44
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/245229809 Presentation CCNC 2011 delta v5 Data · July 2013 CITATIONS 0 READS 20 6 authors, including: Some of the authors of this publication are also working on these related projects: H2020 Wi-5 (What to do With the Wi-Fi Wild West) View project Wi-5: What to do With the Wi-Fi Wild West View project Jose Saldana University of Zaragoza 97 PUBLICATIONS 376 CITATIONS SEE PROFILE Julian Fernandez Navajas University of Zaragoza 127 PUBLICATIONS 640 CITATIONS SEE PROFILE All content following this page was uploaded by Jose Saldana on 16 May 2014. The user has requested enhancement of the downloaded file.

Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/245229809

Presentation CCNC 2011 delta v5

Data · July 2013

CITATIONS

0READS

20

6 authors, including:

Some of the authors of this publication are also working on these related projects:

H2020 Wi-5 (What to do With the Wi-Fi Wild West) View project

Wi-5: What to do With the Wi-Fi Wild West View project

Jose Saldana

University of Zaragoza

97 PUBLICATIONS   376 CITATIONS   

SEE PROFILE

Julian Fernandez Navajas

University of Zaragoza

127 PUBLICATIONS   640 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Jose Saldana on 16 May 2014.

The user has requested enhancement of the downloaded file.

Page 2: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

Presentación

Jose Saldana

Jenifer Murillo

Julián Fernández Navajas

José Ruiz Mas

Eduardo Viruete Navarro

José I. Aznar

O M U N I C A C I O N E S

TRUPO DE

CECNOLOGÍAS

GDE LAS

CPS - University of Zaragoza, Spain

Page 3: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Index

Page 4: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

3

Introduction

The use of Internet for multimedia transmission is growing as bandwidth increases.

Services with hard real-time

requirements:

- VoIP: Voice over IP

- Videoconferencing

- Online Gaming

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Page 5: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

4

RTP packet overhead

VoIP packet with 2 G.729a samples

Efficiency: 33% for IPv4

IP header UDP header RTP header Sample Sample

8 bytes20 bytes 12 bytes 10 bytes 10 bytes

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Page 6: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

5

Two possible improvements Improvement 1: RTP compression schemes:

- CRTP: RFC 2508, February 1999

- ECRTP: RFC 3545, July 2003: Enhanced CRTP for scenarios with packet loss, packet reordering and long delays.

- ROHCv2: RFC 5225, April 2008

They use the repeatability of IP/UDP/RTP headers to compress them.

Problem: Only hop-by-hop. Solution: tunneling.

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Page 7: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

6

Increasing the number of samples

Improvement 2: More samples in a single packet. If different flows share the same path (voice trunking)

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Page 8: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

7

Increasing the number of samples

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Page 9: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

8

IP header UDP header RTP header

IP header L2TP

Sample Sample IP header UDP header RTP header Sample Sample IP header UDP header RTP header Sample Sample

RH Sample Sample RH Sample Sample RH Sample Sample

PPP PPPMux PPPMux PPPMux

TCRTP: Tunneling Multiplexed Compressed RTP

(RFC 4170)

- Header compression: ECRTP (40 to 5 bytes)

- Multiplexing: PPPMux

- Tunneling: L2TPv3

Reducing overhead, bandwidth saving

Real scale

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Page 10: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

9

IP header UDP header RTP header

IP header L2TP

Sample Sample IP header UDP header RTP header Sample Sample IP header UDP header RTP header Sample Sample

RH Sample Sample RH Sample Sample RH Sample Sample

PPP PPPMux PPPMux PPPMux

TCRTP: Tunneling Multiplexed Compressed RTP

(RFC 4170)

- Header compression: ECRTP (40 to 5 bytes)

- Multiplexing: PPPMux

- Tunneling: L2TPv3

Reducing overhead, bandwidth saving

Real scale

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Page 11: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

10

IP header UDP header RTP header

IP header L2TP

Sample Sample IP header UDP header RTP header Sample Sample IP header UDP header RTP header Sample Sample

RH Sample Sample RH Sample Sample RH Sample Sample

PPP PPPMux PPPMux PPPMux

TCRTP: Tunneling Multiplexed Compressed RTP

(RFC 4170)

- Header compression: ECRTP (40 to 5 bytes)

- Multiplexing: PPPMux

- Tunneling: L2TPv3

Reducing overhead, bandwidth saving

Real scale

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Page 12: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

11

IP header UDP header RTP header

IP header L2TP

Sample Sample IP header UDP header RTP header Sample Sample IP header UDP header RTP header Sample Sample

RH Sample Sample RH Sample Sample RH Sample Sample

PPP PPPMux PPPMux PPPMux

TCRTP: Tunneling Multiplexed Compressed RTP

(RFC 4170)

Real scale

- Header compression: ECRTP (40 to 5 bytes)

- Multiplexing: PPPMux

- Tunneling: L2TPv3

Reducing overhead, bandwidth saving

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Page 13: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

12

Disadvantages:

- New added delays (small)

- Processing charge

Increasing packet size: Good or bad?

