138
PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE NANO „miękie” spotyka NANO „twarde” Marek Pietraszkiewicz, Instytut Chemii Fizycznej PAN, 01-224 Warszawa, Kasprzaka 44/52, tel: 3433416 E-mail: [email protected]

PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

  • Upload
    kalila

  • View
    49

  • Download
    0

Embed Size (px)

DESCRIPTION

PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE NANO „miękie” spotyka NANO „twarde” Marek Pietraszkiewicz, Instytut Chemii Fizycznej PAN, 01-224 Warszawa, Kasprzaka 44/52, tel: 3433416 E-mail: [email protected]. ALLACH AKBAR!! NANO JEST WIELKIE!!. 1 nm = 10 -9 m. - PowerPoint PPT Presentation

Citation preview

Page 1: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI

NANO – NIEKONWENCJONALNIE

NANO „miękie” spotyka NANO „twarde”

Marek Pietraszkiewicz, Instytut Chemii Fizycznej PAN, 01-224 Warszawa, Kasprzaka 44/52, tel: 3433416

E-mail: [email protected]

Page 2: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 3: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

ALLACH AKBAR!!

NANO JEST WIELKIE!!

1 nm = 10-9 m

Page 4: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

NANO

NA

NO

Page 5: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

KLASYFIKACJA NANO-OBIEKTÓW: ~3-100 nm

A:

OBIEKTY O ODMIENNYCH WŁAŚCIWOŚCIACH OD POJEDYNCZYCH ATOMÓW I OBIEKTÓW MAKROSKOPOWYCH

B:

WIELOFUNKCYJNE OBIEKTY O ROZMIARACH CHARAKTERYSTYCZNYCH DLA “NANO”

Page 6: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

PRZYKŁADYCHARAKTERYSTYKA OBIEKTÓW O ODMIENNYCH

WŁAŚCIWOŚCIACH OPTYCZNYCH I ELEKTRONOWYCH

0-D, 1-D, 2-D, 3-D

NANO-: koloidy, rurki, klastery, warstwy, krystality, proszki, sfery, sztabki, druty, kropki kwantowe

PIERWIASTKI: metale szlachetne, platynowce, metale przejściowe, metaloidy

ZWIĄZKI CHEMICZNE: półprzewodniki (CdS, HgTe, ZnS), izolatory (ZrO2, SnO2), magnetyki (Fe3O4)

Page 7: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

PRZYKŁADY

SAMOORGANIZACJA SUPRAMOLEKULARNA

POLIMERY WIELOFUNKCYJNE

BIOCZĄSTECZKI I BIOPOLIMERY

Page 8: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Occurance of nanoscale particulate materials.

From presentation E. Clayton Teague, NNCO, April 2004.

Page 9: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

SUPRAMOLEKULARNE OBIEKTY O ROZMIARACH NANOMETRYCZNYCH

- AGREGATY SUPRAMOLEKULARNE

- HETEROPOLIANIONY

- DENDRYMERY

- FULLERENY

Page 10: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

SUPRAMOLEKULARNE OBIEKTY O ROZMIARACH NANOMETRYCZNYCH

- AGREGATY SUPRAMOLEKULARNE

Page 11: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

NED SEEMAN http://seemanlab4.chem.nyu.edu/nano-oct.html

DNA Borromean rings

Page 12: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

NED SEEMAN http://seemanlab4.chem.nyu.edu/nano-oct.html

Truncated Octahedron

A truncated octahedron contains six squares and eight hexagons. This is a view down the fourfold axis of one of the squares. Each edge of the truncated octahedron contains two double helical turns of DNA. The molecule contains 14 cyclic strands of DNA. Each face of the octahedron corresponds to a different cyclic strand. In this drawing, each nucleotide is shown with a colored dot corresponding to the backbone, and a white dot corresponding to the base. This picture shows the strand corresponding to the square at the center of the figure and parts of the four strands at the cardinal points of the figure. These strands are all shown with red backbones. In addition to the 36 edges of the truncated octahedron, each vertex contains a hairpin of DNA extending from it. These hairpins are all parts of the red strands that correspond to the squares. The strands corresponding to the hexagons are shown with backbones whose colors are yellow (upper right), cyan (upper left), magenta (lower left) and green (lower right). The molecular weight of this molecule as about 790,000 Daltons.

Page 13: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

NED SEEMAN http://seemanlab4.chem.nyu.edu/nano-oct.html

Cube

This representation of a DNA cube shows that it contains six different cyclic strands. Their backbones are shown in red (front), green (right), yellow (back), magenta (left), cyan (top) and dark blue (bottom). Each nucleotide is represented by a single colored dot for the backbone and a single white dot representing the base. Note that the helix axes of the molecule have the connectivity of a cube. However, the strands are linked to each other twice on every edge. Therefore, this molecule is a hexacatenane. To get a feeling for the molecule, follow the red strand around its cycle: It is linked twice to the green strand, twice to the cyan strand, twice to the magenta strand, and twice to the dark blue strand. It is only indirectly linked to the yellow strand. Note that each edge of the cube is a piece of double helical DNA, containing two turns of the double helix.

Page 14: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

SUPRAMOLEKULARNE OBIEKTY O ROZMIARACH NANOMETRYCZNYCH

- HETEROPOLIANIONY

Page 15: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Inorganic Chemistry Goes Protein Size: A Mo368 Nano-Hedgehog Initiating Nanochemistry by Symmetry Breaking, Achim Mueller,* Eike Beckmann, Hartmut Boegge,, Marc Schmidtmann, and Andreas Dress, Angew. Chem. Int. Ed., 41, 1162, (2001).

Page 16: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

16 A. Muller, P. Kogerler :Coordination Chemistry Reviews 182 (1999) 3–17

Fig. 11. Some structural details of the novel supramolecular system {Mo36 ¦Mo148 } ({Mo36 } occupa-tion:20%). Part of the chain structure is shown, which is built up by linking the ring-shaped clusters{Mo148 } with three missing {Mo2 } groups. The interaction between host (in polyhedral representation)and guest (ball and stick) is due to 16 hydrogen bonds (dotted) and four sodium cations situated betweenhost and guest.

