164
Introduction PCES Forward UQ Sensitivity Challenges Summary References Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods Bert Debusschere , Habib Najm, Khachik Sargsyan, Cosmin Safta [email protected] Sandia National Laboratories, Livermore, CA USC UQ Summer School Debusschere – SNL Forward UQ

Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Embed Size (px)

DESCRIPTION

Overview presentation o non-intrusive Polynomial Chaos techniques

Citation preview

Page 1: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Polynomial Chaos based uncertainty propagationIntrusive and Non-Intrusive Methods

Bert Debusschere†, Habib Najm, Khachik Sargsyan, Cosmin Safta

[email protected]

Sandia National Laboratories,Livermore, CA

USC UQ Summer School

Debusschere – SNL Forward UQ

Page 2: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Acknowledgement

Omar Knio — Duke University, Raleigh, NCRoger Ghanem — University of Southern California, Los Angeles, CAOlivier Le Maître — LIMSI-CNRS, Orsay, Franceand many others ...

This work was supported by:

• US Department of Energy (DOE), Office of Advanced Scientific Computing Research (ASCR), ScientificDiscovery through Advanced Computing (SciDAC) and Applied Mathematics Research (AMR) programs.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary ofLockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contractDE-AC04-94AL85000.

Debusschere – SNL Forward UQ

Page 3: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

The Goals of this lecture

• Provide broad introduction to Polynomial Chaos-based forward UQ• Propagate uncertainties from inputs to model prediction• Only parametric uncertainties covered here, no model uncertainty

• What you should take away from this lecture• An understanding of Polynomial Chaos expansions to represent random

variables• An understanding of intrusive and non-intrusive uncertainty propagation

methods• An appreciation for some of the challenges and associated mitigation

approaches in forward UQ

• While this overview is broad, it is definitely not exhaustive

Debusschere – SNL Forward UQ

Page 4: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Outline

1 Introduction

2 Spectral Representation of Random Variables

3 Forward Propagation of Uncertainty

4 Sensitivity Analysis

5 Addressing Challenges for PCE-based Uncertainty QuantificationRepresenting Arbitrary RVsSparse Quadrature Approaches for High-Dimensional SystemsTaking Advantage of Sparsity in the SystemChoice of Observables in Oscillatory / Long Time Horizon SystemsStochastic Domain Decomposition ApproachesData Decomposition ApproachesSystems with Inherent Stochasticity

6 Summary

7 References

Debusschere – SNL Forward UQ

Page 5: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Polynomial Chaos Expansions (PCEs)

• Representation of random variables with PCEs• Convergence• Galerkin projection• Basis types

Debusschere – SNL Forward UQ

Page 6: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

One-Dimensional Hermite Polynomials

ψ0(x) = 1

ψk (x) = (−1)k ex2/2 dk

dxk e−x2/2, k = 1, 2, . . .

ψ1(x) = x , ψ2(x) = x2 − 1, ψ3(x) = x3 − 3x , . . .

The Hermite polynomials form an orthogonal basis over [−∞,∞] withrespect to the inner product

〈ψiψj〉 ≡1√2π

∫ ∞−∞

ψi (x)ψj (x)w(x)dx = δij

⟨ψ2

i

⟩where w(x) is the weight function

w(x) = e−x2/2

Note that e−x2/2√

2πis the density of a standard normal random variable

Debusschere – SNL Forward UQ

Page 7: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

One Dimensional Polynomial Chaos Expansion

Consider:

u =P∑

k=0

ukψk (ξ)

• u: Random Variable (RV)represented with 1D PCE

• uk : PC coefficients (deterministic)• ψk : 1D Hermite polynomial of

order k• ξ: Gaussian RV

0.0 0.5 1.0 1.5 2.0u

0

1

2

3

4

5

Prob. Dens. [-]

u = 0.5 + 0.2ψ1(ξ) + 0.1ψ2(ξ)

A random quantity is represented with an expansion consisting of functions ofrandom variables multiplied with deterministic coefficients• Set of deterministic PC coefficients fully describes RV• Separates randomness from deterministic dimensions

Debusschere – SNL Forward UQ

Page 8: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Multidimensional Hermite Polynomials

The multidimensional Hermite polynomial Ψi (ξ1, . . . , ξn) is a tensor product ofthe 1D Hermite polynomials, with a suitable multi-index αi = (αi

1, αi2, . . . , α

in),

Ψi (ξ1, . . . , ξn) =n∏

k=1

ψαik(ξk )

For example, 2D Hermite polynomials:

i p Ψi

0 0 11 1 ξ1

2 1 ξ2

3 2 ξ21 − 1

4 2 ξ1ξ2

5 2 ξ22 − 1

... ... ...

Debusschere – SNL Forward UQ

Page 9: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Multidimensional Inner Products — Orthogonality

〈Ψi Ψj〉 ≡∫. . .

∫Ψi (ξ)Ψj (ξ)g(ξ1)g(ξ2) · · · g(ξn)dξ1dξ2 · · · dξn

=n∏

k=1

⟨ψαi

k(ξk )ψ

αjk(ξk )

⟩= δij

⟨Ψ2

i

⟩where, g(ξ) =

e−ξ2/2

√2π

such that,

u =P∑

k=0

uk Ψk ⇒ 〈Ψiu〉 =P∑

k=0

uk 〈Ψi Ψk 〉 = ui

⟨Ψ2

i

⇒ ui =〈uΨi〉⟨

Ψ2i

Debusschere – SNL Forward UQ

Page 10: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Multidimensional Polynomial Chaos Expansion

Consider:

u =P∑

k=0

uk Ψk (ξ1, . . . , ξn)

• u: Random Variable (RV) represented with multi-D PCE• uk : PC coefficients (deterministic)• Ψk : Multi-D Hermite polynomials up to order p• ξi : Gaussian RV• n: Dimensionality of stochastic space• P + 1: Number of PC terms: P + 1 = (n+p)!

n!p!

The number of stochastic dimensions represents the number of independentinputs, degrees of freedom that affect the random variable u• E.g. one stochastic dimension per uncertain model parameter• Contributions from each uncertain input can be identified• Compact representation of a random variable and its dependencies

Debusschere – SNL Forward UQ

Page 11: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

More Formally: Probability Spaces and Random Variables

• Let (Θ,S,P) be a probability space• Θ is an event space• S is a σ-algebra on Θ• P is a probability measure on (Θ,S)

• Random variables are functions X : Θ→ R with a measurecorresponding to their image:• if X−1(A) ∈ S, then define µ(A) = P(X−1(A)).• p(x) = dµ/dx : the density of the random variable X (with respect to

Lebesgue measure on R).• Expectation: 〈f 〉 =

∫f dµ =

∫f p(x) dx

• Let ξ : Θ→ RN such that for i = 1, . . . ,N each ξi : Θ→ R, be a set ofrandom variables

• S(ξ): σ-algebra generated by the set ξ of random variables• L2(Θ,S(ξ),P): Hilbert space of real-valued random variables defined on

(Θ,S(ξ),P) with finite second moments

[Ernst et al. 2011]

Debusschere – SNL Forward UQ

Page 12: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Convergence Theorem

A random variable u(θ) in L2(Θ,S(ξ),P) can be described bya Polynomial Chaos (PC) expansion in terms of:the infinite-dimensional i.i.d. Gaussian basis ξ = {ξi (θ)}∞i=1;

u(θ) = a0Γ0 +∞∑

i1=1

ai1 Γ1(ξi1 (θ))

+∞∑

i1=1

∞∑i2=1

ai1 i2 Γ2(ξi1 (θ), ξi2 (θ))

+∞∑

i1=1

∞∑i2=1

∞∑i3=1

ai1 i2 i3 Γ3(ξi1 (θ), ξi2 (θ), ξi3 (θ)) + . . .

where Γp is the Polynomial Chaos of order p, Γ0 = 1, and

Γp(ξi1 , . . . , ξip ) = (−1)pe12 ξ

T ξ ∂p

∂ξi1 . . . ∂ξipe−

12 ξ

T ξ

Debusschere – SNL Forward UQ

Page 13: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Notes on the PC construction

• The Polynomial Chaoses are by construction orthogonal withrespect to the Gaussian probability measure• They are thus identical with the corresponding multidimensional

Hermite Polynomials• The first four PCs are given by

Γ0 = 1

Γ1(ξi ) = ξi

Γ2(ξi1 , ξi2 ) = ξi1ξi2 − δi1 i2

Γ3(ξi1 , ξi2 , ξi3 ) = ξi1ξi2ξi3 − ξi1δi2 i3 − ξi2δi1 i3 − ξi3δi1 i2

. . .

[R.G. Ghanem and P.D. Spanos, 1991]

Debusschere – SNL Forward UQ

Page 14: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

A more compact notation ... and finite dimensionality and order

• An L2 random variable u(x , t , θ) can be described bya PC expansion in terms of:• Hermite polynomials Ψk , k = 1, . . . ,∞;• the associated infinite-dimensional Gaussian basis{ξi (θ)}∞i=1;• spectral mode strengths uk (x , t), k = 1, . . . ,∞.

• Truncated to finite dimension n and order p, the PC expansion for uis written as

u(x , t , θ) 'P∑

k=0

uk (x , t)Ψk (ξ(θ))

where ξ(θ) = {ξ1(θ), · · · , ξn(θ)}, and P + 1 = (n+p)!n!p!

Debusschere – SNL Forward UQ

Page 15: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Generalized Polynomial Chaos

PC Type Domain Density w(ξ) Polynomial Free parameters

Gauss-Hermite (−∞,+∞) 1√2π

e−ξ22 Hermite none

Legendre-Uniform [−1, 1] 12 Legendre none

Gamma-Laguerre [0,+∞) xαe−ξΓ(α+1)

Laguerre α > −1

Beta-Jacobi [−1, 1] (1+ξ)α(1−ξ)β

2α+β+1B(α+1,β+1)Jacobi α > −1, β > −1

Inner product: 〈ψiψj〉 ≡∫ b

a ψi (ξ)ψj (ξ)w(ξ)dξ

• Wiener-Askey scheme provides a hierarchy of possible continuous PCbases, see Xiu and Karniadakis, SISC, 2002.• Legendre-Uniform PC is a special case of Beta-Jacobi PC• Beta-Jacobi PC allows tailored accuracy of the PC representation across the

domain

• Input parameter domain often dictates the most convenient choice of PC• Polynomials functions can also be tailored to be orthogonal w.r.t.

chosen, arbitrary density

Debusschere – SNL Forward UQ

Page 16: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Postprocessing / Analysis

• Moments• Plotting PDFs of RVs represented with PCEs• When is a PCE accurate enough?

Debusschere – SNL Forward UQ

Page 17: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Moments of RVs described with PCEs

u =P∑

k=0

uk Ψk (ξ)

• Expectation: 〈u〉 = u0

• Variance σ2

σ2 =⟨

(u − 〈u〉)2⟩

=

⟨(

P∑k=1

uk Ψk (ξ))2

=

⟨P∑

k=1

P∑j=1

ujuk Ψj (ξ)Ψk (ξ)

=P∑

k=1

P∑j=1

ujuk 〈Ψj (ξ)Ψk (ξ)〉

=P∑

k=1

u2k

⟨Ψk (ξ)2

⟩Debusschere – SNL Forward UQ

Page 18: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Plotting PDFs of RVs corresponding to PCEs

u =P∑

k=0

uk Ψk (ξ)

• Analytical formula formula for PDF(u) exists• Involves polynomial root finding, and is hard to generalize to multi-D

• PCE is cheap to sample• Brute-force sampling and bin samples into histogram• Use Kernel Density Estimation (KDE) to get smoother PDF with fewer

samples ui

PDF(u) =1

Nsh

Ns∑i=1

K(

u − ui

h

)K is the kernel, h is the bandwidth

Debusschere – SNL Forward UQ

Page 19: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Comparison of histograms and KDE

Source Wikipedia, Drleft; licensed under the Creative Commons Attribution-ShareAlike 3.0 License

• Bandwidth h needs to be chosen carefully to avoid oversmoothing

Debusschere – SNL Forward UQ

Page 20: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

How do I know my PCE is converged?