Real scale

IP header UDP header RTP header

IP header L2TP

Sample Sample IP header UDP header RTP header Sample Sample IP header UDP header RTP header Sample Sample

RH Sample Sample RH Sample Sample RH Sample Sample

PPP PPPMux PPPMux PPPMux

TCRTP: Tunneling Multiplexed Compressed RTP

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Page 14: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

13

Influence of the router

- Packet loss can be modified with the change of packet size, depending on the policy of the router’s buffer.

- The amount and size distribution of background traffic will affect the real-time traffic.

- We will use R-factor for comparatives. Takes into account delay and packet loss.

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Page 15: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

14

Buffer size and buffer policies - We will compare

- High-capacity buffer

- Time-limited buffer (80 ms)

IP network

MUX DEMUX .

.

.

.

.

.

RTP RTP multiplexing RTP

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Page 16: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

15

High capacity buffer - 1Mbps shared. 15 flows

60

65

70

75

80

85

400 450 500 550 600 650 700 750 800 850 900 950 1000

R

background traffic (kbps)

R factor15 RTP

15 TCRTP

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Page 17: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

16

High capacity buffer - 1Mbps shared. 15 flows

60

65

70

75

80

85

400 450 500 550 600 650 700 750 800 850 900 950 1000

R

background traffic (kbps)

R factor15 RTP

15 TCRTP

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Step-like graphs. When the bandwidth is not enough, the quality falls

Page 18: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

17

High capacity buffer - 1Mbps shared. 15 flows

60

65

70

75

80

85

400 450 500 550 600 650 700 750 800 850 900 950 1000

R

background traffic (kbps)

R factor15 RTP

15 TCRTP

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Bandwidth saving allows a bigger amount of background traffic

TCRTP Packet size: 550 bytes 172 kbps

Native RTP Packet size: 60 bytes 432 kbps

Page 19: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

18

Time-limited buffer - 1Mbps shared. 20 flows

60

62

64

66

68

70

72

74

76

78

80

82

400 450 500 550 600 650 700 750 800 850 900 950 1000

R-f

acto

r

background traffic (kbps)

R-factor20 RTP

20 TCRTP

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Effect of Bandwidth saving

Page 20: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

19

Time-limited buffer - 1Mbps shared. 20 flows

60

62

64

66

68

70

72

74

76

78

80

82

400 450 500 550 600 650 700 750 800 850 900 950 1000

R-f

acto

r

background traffic (kbps)

R-factor20 RTP

20 TCRTP

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Non step-like graphs. The bigger the packet size, the bigger the slope

Page 21: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

20

Time-limited buffer - 1Mbps shared. 20 flows

60

62

64

66

68

70

72

74

76

78

80

82

400 450 500 550 600 650 700 750 800 850 900 950 1000

R-f

acto

r

background traffic (kbps)

R-factor20 RTP

20 TCRTP

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Native RTP Packet size: 60 bytes 576 kbps

TCRTP Packet size: 550 bytes 225 kbps

Page 22: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

21

Time-limited buffer - Is it better to use only one tunnel or to

group calls into a number of tunnels?

50

55

60

65

70

75

80

85

400 450 500 550 600 650 700 750 800 850 900 950 1000

R

background traffic (kbps)

R factor

20 RTP

20 TCRTP

2x10 TCRTP

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Page 23: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

22

Motivation of this work

- Study the influence of different TCRTP multiplexing schemes on the perceived quality, depending on buffer policies.

- We will use 40 RTP flows sharing the same path, but divided on:

- l tunnels of k flows (l x k = 40)

- 1 tunnel of 40 flows 5 tunnels of 8 flows

- 2 tunnels of 20 flows 8 tunnels of 5 flows

- 4 tunnels of 10 flows 40 RTP flows

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Page 24: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Index

Page 25: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

24

General Scheme - Use of a testbed

Traffic

Generation

RouterTraffic

Capture

Real Traffic in a testbed

Network

delays

+

Dejitter

buffer

Offline post-processing

Traffic

Trace

Final

Results

VoIP

Background

Buffer

policies

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Page 26: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

25

Traffic generation - Background traffic

- 50% 40 bytes

- 10% 576 bytes

- 40% 1500 bytes

- Only UDP, in order to avoid flow control: always the same background traffic.

- Different rates to saturate the access router: 2Mbps.

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Page 27: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Index

Page 28: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

27

High capacity buffer

62

64

66

68

70

72

74

76

78

80

82

1200 1300 1400 1500 1600 1700 1800 1900 2000

R-f

acto

r

background traffic (kbps)

R-factor1x40 TCRTP

2x20 TCRTP

4x10 TCRTP

5x8 TCRTP

8x5 TCRTP

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Page 29: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

28

High capacity buffer

62

64

66

68

70

72

74

76

78

80

82

1200 1300 1400 1500 1600 1700 1800 1900 2000

R-f

acto

r

background traffic (kbps)

R-factor1x40 TCRTP

2x20 TCRTP

4x10 TCRTP

5x8 TCRTP

8x5 TCRTP

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Step-like graphs

Page 30: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

29

High capacity buffer

62

64

66

68

70

72

74

76

78

80

82

1200 1300 1400 1500 1600 1700 1800 1900 2000

R-f

acto

r

background traffic (kbps)