Page 17: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Giant metal-oxide-based spheres and their topology: from pentagonal building blocks to keplerates and unusual spin systemsA. Muller , P. Kogerler , A.W.M. Dress, Coordination Chemistry Reviews, 222 (2001) 193–218

Structural comparison of the {Mo 132- }- (left) and {Mo 72 Fe 30 }- type (right) clusters. Both consist of 12 {( Mo) Mo 5 } groups (blue, with the pentagonal

MoO bipyramids in bright blue). The different linker groups L ({ Mo }: L = {Mo V}, red; {Mo Fe }: L = {Fe}, yellow) can be used for a novel type of sizing

Page 18: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Giant metal-oxide-based spheres and their topology: from pentagonal building blocks to keplerates and unusual spin systemsA. Muller , P. Kogerler , A.W.M. Dress, Coordination Chemistry Reviews, 222 (2001) 193–218

Structural comparison of the {Mo 132- }- (left) and {Mo 72 Fe 30 }- type (right) clusters. Both consist of 12 {( Mo) Mo 5 } groups (blue, with the pentagonal

MoO bipyramids in bright blue). The different linker groups L ({ Mo }: L = {Mo V}, red; {Mo Fe }: L = {Fe}, yellow) can be used for a novel type of sizing

Page 19: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Giant metal-oxide-based spheres and their topology: from pentagonal building blocks to keplerates and unusual spin systems

A. Muller , P. Kogerler , A.W.M. Dress, Coordination Chemistry Reviews, 222 (2001) 193–218

Fig. 1. Polyhedral representations of the {Mo154 } (left) and the {Mo176 } (right) clusters showing three different building groups (the individual polyhedra represent the MOn coordination geometries). One {Mo8 } group is outlined, two {Mo2 } groups are shown in dark gray, and two equatorial {Mo1 } units are shown encircled.

Page 20: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

SUPRAMOLEKULARNE OBIEKTY O ROZMIARACH NANOMETRYCZNYCH

- DENDRYMERY

Page 21: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Startburst Dendrimers: Fundamental Building Blocks Startburst Dendrimers: Fundamental Building Blocks

for a New Nanoscopic Chemistry Setfor a New Nanoscopic Chemistry Set

Wei Chen

Turro Group

Department of Chemistry

Columbia University

November 20, 1997

Page 22: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

What are Dendrimers?

I. Linear II. Cross-linked III. Branched

IV. Dendritic (tree-like)

Dendrons Dendrimers Dendrigrafts

other names: Molecular Trees, Cascade molecules

Tomalia et al. Chemistry & Industry 1997, 416

Page 23: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

History of Starburst Dendrimers

Present: Commercially available dendrimer: poly(amidoamine) (PAMAM), poly(ester) poly(propylene imine)

Over 50 known dendrimer families

1944 Melville First suggestion of tree-like molecules

1978 Vogtle First synthesis of cascade

molecules

1983 Denkewalter Reported synthesis of poly(lysine)

molecular trees with asymmetical branch junctions

1983 De Gennes, Hervet Calculation of starburst, dense-packed

generation limit for poly(amidoamine) molecular trees

1983 Tomalia First successful synthesis of a

symmetrical branched high-molecular-weight dendrimers

1990 Frechet, Miller Convergent method for the

synthesis of dendrimers

..

Page 24: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

The First Synthesis of Dendritic Molecules

Co(II)/NaBH4

CH3OH, 2h AcOH, 2h

Co(II)/NaBH4

CH3OH, 2h

Buhleier et al. Synthesis 1978, 155

R

N

NC CN

R

N

NH2 NH2

R

N

N N

CN CNNC NC

R

N

N N

H2N NH2 NH2NH2

CH CH-CN

35%

R = C6H5-CH2, cyclo-C6H11

AcOH, 2h

CH CH-CNR-NH2

66%

76%, 69% 66%, 44%

Page 25: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Synthesis of Dendrimers: the Divergent Method

Key Contributors

R. Denkewalter - Allied Corp.D. Tomalia - Michigan Molecular Institute

6 B-C+C A

construct from the root to the leaves

A

A A

C C

C

C

C

C

A A

A

A

A

A

Ardoin et al., Bull. Soc. Chim. Fr. 1995, 132,, 875

Page 26: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

s-fr +

Key Contributors

J. Frechet - Cornell Univ.T. Miller - AT&T Bell Labs

Synthesis of Dendrimers: the Convergent MethodSynthesis of Dendrimers: the Convergent Method

construct from the leaves to the root

Hawker et al., J. Am. Chem. Soc. 1990, 112, 7638

fr

Core c

c

c

c

cc

fp

ss fp

sfrs

cc

fp ssss

fp

1 2

Page 27: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Comparison of the Two Methods

Divergent Method

Convergent Method

Advantage

Disadvantage1. Defects on the surface of higher generation dendrimers2. Elimination of excess reagents after each sequence.

Advantage

Disadvantage

1. A limited number of growth reactions per sequence.2. Ease of purification and characterization.3. Able to attach different types of dendrons into one dendrimer.

Steric constraints for the attachment of large dendrons to the core.

Able to construct high generation dendrimers.

Tomalia et al., Topics Curr. Chem. 1993, 165, 193Ardoin, et al., Bull. Soc. Chim. Fr 1995, 132, 875

Page 28: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Synthesis of PAMAM Dendrimers

Gen. 0

Gen. 1

Gen. 2

(A)

(B)

(A, B) (A, B)

Tomalia et al. Macromol. 1986, 19, 2466.