• Approximation error in PCE is topic of a lot of research• Rules of thumb:

• Higher order PC coefficients should decay• Increase order until results no longer change• Not always fail-proof ...

Debusschere – SNL Forward UQ

Page 21: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Propagation of Uncertain Inputs Represented with PCEs

• Galerkin projection approaches project uncertain quantity onto spacecovered by PC basis functions• Relying on orthogonality of basis functions

uk =〈uΨk 〉⟨

Ψ2k

⟩ , k = 0, . . . ,P

• Residual orthogonal to space of basis functions• Two different approaches

• Intrusive: project governing equations• Non-intrusive: project sampled model outpus

• Collocation approaches• Match PCE to random variable at chosen sample points

Debusschere – SNL Forward UQ

Page 22: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Intrusive Spectral Stochastic UQ Formulation: ODE Example

• Sample ODE with parameter λ:

dudt

= λu

• Let λ be uncertain; introduce ξ ∼ N (0, 1).• Express λ and u using PCEs in ξ:

λ =P∑

k=0

λk Ψk (ξ), u(t) =P∑

k=0

uk (t)Ψk (ξ)

• Substitute in ODE and apply a Galerkin projection on Ψi (ξ),

Debusschere – SNL Forward UQ

Page 23: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Galerkin Projection on Ψi (ξ)

ddt

(P∑

k=0

uk (t)Ψk (ξ)

)=

P∑p=0

λpΨp(ξ)

P∑q=0

uq(t)Ψq(ξ)

P∑

k=0

duk (t)dt

Ψk (ξ) =P∑

p=0

P∑q=0

λpuq(t)Ψp(ξ)Ψq(ξ)

⟨P∑

k=0

duk (t)dt

Ψk (ξ)Ψi (ξ)

⟩=

⟨P∑

p=0

P∑q=0

λpuq(t)Ψp(ξ)Ψq(ξ)Ψi (ξ)

⟩P∑

k=0

duk (t)dt

〈Ψk (ξ)Ψi (ξ)〉 =P∑

p=0

P∑q=0

λpuq(t) 〈Ψp(ξ)Ψq(ξ)Ψi (ξ)〉

dui

dt

⟨Ψ2

i

⟩=

P∑p=0

P∑q=0

λpuq 〈ΨpΨqΨi〉

Debusschere – SNL Forward UQ

Page 24: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Resulting Spectral ODE system

• (P + 1)-dimensional ODE system

dui

dt=

P∑p=0

P∑q=0

λpuqCpqi , i = 0, . . . ,P

where Cpqi = 〈ΨpΨqΨi〉 /⟨Ψ2

i⟩

• The tensor Cpqi can be evaluated once and stored for any given PCorder and dimension• This tensor is sparse, i.e. many elements are zero

Debusschere – SNL Forward UQ

Page 25: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

1D 4th-Order Cijk Example : Hermite polynomials

〈Ψi Ψj Ψk 〉 value〈Ψ0Ψ0Ψ0〉 1〈Ψ0Ψ1Ψ1〉 1〈Ψ0Ψ2Ψ2〉 2〈Ψ0Ψ3Ψ3〉 6〈Ψ0Ψ4Ψ4〉 24〈Ψ1Ψ1Ψ2〉 2〈Ψ1Ψ2Ψ3〉 6〈Ψ1Ψ3Ψ4〉 24〈Ψ2Ψ2Ψ2〉 8〈Ψ2Ψ2Ψ4〉 24〈Ψ2Ψ3Ψ3〉 36〈Ψ2Ψ4Ψ4〉 192〈Ψ3Ψ3Ψ4〉 216〈Ψ4Ψ4Ψ4〉 1728

k⟨Ψ2

k⟩

0 11 12 23 64 24

• Cijk = 〈Ψi Ψj Ψk 〉 /⟨Ψ2

k⟩

• and,

〈Ψi Ψj Ψk 〉 = 〈Ψi Ψk Ψj〉 =

〈Ψj Ψi Ψk 〉 = 〈Ψj Ψk Ψi〉 =

〈Ψk Ψi Ψj〉 = 〈Ψk Ψj Ψi〉

• with other not-reported〈Ψi Ψj Ψk 〉 zero

Debusschere – SNL Forward UQ

Page 26: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

1D 4th-Order Cijk Example : Legendre polynomials

〈Ψi Ψj Ψk 〉 value〈Ψ0Ψ0Ψ0〉 1〈Ψ0Ψ1Ψ1〉 1/3〈Ψ0Ψ2Ψ2〉 1/5〈Ψ0Ψ3Ψ3〉 1/7〈Ψ0Ψ4Ψ4〉 1/9〈Ψ1Ψ1Ψ2〉 2/15〈Ψ1Ψ2Ψ3〉 3/35〈Ψ1Ψ3Ψ4〉 4/63〈Ψ2Ψ2Ψ2〉 2/35〈Ψ2Ψ2Ψ4〉 2/35〈Ψ2Ψ3Ψ3〉 4/105〈Ψ2Ψ4Ψ4〉 ≈0.029〈Ψ3Ψ3Ψ4〉 ≈0.026〈Ψ4Ψ4Ψ4〉 ≈0.018

k⟨Ψ2

k⟩

0 11 1/32 1/53 1/74 1/9

• Cijk = 〈Ψi Ψj Ψk 〉 /⟨Ψ2

k⟩

• and,

〈Ψi Ψj Ψk 〉 = 〈Ψi Ψk Ψj〉 =

〈Ψj Ψi Ψk 〉 = 〈Ψj Ψk Ψi〉 =

〈Ψk Ψi Ψj〉 = 〈Ψk Ψj Ψi〉

• with other not-reported〈Ψi Ψj Ψk 〉 zero

Debusschere – SNL Forward UQ

Page 27: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Pseudo-Spectral Construction–1

w = λu2v , u =P∑

k=0

uk Ψk , similarly for λ & v

Spectral:

wi =⟨λu2v

⟩i

=P∑

j=0

P∑k=0

P∑l=0

P∑m=0

λjuk ulvm 〈Ψj Ψk Ψl Ψm〉i , i = 0, . . . ,P

• The corresponding tensor of basis product expectations becomes toolarge to pre-compute and store

Pseudo-Spectral: Project each PC product onto a (P + 1)-polynomial beforeproceeding further, thus:

Debusschere – SNL Forward UQ

Page 28: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Pseudo-Spectral Construction–2

w = uv : wi = 〈uv〉i =P∑

j=0

P∑k=0

uk vj 〈Ψk Ψj〉i , i = 0, . . . ,P

w = uw : wi = 〈uw〉i =P∑

j=0

P∑k=0

uk wj 〈Ψk Ψj〉i , i = 0, . . . ,P

w = λw : wi = 〈λw〉i =P∑

j=0

P∑k=0

λk wj 〈Ψk Ψj〉i , i = 0, . . . ,P

• Aliasing errors• Efficiency, and convenience

[Debusschere et al., SIAM J. Sci. Comp., 2005.]

Debusschere – SNL Forward UQ

Page 29: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Intrusive propagation through non-polynomial functions

Addition, subtraction, and product allow (pseudo-)spectral evaluation of allpolynomial functions

How to propagate PC expansions ({uk} ⇒ {vk}) through transcendentalfunctions

v =1u, v = ln u, or v = eu

• Use local polynomial approximations, e.g. Taylor series• E.g. eu = 1 + u

1!+ u2

2!+ u3

3!+ . . .

• Issues:• Convergence issues• High-order PC multiplications lead to aliasing• Instabilities

• Write system of equations for output• Integration approach• Borchardt-Gauss Algorithm: Arithmetic-Geometric Mean (AGM) series

[Debusschere et al., SISC 2005, McKale, Texas Tech, M.S. Thesis, 2011]

Debusschere – SNL Forward UQ

Page 30: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Inversion and division can be done without Taylor series

• Assume three stochastic variables u, v, and w

w =uv⇒ vw = u

• Mode k of the stochastic product

〈vw〉k =P∑

m=0

P∑l=0

Cklmvl · wm = uk

• System of P + 1 linear algebraic equations in wm with known uk and vl ,

Vkm =P∑

l=0

Cklmvl , Vw = u

• More robust than Taylor series expansion for 1/u• What about the condition number of V ?

Debusschere – SNL Forward UQ

Page 31: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Integration approach for non-polynomial functions

• Consider the ODE dudx = u, with solution u = ex

• ex can be obtained from

du = udx ⇒ ex − exo =

∫ x

xo

u dx

• Similarly for e−x2, and ln(x)

e−x2− e−x2

o =

∫ x

xo

−2xu dx , ln(x)− ln(xo) =

∫ x

xo

dxx

• Agrees well with directly sampled pdf if PC order is high enough toresolve pdf of solution

Debusschere – SNL Forward UQ

Page 32: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

A More General Integration approach for irrational functions

• To evaluate u(x), x =∑P

k=0 xk Ψk , u =∑P

k=0 uk Ψk ,• use a deterministic IC xa such that u(xa) is known• express u = du/dx = f (u, x);

... require: f is a rational function

... ensures that (u)k are found from the uk and xk coeffs• evaluate the integral:

uk (xb)− uk (xa) =P∑

j=0

∫ (xb)j

(xa)j

P∑i=0

Cijk (u)i dxj

• ok for ex , ex2, and ln(x), with u = u, 2xu, and 1/x resp.

• but not for esin x , with u = u cos x

• CPU-intensive, only slightly more robust than Taylor series

Debusschere – SNL Forward UQ

Page 33: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Pseudo-spectral overloading of operations

• Construction allows for a general representation using pseudo-spectral(PS) overloaded operations.• E.g. multiplication operation ’∗’

w = λ ∗ u ∗ u ∗ v

• Each deterministic function multiplication is transformed into acorresponding polynomial chaos product

• Potential meta-code: take a general deterministic code function F (u),produce a pseudo-spectral stochastic function F (u)

• Possibility of transforming legacy deterministic code into correspondingpseudo-spectral stochastic code.