R-factor1x40 TCRTP

2x20 TCRTP

4x10 TCRTP

5x8 TCRTP

8x5 TCRTP

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

The bigger the bandwidth saving, the better the behaviour

Page 31: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

30

Time-limited buffer

46

50

54

58

62

66

70

74

78

82

1200 1300 1400 1500 1600 1700 1800 1900 2000

R-f

acto

r

background traffic (kbps)

R-factor1x40 TCRTP

2x20 TCRTP

4x10 TCRTP

5x8 TCRTP

8x5 TCRTP

No mux

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Page 32: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

31

Time-limited buffer

46

50

54

58

62

66

70

74

78

82

1200 1300 1400 1500 1600 1700 1800 1900 2000

R-f

acto

r

background traffic (kbps)

R-factor1x40 TCRTP

2x20 TCRTP

4x10 TCRTP

5x8 TCRTP

8x5 TCRTP

No mux

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

The graphs present a slope

Page 33: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

32

Time-limited buffer

46

50

54

58

62

66

70

74

78

82

1200 1300 1400 1500 1600 1700 1800 1900 2000

R-f

acto

r

background traffic (kbps)

R-factor1x40 TCRTP

2x20 TCRTP

4x10 TCRTP

5x8 TCRTP

8x5 TCRTP

No mux

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Not ordered by the bandwidth saving

4th

Page 34: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

33

Time-limited buffer

46

50

54

58

62

66

70

74

78

82

1200 1300 1400 1500 1600 1700 1800 1900 2000

R-f

acto

r

background traffic (kbps)

R-factor1x40 TCRTP

2x20 TCRTP

4x10 TCRTP

5x8 TCRTP

8x5 TCRTP

No mux

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Not ordered by the bandwidth saving

1st

Page 35: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

34

Time-limited buffer

0

2

4

6

8

10

12

14

1200 1300 1400 1500 1600 1700 1800 1900 2000

Pac

ket

Loss

(%

)

background traffic (kbps)

Percentage of Background Traffic Packet Loss1x40 TCRTP

2x20 TCRTP

4x10 TCRTP

5x8 TCRTP

8x5 TCRTP

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Ordered by bandwidth saving

Page 36: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Index

Page 37: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

36

Asymptotic bandwidth relationship

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

X

k

Bandwidth Saving X for p = 0.95 S=10 bytes

Xrh S=10

S=20 bytes

Xrh=20

S=30 bytes

Xrh S=30

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

BW compressed/BW native

Page 38: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

37

Asymptotic bandwidth relationship

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

X

k

Bandwidth Saving X for p = 0.95 S=10 bytes

Xrh S=10

S=20 bytes

Xrh=20

S=30 bytes

Xrh S=30

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

BW compressed/BW native

Bandwidth saving increase

Page 39: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

38

Linear packet size increase

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

byte

s

k

Packet sizeRTP S=10 bytes

RTP S=20 bytes

RTP S=30 bytes

TCRTP S=10 bytes

TCRTP S=20 bytes

TCRTP S=30bytes

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Page 40: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

39

Linear packet size increase

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

byte

s

k

Packet sizeRTP S=10 bytes

RTP S=20 bytes

RTP S=30 bytes

TCRTP S=10 bytes

TCRTP S=20 bytes

TCRTP S=30bytes

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Packet size increase

Page 41: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

40

Linear packet size increase

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

Pa

cke

t siz

e (

byte

s)

Bandwidth (kbps)

Packet size vs Bandwidth 1x40

2x20

4x10

5x8

8x5

40 RTP

1 tunnel of 40 flows

2 tunnels of 20 flows

4 tunnels of 10 flows

5 tunnels of 8 flows

8 tunnels of 5 flows

40 native RTP flows

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Page 42: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

41

Linear packet size increase

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

Pa

cke

t siz

e (

byte

s)

Bandwidth (kbps)

Packet size vs Bandwidth 1x40

2x20

4x10

5x8

8x5

40 RTP

Packet size increase

Bandwidth decrease

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Page 43: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP

42

Conclusions - The decision of the number of tunnels has

an influence on R-factor.

- The buffer policy has to be taken into account in order to take the correct decision. Previous measurements.

- The increase of packet size may increase packet loss, so it could be better to have a number of tunnels.

- Asymptotic behaviour.

INTRODUCTION MEASUREMENTS RESULTS DISCUSSION CONCLUSIONS

Page 44: Presentación · CCNC January 9-11, 2011. Las Vegas Influence of the Distribution of TCRTP Multiplexed flows on VoIP 4 RTP packet overhead VoIP packet with 2 G.729a samples

Presentación

Jose Saldana

Jenifer Murillo

Julián Fernández Navajas

José Ruiz Mas

Eduardo Viruete Navarro

José I. Aznar

O M U N I C A C I O N E S

TRUPO DE

CECNOLOGÍAS

GDE LAS

CPS - University of Zaragoza, Spain View publication statsView publication stats