of 147 /147
PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE SAMOORGANIZACJA SUPRAMOLEKULARNA Marek Pietraszkiewicz, Instytut Chemii Fizycznej PAN, 01-224 Warszawa, Kasprzaka 44/52, tel: 3433416 E-mail: [email protected]

PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

  • Author
    malha

  • View
    54

  • Download
    1

Embed Size (px)

DESCRIPTION

PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE SAMOORGANIZACJA SUPRAMOLEKULARNA Marek Pietraszkiewicz, Instytut Chemii Fizycznej PAN, 01-224 Warszawa, Kasprzaka 44/52, tel: 3433416 E-mail: [email protected] SAMOORGANIZACJA SUPRAMOLEKULARNA. - PowerPoint PPT Presentation

Text of PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO – NIEKONWENCJONALNIE

  • PODSTAWY CHEMII SUPRAMOLEKULARNEJ Z ELEMENTAMI NANO NIEKONWENCJONALNIE

    SAMOORGANIZACJA SUPRAMOLEKULARNA

    Marek Pietraszkiewicz, Instytut Chemii Fizycznej PAN, 01-224 Warszawa, Kasprzaka 44/52, tel: 3433416E-mail: [email protected]

  • SAMOORGANIZACJA SUPRAMOLEKULARNA

  • samoorganizacja niekowalencyjna

  • SAMOORGANIZACJA KOWALENCYJNA

    KALIKSARENY KUKUBITURIL HETEROPOLIANIONY

  • HETEROPOLIANIONYHeteropolianiony powstaj podczas kontrolowanej (pH) polikondensacji molibdenianw, wolframianw, wanadanw e rodowisku kwanym.

  • Molecular Symmetry BreakersGenerating Metal-Oxide-Based Nanoobject Fragments as Synthons for Complex Structures: [{Mo128Eu4O388H10(H2O)81}2]20-- a Giant-Cluster Dimer, L. Cronin,C. Beugholt, E. Krickemeyer, M Schmidtmann, H. Boegge, P. Koegerler, T.Kim K.Luong, and Achim Mueller*, Angew. Chem. Int. Ed., 41, 2805 (2002)Figure 1.Left:a packing diagram of the cluster units of 1a in ball-and-stick representation looking down the cavities(Eu III ions in green).Right:a representation of 1a with the molybdenum oxide based units displayed as polyhedra ({Mo1 }yellow;{Mo2 }red;{Mo8 }blue with central pentagonal units in cyan;Eu III coordination spheres in ball-and-stick representation).Bottom right:an expanded view of the Mo-O-Eu groups linking the two cluster rings.

  • Molecular Symmetry BreakersGenerating Metal-Oxide-Based Nanoobject Fragments as Synthons for Complex Structures: [{Mo128Eu4O388H10(H2O)81}2]20-- a Giant-Cluster Dimer, L. Cronin,C. Beugholt, E. Krickemeyer, M Schmidtmann, H. Boegge, P. Koegerler, T.Kim K.Luong, and Achim Mueller*, Angew. Chem. Int. Ed., 41, 2805 (2002)Figure 2.Demonstration of how an {Mo128 Eu4 }ring of 1a can formally be constructed from a parent {Mo154 }-type cluster by a cuttingprocess giving the two large important fragments.Top left:A side view of the {Mo154 }ring,the cutting positions are marked as large black spheres;top right:those units which have to be removed from the {Mo154 }ring and those which have to be added to the resulting two large fragments (left and right)to generate the {Mo128 Eu4 }cluster;bottom:the {Mo128 Eu4 }cluster from a side and top view (color code as in Figure 1)with the new {Mo*2 }units in brown which are shown in the side view together with the EuO9 polyhedra in ball-and-stick representation;the MoO6 octahedra of a selected {Mo7 }and a {Mo9 }group, respectively,as hatched violet polyhedra.

  • FORMATION OF SUPRAMOLECULAR POLYOXOANIONS

  • Figure 1.Polyhedral representation of [(TiP2 W15 O55 OH)2 ]14+ (1 ).The PO4 ,WO6 ,and TiO6 polyhedra are shown in blue, red, and green, respectively.