• UQToolkit: contains library of utilities for operations on random variablesrepresented with PCEs

Debusschere – SNL Forward UQ

Page 34: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Uncertainty Quantification Toolkit (UQTk)

• A library of C++ and Matlab functions for propagation of uncertaintythrough computational models

• Mainly relies on spectral Polynomial Chaos Expansions (PCEs) forrepresenting random variables and stochastic processes

• Target usage:• Rapid prototyping• Algorithmic research• Tutorials / Educational

• Version 1.0 released under the GNU Lesser General Public License• Downloadable from http://www.sandia.gov/UQToolkit/

Debusschere – SNL Forward UQ

Page 35: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

UQTk contents and development/release plans

• Currently released (http://www.sandia.gov/UQToolkit/)• C++ Tools for intrusive UQ with PCEs

• Under production, planned release Fall 2012• C++ Tools for non-intrusive UQ• Matlab tools for intrusive and non-intrusive UQ• Karhunen-Loève decomposition• Bayesian inference tools• Many more examples and documentation

• Under development• Adding support for multiwavelet based stochastic domain decompositions• Support for arbitrary basis types

Debusschere – SNL Forward UQ

Page 36: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

PCEs in the UQToolkit

// Initialize PC classint ord = 5; // Order of PCEint dim = 1; // Number of uncertain parametersPCSet myPCSet("ISP",ord,dim,"LU"); // Legendre-Uniform PCEs

// Initialize PC classint ord = 5; // Order of PCEint dim = 1; // Number of uncertain parametersPCSet myPCSet("NISP",ord,dim,"LU"); // Legendre-Uniform PCEs

• Currently support Wiener-Hermite, Legendre-Uniform, andGamma-Laguerre (limited), Jacobi-Beta (development version)

• PCSet class initializes PC basis type and pre-computes informationneeded for working with PC expansions

Debusschere – SNL Forward UQ

Page 37: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Operations on PCEs in the UQToolkit

// PC coefficients in double*double* a = new double[npc];double* b = new double[npc];double* c = new double[npc];

// Initializationa[0] = 2.0;a[1] = 0.1;...// Perform some arithmeticmyPCSet.Subtract(a,b,c);myPCSet.Prod(a,b,c);myPCSet.Exp(a,c);myPCSet.Log(a,c);

// PC coefficients in ArraysArray1D<double> aa(npc,0.e0);Array1D<double> ab(npc,0.e0);Array1D<double> ac(npc,0.e0);

// Initializationaa(0) = 2.0;aa(1) = 0.1;...// Perform arithmeticmyPCSet.Subtract(aa,ab,ac);myPCSet.Prod(aa,ab,ac);myPCSet.Exp(aa,ac);myPCSet.Log(aa,ac);

• PC coefficients are either stored in double* vectors or in moreadvanced custom Array1D<double> classes

• Functions can take either data type as argument

Debusschere – SNL Forward UQ

Page 38: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Surface Reaction Model

3 ODEs for a monomer (u),dimer (v ), and inert species(w) adsorbing onto a surfaceout of gas phase.

dudt

= az − cu − 4duv

dvdt

= 2bz2 − 4duv

dwdt

= ez − fw

z = 1− u − v − w

u(0) = v(0) = w(0) = 0.0

a = 1.6 b = 20.75 c = 0.04 d = 1.0 e = 0.36 f = 0.016

0 200 400 600 800 1000Time [-]

0.0

0.2

0.4

0.6

0.8

1.0

Species Mass Fractions [-]

u v w

Oscillatory behavior for b ∈ [20.2, 21.2]

(Vigil et al., Phys. Rev. E., 1996; Makeev et al., J. Chem. Phys., 2002)

Debusschere – SNL Forward UQ

Page 39: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Surface Reaction Model: Intrusive Spectral Propagation (ISP) of Uncertainty

• Assume PCE for uncertain parameter b and for the output variables,u, v ,w

• Substitute PCEs into the governing equations• Project the governing equations onto the PC basis functions

• Multiply with Ψk and take the expectation

• Apply pseudo-spectral approximations where necessary• UQTk elementary operations

Debusschere – SNL Forward UQ

Page 40: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Surface Reaction Model: Specify PCEs for inputs and outputs

Represent uncertain inputs with PCEs with known coefficients:

b =P∑

i=0

bi Ψi (ξ)

Represent all uncertain variables with PCEs with unknown coefficients:

u =P∑

i=0

ui Ψi (ξ) v =P∑

i=0

vi Ψi (ξ) w =P∑

i=0

wi Ψi (ξ) z =P∑

i=0

zi Ψi (ξ)

Debusschere – SNL Forward UQ

Page 41: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Surface Reaction Model: Substitute PCEs into governing equations andproject onto basis functions

dudt

= az − cu − 4duv

ddt

P∑i=0

ui Ψi = aP∑

i=0

zi Ψi − cP∑

i=0

ui Ψi − 4dP∑

i=0

ui Ψi

P∑j=0

vj Ψj

⟨Ψk

ddt

P∑i=0

ui Ψi

⟩=

⟨aΨk

P∑i=0

zi Ψi

⟩−

⟨cΨk

P∑i=0

ui Ψi

⟨4dΨk

P∑i=0

ui Ψi

P∑j=0

vj Ψj

Debusschere – SNL Forward UQ

Page 42: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Surface Reaction Model: Reorganize terms

ddt

uk

⟨Ψ2

k

⟩= azk

⟨Ψ2

k

⟩− cuk

⟨Ψ2

k

⟩− 4d

P∑i=0

P∑j=0

uivj 〈Ψi Ψj Ψk 〉

ddt

uk = azk − cuk − 4dP∑

i=0

P∑j=0

uivj〈Ψi Ψj Ψk 〉⟨

Ψ2k

⟩ddt

uk = azk − cuk − 4dP∑

i=0

P∑j=0

uivjCijk

• Triple products Cijk =〈Ψi Ψj Ψk〉〈Ψ2

k〉can be pre-computed and stored for

repeated use

Debusschere – SNL Forward UQ

Page 43: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Surface Reaction Model: Substitute PCEs into governing equations andproject onto basis functions

dvdt

= 2bz2 − 4duv

ddt

P∑i=0

vi Ψi = 2P∑

h=0

bhΨh

P∑i=0

zi Ψi

P∑j=0

zj Ψj − 4dP∑

i=0

ui Ψi

P∑j=0

vj Ψj

⟨Ψk

ddt

P∑i=0

vi Ψi

⟩=

⟨2Ψk

P∑h=0

bhΨh

P∑i=0

zi Ψi

P∑j=0

zj Ψj

⟨4dΨk

P∑i=0

ui Ψi

P∑j=0

vj Ψj

Debusschere – SNL Forward UQ

Page 44: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Surface Reaction Model: Reorganize terms

ddt

vk

⟨Ψ2

k

⟩= 2

P∑h=0

P∑i=0

P∑j=0

bhzizj 〈ΨhΨi Ψj Ψk 〉 − 4dP∑

i=0

P∑j=0

uivj 〈Ψi Ψj Ψk 〉

ddt

vk = 2P∑

h=0

P∑i=0

P∑j=0

bhzizj〈ΨhΨi Ψj Ψk 〉⟨

Ψ2k

⟩ − 4dP∑

i=0

P∑j=0

uivj〈Ψi Ψj Ψk 〉⟨

Ψ2k

⟩ddt

vk = 2P∑

h=0

P∑i=0

P∑j=0

bhzizjDhijk − 4dP∑

i=0

P∑j=0

uivjCijk

• Pre-computing and storing the quad product Dhijk becomes cumbersome• Use pseudo-spectral approach instead

Debusschere – SNL Forward UQ

Page 45: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Surface Reaction Model: Pseudo-Spectral approach for products

• Introduce auxiliary variable g = z2

g = z2

f = 2bz2 = 2bg

gk =P∑

i=0

P∑j=0

zizjCijk

fk = 2P∑

i=0

P∑j=0

bigjCijk

• Limits the complexity of computing product terms• Higher products can be computed by repeated use of the same binary

product rule

• Does introduce errors if order of PCE is not large enough

Debusschere – SNL Forward UQ

Page 46: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Surface Reaction Model: UQTk implementation

// Build du/dt = a*z - c*u - 4.0*d*u*vaPCSet.Multiply(z,a,dummy1); // dummy1 = a*zaPCSet.Multiply(u,c,dummy2); // dummy2 = c*uaPCSet.SubtractInPlace(dummy1,dummy2); // dummy1 = a*z - c*uaPCSet.Prod(u,v,dummy2); // dummy2 = u*vaPCSet.MultiplyInPlace(dummy2,4.e0*d); // dummy2 = 4.0*d*u*vaPCSet.Subtract(dummy1,dummy2,dudt); // dudt = a*z - c*u - 4.0*d*u*v

• All operations are replaced with their equivalent intrusive UQcounterparts

• Results in a set of coupled ODEs for the PC coefficients• u, v ,w , z represent vector of PC coefficients

• This set of equations is integrated to get the evolution of the PCcoefficients in time

Debusschere – SNL Forward UQ

Page 47: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Surface Reaction Model: Second equation implementation

// Build dv/dt = 2.0*b*z*z - 4.0*d*u*vaPCSet.Prod(z,z,dummy1); // dummy1 = z*zaPCSet.Prod(dummy1,b,dummy2); // dummy2 = b*z*zaPCSet.Multiply(dummy2,2.e0,dummy1); // dummy1 = 2.0*b*z*zaPCSet.Prod(u,v,dummy2); // dummy2 = u*vaPCSet.MultiplyInPlace(dummy2,4.e0*d); // dummy2 = 4.0*d*u*vaPCSet.Subtract(dummy1,dummy2,dvdt); // dvdt = 2.0*b*z*z - 4.0*d*u*v

// Build dw/dt = e*z - f*waPCSet.Multiply(z,e,dummy1); // dummy1 = e*zaPCSet.Multiply(w,f,dummy2); // dummy2 = f*waPCSet.Subtract(dummy1,dummy2,dwdt); // dwdt = e*z - f*w

• Dummy variables used where needed to build the terms in the equations• Data structure is currently being enhanced to provide the operation

result as the function return value• Will allow more elegant inline replacement of operators with their stochastic

counterparts

Debusschere – SNL Forward UQ

Page 48: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Surface Reaction Model: ISP results

0 200 400 600 800 1000Time [-]

0.0

0.2

0.4

0.6

0.8

1.0

Species Mass Fractions [-]

u v w

• Assume 0.5% uncertainty in b around nominal value• Legendre-Uniform intrusive PC• Mean and standard deviation for u, v , and w• Uncertainty grows in time

Debusschere – SNL Forward UQ

Page 49: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Surface Reaction Model: ISP results

0 200 400 600 800 1000Time [-]

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

ui

[-]

u0

u1

u2

u3

u4

u5

• Modes of u• Modes decay with higher order• Amplitudes of oscillations of higher order modes grow in time

Debusschere – SNL Forward UQ

Page 50: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Surface Reaction Model: ISP results: PDFs

0.310 0.315 0.320 0.325 0.330 0.335 0.340 0.345 0.350u

0

50

100

150

200

250

300

350

Prob. Dens. [-]

t = 330.5t = 756.5

0.10 0.15 0.20 0.25 0.30 0.35u

0

2

4

6

8

10

12

14

16

Prob. Dens. [-]

t = 377.8t = 803.0

• Pdfs of u at maximum mean (left) and maximum standard deviation(right)

• Distributions get broader and multimodal as time increases• Effect of accumulating uncertainty in phase of oscillation

Debusschere – SNL Forward UQ

Page 51: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Spectral UQ: Incompressible Flow - Stochastic Projection Method

• (P + 1) Galerkin-Projected Mom./Cont. Eqns, q = 0, . . . ,P:

∂vq

∂t+∇ · 〈vv〉q = −∇pq +

1Re∇ ·⟨µ[(∇v) + (∇v)T ]

⟩q

∇ · vq = 0

• Projection: for q = 0, . . . ,P :

vq − vnq

∆t= Cn

q + Dnq

∇2pq = − 1∆t∇ · vq

vn+1q − vq

∆t= −∇pq

• P + 1 decoupled Poisson Eqns for the pressure modes

[Le Maître et al., J. Comp. Phys., 2001.]