CH2 CHCO2Me

H2NCH2CH2NH2 (excess)N

CNH NH2

CHNH2N CNH NH2

O

OO

N

NH2H2N

NH2

NH3

N

NN

N

NH2NH2

NH2

NH2

H2N

H2NN

NN

N

NN

N

N

N

N

NH2

NH2

NH2

NH2

NH2

NH2

NH2NH2

H2N

H2N

H2N

H2N

Full Generation

Half Generation

Page 29: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Characterization of Dendrimers1. Elemental composition:

C, H, N analysis; MS

2. Molar mass versus generation: low-angle laser light scattering; MS; electrophoresis

3. Homogeneity:size exclusion chromotography(SEC); EM; AFM; STM; capillary electrophoresis

4. Interior and end group:IR; 15N, 13C, 31P, 29Si, 2H and 1H NMR; titration

5. Structures:13C, 2H and 1H NMR; EM; electrospray MS; fluorescence probe analysis; computer simulation.

6. Dimensionintrinsic viscosity measurements; SEC; computer simulation; EM; AFM;electrophoresis; neutron scattering.

Tomalia et al., Angew. Chem. Int. Ed. Engl. 1990, 29, 138.

Page 30: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Predictable MW and Molecular Dimension

Generation MW Number of Diameter (Å) Surface Groups predicated Actual

CPK SEC

0 359 3 9.6 (19.2) 10.81 1043 6 12.8 (28.8) 15.82 2411 12 17.6 (41.6) 22.03 5147 24 24.1 (51.2) 31.04 10619 48 30.6 (65.6) 40.05 21563 96 38.5 (81.6) 53.06 43451 192 47.5 (91.2) 67.07 87227 384 61.8 (104.0) 80.08 174779 768 78.0 (117.0) 92.09 349883 1536 98.0 (130.0) 105.010 700091 3072 123.0 (143.0) 124.0

Number of Surface Groups = NcNbG

Tomalia et al., Angew. Chem. Int. Ed. Engl. 1990, 29, 138.

Nc = 3, Nb = 2

Polydispersity Mw/ Mn= 1.01-1.08

Branching ideality > 95 mol%

G

Page 31: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Tomalia et al., Angew. Chem. Int. Ed. Engl. 1990, 29, 138.

Computer-Simulated Molecular GraphicsComputer-Simulated Molecular Graphics

Gen. 3

Gen. 6

Gen. 4

Gen. 5

Page 32: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Shape versus Generation

early generation: open hemispherical dome

later generation: closed spheroid

computer simulationfluorescence probe

ESR probe

Naylor et al., J. Am. Chem. Soc. 1989, 111, 2339.

Gen 0 1 2 3 4 5

5.04.03.0

2.01.0

Iz/ IxAspect Ratio

Page 33: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

                                                                                                

      

                                       

Page 34: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 35: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 36: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 37: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 38: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 39: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 40: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 41: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

A New Route to Organic Nanotubes from Porphyrin Dendrimers, Yoonkyung Kim, Michael F. Mayer, and

Steven C. Zimmerman, Angew. Chem. Int. Ed., 42, 1121 (2003)

Page 42: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 43: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Dendritic Polymers in Biomedical Applications: From Potential to Clinical Use in Diagnostics and Therapy, Salah-Eddine Stiriba,Holg er Frey,* and Rainer Haag, Angew. Chem. Int. Ed., 41, 1329 (2002).

Page 44: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Fullereny

Page 45: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

FULLERENY

Page 46: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

FULLERENY

Page 47: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 48: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

SYNTEZA NANOMATERIAŁÓW W FAZIE CIEKŁEJRecent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles, B.L. Cushing, V.L. Kolesnichenko, J.O’Connor, Chem. Rev., 104, 3893 (2004)

Nanoparticle Synthesis by Coprecipitation, Nucleation, Growth

Growth Termination and Nanoparticle Stabilization

Coprecipitation Synthetic Methods

Synthesis of Metals from Aqueous Solutions

Precipitation of Metals by Reduction from Nonaqueous Solutions

Precipitation of Metals by Electrochemical Reduction

Precipitation of Metals by Radiation-Assisted Reduction

Precipitation of Metals by Decomposition of Metallorganic Precursors

Precipitation of Oxides from Aqueous Solutions

Precipitation of Oxides from Nonaqueous Solutions

Coprecipitation of Metal Chalconides by Reactions of Molecular Precursors

Page 49: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

SYNTEZA NANOMATERIAŁÓW W FAZIE CIEKŁEJRecent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles, B.L. Cushing, V.L. Kolesnichenko, J.O’Connor, Chem. Rev., 104, 3893 (2004)

Microwave-Assisted Coprecipitation

Sonication-Assisted Coprecipitation

Sol-Gel Processing

Sol-Gel Chemistry of Metal Alkoxides

Sol-Gel Chemistry of Aqueous Metal Cations

Condensation Reactions of Hydrolyzed Metals

Xerogel and Aerogel Formation

Gel Sintering

Sol-Gel Synthetic Methods

Sol-Gel Syntheses of Oxides

Sol-Gel Syntheses of Other Inorganics

Sol-Gel Processing of Nanocomposites

Page 50: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

SYNTEZA NANOMATERIAŁÓW W FAZIE CIEKŁEJRecent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles, B.L. Cushing, V.L. Kolesnichenko, J.O’Connor, Chem. Rev., 104, 3893 (2004)

Microemulsions

Synthesis of Core-Shell and Onion-Structured Nanoparticles

Microemulsion Syntheses in Supercritical CO2

The Germ-Growth Method

Hydrothermal/Solvothermal Processing of Nanoparticles and Nanocomposites

Principles of Hydrothermal and Solvothermal Processing

Hydrothermal and Solvothermal Methods

Solvothermal Processing of Nanocrystalline Oxides

Synthesis of Nanocrystalline Nitrides and Chalcogenides

Templated Syntheses

Biomimetic Syntheses

Surface-Derivatized Nanoparticles

Page 51: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

REDUKCJA SOLI METALI HYDRAZYNĄRecent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles, B.L.