  • Figure 3.Polyhedral representation of [{Ti3 P2 W15 O57.5 (OH)3 }4 ]24 + (2 )with a bird s-eye view along a twofold rotation axis.The color code is the same as in Figure 1.

  • Figure 5.Polyhedral representation of [{Ti3 P2 W15 O57.5 (OH)3 }4 ]24 (2 )with a view along a mirror plane.The color code is the same as in Figure 1.

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA:

    WODOROWYCH KOORDYNACYJNYCH JONOWYCH -KWAS - -ZASADA HYDROFOBOWYCH

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA WODOROWYCHG.W. Whitesides

  • G.W. Whitesides

  • G.W. Whitesides

  • G.W. Whitesides

  • G.W. Whitesides

  • G.W. Whitesides

  • G.W. Whitesides

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHKoordynacja liniowaKoordynacja trygonalnaKoordynacja paska kwadratowaKoordynacja tetraedrycznaKoordynacja bipiramidy trygonalnejKoordynacja oktaedrycznaKoordynacja bipiramidy pentagonalnejKoordynacja szeciennaRodzaj anionu i rozpuszczalnika ma znaczny wpyw na architektur molekularn powstajcych kompleksw koordynacyjnych

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHMacromolecules Containing Bipyridine and Terpyridine Metal Complexes: Towards Metallosupramolecular Polymers Ulrich S. Schubert*and Christian Eschbaumer, Angew. Chem.Int. Ed., 41, 2892 (2002)

  • J.-M. LEHN MOLECULAR GRIDS

  • J.-M. LEHN MOLECULAR GRIDS

  • J.-M. LEHN MOLECULAR GRIDS

  • Figure 4.Distribution curves of the species 1 ,L6 Ag 9 ,( ,the t -3 form of L5 Ag ( )and al the others ( ;by difference)in the course of the titration of L by AgCF3 SO3 in CD3 Cl/CD3 NO2 25/75,determined by integration of characteristic 200 MHz 1 H NMR signals for the two complexes.The inset shows part of the distribution curves of the species containing 6 9 silver ions for a statistical non-cooperative Ising mode with nine independent sites.

  • WIELKIE METALLACYKLE

  • Figure 1.a)The self-assemblyof a porphyrin nonameric arrayconsisting of 30 particles is followed byb)the self-organization of these nonamers into columnar aggregates that are about 6 nm in diameter and an average of 5 nm in height.The size of these latter entities can be directed byvarious means.

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHMacromolecules Containing Bipyridine and Terpyridine Metal Complexes: Towards Metallosupramolecular Polymers Ulrich S. Schubert*and Christian Eschbaumer, Angew. Chem.Int. Ed., 41, 2892 (2002)

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHMacromolecules Containing Bipyridine and Terpyridine Metal Complexes: Towards Metallosupramolecular Polymers Ulrich S. Schubert*and Christian Eschbaumer, Angew. Chem.Int. Ed., 41, 2892 (2002)

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHMacromolecules Containing Bipyridine and Terpyridine Metal Complexes: Towards Metallosupramolecular Polymers Ulrich S. Schubert*and Christian Eschbaumer, Angew. Chem.Int. Ed., 41, 2892 (2002)

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHMacromolecules Containing Bipyridine and Terpyridine Metal Complexes: Towards Metallosupramolecular Polymers Ulrich S. Schubert*and Christian Eschbaumer, Angew. Chem.Int. Ed., 41, 2892 (2002)

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHMacromolecules Containing Bipyridine and Terpyridine Metal Complexes: Towards Metallosupramolecular Polymers Ulrich S. Schubert*and Christian Eschbaumer, Angew. Chem.Int. Ed., 41, 2892 (2002)

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHAssembly of a Truncated-Tetrahedral Chiral [M12-L18]24+ Cage** Z. R. Bell, J. C. Jeffery, J. A. McCleverty, and M. D. Ward*, Angew. Chem.Int. Ed., 41, 2515 (2002)

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHAssembly of a Truncated-Tetrahedral Chiral [M12-L18]24+ Cage** Z. R. Bell, J. C. Jeffery, J. A. McCleverty, and M. D. Ward*, Angew. Chem.Int. Ed., 41, 2515 (2002)

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHSupramolecular Metal-Organometallic Coordination Networks Based on Quinonoid -Complexes Moonhyun Oh, Gene B. Carpenter, and Dwight A. Sweigart, Acc. Chem. Res., 37, 1 (2004)In the context of coordination networks, we reasoned that the role of the spacer or linker could be provided not only by organic ligands to generate MONs, but also by appropriate organometallic -complexes that have the ability to function as multifunctional ligands (organometalloligands) to afford metal-organometallic coordination networks (MOMNs). Figure 1 illustrates the essential difference between the two types of networks for a one-dimensional system.