Debusschere – SNL Forward UQ

Page 52: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Laminar 2D Channel Flow with Uncertain Viscosity

• Incompressible flow• Gaussian viscosity PDF

• ν = ν0 + ν1ξ

• Streamwise velocity

• v =P∑

i=0

vi Ψi

• v0: mean• vi : i-th order mode

• σ2 =P∑

i=1

v2i

⟨Ψ2

i

⟩v0 v1 v2 v3 sd

v0 v1 v2 v3 σ

Debusschere – SNL Forward UQ

Page 53: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Non-Intrusive propagation of uncertainty - Projection

Galerkin Projection

uk =〈uΨk 〉⟨

Ψ2k

⟩ =1⟨

Ψ2k

⟩ ∫ uΨk (ξ)w(ξ)dξ, k = 0, . . . ,P

Evaluate projection integrals numerically• Pick samples of uncertain parameters, e.g. b(ξ) by sampling the germ ξ

• Run deterministic forward model for each of the sampled inputparameter values bi = b(ξi )

• Integration depends on sampling approach• Random Sampling: 〈uΨk 〉 = 1

Ns

∑Nsi=1 u(bi )Ψk (ξi )

• Quadrature: 〈uΨk 〉 =∑Nq

i=1 qi u(bi )Ψk (ξi )

Reconstruct uncertain model output

u(x , t ; θ) =P∑

k=0

uk (x , t)Ψk (ξ(θ))

Debusschere – SNL Forward UQ

Page 54: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Random Sampling approaches

• Evaluate integral through sampling∫uΨk (ξ)w(ξ)dξ =

1Ns

Ns∑i=1

u(ξi )Ψk (ξi )

• Samples are drawn according to the distribution of ξ• Monte-Carlo (MC)• Latin-Hypercube-Sampling (LHS)

• Pros:• Can be easily made fault tolerant• Sometimes random samples is all we have

• Cons: slow convergence, but less dependent on number of stochasticdimensions

Debusschere – SNL Forward UQ

Page 55: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Quadrature approaches

• Numerically evaluate integrals in Galerkin projection∫uΨk (ξ)w(ξ)dξ =

Nq∑i=1

qiu(ξi )Ψk (ξi )

• Gauss quadrature rules are very efficient• ξ are quadrature points, with corresponding weights qi• Nq quadrature points can integrate polynomial of order 2Nq − 1 exactly• Gauss-Hermite and Gauss-Legendre quadrature tailored to specific choices

of the weight function w(ξ)• As a rule of thumb, p + 1 quadrature points are needed for Galerkin

projection of PCE of order p• If both u and Ψk are of order p, then integrand is of order 2p• 2p ≤ 2Nq − 1 or Nq ≥ p + 1

2• Only exact if u is indeed a polynomial of order ≤ p

• Pros:• Can use existing codes as black box to evaluate u(ξi )• Embarrassingly parallel

• Cons: Tensor product rule for d dimensions requires Ndq samples

Debusschere – SNL Forward UQ

Page 56: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Non-Intrusive propagation of uncertainty - Collocation

• Collocation techniques minimize errors at sample points•∑P

k=0 uk Ψk (ξi ) = u(ξi ) , i = 1, . . . ,Nc• Can use interpolation, e.g. Lagrange interpolants• Or use regression approaches: P + 1 degrees of freedom to fit Nc points

• Pros: can position points where most accuracy desired• Cons:

Debusschere – SNL Forward UQ

Page 57: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Surface Reaction Model

3 ODEs for a monomer (u),dimer (v ), and inert species(w) adsorbing onto a surfaceout of gas phase.

dudt

= az − cu − 4duv

dvdt

= 2bz2 − 4duv

dwdt

= ez − fw

z = 1− u − v − w

u(0) = v(0) = w(0) = 0.0

a = 1.6 b = 20.75 c = 0.04 d = 1.0 e = 0.36 f = 0.016

0 200 400 600 800 1000Time [-]

0.0

0.2

0.4

0.6

0.8

1.0

Species Mass Fractions [-]

u v w

Oscillatory behavior for b ∈ [20.2, 21.2]

(Vigil et al., Phys. Rev. E., 1996; Makeev et al., J. Chem. Phys., 2002)

Debusschere – SNL Forward UQ

Page 58: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Surface Reaction Model: NISP implementation in UQTk

Quadrature:// Get the quadrature pointsint nQdpts=myPCSet.GetNQuadPoints();double* qdpts=new double[nQdpts];myPCSet.GetQuadPoints(qdpts);...// Evaluate parameter at quad ptsfor(int i=0;i<nQdpts;i++){

bval[i]=myPCSet.EvalPC(b,&qdpts[i]);}...// Run model for all samplesfor(int i=0;i<nQdpts;i++){

u_val[i] = ...}// Spectral projectionmyPCSet.GalerkProjection(u_val,u);myPCSet.GalerkProjection(v_val,v);myPCSet.GalerkProjection(w_val,w);

Monte-Carlo Sampling:// Get the sample pointsint nSamples=1000;Array2D<double> samPts(nSamples,dim);myPCSet.DrawSampleVar(samPts);...// Evaluate parameter at sample ptsfor(int i=0;i<nSamples;i++){

... // select samPt from samPtsbval[i]=myPCSet.EvalPC(b,&samPt)

}...// Run model for all samplesfor(int i=0;i<nSamples;i++){

u_val[i] = ...}// Spectral projectionmyPCSet.GalerkProjectionMC(samPts,u_val,u);myPCSet.GalerkProjectionMC(samPts,v_val,v);myPCSet.GalerkProjectionMC(samPts,w_val,w);

Debusschere – SNL Forward UQ

Page 59: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Surface Reaction Model: NISP results

0 200 400 600 800 1000Time [-]

0.0

0.2

0.4

0.6

0.8

1.0

Species Mass Fractions [-]

NISP Quadrature

u v w

0 200 400 600 800 1000Time [-]

0.0

0.2

0.4

0.6

0.8

1.0

Species Mass Fractions [-]

NISP MC

u v w

• Mean and standard deviation for u, v , and w• Quadrature approach agrees well with ISP approach using 6 quadrature

points• Monte Carlo sampling approach converges slowly

• With a 1000 samples, results are quite different from ISP and NISP

Debusschere – SNL Forward UQ

Page 60: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Surface Reaction Model: Comparison ISP and NISP

0 200 400 600 800 1000Time [-]

−0.010

−0.008

−0.006

−0.004

−0.002

0.000

0.002

0.004

ui

[-]

u4,ISP

u4,NISP

u5,ISP

u5,NISP

• Lower order modes agree perfectly• Very small differences in higher order modes

• Difference increases with time

Debusschere – SNL Forward UQ

Page 61: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Surface Reaction Model: Comparison ISP and NISP

0.10 0.15 0.20 0.25 0.30 0.35u

0

2

4

6

8

10

Prob. Dens. [-]

ISP, t = 803.0NISP, t = 803.0

• All pdf’s based on 50K samples each and evaluated with Kernel DensityEstimation (KDE)

• No difference in PDFs of sampled PCEs between NISP and ISP

Debusschere – SNL Forward UQ

Page 62: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Surface Reaction Model: Comparison ISP, NISP, and MC

0.10 0.15 0.20 0.25 0.30 0.35u

0

2

4

6

8

10

Prob. Dens. [-]

ISP, t = 803.0NISP, t = 803.0MC, t = 803.0

• All pdf’s based on 50K samples each and evaluated with Kernel DensityEstimation (KDE)

• Good agreement between intrusive, non-intrusive projection, and MonteCarlo sampling

Debusschere – SNL Forward UQ

Page 63: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

ISP pros and cons

• Pros:• Elegant• One time solution of system of equations for the PC coefficients fully

characterizes uncertainty in all variables at all times• Tailored solvers can (potentially) take advantage of new hardware

developments• Cons:

• Often requires re-write of the original code• Reformulated system is factor (P+1) larger than the original system and can

be challenging to solve• Challenges with increasing time-horizon for ODEs

• Many efforts in the community to automate ISP• UQToolkit: http://www.sandia.gov/UQToolkit/• Sundance: http://www.math.ttu.edu/~klong/Sundance/html/• Stokhos: http://trilinos.sandia.gov/packages/stokhos/• ...

Debusschere – SNL Forward UQ

Page 64: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

NISP pros and cons

• Pros:• Easy to use as wrappers around existing codes• Embarassingly parallel

• Cons:• Most methods suffer from curse of dimensionality Nq = nNd

• Many development efforts for smarter sampling approaches anddimensionality reduction• (Adaptive) Sparse Quadrature approaches• Compressive Sensing• ...

• Sampling methods have found very wide spread use in the community• DAKOTA: http://dakota.sandia.gov/• ...

Debusschere – SNL Forward UQ

Page 65: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Sensitivity Analysis

• Obtaining global sensitivity analysis from PCEs• Identify dominant sources of uncertainty• Attribution

Debusschere – SNL Forward UQ

Page 66: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

PC postprocessing: global sensitivity information is readily obtained from PCE

g(x1, . . . , xd ) =K−1∑k=0

ck Ψk (x)

• Global sensitivity analysis ≡ Variance decomposition• Total variance

Var [g(x)] =∑k>0

c2k ||Ψk ||2

• Main effect sensitivity indices

Si =Var [E(g(x |xi )]

Var [g(x)]=

∑k∈Ii

c2k ||Ψk ||2∑

k>0 c2k ||Ψk ||2

Ii is the set of bases with only xi involved. Si is the uncertainty contributionthat is due to i-th parameter only.• Joint sensitivity indices

Sij =Var [E(g(x |xi , xj )]

Var [g(x)]− Si − Sj =

∑k∈Iij

c2k ||Ψk ||2∑

k>0 c2k ||Ψk ||2

Iij is the set of bases with only xi and xj involved. Sij is the uncertaintycontribution that is due to (i, j) parameter pair.

Debusschere – SNL Forward UQ

Page 67: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

PC postprocessing: sampling-based approaches

g(x1, . . . , xd ) =K−1∑k=0

ck Ψk (x)

• In some cases, need to resort to Monte-Carlo estimation, e.g.• Piecewise-PC with irregular subdomains• Output transformations, e.g. build PC for log g(x), but

inquire sensitivity with respect to g(x)

• A brute-force sampling of Var [E(g(x |xi )] is extremely inefficient.• Tricks are available, given a single set of sampled input [Saltelli, 2002].

E.g., use

E[g(x |xi )2] = E[g(x |xi )g(x ′|xi )] =

1N − 1

N∑r=1

g(x (r))g(x (r)),

where x is x ′ with i-th element replaced by xi .• Similar formulae available for joint sensitivity indices.

• Con: as all Monte-Carlo algorithms, converges slowly.• Pro: sampling is cheap.

Debusschere – SNL Forward UQ

Page 68: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Challenges for PCE-based Uncertainty Quantification

• Representing input variables with arbitrary distributions• Systems with high-dimensional uncertainty• Systems with long time horizon / oscillatory behavior• Nonlinearities in governing equations for intrusive UQ• Physical constraints in uncertain quantities• Systems with non-smooth behavior – discontinuities• Systems with inherent stochasticity

Various approaches have been developed to tackle these challenges ...

Debusschere – SNL Forward UQ

Page 69: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Obtaining PCEs for uncertain inputs

• Characterizing PCEs for uncertain inputs is a really difficult problem• Inputs specified in a variety of ways

• Probability density function• Samples• Expert opinion (e.g. “about 3.5”)

• Often obtained from inverse problem solution• See session on Bayesian inference• Generally provides many samples of the uncertain inputs

Debusschere – SNL Forward UQ

Page 70: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Inverse CDF Mapping for 1D RVs

20.73 20.74 20.75 20.76 20.77 20.78

Parameter b

0

50

100

PD

F

Posterior PDFPosterior PDF (PC)

• Consider random variable a with CDF F (·)• Either specified or constructed from samples with KDE

• CDF transformation F (a) = η maps random variable a to uniform[0, 1]random variable η.