Cushing, V.L. Kolesnichenko, J.O’Connor, Chem. Rev., 104, 3893 (2004

Page 52: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

TEM image of Ag nanoparticles prepared in DMF (A) at room temperature and (B) under reflux conditions. Both samples are capped with 3-(aminopropyl)-trimethoxy silane that sometimes forms a thin silica shell, as demonstrated by the inset in image B

Page 53: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

NANOKLASTERY METALI OTRZYMANE W ROZTWORACH NIEWODNYCH

Page 54: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

(A) TEM micrograph of a 3-D assembly of 6 nm as-synthesized Fe50Pt50 particles. (B) TEM micrograph of a 3-D assembly of 6 nm Fe50Pt50 particles after replacing oleic acid-oleylamine with hexanoic acid-hexylamine. (C) HRSEM image of a 180 nm thick, 4 nm Fe52Pt48 nanocrystal assembly annealed at 560 °C for 30 min under 1 atm of N2 gas. (D) HRTEM image of 4 nm Fe52Pt48 nanocrystals annealed at 560 °C for 30 min.

Page 55: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

SYNTEZA NANOMETRYCZNYCH TLENKÓW

Page 56: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

SYNTEZA MIKROFALOWA

Page 57: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

(A) TEM images of 15 nm Au particles coated with thin silica layers: (top) 18 h after addition of active silica; (center) 42 h after addition; (bottom) 5 days after addition. (B) The silica shell keeps growing, but eventually small SiO2 particles nucleate from solution.

Page 58: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

SYNTEZA NANOKLASTERÓW METALI W MIKROEMULSJACH

Page 59: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

STRUKTURA ELEKTRONOWA CHARAKTERYSTYCZNA DLA OBIEKTÓW NANOMETRYCZNYCH – DEFINICJA

PASMA PRZEWODZENIA I WALENCYJNEGO

Bands and Bandgaps

The electrons in bulk (much bigger than 10 nm) semiconductor material have a range of energies. One electron with a different energy than a second electron is described as being in a different energy level, and it is established that only two electrons can fit in any given level. In bulk, energy levels are very close together, so close that they are described as continuous, meaning there is almost no energy difference between them. It is also established that some energy levels are simply off limits to electrons; this region of forbidden electron energies is called the bandgap, and it is different for each bulk material. Electrons occupying energy levels below the bandgap are described as being in the valence band. Electrons occupying energy levels above the bandgap are described as being in the conduction band.

Page 60: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

In reality and at room temperature, there are practically no electrons in the conduction band compared to the number in the valence band. Also in reality, the distance between energy levels in a band is practically zero compared to the size of the bandgap (in this diagram, the distance between energy levels has been blown up for visual ease).

Page 61: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 62: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

KOLOR EMITOWANEGO ŚWIATŁA ZALEŻNY OD ROZMIARU NANOCZĄSTKI

Page 63: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Energy spectrum of nano structure

Page 64: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

0-D: KROPKI KWANTOWE (QUANTUM DOTS)

Page 65: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Applications in biology of optical quantum dots

10 distinguishable colors of ZnS coated CdSe QDs

Optical coding and tag based on emission wavelength of ZnS coated CdS QDs

Page 66: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

BIODIAGNOSTYKA

Page 67: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Shell-Tunneling Spectroscopy of the Single-Particle Energy Levels of Insulating Quantum Dots

E. P. A. M. Bakkers, Z. Hens, A. Zunger, A. Franceschetti, L. P. Kouwenhoven, L. Gurevich, and D. Vanmaekelbergh

The energy levels of CdSe quantum dots are studied by scanning tunneling spectroscopy. By varying the tip-dot distance, we switch from "shell-filling" spectroscopy (where electrons accumulate in the dot and experience mutual repulsion) to "shell-tunneling" spectroscopy (where electrons tunnel, one at a time, through the dot). Shell-tunneling spectroscopy provides the single-particle energy levels of the CdSe quantum dot. The results of both types of tunneling spectroscopy are compared with pseudopotential many-body calculations.

Page 68: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

0-D: KROPKI KWANTOWE (QUANTUM DOTS)

A Series of Double Well Semiconductor Quantum Dots

Dirk Dorfs and Alexander Eychmüller*

Five-layered nanocrystals have been prepared that consist of a CdS core covered by a shell of HgS followed by several monolayers of CdS that are covered by again a shell of HgS and an outer cladding layer of CdS. The resulting quantum dots, thus, contain a double well electronic structure. Both HgS wells are either as thick as a monolayer or as two monolayers. The wells are separated by a wall of two to three monolayers of CdS giving rise to a family of double well semiconductor quantum dots. Absorption spectra of eight members of this family are presented together with some first results from TEM measurements

Page 69: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

1-D: NANORURKI, NANODRUTY, NANOWŁÓKNA

Adsorption Modification of Single-Walled Carbon Nanotubes with Tetraazaannulene Macrocyclic ComplexesElena V. Basiuk (Golovataya-Dzhymbeeva),* Elena V. Rybak-Akimova, Vladimir A. Basiuk, Dwight Acosta-

Najarro, and José M. Saniger

Single-walled carbon nanotubes (SWNTs) strongly adsorb macrocyclic tetraazaannulene complexes NiTMTAA and CuTMTAA from ethanol solutions, with a SWNT/complex mass ratio of ca. 5:4. According to the results of molecular mechanics modeling, this corresponds to dense monolayer coverage. A saddle-shaped conformation of the macrocyclic complexes facilitates their better accommodation on the cylindrical nanotube walls, resulting in highly ordered molecular arrays.

