPa

P

, GP

aDew aele 2006 He ruby DODew aele 2006 He W DODew aele 2006 Ne W DOBrow n, linearBrow n, quadraticBrow n, exp

iron

Page 36: Pressure measurements  at high temperature:  open issues and solutions

MgO, 300 K K0=160.3 GPa, K′=4.18

-3

-2

-1

0

1

2

3

0 10 20 30 40 50 60

Pressure, GPa

P

, GP

aSpeziale et al (2001) Mao rubyDewaele et al (2000) 300 KDewaele et al (2000) T>1750 KSpeziale et al (2001) DO rubyLi et al. (2006)

Page 37: Pressure measurements  at high temperature:  open issues and solutions

MgO, bulk moduli

-3

-2

-1

0

1

2

0 10 20 30 40 50 60

Pressure, GPa

K

S, %

Merkel et al (2002)

Zha et al (2000)

Sinogeikin and Bass (2000)

Li et al. (2006)

Page 38: Pressure measurements  at high temperature:  open issues and solutions

MgO, bulk moduli

80

100

120

140

160

0 500 1000 1500 2000 2500 3000

Temperature, K

Bu

lk n

od

uli,

GP

a

Isaak et al. (1989)Sumino et al. (1983)Anderson and Andreath (1966)Sinogeikin et al. (2000)Zouboulis & Grimsditch (1991)

KSKT

Page 39: Pressure measurements  at high temperature:  open issues and solutions

MgO, K0=160.3 GPa, K′=4.18

-2

-1.5

-1

-0.5

0

0.5

0 2 4 6 8 10Pressure (GPa)

P (

GP

a)

300 K 373 K 473 K

573 K 673 K 773 K

873 K 973 K 1073 K

1273 K 1673 K

Utsumi et al. (1998)

Page 40: Pressure measurements  at high temperature:  open issues and solutions

MgO, Zhang data fittedK0=161 GPa, K′=1.84

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

300 600 900Temperature (K)

P

(G

Pa

)

2.6 GPa

5.4 GPa

8.2 GPa

Zhang (2000)

Page 41: Pressure measurements  at high temperature:  open issues and solutions

NaCl B1, RT-isothermK0=23.9 GPa, K′=5.13

-1.5

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30

Pressure, GPa

P

(G

Pa)

Decker (1971) Brown, 1999 Fei, 1999, from MgOShock data Vaidya, Kennedy, 1971 Fritz et al. (1971) 300 K Birch, 1986Fritz et al 1971Ahrens & Johnson 1995 H

Page 42: Pressure measurements  at high temperature:  open issues and solutions

NaCl B1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 5 10 15 20 25 30

Pressure, GPa

P

, GP

a

Decker (1972), 1073K Brown, 1999, 1100 K Birch, 1986, 773 K Fei, 1999, from MgO, 1100 К

Page 43: Pressure measurements  at high temperature:  open issues and solutions

NaCl B1

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0 1 2 3

Pressure, GPa

P

(G

Pa)

298 373473 573

673 773

Boehler & Kennedy (1980)

Page 44: Pressure measurements  at high temperature:  open issues and solutions

NaCl B1, bulk moduli

10

15

20

25

0 300 600 900Temperature, K

Bul

k m

odul

i, G

Pa

Yamamoto et al., 1987Fugate, Schuele, 1966Spetzler et al., 1972Slagle, McKinstry, 1967

KS

KT

Page 45: Pressure measurements  at high temperature:  open issues and solutions

NaCl B1, bulk moduli

2535455565758595

105115125135

0 5 10 15 20 25 30Pressure, GPa

KS,

GP

a

Kinoshita et al., 1979Mueller et al., 2003Frankel et al., 1976thisMorris et al., 1976

Page 46: Pressure measurements  at high temperature:  open issues and solutions

NaCl B2, RT-isothermK0=37.04 GPa, K′=4.99

10

20

30

40

50

60

70

80

13 15 17 19 21

V, A

Pre

ssu

re (

GP

a)

Sata MgO SpezialeSata Pt HolmesOno Au AndersonOno Au DOHJ1984FritzAltshulerThielMarsh 1Marsh 2TruninFei (2006) AGU

B1 Hugoniot

B2 Hugoniot

B2 300 K

B1 300 K

Page 47: Pressure measurements  at high temperature:  open issues and solutions

NaCl B2, RT-isothermK0=37.04 GPa, K′=4.99

0

20

40

60

80

100

120

140

11 13 15 17 19 21 23 25 27V, A

Pre

ssu

re (

GP

a)