• η = Φ(ξ) maps uniform η to normal RV ξ

• The inverse CDF enables NISP projection

a =P∑

k=0

ak Ψk (ξ) ak ∝ 〈aΨk (ξ)〉 =

∫F−1(Φ(ξ))︸ ︷︷ ︸

a

Ψk (ξ)w(ξ)dξ

Debusschere – SNL Forward UQ

Page 71: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Constructing an nD PCE for a RV with a given PDF

• Given RV z ∈ R with PDF: g(z), define:

z =P∑

i=0

zi Ψi (ξ1, ξ2, . . . , ξn), P + 1 =(n + p)!

n!p!

• No general procedure• Can choose {n, p} and the mode strengths by ensuring

accurate capture of• the PDF g(z)• select moments of z• some observable of interest φ(z)

Debusschere – SNL Forward UQ

Page 72: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Multivariate Normal Approximation

• Many distributions are unimodal and somewhat shaped like Gaussians• MultiVariate Normal (MVN) approximations capture the mean and

correlation structure of the random variables• Easy to extract from a set of samples

• In 1D: just compute mean and standard deviation: u = u0 + u1ξ• Multi-D: Cholesky factorization of covariance

C = LLT

u = Lξ

# Compute mean parameter valuespar_mean = numpy.mean(samples,axis=0)# Compute the covariancepar_cov = numpy.cov(samples,rowvar=0)# Compute the Cholesky Decompositionchol_lower = numpy.linalg.cholesky(par_cov)

Debusschere – SNL Forward UQ

Page 73: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

MVN approximation of Bayesian posterior from MCMC samples

1.30 1.32 1.34 1.36 1.38 1.40

S15200

5250

5300

5350

5400

CS

0.000

0.075

0.150

0.225

0.300

0.375

0.450

0.525

0.600

1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39

S1

5240

5260

5280

5300

5320

5340

5360

5380

5400

CS

Comparison of Posterior (blue) with MVN (red)

S1 = 1.351 + 0.01367ξ1

CS = 5310− 26.25ξ1 + 20.26ξ2

Debusschere – SNL Forward UQ

Page 74: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Rosenblatt for Multi-D RVs

• Assume samples of multi-D RVs are available (e.g. from MCMCsampling of posterior parameter distribution obtained with Bayesianinference)

• Rosenblatt transformation maps any (not necessarily independent) set ofrandom variables (λ1, . . . , λn) to uniform i.i.d.’s {ηi}n

i=1 (Rosenblatt,1952).

η1 = F1(λ1)

η2 = F2|1(λ2|λ1)

...

ηn = Fn|n−1,...,1(λn|λn−1, . . . , λ1)

• Rosenblatt transformation is a multi-D generalization of 1D CDFmapping.

• Conditional CDFs are harder to evaluate in high dimensions

Debusschere – SNL Forward UQ

Page 75: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Projection of Rosenblatt transformed vars onto PCEs

0.6 0.8 1 1.2 1.4 1.6

Parameter a

5

10

15

20

Para

mete

r b

0 0.2 0.4 0.6 0.8 1

Parameter η1

0

0.2

0.4

0.6

0.8

1

Para

mete

r η

2

• NISP projection is enabled by inverse Rosenblatt transformation (a, b) = R−1(ξ1, ξ2)ensures a well-defined quadrature integration

a =P∑

k=0

ak Ψk (ξ) ak ∝∫

R−1a (ξ)︸ ︷︷ ︸

a

Ψk (ξ)w(ξ)dξ

b =P∑

k=0

bk Ψk (ξ) bk ∝∫

R−1b (ξ)︸ ︷︷ ︸

b

Ψk (ξ)w(ξ)dξ

Debusschere – SNL Forward UQ

Page 76: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Karhunen-Loève (KL) Expansions

• Assume stochastic process F (x , θ) : D×Θ→ R an L2 random field on D• With covariance function Cov(x , y)

• F can be written as

F (x , θ) = 〈F (x , θ)〉θ +∞∑

k=1

√λk fk (x)ξk

• fk (x): eigenfunctions of Cov(x , y)

• λk : corresponding eigenvalues, all positive• ξk : uncorrelated random variables, unit variance

• Samples are obtained by projecting realizations of F onto fk• Generally not independent

• Special case: for Gaussian F , ξk are i.i.d. normal random variables

• The KLE is optimal : of all possible orthonormal bases for L2(Θ× D) theabove {f (x)} minimize the mean-square error in a finite linearrepresentation of F (·).

Debusschere – SNL Forward UQ

Page 77: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

KL Expansions - Numerical Approach - 1

• Covariance Matrix, Cov(x , y) = 〈F (x , θ)F (y , θ)〉θ:• specified analytically• estimated from samples

• Estimate eigenvalues and eigenvectors for the Fredholm equation ofsecond kind: ∫

Cov(x , y)f (y)dy = λf (x)

• ...using the Nystrom algorithm:

Np∑i=1

wi Cov(x , yi )f (yi ) = λf (x)

where wi are the weights for the quadrature rule that uses Np points yiwhere realizations are provided.

• Further manipulation leads to the eigenvalue problem

Ag = λg

where A = WKW and g = Wf , with W being the diagonal matrix Wii =√

wiand Kij = Cov(xi , yj ). Solutions consist of pairs of eigenvalues λk andeigenmodes fk = W−1gk .

Debusschere – SNL Forward UQ

Page 78: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

KL Expansions - Numerical Approach - 2

• Samples of random variables ξk are obtained by projecting realizationsof the random process F on the eigenmodes fk

ξk |θl=⟨F (x , θl )− 〈F (x , θ)〉θ , fk (x)

⟩x /√λk

• ... or numerically

ξk |θl=

Np∑i=1

wi(F (xi , θl )− 〈F (xi , θ)〉θ

)fk (xi )/

√λk

• If Gaussian process: automatically have first order WH PCE• If not, same approaches as for converting RVs to PCEs applied to KL

RVs

Debusschere – SNL Forward UQ

Page 79: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

1D Gaussian Process: Realizations

δ = 0.1

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f(x)

δ = 0.2

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f(x)

• Covariance Cov(x1, x2) = exp(−(x1 − x2)2/δ2)

• Sample realizations are noisier as correlation length decreases

Debusschere – SNL Forward UQ

Page 80: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

1D Gaussian Process: KL modes

δ = 0.1

0.0 0.2 0.4 0.6 0.8 1.0x

−3

−2

−1

0

1

2

3

f n

f1

f2

f3

f4

δ = 0.2

0.0 0.2 0.4 0.6 0.8 1.0x

−4

−3

−2

−1

0

1

2

3

4

f n

f1

f2

f3

f4

• Eigenmodes of the covariance matrix• Data covariance matrix constructed from 4096 Gaussian process

realizations

• Higher modes are more oscillatory

Debusschere – SNL Forward UQ

Page 81: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

1D Gaussian Process: KL random variables

δ = 0.1

−4 −3 −2 −1 0 1 2 3 4ξ(θ)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

PDF(ξ)

ξ1

ξ2

ξ3

ξ4

δ = 0.2

−4 −3 −2 −1 0 1 2 3 4ξ(θ)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

PDF(ξ)

ξ1

ξ2

ξ3

ξ4

• Random variables obtained by projecting realizations onto KL modes• Uncorrelated by construction

• Also independent due to nature of Gaussian Process

Debusschere – SNL Forward UQ

Page 82: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

1D Gaussian Process: Eigenvalue spectrum

0 10 20 30 40 60Eigenvalue #

10-8

10-6

10-4

10-2

100

102

Eigenvalue M

agnitude δ=0.05

δ=0.1

δ=0.2

δ=0.5

• Eigenvalue spectrum decays more slowly as correlation lengthdecreases• More oscillatory modes needed to represent fluctuations in x

• KL expansion generally is truncated after enough modes are included tocapture a specified fraction of the total variance

Debusschere – SNL Forward UQ

Page 83: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40 60Eigenvalue #

10-8

10-6

10-4

10-2

100

102

Eigenvalue M

agnitude δ=0.05

δ=0.1

δ=0.2

δ=0.5

• Large scale features can be resolved with small number of modes• Smaller scale features require higher modes

Debusschere – SNL Forward UQ

Page 84: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40 60Eigenvalue #

10-8

10-6

10-4

10-2

100

102

Eigenvalue M

agnitude δ=0.05

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

2 terms

• Large scale features can be resolved with small number of modes• Smaller scale features require higher modes

Debusschere – SNL Forward UQ

Page 85: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40 60Eigenvalue #

10-8

10-6

10-4

10-2

100

102

Eigenvalue M

agnitude δ=0.05

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

4 terms

• Large scale features can be resolved with small number of modes• Smaller scale features require higher modes

Debusschere – SNL Forward UQ

Page 86: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40 60Eigenvalue #

10-8

10-6

10-4

10-2

100

102

Eigenvalue M

agnitude δ=0.05

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

6 terms

• Large scale features can be resolved with small number of modes• Smaller scale features require higher modes

Debusschere – SNL Forward UQ

Page 87: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40 60Eigenvalue #

10-8

10-6

10-4

10-2

100

102

Eigenvalue M

agnitude δ=0.05

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

8 terms

• Large scale features can be resolved with small number of modes• Smaller scale features require higher modes

Debusschere – SNL Forward UQ

Page 88: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40 60Eigenvalue #

10-8

10-6

10-4

10-2

100

102

Eigenvalue M

agnitude δ=0.05

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

10 terms

• Large scale features can be resolved with small number of modes• Smaller scale features require higher modes

Debusschere – SNL Forward UQ

Page 89: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40 60Eigenvalue #

10-8

10-6

10-4

10-2

100

102

Eigenvalue M

agnitude δ=0.05

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

14 terms

• Large scale features can be resolved with small number of modes• Smaller scale features require higher modes

Debusschere – SNL Forward UQ

Page 90: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40 60Eigenvalue #

10-8

10-6

10-4

10-2

100

102

Eigenvalue M

agnitude δ=0.05

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

16 terms

• Large scale features can be resolved with small number of modes• Smaller scale features require higher modes

Debusschere – SNL Forward UQ

Page 91: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40 60Eigenvalue #

10-8

10-6

10-4

10-2

100

102

Eigenvalue M

agnitude δ=0.05

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

18 terms

• Large scale features can be resolved with small number of modes• Smaller scale features require higher modes

Debusschere – SNL Forward UQ

Page 92: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40 60Eigenvalue #

10-8

10-6

10-4

10-2

100

102

Eigenvalue M

agnitude δ=0.05

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

1 terms

• Large scale features can be resolved with small number of modes• Smaller scale features require higher modes

Debusschere – SNL Forward UQ

Page 93: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40 60Eigenvalue #

10-8

10-6

10-4

10-2

100

102

Eigenvalue M

agnitude δ=0.05

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

2 terms

• Large scale features can be resolved with small number of modes• Smaller scale features require higher modes

Debusschere – SNL Forward UQ

Page 94: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40 60Eigenvalue #

10-8

10-6

10-4

10-2

100

102

Eigenvalue M

agnitude δ=0.05

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

3 terms

• Large scale features can be resolved with small number of modes• Smaller scale features require higher modes

Debusschere – SNL Forward UQ

Page 95: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40 60Eigenvalue #

10-8

10-6

10-4

10-2

100

102

Eigenvalue M

agnitude δ=0.05

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

4 terms

• Large scale features can be resolved with small number of modes• Smaller scale features require higher modes