Page 70: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 71: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 72: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Introduction: common facts• Discovered in 1991 by Iijima

• Unique material properties

• Nearly one-dimensional structures

• Single- and multi-walled

Page 73: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Purification• Contaminants:

– Catalyst particles

– Carbon clusters

– Smaller fullerenes: C60 / C70

• Impossibilities:– Completely retain nanotube structure

– Single-step purification

• Only possible on very small scale:– Isolation of either semi-conducting SWNTs

Page 74: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 75: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Two Approaches for Surface Modification of MWNTS

Two Approaches for Surface Modification of MWNTS

• Non-covalent attachment of molecules– van der Waals forces: polymer chain wrapping – Alters the MWNT surface to be compatible with the bulk polymer – Advantage: perfect structure of MWNT is unaltered

• mechanical properties will not be reduced. – Disadvantage: forces between wrapping molecule / MWNT maybe

weak• the efficiency of the load transfer might be low.

• Covalent bonding of functional groups to walls and caps– Advantage: May improve the efficiency of load transfer

• Specific to a given system – crosslinking possibilities– Disadvantage: might introduce defects on the walls of the MWNT

• These defects will lower the strength of the reinforcing component.

Page 76: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 77: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 78: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 79: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 80: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 81: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 82: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 83: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 84: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 85: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 86: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 87: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 88: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 89: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 90: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 91: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Functionalization of Carbon Nanotubes for Biocompatibility and Biomolecular Recognition

Moonsub Shim, Nadine Wong Shi Kam, Robert J. Chen, Yiming Li, and Hongjie Dai*

The interface between biological molecules and novel nanomaterials is important to developing new types of miniature devices for biological applications. Here, the streptavidin/biotin system is used to investigate the adsorption behavior of proteins on the sides of single-walled carbon nanotubes (SWNTs). Functionalization of SWNTs by coadsorption of a surfactant and poly(ethylene glycol) is found to be effective in resisting nonspecific adsorption of streptavidin. Specific binding of streptavidin onto SWNTs is achieved by co-functionalization of nanotubes with biotin and protein-resistant polymers.

Page 92: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Selective Coating of Single Wall Carbon Nanotubes with Thin SiO2 LayerQiang Fu, Chenguang Lu, and Jie Liu*

Single walled carbon nanotubes (SWNTs) have been shown to be highly sensitive gas sensors. However, attaching functional groups with selective sensing functions on nanotubes without destroying the intrinsic electronic property of the nanotubes is still challenging. Here, we report a new method of coating SWNTs with a thin layer of SiO2 using 3-aminopropyltriethoxyysilane as coupling layers. The thickness of the SiO2 could be controlled at about 1 nm. The coating of SiO2 on SWNTs was confirmed by burning the SWNTs in air. The effect of 3-aminopropyltriethoxyysilane was also discussed.

Page 93: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

NANORURKI Z MATERIAŁÓW ORGANICZNYCH

Representative nanotube structures with a hollow cylinder ca. 10 nm wide, the profiles of which are classified on the basis of physical, chemical, and biological viewpoints. The bottom column indicates the building block that makes up the tubular assemblies. The images of the carbon nanotube and the microtubule are provided by NEC Corporation and National Partnership for Advanced Computational Infrastructure (NPACI), respectively.

Page 94: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

CZĄSTECZKI TWORZĄCE NANORURKI

Page 95: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Diameter distribution of tubular structures that exist in the real world. Lipid nanotubes with less than 10 nm diameters are generally unavailable. Abbreviations: LNT, lipid nanotube; NT, nanotube; SWCNT, single-wall carbon nanotube; MWCNT, multiwall carbon nanotube; M.W, molecular weight; Agg., aggregation.

Page 96: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Variety of nanotube structures whose syntheses start with molecular self-assembly of low-molecular-weight or polymer amphiphiles. (a and b) Molecular self-assembly into a nanotube or rod. (c) Coating of metals. (d and f) Deposition of metal alkoxides on the surfaces of the nanotubes and the subsequent calcination into a double-layered metal oxide nanotube. (e and g) Filling of metals and the subsequent removal of the organic shell that will result in the formation of a metal nanowire. (h and i) Deposition of metal alkoxides on the surface of the rod and the subsequent calcination into a single-layered metal oxide nanotube. (j and k) Molecular self-assembly by using a silica nanotube as a template. (m) Deposition of metal alkoxides on the surface of a hybrid nanotube.

Page 97: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Variety of methods to yield nanotube structures: (1) chiral molecular self-assembly; (2) packing-directed selfassemblybased on an unsymmetrical bolaamphiphile; (3) self-assembly of a rod-coil copolymer into a nanotube; (4) nanotube formation from a triblock copolymer via a molecular sculpting process, which involves (f) self-assembly, (g) cross-linking of the shell, and (h) decomposition of the core by ozonolysis; (5) self-assembly or deposition of molecules inside the pore as substrate.

Page 98: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Possible formation mechanism of lipid nanotubes based on chiral molecular self-assembly. The illustration of the spherical vesicle was provided courtesy of Dr. Yoko Takiguchi of Nagoya University.

Page 99: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Various self-assembled morphologies depending on the critical packing parameter (P) of each lipid.

Page 100: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Schematic illustrations of the self-assembled morphologies of helical solid bilayers in high-axial-ratio nanostructures: (a) twisted ribbon; (b and c) loosely coiled ribbon; (d) tightly coiled ribbon; (e) nanotube with helical marking; (f) nanotube without helical marking.

Page 101: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Schematic diagram for the fabrication of a glucose-derived LNT hollow cylinder, filled with Au nanocrystals, which self-assembled from 32.