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHSupramolecular Metal-Organometallic Coordination Networks Based on Quinonoid -Complexes Moonhyun Oh, Gene B. Carpenter, and Dwight A. Sweigart, Acc. Chem. Res., 37, 1 (2004)

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHSupramolecular Metal-Organometallic Coordination Networks Based on Quinonoid -Complexes Moonhyun Oh, Gene B. Carpenter, and Dwight A. Sweigart, Acc. Chem. Res., 37, 1 (2004)

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHSupramolecular Metal-Organometallic Coordination Networks Based on Quinonoid -Complexes Moonhyun Oh, Gene B. Carpenter, and Dwight A. Sweigart, Acc. Chem. Res., 37, 1 (2004)

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHSupramolecular Metal-Organometallic Coordination Networks Based on Quinonoid -Complexes Moonhyun Oh, Gene B. Carpenter, and Dwight A. Sweigart, Acc. Chem. Res., 37, 1 (2004)

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHSupramolecular Metal-Organometallic Coordination Networks Based on Quinonoid -Complexes Moonhyun Oh, Gene B. Carpenter, and Dwight A. Sweigart, Acc. Chem. Res., 37, 1 (2004)

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHSupramolecular Metal-Organometallic Coordination Networks Based on Quinonoid -Complexes Moonhyun Oh, Gene B. Carpenter, and Dwight A. Sweigart, Acc. Chem. Res., 37, 1 (2004)

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHSupramolecular Metal-Organometallic Coordination Networks Based on Quinonoid -Complexes Moonhyun Oh, Gene B. Carpenter, and Dwight A. Sweigart, Acc. Chem. Res., 37, 1 (2004)

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHSupramolecular Metal-Organometallic Coordination Networks Based on Quinonoid -Complexes Moonhyun Oh, Gene B. Carpenter, and Dwight A. Sweigart, Acc. Chem. Res., 37, 1 (2004)FIGURE 12. Self-assembly of p-QMTC and 2,2-bipyridine into 1D networks that interdigitate via pi-pi stacking (blue) to generate MOMN 16, having pi-pockets that bind free 2,2-bipyridine (red).

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHSupramolecular Metal-Organometallic Coordination Networks Based on Quinonoid -Complexes Moonhyun Oh, Gene B. Carpenter, and Dwight A. Sweigart, Acc. Chem. Res., 37, 1 (2004)

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHSupramolecular Metal-Organometallic Coordination Networks Based on Quinonoid -Complexes Moonhyun Oh, Gene B. Carpenter, and Dwight A. Sweigart, Acc. Chem. Res., 37, 1 (2004)FIGURE 14. Hypothetical highly porous MOMNs consisting of quinonoid 1D string polymers as infinite SBUs and appropriate organic spacers

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHNanoscale Borromean Rings, STUART J. Cantrill, Kelly S. Chichak, Andrea J. Peters, and J. Fraser Stoddart*, Acc. Chem. Res., 38, 1 (2005)

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHNanoscale Borromean Rings, Stuart J. Cantrill, Kelly S. Chichak, Andrea J. Peters, and J. Fraser Stoddart*, Acc. Chem. Res., 38, 1 (2005)FIGURE 3. Generic strategies for the synthesis of Borromean-ring compounds (IV), which may also be depicted in orthogonaland Vennarrangements.

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHNanoscale Borromean Rings, STUART J. Cantrill, Kelly S. Chichak, Andrea J. Peters, and J. Fraser Stoddart*, Acc. Chem. Res., 38, 1 (2005)FIGURE 4. Buschs proposed27 ring-in-ring synthesis of a Borromean-ring compound.