Debusschere – SNL Forward UQ

Page 96: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40 60Eigenvalue #

10-8

10-6

10-4

10-2

100

102

Eigenvalue M

agnitude δ=0.05

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

5 terms

• Large scale features can be resolved with small number of modes• Smaller scale features require higher modes

Debusschere – SNL Forward UQ

Page 97: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40 60Eigenvalue #

10-8

10-6

10-4

10-2

100

102

Eigenvalue M

agnitude δ=0.05

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

6 terms

• Large scale features can be resolved with small number of modes• Smaller scale features require higher modes

Debusschere – SNL Forward UQ

Page 98: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40 60Eigenvalue #

10-8

10-6

10-4

10-2

100

102

Eigenvalue M

agnitude δ=0.05

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

7 terms

• Large scale features can be resolved with small number of modes• Smaller scale features require higher modes

Debusschere – SNL Forward UQ

Page 99: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40 60Eigenvalue #

10-8

10-6

10-4

10-2

100

102

Eigenvalue M

agnitude δ=0.05

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

8 terms

• Large scale features can be resolved with small number of modes• Smaller scale features require higher modes

Debusschere – SNL Forward UQ

Page 100: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

1D Gaussian Process: Reconstructed realizations

0 10 20 30 40 60Eigenvalue #

10-8

10-6

10-4

10-2

100

102

Eigenvalue M

agnitude δ=0.05

δ=0.1

δ=0.2

δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0x

−20

−10

0

10

20

f n

9 terms

• Large scale features can be resolved with small number of modes• Smaller scale features require higher modes

Debusschere – SNL Forward UQ

Page 101: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

KL of 2D Gaussian Process

δ = 0.1

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

δ = 0.2

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0y

δ = 0.5

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

• 2D Gaussian Process with covariance:Cov(x1, x2) = exp(−||x1 − x2||2/δ2)

• Realizations are smoother as covariance length δ increases

Debusschere – SNL Forward UQ

Page 102: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

2D KL - Modes for δ = 0.1

√λ1f1

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ5f5

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ2f2

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ6f6

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ3f3

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ7f7

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ4f4

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ8f8

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

Debusschere – SNL Forward UQ

Page 103: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

2D KL - Modes for δ = 0.2

√λ1f1

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ5f5

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ2f2

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ6f6

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ3f3

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ7f7

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ4f4

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ8f8

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

Debusschere – SNL Forward UQ

Page 104: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

2D KL - Modes for δ = 0.5

√λ1f1

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ5f5

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ2f2

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ6f6

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ3f3

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ7f7

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ4f4

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

√λ8f8

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

Debusschere – SNL Forward UQ

Page 105: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

2D KL - eigenvalue spectrum

0 20 40 60Eigenvalue #

10-2

100

102

104

Eigenvalue M

agnitude

δ=0.1

δ=0.2

δ=0.5

δ = 0.14 terms 16 terms

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

32 terms 64 terms

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

Debusschere – SNL Forward UQ

Page 106: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

2D KL - eigenvalue spectrum

0 20 40 60Eigenvalue #

10-2

100

102

104

Eigenvalue M

agnitude

δ=0.1

δ=0.2

δ=0.5

δ = 0.24 terms 16 terms

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

32 terms 64 terms

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

Debusschere – SNL Forward UQ

Page 107: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

2D KL - eigenvalue spectrum

0 20 40 60Eigenvalue #

10-2

100

102

104

Eigenvalue M

agnitude

δ=0.1

δ=0.2

δ=0.5

δ = 0.54 terms 16 terms

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

32 terms 64 terms

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.2

0.4

0.6

0.8

1.0

y

Debusschere – SNL Forward UQ

Page 108: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Other approaches

• Domain decomposition approaches with projection• Inference-based approaches for PCEs

Debusschere – SNL Forward UQ

Page 109: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Sparse Quadrature Approaches for High-Dimensional Systems

• Need for sparse quadrature• Sparse quadrature grids• Application to surface reaction example

Debusschere – SNL Forward UQ

Page 110: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Sparse quadrature drastically reduces the number of function evaluations

• Define the precision as the highest order of a polynomial that isintegrated exactly by the quadrature rule.• Gaussian quadratures are optimal in 1d• N points achieve the highest possible precision of 2N − 1.

• In multi-d, full product quadrature is wasteful:• a 5 ppd (point per dimension) rule is of precision P = 9,

but it integrates a polynomial x9y9 exactly.• Sparse grids are built to achieve maximal precision with fewest

possible pointsSparse, level 2, total 21

Full, ppd 7, total 49Gauss-Hermite

Sparse, level 2, total 17

Full, ppd 5, total 25Gauss-Legendre

Debusschere – SNL Forward UQ

Page 111: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Clenshaw-Curtis nested quadrature rules allow reuse of function evalutions

Clenshaw-Curtis, level 1, total 5

Debusschere – SNL Forward UQ

Page 112: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Clenshaw-Curtis nested quadrature rules allow reuse of function evalutions

Clenshaw-Curtis, level 2, total 13

Debusschere – SNL Forward UQ

Page 113: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Clenshaw-Curtis nested quadrature rules allow reuse of function evalutions

Clenshaw-Curtis, level 3, total 29

Debusschere – SNL Forward UQ

Page 114: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Clenshaw-Curtis nested quadrature rules allow reuse of function evalutions

Clenshaw-Curtis, level 4, total 65

Debusschere – SNL Forward UQ

Page 115: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Clenshaw-Curtis nested quadrature rules allow reuse of function evalutions

Clenshaw-Curtis, level 5, total 145

Debusschere – SNL Forward UQ

Page 116: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

The number of function evaluations is drastically reduced compared to fullquadrature

Table: The number of Clenshaw-Curtis sparse grid quadrature points for various levelsand dimensionalities.

Level Precision N N N N(d)L p = 2L− 1 (d = 2) (d = 5) (d = 10) General

1 1 1 1 1 12 3 5 11 21 1 + 2d3 5 13 61 221 1 + 2d + 2d2

4 7 29 241 1581 1 + 143 d + 2d2 + 4

3 d3

5 9 65 801 8801 1 + 203 d + 22

3 d2 + 43 d3 + 2

3 d4

6 11 145 2433 41265 · · ·7 13 321 6993 171425 · · ·8 15 705 19313 652065 · · ·

10 20 30 40 50 60 70 80 90 100

Dimensionality, d

1

10

100

1000

10000

1e+05

1e+06

Num

ber

of

CC

spar

se g

rid p

oin

ts, N

p=7

p=5

p=3

Sparse grid: polynomial growth,O(dp−1

2 )

0 20 40 60 80 100

Dimensionality, d

1

1e+20

1e+40

1e+60

1e+80

1e+100

Num

ber

of

CC

full

gri

d p

oin

ts, N

p=7

p=5

p=3

Full grid: exponential growth, (p + 1)d

Debusschere – SNL Forward UQ

Page 117: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Surface Reaction Model

3 ODEs for a monomer (u),dimer (v ), and inert species(w) adsorbing onto a surfaceout of gas phase.

dudt

= az − cu − 4duv

dvdt

= 2bz2 − 4duv

dwdt

= ez − fw

z = 1− u − v − w

u(0) = v(0) = w(0) = 0.0

a = 1.6 b = 20.75 c = 0.04 d = 1.0 e = 0.36 f = 0.016

0 200 400 600 800 1000Time [-]

0.0

0.2

0.4

0.6

0.8

1.0

Species Mass Fractions [-]

u v w

Oscillatory behavior for b ∈ [20.2, 21.2]

(Vigil et al., Phys. Rev. E., 1996; Makeev et al., J. Chem. Phys., 2002)

Debusschere – SNL Forward UQ

Page 118: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Surface Reaction Model: 6d results

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

0 0.1 0.2 0.3 0.4 0.5u

ss

0

2

4

6

8

10

PD

F (

uss

)a b c d e f

a

b

c

d

e

f

10−3

10−2

10−1

• Output observable: time averaged u at steady state uss

• Assume all input parameters have Gaussian distributions withσ/µ = 0.01, i.e. 1% deviation.

• 6-d, level 3 Gauss-Hermite sparse quadrature point set includes 713distinct points (a 2-d case is plotted)

• Output PDF is generated by 100K samples of a third order PC• Variance-based sensitivity information comes for free with the PC

expansion

Debusschere – SNL Forward UQ

Page 119: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Advantages and caveats of sparse quadrature approaches

• Pro: number of required samples scales much more gracefully withnumber of dimensions than full tensor product quadrature rule

• Caveats:• Function to be integrated needs to be smooth• Due to negative quadrature weights, integrating a noisy positive function can

give a negative answer• For very high dimensions, even sparse quadrature is too expensive

Debusschere – SNL Forward UQ

Page 120: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Taking Advantage of Sparsity in the System

• For really high dimensional systems, even sparse quadrature requirestoo many function evaluations• For 80-dimensional climate land model, L = 4 requires ≈ 106 points

• Such systems can only be tackled with dimensionality reduction and/oradaptive order• Sensitivity analysis• High Dimensional Model Representation (HDMR)• Adaptive sparse quadrature approaches

• More generally, use only the basis terms needed to represent thephysics / information in the system / data• (Bayesian) Compressive Sensing (CS) approaches

• If information content is sparse, it can be represented at reasonable cost• If not, you need to pay the price

Debusschere – SNL Forward UQ

Page 121: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Challenges with Oscillatory / Long Time Horizon Systems

• Issue with oscillations / long time horizon• Importance of choice of observables

Debusschere – SNL Forward UQ

Page 122: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Surface Reaction Model

3 ODEs for a monomer (u),dimer (v ), and inert species(w) adsorbing onto a surfaceout of gas phase.

dudt

= az − cu − 4duv

dvdt

= 2bz2 − 4duv

dwdt

= ez − fw

z = 1− u − v − w

u(0) = v(0) = w(0) = 0.0

a = 1.6 b = 20.75 c = 0.04 d = 1.0 e = 0.36 f = 0.016

0 200 400 600 800 1000Time [-]

0.0

0.2

0.4

0.6

0.8

1.0

Species Mass Fractions [-]

u v w

Oscillatory behavior for b ∈ [20.2, 21.2]

(Vigil et al., Phys. Rev. E., 1996; Makeev et al., J. Chem. Phys., 2002)

Debusschere – SNL Forward UQ

Page 123: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Limit Cycle Orbit in Phase Space, v vs u

0.1 0.15 0.2 0.25 0.3 0.35

u

0

0.02

0.04

0.06

0.08

0.1

0.12

v

Debusschere – SNL Forward UQ

Page 124: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

4th-order Intrusive PC UQ

• Uncertain b• Wiener-

HermitePC• Mean and±3σ bounds

0 500 1000

time

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

u

Debusschere – SNL Forward UQ

Page 125: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Growth of Phase Errors in Time

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 500 1000 1500 2000 2500 3000 3500 4000

time

uu-mean-sampled

u-mean-PC

• PC mean deviates away from the sampled-mean in time• Large phase variances

Debusschere – SNL Forward UQ

Page 126: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Scatter in State Space

• Much better behaveduncertainty in statespace• Phase variances are

not of interest per se• Knowledge of the

uncertainty in theorbit details are moreof interest than thedetailed phasevariance errors 0

0.02

0.04

0.06

0.08

0.1

0.12

0.1 0.15 0.2 0.25 0.3 0.35

v

u

Debusschere – SNL Forward UQ

Page 127: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

PC vs. Sampling Limit Cycle Orbit in Phase Space, v vs u

0

0.05

0.1

0.15

0.2

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

PCsamp

Debusschere – SNL Forward UQ

Page 128: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Surface Reaction Model: Uncertainty in Time Average of u

0 1000 2000 3000 4000 5000Time, t

0

0.1

0.2

0.3

0.4

u(t

)

b=19.4b=19.8b=20.2b=20.6b=21.0b=21.4b=21.8b=22.2b=22.6

0 0.1 0.2 0.3 0.4 0.5u

ss

0

1

2

3

4

5

PD

F (

uss

)

• Variation of b leads to different qualitative behaviors• Output observable: average over time of u at steady state: uss

• Representative, e.g. of expected coverage in catalytic system

• Varied the parameter b by 10% around its nominal value• Output PDF is generated by 100K samples of a 9-th order PC

Debusschere – SNL Forward UQ

Page 129: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Global PC expansions fail to capture multimodality

0 0.1 0.2 0.3 0.4 0.5u

ss

0

1

2

3

4

5

PD

F (

u s

s)

Monte-Carlo with 10000 samples (true PDF)

10-th order PC built with 12 samples

• In principle, PC-based uncertainty propagation requires much fewerfunction evaluation.