Page 102: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

2-D: NANOWARSTWY

METHODS OF SURFACE COVERAGE

PHYSICAL

• SPIN-COATING• BUBLE JET PRINTING• MOLECULAR VAPOUR

DEPOSITION• EPITAXIAL GROWTH• STM MANIPULATION• THERMAL SPRAY• LANGMUIR-BLODGETT

DEPOSITION• HIGH VACUUM VAPOUR

DEPOSITION

CHEMICAL

• CHEMISORPTION• COVALENT BINDING• ELECTROCRYSTALLISATION• ELECTROPOLYMERISATION• PHOTOPOLYMERISATION• ELECTRIC FIELD

POLYMERISATION

Page 103: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

TYPES OF SURFACES

NANOSCOPIC MEZOSCOPIC MACROSCOPIC

NANOSCOPIC

•NANOCOLLOIDS

•NANOCRYSTALLITES

•NANOSPHERES

•NANOTUBES

•NANORODS

•NANOFIBERS

•CLUSTERS

MESOSCOPIC•COLLOIDS

•TUBULAR STRUCTURES

•VESICLES

•LIPOSOMES

MACROSCOPIC•THIN SOLID FILMS

Page 104: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

MATERIALS

3D SURFACES

• ELEMENTS: Ag, Au, Cu, platinum metals, C, Si,

• SEMICONDUCTORS: CdS, CdSe, HgTe, TiO2, ZrO2, PbS, ZnSe, GaN

• INSULATORS: SiO2

2D SURFACES

• ELEMENTS: Ag, Au, Cu, platinum metals, C, Si

Page 105: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

ANCHORING FUNCTIONAL GROUPS:

COVALENT BINDING

Si(OMe)3, NCS, NCO, COCl, for surfaces with OH groups:

SiO2, C, Si, TiO2, ZrO2, In-Sn-oxide (ITO)

NON-COVALENT BINDING

RS, RSSR, RNHCS2, RS2O3-, thiophene, RSe, RSeSeR, for surfaces: Au,

Ag, Cu, platinum metals, CdS, ZnSe, HgTe

RCOO, for Ag

RPO32-, for Al2O3, TiO2, ZrO2

Page 106: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

O O O

O O

O O O O

OOO

M

MM M

MM

O H

SUBSTRATE

O H

SUBSTRATE

RSRSRSRSRSRS

SURFACE MODIFICATION WITH METAL OXIDES AND THIOLS

M(OR)n conditioning M = Al, Zr, Ti, Si, B, Ge, Hf, Ta, Nb, V, Ge, Sn, In, Y

hydrolysis, drying, conditioning

surface conditioning with thiols

Page 107: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Chemoselective Immobilization of Gold Nanoparticle onto Self-Assembled Monolayers, Eugene W. L. Chan and Luping Yu, Langmuir 2002, 18, 311-313

Figure 1. Immobilization of a colloid decorated with 11-mercapto-2-undecanone and dodecanethiol onto a mixed mono-layer presenting aminooxy and methyl groups. The aminooxyand ketone groups form a stable oxime linkage at the inter-face.

Page 108: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Figure 8. Schematic of the reaction and retroreaction of Zr(acac)2(hfip)2 with a hydroxyl-terminated alkanethiol film and the resulting organic/inorganic architecture.

Surface Inorganic Chemistry: The Reaction of Hydroxyl-Terminated Thiols on Gold with a Zirconium Coordination Compound, Christian Dicke, † Marcus Morstein,* and Georg Ha¨ hner †, Langmuir 2002, 18, 336-344

Page 109: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Preparation of Dendritic Multisulfides and Their Assembly on Air/Water Interfaces and Gold Surfaces Maik Liebau, Henk M. Janssen, Kazuhiko Inoue, Seiji Shinkai, Jurriaan Huskens, Rint P.

Sijbesma, E. W. Meijer, and David N. Reinhoudt, Langmuir 2002, 18, 674-682

Figure 3. Cyclic voltammetric current response vs applied potential for dendritic adsorbates and CH3(CH2)9S(CH2)9CH3 on gold. The solution contains 1 mM Fe(CN)6 3- /Fe(CN)4- as external redox couple in 0.1 M K2SO4. The scan rate is 100 mV/s.

Page 110: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

3-D: NANOKOLOIDY, KLASTERY, PROSZKI

Metal Directed Assembly of Terpyridine-Functionalized Gold NanoparticlesTyler B. Norsten, Benjamin L. Frankamp, and Vincent M. Rotello*

Terpyridine capped gold nanoparticles (ca. 2.0 nm diameter) form large aggregates in the presence of metal ions [Fe(II), Zn(II), Cu(I), Ag(I)]. The assembly process is a result of metal coordination between two terpyridines that are attached to separate nanoparticles. The stability of the aggregates in various solvents and in the presence of excess terpyridine can be controlled through choice of bridging metal. Small angle X-ray scattering experiments indicate regular interparticle distances that increase as the length of the supporting monolayer is extended.

Page 111: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Self-Organization of Spherical Aggregates of Palladium Nanoparticles with a Cubic Silsesquioxane

Kensuke Naka,* Hideaki Itoh, and Yoshiki Chujo*

Uniform spherical aggregates of palladium nanoparticles with a mean diameter of 70 nm were produced by stirring of palladium(II) acetate with octa(3-aminopropyl)octasilsesquioxane octahydrochloride (1) as a cubic-linker in methanol at room temperature via self-organized spherical templates of palladium ions and 1. Transmission electron microscopy investigation showed that the highly ordered spherical aggregates were composed of the palladium nanoparticles with a size of 4.0 nm.

Page 112: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Efficient Phase Transfer of Luminescent Thiol-Capped Nanocrystals: From Water to Nonpolar Organic Solvents

Nikolai Gaponik,* Dmitri V. Talapin, Andrey L. Rogach, Alexander Eychmüller, and Horst Weller

Highly luminescent thiol-capped CdTe and HgTe nanocrystals synthesized in aqueous solutions were subject to a partial exchange of capping ligands with 1-dodecanethiol and transferred into different nonpolar organic solvents. It was found that acetone plays an important role in an efficient phase transfer of the nanocrystals. Both CdTe and HgTe nanocrystals retain their luminescence properties after being transferred to organic solvents, thus providing a new source of easily processable luminescent materials for possible applications in photovoltaics and optoelectronics.