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHNanoscale Borromean Rings, STUART J. Cantrill, Kelly S. Chichak, Andrea J. Peters, and J. Fraser Stoddart*, Acc. Chem. Res., 38, 1 (2005)FIGURE 5. Conceptual advance32 from a double-threaded [3]pseudorotaxane to a ring-in-ring complex based upon the interaction between crown ethers and secondary dialkylammonium ions.

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHNanoscale Borromean Rings, STUART J. Cantrill, Kelly S. Chichak, Andrea J. Peters, and J. Fraser Stoddart*, Acc. Chem. Res., 38, 1 (2005)

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHNanoscale Borromean Rings, STUART J. Cantrill, Kelly S. Chichak, Andrea J. Peters, and J. Fraser Stoddart*, Acc. Chem. Res., 38, 1 (2005)FIGURE 7. Synthesis36 of Siegels ring-in-ring complex, in which two endo bipyridyl ligands await the threading of the components necessary for construction of the final ring of a molecular Borromean link.

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHNanoscale Borromean Rings, STUART J. Cantrill, Kelly S. Chichak, Andrea J. Peters, and J. Fraser Stoddart*, Acc. Chem. Res., 38, 1 (2005)FIGURE 8. (Top) Translation and deformation of the VennBorromean link into a 3Dstructure with double-helical regions. (Bottom) Synthetic approach38 for the formation of a DNA Borromean-ring compound from the ligation of two three-arm junctions.

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHNanoscale Borromean Rings, STUART J. Cantrill, Kelly S. Chichak, Andrea J. Peters, and J. Fraser Stoddart*, Acc. Chem. Res., 38, 1 (2005)FIGURE 9. (Top) Schematic assembly of a Borromean link from a combination of endo-tridentateand exo-bidentateligands around metal ion templates. (Bottom) Reversible reaction of 2,6-diformylpyridine with a diamine, containing a dipyridyl binding site, in the presence of zinc acetate affords42 a molecular Borromean link

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHDiscrete Stacking of Large Aromatic Molecules within Organic-Pillared Coordination Cages, M. Yoshizawa, J. Nakagawa, K. Kumazawa, M. Nagao, M. Kawano, T. Ozeki, and M. Fujita, Angew. Chem. Int. Ed., 44, 1810, 2005

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHDiscrete Stacking of Large Aromatic Molecules within Organic-Pillared Coordination Cages, M. Yoshizawa, J. Nakagawa, K. Kumazawa, M. Nagao, M. Kawano, T. Ozeki, and M. Fujita, Angew. Chem. Int. Ed., 44, 1810, 2005

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHDiscrete Stacking of Large Aromatic Molecules within Organic-Pillared Coordination Cages, M. Yoshizawa, J. Nakagawa, K. Kumazawa, M. Nagao, M. Kawano, T. Ozeki, and M. Fujita, Angew. Chem. Int. Ed., 44, 1810, 2005

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHDiscrete Stacking of Large Aromatic Molecules within Organic-Pillared Coordination Cages, M. Yoshizawa, J. Nakagawa, K. Kumazawa, M. Nagao, M. Kawano, T. Ozeki, and M. Fujita, Angew. Chem. Int. Ed., 44, 1810, 2005

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHAnion Control over Interpenetration and Framework Topology in Coordination Networks Based on Homoleptic Six-Connected Scandium Nodes De-Liang Long, Robert J. Hill, Alexander J. Blake, Neil R. Champness,* Peter Hubberstey,* Claire Wilson, and Martin Schrder, Chem. Eur. J., 11, 1384 (2005)L = 4.4-bipyridine

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHAnion Control over Interpenetration and Framework Topology in Coordination Networks Based on Homoleptic Six-Connected Scandium Nodes De-Liang Long, Robert J. Hill, Alexander J. Blake, Neil R. Champness,* Peter Hubberstey,* Claire Wilson, and Martin Schrder, Chem. Eur. J., 11, 1384 (2005)Figure 1. The coordination geometries at ScIII in a) 1, b) 2, c) 3 and d) 4. Hydrogen atoms are omitted for clarity.