Sata MgOSpezialeSata Pt Holmes

Ono Au Anderson

Ono Au DO

Hugoniot

300 K

Altshuler

Thiel

Marsh 1

Marsh 2

Trunin

Fei (2006) AGU

Page 48: Pressure measurements  at high temperature:  open issues and solutions

Two materials are compressed together in a high pressure/high temperature apparatus and their V is measured

Pressure given by their EoS are compared

If same pressure, validation of the EoS

Cross-check between EoS at high T

Page 49: Pressure measurements  at high temperature:  open issues and solutions

Comparison NaCl B2 and -Fe

20

30

40

50

60

70

80

20 30 40 50 60 70 80Pressure (GPa) e-Fe Dewaele 2006

Pre

ssu

re (

GP

a)

Na

Cl B

2

Seagle et al 2006 300 K

Seagle et al 2006 ~2000 KSeagle 2006 eFe Mao NaCl Fei

Seagle 2006 original

Within ~7GPa

Page 50: Pressure measurements  at high temperature:  open issues and solutions

Au-MgO: Inoue et al. (2006) Phys. Chem. Minerals 33, 106.

10

15

20

25

10 15 20 25

Pressure MgO (GPa)

Pre

ssu

re A

u (

GP

a)

300 K

1473 K

1573 K

1673 K

1773 K

Page 51: Pressure measurements  at high temperature:  open issues and solutions

K. Litasov et al. EPSL 238 (2005) 311

21

22

23

24

25

21 22 23 24 25

Pressure MgO (GPa)

Pre

ss

ure

Au

(G

Pa

) 1273

1473

1673

1873

Page 52: Pressure measurements  at high temperature:  open issues and solutions

20

22

24

26

20 22 24 26Pressure MgO (GPa)

Pre

ssu

re A

u (

GP

a)

Matsui and Nishiyama (2003)

Nishiyama et al (2004)

b

1873 K

Page 53: Pressure measurements  at high temperature:  open issues and solutions

Fei et al. (2004). PEPI, 143-144, 515

8

10

12

14

16

18

20

22

24

26

8 10 12 14 16 18 20 22 24 26

Pressure MgO (GPa)

Pre

ss

ure

Au

(G

Pa

)

1273 1473

1673 1873

2073 2173

21

22

23

24

25

26

21 22 23 24 25 26

Pressure MgO (GPa)

Pre

ssu

re A

u (

GP

a)

1673

1873

2023

2173

10

15

20

25

30

10 15 20 25 30

Pressure Pt (GPa)

Pre

ssu

re A

u (

GP

a)

300

1473

1673

1873

MgO and Au EoS are within ~1 GPa at P<30 GPa, T<2200K

Page 54: Pressure measurements  at high temperature:  open issues and solutions

Hirose et al. (2006). Geophys. Res. Lett. 33, L01310.

90

95

100

105

110

115

120

90 95 100 105 110 115 120

Pressure MgO Speziale et al. (2001) (GPa)

Pre

ssu

re A

u (

GP

a) MgO and Au DO

Au Tsuchiya (2003)

Au Fei et al. (2004) Au Shim et al. (2002)

2330 K

300 K

1340 Kb

Hirose et al. (2006)

MgO and Au EoS are within ~3 GPa at P<120 GPa, T<2300K

Page 55: Pressure measurements  at high temperature:  open issues and solutions

ConclusionsWe have proposed a ruby pressure scale based on precise measurements of Dewaele et al. [2004, 2006]. The obtained ruby pressure scale agrees within 2% with the most recent ruby pressure scales.Our EoSs of Al, Au, Cu, Pt, Ta, W, MgO, C, NaCl are consistent with shock-wave and X-ray data and with numerous measurements of the heat capacity, volume, adiabatic bulk moduli, etc. at zero pressure.The EoSs of Au and Pt agree with the EoSs of Ag and MgO, constructed on independent measurements. The obtained P-V-T EoSs enable consistent pressure measurement using EoSs of any of the reference substances (Ag, Al, Au, Cu, Pt, Ta, W, MgO). This solves problems of inconsistency between different pressure scales and enables accurate pressure measurement at elevated temperatures, where the ruby scale cannot be used.

Page 56: Pressure measurements  at high temperature:  open issues and solutions