Page 113: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Antigen/Antibody Immunocomplex from CdTe Nanoparticle BioconjugatesShaopeng Wang,* Natalia Mamedova, Nicholas A. Kotov,* Wei Chen, and Joe Studer

Complementary bioconjugates based on antibody-antigen interactions were synthesized from luminescent CdTe nanoparticles (NPs). Antigen (bovine serum albumin) was conjugated to red-emitting CdTe NPs, while green-emitting NPs were attached to the corresponding anti-BSA antibody (IgG). The NP bioconjugates were characterized by native and SDS-PAGE electrophoresis, gel-permeation HPLC, and circular dichroism. Antigen-antibody binding affinity was evaluated by enzyme-linked immunosorbent assay (ELISA). The formation of BSA-IgG immunocomplex resulted in the Förster resonance energy transfer (FRET) between the two different NPs: the luminescence of green-emitting NPs was quenched whereas the emission of the red-emitting NPs was enhanced. The luminescence recovered when the immunocomplex was exposed to an unlabeled antigen. The immunocomplexes can be considered as a prototype of NP superstructures based on biospecific ligands, while the competitive FRET inhibition can be used in an immunoassay protocol.

Page 114: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Facile Azidothermal Metathesis Route to Gallium Nitride NanoparticlesJianjun Wang, Luke Grocholl, and Edward G. Gillan*

This report describes a straightforward, metathesis (exchange) reaction between gallium chloride and sodium azide that produces gallium nitride nanoparticles below 210 C. Slowly heating these two reagents together circumvents rapid, exothermic reactions, which can decompose the nitride product. The resulting GaN powders are nanocrystalline and crystallize to the hexagonal phase upon annealing. Well-formed nanoparticles (ca. 50 nm) are clearly resolved in annealed samples, while as-synthesized particles sizes are near 10 nm.

Page 115: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Synthesis of Silver Nanoprisms in DMFIsabel Pastoriza-Santos and Luis M. Liz-Marzán*

Polygonal (mainly triangular) silver nanoprisms were synthesized by boiling AgNO3 in N,N-dimethyl formamide, in the presence of poly(vinylpyrrolidone). Although during the synthesis, a mixture of nanoprisms and nanospheroids is formed, the latter can be removed through careful centrifugation. The UV-visible spectra of the nanoprisms display an intense in-plane dipolar plasmon resonance band, as well as weak bands for in-plane and out-of-plane quadrupolar resonances. The nanoprisms are also stable in other solvents, such as ethanol and water, and solvent exchange leads to strong shifts of the in-plane dipole plasmon band.

Page 116: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Size Tunable Visible Luminescence from Individual Organic Monolayer Stabilized Silicon Nanocrystal Quantum Dots

Douglas S. English, Lindsay E. Pell, Zhonghua Yu, Paul F. Barbara, and Brian A. Korgel*

Quantum confinement in nanostructured silicon can lead to efficient light emission. However, the photoluminescence (PL) lifetimes in nanostructured silicon are typically very long-approximately 3 orders of magnitude longer than those of direct band gap semiconductors. Herein, we show that organic monolayer coated silicon nanocrystals ranging from 1 to 10 nm in diameter emit with nanosecond-scale lifetimes and high quantum yields, making it possible to measure the PL spectra of single Si quantum dots. The Si quantum dots demonstrate stochastic single-step "blinking" behavior and size-dependent PL spectra with line widths approximately only three times greater than those measured for CdSe nanocrystals at room temperature.

Page 117: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Dendritic Nanoreactors Encapsulating Pd Particles for Substrate-Specific Hydrogenation of Olefins

Masahiko Ooe, Makoto Murata, Tomoo Mizugaki, Kohki Ebitani, and Kiyotomi Kaneda*

Dendrimer-encapsulated Pd(0) nanoparticles inside poly(propylene imine) (PPI) dendrimers functionalized with triethoxybenzamide groups have been prepared by extraction of Pd2+ and subsequent chemical reduction. The resulting dendrimer-Pd nanocomposites are unique catalysts for substrate-specific hydrogenation of polar olefins, due to the strong interaction between polar substrates and tertiary amino groups within the dendrimers.

Page 118: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Generation of Cytotoxic Singlet Oxygen via Phthalocyanine-Stabilized Gold Nanoparticles: A Potential Delivery Vehicle for Photodynamic Therapy Duncan C. Hone, † Peter I. Walker, † Richard Evans-Gowing, ‡ Simon FitzGerald, § Andrew Beeby, § Isabelle Chambrier, † Michael J. Cook, † and David A. Russell* , Langmuir 2002, 18, 2985-2987

Figure 2. Transmission electron micrograph of phthalocyanine-stabilized gold nanoparticles. The scale bar represents 20 nm.

Page 119: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Dialkyl Sulfides: Novel Passivating Agents for Gold Nanoparticles, Elwyn J. Shelley, Declan Ryan, Simon R. Johnson, Martin Couillard, Donald Fitzmaurice, Peter D. Nellist, Yu Chen, Richard E. Palmer, and Jon A. Preece, 1791 Langmuir 2002, 18, 1791-1795

Figure 5. a) TEM micrographs of C10SC10 (left) and C18SC10 (right) passivated nanoparticles. b) Scheme of designed inter-digitation mode for C18SC10. c) Scheme of interdigitation mode for alkanethiol passivated nanoparticles. d) Scheme of proposed interdigitation mode found in all dialkyl sulfide passivated nanoparticles.

Page 120: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Hyperbranched Polyesters on Solid Surfaces, A. Sidorenko, X. W. Zhai, S. Peleshanko, A. Greco, V. V. Shevchenko, and, V. V. Tsukruk, Langmuir 2001, 17, 5924-5931

Figure 1. Idealized chemical structure of HBP4 molecule.

Figure 2. Kinetics of adsorption from the 1 g/L solution normalized to the saturation level of HBP3 (filled circles) and HBP4 (hollow circles) on bare Si surface

Page 121: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Hyperbranched Polyesters on Solid Surfaces, A. Sidorenko, X. W. Zhai, S. Peleshanko, A. Greco, V. V. Shevchenko, and, V. V. Tsukruk, Langmuir 2001, 17, 5924-5931

Figure 6. High-resolution image (1 1 ím) of HBP4 molecules adsorbed from the solution of 0.3 g/L concentration, height scale is 5 nm, and the cross-section shows height variation along thelines shown on the image.