• However, the accuracy of the PC expansion needs to be properlyestimated.

• E.g., multimodal variables are not well-captured, even with a high PCorder.

Debusschere – SNL Forward UQ

Page 130: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Domain Decomposition Approaches to Handle Nonlinearities

• A PCE is essentially a polynomial approximation of a random variable asa function in stochastic space

• Global PCEs fail to represent very non-linear functions over largedomains• E.g. Gibbs oscillations around discontinuities• As order increases, more oscillations

• Piecewise representations can alleviate this• Lower order approximations over subsections of stochastic domain• Continuity of representation across subdomain boundaries is not required

• Boundary is area of zero measure• Allows easy representation of discontinuities

• Application: intrusive UQ in thermal ignition model

Debusschere – SNL Forward UQ

Page 131: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

UQ in constant-pressure ignition

M reactions in N species, with mass fractions Yi :

dYi

dt=

wi

ρ, i = 1, · · · ,N

dTdt

=wT

ρcp

with wT = −∑N

i=1 hiwi and wi =∑M

k=1 νikRk

Example: CH4 + 2O2 → CO2 + 2H2OStoichiometric coefficients: νik = {−1,−2, 1, 2}Reaction rate of progress: Rk = [CH4][O2]2 Ak T nk e−Ek/T

• Quantify reaction-rate pre-exponential (Ak ) uncertainty with multiplicativefactor Fk :

P(

Ak

Fk< Ak < Fk Ak

)= 0.95

Debusschere – SNL Forward UQ

Page 132: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Large activation energy (Ek ) exponentials lead to very fast changes in speciesconcentrations and temperature

• Methane-air ignition —Global single-stepirreversible mechanism

• Initial T = 800K• Stoichiometric• p = 1 atm (constant)

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

time (sec)

500

1000

1500

2000

2500

3000

Mea

n T

emp

erat

ure

(K

)

E=0−50K

Debusschere – SNL Forward UQ

Page 133: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Increased Ek leads to higher peak dT/dt and higher consequence of smalluncertainties in reaction rate constants

10−10

10−9

10−8

10−7

10−6

time (sec)

0.000

0.010

0.020

0.030

0.040

Tem

per

atu

re S

tan

dar

d D

evia

tio

n (

K)

E=20K

4th−order WH PC

1000 Samples

0.212 0.214 0.216 0.218

time (msec)

0

5

10

15

Tem

per

atu

re S

tan

dar

d D

evia

tio

n (

K)

E=40K

4th−order WH PC

1000 Samples

• Ak = Ak (ξ), 1-D Wiener-Hermite• PC UQ captures sampled stochastic behavior at low Ek

• with miniscule uncertainty in Ak (F = 1.00002, COV=10−5).

• Unphysical effects observed at high activation energy

Debusschere – SNL Forward UQ

Page 134: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Errors increase for realistic Ek

• Ek = 50 K• Fk = 1.00002• Max T -stdv ≈

300K• Non-zero

uncertainty in Tfor t →∞

• Increased PCorder does notresolve theproblem

86.56 86.58 86.60

time (msec)

0

50

100

150

200

250

300

Tem

per

atu

re S

tan

dar

d D

evia

tio

n (

K)

E=50K

4th−order WH PC

1000 Samples

5th−order WH PC

6th−order WH PC

Debusschere – SNL Forward UQ

Page 135: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Increasing Ak COV towards minimally-practical levels leads to failed timeintegration

86.56 86.58 86.60

time (msec)

0

100

200

300

400

500

Tem

per

ature

Sta

ndar

d D

evia

tion (

K)

E=50K

F=1.00002

F=1.00003

F=1.00004

0.00 0.05 0.10 0.15 0.20

time (sec)

500

1000

1500

2000

2500

3000

Tem

per

atu

re (

K)

1000 samples, F=2.0

T−min

T−max

T−av

• Unrealistic to expect a WH PC expansion in 1D to captureexpected PDFs at realistic reaction-rate parametric uncertainties

• Need increased dimensionality of the PCEs, using multiple ξ’s for eachuncertain parameter, for increased accuracy and stability

Debusschere – SNL Forward UQ

Page 136: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Uncertainty Quantification with Multiwavelets

• An uncertain field quantity u(x, t , θ) is expressed using PC

u =P∑

k=0

uk (x, t)Ψk (ξ1, . . . , ξN)

• Introduce ζi = p(ξi ): CDF of ξi , where ζi is on [0,1]

u = g(ξ1, . . . , ξN) = f (ζ1, . . . , ζN)

• Represent f (ζ) using N-D multiwavelets (Alpert, 1993)

u =Q∑λ=0

uλ(x, t)Wλ(ζ1, . . . , ζN)[Le Maître et al., 2004]

Debusschere – SNL Forward UQ

Page 137: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Haar-Wavelets

Haar scaling functions

φw (y) =

{1, 0 ≤ y < 10 otherwise

Scaled Haar functions, scaling factor j , and sliding factor k :

φwjk (y) = 2j/2φw (2jy − k)

Haar function (mother wavelet)

ψw (y) ≡ 1√2φw

1,0(y)− 1√2φw

1,1(y) =

1, 0 ≤ y < 1

2 ,

−1, 12 ≤ y < 1,

0, otherwise.Wavelet family

ψwj,k (y) = 2j/2ψw (2jy − k), j = 0, 1, . . . and k = 0, . . . , 2j − 1

Debusschere – SNL Forward UQ

Page 138: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Wiener-Haar Construction

The set of ψwj,k (y) is an orthonormal system

Any function f ∈ L2([0, 1]) can be arbitrarily well approximated by the sum ofits mean and a finite linear combination of the ψw

j,k (y).

The wavelet set Wj,k (ξ(θ)) ≡ ψwj,k (p(ξ)) forms a basis for the space of L2

random processes.

X (ξ(θ)) = Xo +∞∑j=0

2j−1∑k=0

X wj,kψ

wj,k (p(ξ)) =

∑λ

XλWλ(ξ(θ))

Multidimensional {ξ1, ξ2, . . . , ξN},

W =N∏

k=1

Wλk (ξk )

Debusschere – SNL Forward UQ

Page 139: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Multidimensional Multiwavelet Construction

• Wiener-Haar PC able to represent uncertainty in systems exhibitingbifurcations depending on parameter values• Poor convergence relative to PC constructions with smooth global

bases on smooth functions• Use multiwavelet construction (Alpert, 1993) employing higher order

polynomials instead of the Haar-functions• For efficient multidimensional construction, use• Block-decomposition of the stochastic space• A local MW construction on each block employing

• Scaled Legendre polynomials on [0, 1]• First level Multiwavelet details

• Adaptive resolution in each dimension on each block

Debusschere – SNL Forward UQ

Page 140: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Multi-Wavelet Representation of Model Problem Gaussian IC

No = 0 No = 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1

U

CDF

Nr=1

Nr=2

Nr=3

Nr=4

Nr=5

Nr=6

Exact

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1

U

CDF

Nr=1

Nr=2

Nr=3

Nr=4

Nr=5

Nr=6

Exact

No = 2 No = 3

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1

U

CDF

Nr=1

Nr=2

Nr=3

Nr=4

Nr=5

Nr=6

Exact

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1

U

CDF

Nr=1

Nr=2

Nr=3

Nr=4

Nr=5

Nr=6

Exact

• IC U0 = 0.2,U1 = 0.1

• No: MW order• Nr : MRA

resolution• Local

representationusing low-orderpolynomialMulti-Wavelets

• Increased No

leads to fasterconvergence toexact solution withincreasing Nr

Debusschere – SNL Forward UQ

Page 141: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Adaptive Partition of the Random Parameter Space

• For multiple stochastic dimensions, the computational cost of the MWspectral products can become prohibitive

• Use adaptive partitioning of the space of random parameters• On each sub-domain define a local scaled random basis• Construct a local MW expansion with up-to only 1st -level details

• Local Wiener-Legendre projection of order No , plus 1D details

• Combine local block-statistics to arrive at global statistics• Adaptively refine block decomposition in each stoch dimension

• Use 1D details variance to guide refinement in each dimensionLe Maître et al. J. Comp. Phys., 197:502-531 (2004)

Debusschere – SNL Forward UQ

Page 142: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Block decomposition in a 2D parametric space

0 0.2 0.4 0.6 0.8 1

x7

0

0.2

0.4

0.6

0.8

1

x8

• Local PC expansion in each subdomain block• Refinement in directions where needed

Debusschere – SNL Forward UQ

Page 143: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Computational Advantages with MRA UQ

• Adaptive partitioning allows optimal combinations ofresolution and order• over space-time

• UQ problem can be done separately on each sub-domain• This can be done• intrusively or• non-intrusively

on each sub-domain• Presents advantages in a massively parallel context

Debusschere – SNL Forward UQ

Page 144: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Generate ignition “data" using a detailed model+noise

• Ignition using a detailedchemical model for methane-airchemistry

• Ignition time versus InitialTemperature

• Multiplicative noise error model• 11 data points:

di = tGRIig,i (1 + σεi )

ε ∼ N(0, 1)

1000 1100 1200 1300Initial Temperature (K)

0.01

0.1

1

Ign

itio

n t

ime

(sec

)

GRI

GRI+noise

Debusschere – SNL Forward UQ

Page 145: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Fitting with a simple chemical model

• Fit a global single-stepirreversible chemical model

CH4 + 2O2 → CO2 + 2H2OR = [CH4][O2]kf

kf = A exp(−E/RoT )

• Infer 3-D parameter vector(ln A, ln E , lnσ)

• Good mixing with adaptiveMCMC when start at MLE

28

30

32

34

36

lnA

10.6

10.8

lnE

0 2000 4000 6000 8000 10000Chain Step

-3

-2.5

-2

-1.5

-1

-0.5

lnσ

Debusschere – SNL Forward UQ

Page 146: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Bayesian Inference Posterior and Nominal Prediction

30 31 32 33 34 35

10.6

10.65

10.7

10.75

10.8

10.85

1000 1100 1200 1300Initial Temperature (K)

0.01

0.1

1

Ign

itio

n t

ime

(sec

)

GRIGRI+noiseFit Model

GRI

GRI+noise

Marginal joint posterior on(ln A, ln E) exhibits strongcorrelation

Nominal fit model is consistentwith the true model

Debusschere – SNL Forward UQ

Page 147: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Correlation Slope χ and Chemical Ignition

0 0.5 1Time (sec)

0

0.05

0.1

0.15

0.2

0.25

Mas

s F

ract

ion

Means

1000

1500

2000

2500

3000

Tem

per

atu

re (

K)

CH4

O2

CO2

H2O

T

0.46 0.462 0.464 0.466 0.468 0.47Time (sec)