Page 122: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

METALE, PÓŁPRZEWODNIKI, IZOLATORY

Page 123: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Fullerene-Functionalized Gold Nanoparticles. A Self-Assembled Photoactive Antenna-Metal Nanocore Assembly

P. K. Sudeep, Binil Itty Ipe, K. George Thomas, and M. V. George, Said Barazzouk, Surat Hotchandani, and Prashant V. Kamat, NANOLETTERS, 2, 29, 2002

Page 124: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Biofunctionalization of Silica-Coated CdTe and Gold Nanocrystals

Andrea Schroedter and Horst Weller, Ramon Eritja, William E. Ford and Jurina M. Wessels, NANOLETTERS, 2, 1363, 2002

This contribution reports the synthesis of water-soluble silica-coated CdTe nanocrystals that possess an ideally designed ligand shell with respect to colloidal properties and surface coupling reactions. We describe conjugation strategies for the modification of the fluorescent biocompatible nanocrystals with biomolecules that provide a molecular recognition potential like the biotin/avidin couple and DNA.

Page 125: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

ZASTOSOWANIA MODYFIKOWANYCH NANOCZĄSTEK: DIAGNOSTYKA MEDYCZNA

Page 126: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

WYZWANIA

PERSPECTIVES

ANALYTICAL CHEMISTRY: (bio)sensors, electronic nose, „lab-on-chip”, bio-chips, electrode modifications, nano-ISFETS, nanodevices for trace analysis

MICROELECTRONICS: telecommunications, planar waveguides, photonic cristalls, biochips, nanocirquits, organic and hybrid materials for memories, optoelectronic devices, OLED-s, flat electroluminescent displays, photochromic devices, powder lasers

CATALYSIS: new catalytic materials, solar energy conversion, photocatalytic waste degradation

Page 127: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 128: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE
Page 129: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

ZAGROŻENIA

BIG BROTHER IS WATCHING YOU!!!

ZASTOSOWANIA MILITARNE

NANOELEKTRONIKA

NANOCHIPY WSZCZEPIALNE W MOMENCIE URODZENIA

TOTALNA KONTROLA KAŻDEGO OBYWATELA NA ZIEMI

Page 130: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

POTENCJALNE ZAGROŻENIA DLA ZDROWIA

Page 131: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

• Nanoparticles may enter living cells via:

– Endocytosis• Receptor activation for initiation

– Membrane penetration• Generally occurs with very

hydrophobic particles

– Transmembrane channels• May be seen with very small

nanoparticles (< 5 nm?)

Potential bio-uptake of nanoscale particulates.

Adapted from presentation of Vicki Colvin, Rice University.

Page 132: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

• Accumulation of a substance within a species can occur due to lack of degradation or excretion.

• Many nanoparticles are not biodegradable.

• If nanoparticles enter organisms low in the food web, they may be expected to accumulate in organisms higher in the food web.Very little is understood about possible health

effects of nanoparticle exposure!

Potential bio-accumulation of nanoscale particles.

Adapted from presentation of Vicki Colvin, Rice University.

Page 133: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Inhalation: Inhaled particles induce inflammation in respiratory tract, causing tissue damage. Example: Inhalation of silica particles in industrial workers causes “silicosis”.

Ingestion: nanoparticles may cause liver damage. Ingested nanoparticles (i.e. for oral drug delivery) have been found to accumulate in the liver. Excessive immune/inflammatory responses cause permanent liver damage.

Potential human hazards for nanoscale particulates.

Dermal exposure: Particles may enter body through the skin. Potential hazards are unknown at present.

Other: ocular, ….Adapted from presentation of Vicki Colvin, Rice University.

Page 134: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Red- and green-emitting quantum dots highlight the mitochondria and nuclei, respectively, of human epithelial cells in culture. Although these colorful nanocrystals don't seem to harm the cells, could they pose unforeseen hazards to people or the environment?

Silica-coated semiconductor nanocrystals are readily incorporated into a wide variety of eukaryotic cells.In experiments where the quantum dots are deposited on a collagen substrate and then cells are deposited on top of this, the cells incorporate any quantum dots that underlie themWhen the cells migrate on a substrate, they ingest all the dots they pass over providing a convenient and rapid way for assessing the cells' potential to metastasize, or spread (as a cancer) from one part of the body to another [Adv. Mater., 14, 882 (2002)].The dots appear to go into cells as "inert spectators." The cells remain healthy and even continue to divide, with each cell division reducing the number of dots in any given cell. The dots have no discernible effect on the cells.---- A. Paul Alivisatos

Semiconductor nanoparticules.

Page 135: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

• Granulomas were observed in lungs 7 d or 90 d after an instillation of 0.5 mg NT per mouse (also in some with 0.1 mg);

• NT, regardless synthetic methods, types and amounts of residual catalytic metals, produced granulomas;

• Lung lesions in the 90-d NT groups, in most cases, more pronounced than those in the 7-d groups.

• Our study shows that, on an equal-weight basis, if carbon nanotubes reach the lungs, they are much more toxic than carbon black and can be more toxic than quartz, which is considered a serious occupational health hazard in chronic inhalation exposures.

• If fine NT dusts are present in a work environment, exposure protection strategies should be implemented to minimize human exposures.

Observations and tentative conclusions.

From Lam presentation

Page 136: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Governmental regulation - particulate matter.

From presentation E. Clayton Teague, NNCO, April 2004.

Page 137: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

Problem areas for regulation of particulates.

From presentation E. Clayton Teague, NNCO, April 2004.

Page 138: PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

KONKLUZJA

SPRAWDZENIEM WARTOŚCI WIEDZY JEST JEJ MOC USZLACHETNIANIA I

OCZYSZCZANIA ŻYCIA

ANNIE BESANT