0

0.01

0.02

0.03

0.04

0.05

0.06

Mas

s F

ract

ion

CH4

O2

CO2

H2O

Standard Deviations

0

100

200

300

400

Tem

per

atu

re (

K)

T

• 4th Order Multiwavelet PC, Multiblock, Adaptive• σT ,max ∼ 400 K during ignition transient, χ ∼ 0.03

Debusschere – SNL Forward UQ

Page 148: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Time evolution of Temperature PDFs in preheat stage

1300 1400 1500 1600Temperature (K)

0

0.05

0.1

0.15

Pro

bab

ilit

y D

ensi

ty

MC

t=0.455 sec

0.459 sec

0.462 sec

0.464 sec

1300 1400 1500 1600Temperature (K)

0

0.05

0.1

0.15

Pro

bab

ilit

y D

ensi

ty

MW

t=0.455 sec

0.459 sec

0.462 sec

0.464 sec

• Similar results from MC (20K samples) and MW PC• Increased uncertainty, and long high–T PDF tails, in time

Debusschere – SNL Forward UQ

Page 149: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Evolution of Temp. PDF – Fast Ignition Transient

0

0.01

0.02

MC

0

0.01

0.02

0

0.01

0.02

0

0.01

0.02

1000 1500 2000 2500 3000Temperature (K)

0

0.01

0.02

Den

sity

t = 0.4642 sec

0.4660 sec

0.4664 sec

0.4668 sec

0.4671 sec

0

0.01

0.02

MW

0

0.01

0.02

0

0.01

0.02

0

0.01

0.02

1000 1500 2000 2500 3000Temperature (K)

0

0.01

0.02

Den

sity

t = 0.4642 sec

0.4660 sec

0.4664 sec

0.4668 sec

0.4671 sec

• Transition from unimodal to bimodal PDFs• Leakage of probability mass from pre-heat PDF high–T tail

Debusschere – SNL Forward UQ

Page 150: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Time evolution of Temperature PDFs for different χ

1500 2000 2500 3000Temperature (K)

0

0.001

0.002

0.003

0.004

0.005

0.006

Pro

bab

ilit

y D

ensi

ty

0.022875

1500 2000 2500 3000Temperature (K)

0

0.002

0.004

0.006

0.008

0.01

Pro

bab

ilit

y D

ensi

ty

0.036675

1500 2000 2500 3000Temperature (K)

0

0.005

0.01

0.015

0.02

0.025

0.03

Pro

bab

ilit

y D

ensi

ty

0.042425

1500 2000 2500 3000Temperature (K)

0

0.01

0.02

0.03

0.04

0.05

0.06

Pro

bab

ilit

y D

ensi

ty

0.04325

1500 2000 2500 3000Temperature (K)

0

0.05

0.1

0.15

0.2

0.25

Pro

bab

ilit

y D

ensi

ty

0.04395

1500 2000 2500 3000Temperature (K)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Pro

bab

ilit

y D

ensi

ty

0.04475

1500 2000 2500 3000Temperature (K)

0

0.002

0.004

0.006

0.008

0.01

Pro

bab

ilit

y D

ensi

ty

0.052475

1500 2000 2500 3000Temperature (K)

0

0.001

0.002

0.003

0.004

0.005

0.006

Pro

bab

ilit

y D

ensi

ty

0.066275

• Bimodal solution PDFs for high uncertainty growth• Unimodal for low uncertainty growth, with χ ≈ 0.044

Debusschere – SNL Forward UQ

Page 151: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Data Decomposition Approaches to Handle Multi-Modalities

• Alternative approach when faced with samples of multi-modal randomvariables• Separate data into multiple sets that are easier to represent• Represent each with global PCE• Overall results is a PC mixture model

• Generalization of Gaussian mixture models

• Application: Karhunen-Loève applied to output state of Schlögl model

Debusschere – SNL Forward UQ

Page 152: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Schlögl Model is a prototype bistable model

• ReactionsA + 2Xa1−→←−a2

3X

Ba3−→←−a4

X .

• Propensitiesa1 = k1AX(X − 1)/2,a2 = k2X(X − 1)(X − 2)/6,a3 = k3B,a4 = k4X .

• Nominal parametersk1A 0.03k2 0.0001k3B = λ 200k4 3.5A 105

B 2 · 105

X(0) 250

0 5 10 15 200

100

200

300

400

X(t)

0 5 10 15 200

200

400

600

800

X(t)

0 5 10 15 20200

300

400

500

600

700

800

X(t)

= 130

= 200

= 350

Time, t

Debusschere – SNL Forward UQ

Page 153: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Polynomial Chaos expansion represents any random variable as a polynomialof a standard random variable

• Truncated PCE: finite dimension n and order p

X (θ) 'P∑

k=0

ck Ψk (η)

with the number of terms P + 1 = (n+p)!n!p!

.

• η = (η1, · · · , ηn) standard i.i.d. r.v.Ψk standard orthogonal polynomialsck spectral modes.

• Most common standard Polynomial-Variable pairs:(continuous) Gauss-Hermite, Legendre-Uniform,(discrete) Poisson-Charlier.

[Wiener, 1938; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002]

Debusschere – SNL Forward UQ

Page 154: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Galerkin Projection is typically needed

PC expansion: X (θ) '∑P

k=0 ck Ψk (η) = gD(η)

Orthogonal projection: ck =〈X(θ)Ψk (η)〉〈Ψ2

k (η)〉

• Intrusive Spectral Projection (ISP)? Direct projection of governing equations? Leads to deterministic equations for PC coefficients∗ No explicit governing equation for SRNs

• Non-intrusive Spectral Projection (NISP)? Sampling based? No explicit evolution equation for X needed∗ Galerkin projection not well-defined for SRNs

Debusschere – SNL Forward UQ

Page 155: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Karhunen-Loève decomposition reduces stochastic process to a finite numberof random variables

• KL decomposition:

X (t , θ) = X (t) +∞∑

n=1

ξn(θ)√λnfn(t)

• Uncorrelated, zero-mean KL variables:

〈ξn〉 = 0, 〈ξnξm〉 = δnm

• SSA(continuum)←→ KL(discrete)

X (t)←→ ξ = (ξ1, ξ2, . . . )

0 2 4 6 8 10 12 14 16 18 20Time, t

-300

-200

-100

0

100

KL

mod

es,

i1/

2 f i(t)

0 1 2 3 4 5 6 7 8 9n

1000

10000

1e+05

1e+06

Eige

nval

ues,

n

-2 -1 0 1 2

1

-4

-2

0

2

2

Debusschere – SNL Forward UQ

Page 156: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

K-L decomposition captures each realization

Debusschere – SNL Forward UQ

Page 157: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

K-L decomposition captures each realization

0 2 4 6 8 10 12 14 16 18 20Time, t

0

100

200

300

400

500

600

700X(

t) L=10L=30L=60X(t)

Debusschere – SNL Forward UQ

Page 158: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

PC expansion of a random vector

ξ =P∑

k=0

ck Ψk (η)

Galerkin projection

ck =〈ξΨk (η)〉〈Ψ2

k (η)〉

is not well-defined,since ξ and η do not belong to the same stochastic space.

Debusschere – SNL Forward UQ

Page 159: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

PC expansion of a random vector

ξ =P∑

k=0

ck Ψk (η)

Galerkin projection

ck =〈ξΨk (η)〉〈Ψ2

k (η)〉

is not well-defined,since ξ and η do not belong to the same stochastic space.

Need a map ξ ↔ η.

Debusschere – SNL Forward UQ

Page 160: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Rosenblatt transformation• Rosenblatt transformation maps any (not necessarily independent)

set of random variables (ξ1, . . . , ξn) to uniform i.i.d.’s {ηi}ni=1

(Rosenblatt, 1952).

η1 = F1(ξ1)

η2 = F2|1(ξ2|ξ1)

η3 = F3|2,1(ξ3|ξ2, ξ1)

...

ηn = Fn|n−1,...,1(ξn|ξn−1, . . . , ξ1)

• Inverse Rosenblatt transformation ξ = R−1(η) ensures awell-defined quadrature integration

〈ξi Ψk (η)〉 =

∫R−1(η)i Ψk (η)dη

Debusschere – SNL Forward UQ

Page 161: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

KL+PC+Data Partitioning represent the dynamics of a bimodal process

0 5 10 15 20Time, t

0

100

200

300

400

500

600

700

XK

LPC(t)

KL-PC representation, 5 KL modes, 3rd PC order

Debusschere – SNL Forward UQ

Page 162: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

UQ in Systems with Inherent Stochastic Noise

• Some systems have intrinsic uncertainty• Stochastic reaction networks• Macroscale quantities extracted from atomistic methods with sampling

• Galerkin projection is challenged by such systems• No deterministic governing equation for intrusive UQ• Quadrature methods, especially sparse methods, are challenged by noise in

function evaluations

• Use Bayesian regression to infer PC coefficients

Debusschere – SNL Forward UQ

Page 163: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Summary

• Polynomial Chaos Expansions offer a convenient way to representrandom variables

• Both intrusive and non-intrusive approaches are available to propagateuncertain model inputs to its outputs

• While conceptually straightforward, many challenges remain in terms ofefficiency and accuracy

Debusschere – SNL Forward UQ

Page 164: Polynomial Chaos based uncertainty propagation Intrusive and Non-Intrusive Methods

Introduction PCES Forward UQ Sensitivity Challenges Summary References

Further Reading

• N. Wiener, “Homogeneous Chaos", American Journal of Mathematics, 60:4, pp. 897-936, 1938.

• M. Rosenblatt, “Remarks on a Multivariate Transformation", Ann. Math. Statist., 23:3, pp. 470-472, 1952.

• R. Ghanem and P. Spanos, “Stochastic Finite Elements: a Spectral Approach", Springer, 1991.

• O. Le Maître and O. Knio, “Spectral Methods for Uncertainty Quantification with Applications to Computational Fluid Dynamics",Springer, 2010.

• D. Xiu, “Numerical Methods for Stochastic Computations: A Spectral Method Approach", Princeton U. Press, 2010.

• O.G. Ernst, A. Mugler, H.-J. Starkloff, and E. Ullmann, “On the convergence of generalized polynomial chaos expansions,” ESAIM:M2AN, 46:2, pp. 317-339, 2011.

• D. Xiu and G.E. Karniadakis, “The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations", SIAM J. Sci. Comput.,24:2, 2002.

• Le Maître, Ghanem, Knio, and Najm, J. Comp. Phys., 197:28-57 (2004)

• Le Maître, Najm, Ghanem, and Knio, J. Comp. Phys., 197:502-531 (2004)

• B. Debusschere, H. Najm, P. Pébay, O. Knio, R. Ghanem and O. Le Maître, “Numerical Challenges in the Use of Polynomial ChaosRepresentations for Stochastic Proecesses", SIAM J. Sci. Comp., 26:2, 2004.

• S. Ji, Y. Xue and L. Carin, “Bayesian Compressive Sensing", IEEE Trans. Signal Proc., 56:6, 2008.

• K. Sargsyan, B. Debusschere, H. Najm and O. Le Maître, “Spectral representation and reduced order modeling of the dynamics ofstochastic reaction networks via adaptive data partitioning". SIAM J. Sci. Comp., 31:6, 2010.

• K. Sargsyan, B. Debusschere, H. Najm and Y. Marzouk, “Bayesian inference of spectral expansions for predictability assessment instochastic reaction networks". J. Comp. Theor. Nanosc., 6:10, 2009.

Debusschere – SNL Forward UQ