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHAnion Control over Interpenetration and Framework Topology in Coordination Networks Based on Homoleptic Six-Connected Scandium Nodes De-Liang Long, Robert J. Hill, Alexander J. Blake, Neil R. Champness,* Peter Hubberstey,* Claire Wilson, and Martin Schrder, Chem. Eur. J., 11, 1384 (2005)

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHAnion Control over Interpenetration and Framework Topology in Coordination Networks Based on Homoleptic Six-Connected Scandium Nodes De-Liang Long, Robert J. Hill, Alexander J. Blake, Neil R. Champness,* Peter Hubberstey,* Claire Wilson, and Martin Schrder, Chem. Eur. J., 11, 1384 (2005)Figure 4. View of 2 parallel to the crystallographic a axis (a)

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHReadily Prepared Metallo-Supramolecular Triple Helicates Designed to Exhibit Spin-Crossover Behaviour Floriana Tuna,[a] Martin R. Lees,[b] Guy J. Clarkson,[a] and Michael J. Hannon, Chem. Eur. J., 10, 5737 (2004)

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHRuthenium(ii) as a Novel Labile Partner in Thermodynamic Self-Assembly of Heterobimetallic df Triple-Stranded Helicates Stphane Torelli, Sandra Delahaye, Andreas Hauser, Grald Bernardinelli, and Claude Piguet, Chem. Eur. J., 10, 3503 (2004)M = Cr(III), Co(III)

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHRuthenium(ii) as a Novel Labile Partner in Thermodynamic Self-Assembly of Heterobimetallic d,f Triple-Stranded Helicates Stphane Torelli, Sandra Delahaye, Andreas Hauser, Grald Bernardinelli, and Claude Piguet, Chem. Eur. J., 10, 3503 (2004)Figure 9. a) Perspective view of HHH [RuLu(L1)3]5+ perpendicular to the pseudo-C3 axis in the crystal structure of 6, and b) atomic numbering scheme of strand a (ellipsoids are represented at the 40% probability level).

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHProgramming Heteropolymetallic Lanthanide Helicates: ThermodynamicRecognition of Different Metal Ions Along the Strands, S. Floquet, M. Borkovec, G. Bernardinelli, A. Pinto,[c] L.-A. Leuthold, G. Hopfgar tner, D. Imbert, J.-C. G. Buenzli, andC. Piguet, Chem. Eur. J., 10, 1091 (2004)

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHProgramming Heteropolymetallic Lanthanide Helicates: ThermodynamicRecognition of Different Metal Ions Along the Strands, S. Floquet, M. Borkovec, G. Bernardinelli, A. Pinto,[c] L.-A. Leuthold, G. Hopfgar tner, D. Imbert, J.-C. G. Buenzli, andC. Piguet, Chem. Eur. J., 10, 1091 (2004)

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHSupramolecular Spintronic Devices: Spin Transitions and Magnetostructural Correlations in [Fe4IIL4]8+ [2 2] Grid-Type Complexes, M. Ruben, E. Breuning, J.-M. Lehn, V. Ksenofontov, F. Renz, Philip Goetlich, and G. B. M. Vaughan, Chem. Eur. J., 9, 4422 (2003)

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHSupramolecular Spintronic Devices: Spin Transitions and Magnetostructural Correlations in [Fe4IIL4]8+ [2 2] Grid-Type Complexes, M. Ruben, E. Breuning, J.-M. Lehn, V. Ksenofontov, F. Renz, Philip Goetlich, and G. B. M. Vaughan, Chem. Eur. J., 9, 4422 (2003)Figure 3. Top (a) and side view (b) of the single-crystal X-ray investigation of complex 7; some of the S-n-propyl chains are disordered (anions, solvent molecules, and hydrogen atoms are omitted for clarity).

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHSupramolecular Spintronic Devices: Spin Transitions and Magnetostructural Correlations in [Fe4IIL4]8+ [2 2] Grid-Type Complexes, M. Ruben, E. Breuning, J.-M. Lehn, V. Ksenofontov, F. Renz, Philip Goetlich, and G. B. M. Vaughan, Chem. Eur. J., 9, 4422 (2003)

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHHexacyanometalateMolecular chemistry

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHHexacyanometalate Molecular Chemistry: Heptanuclear Heterobimetallic Complexes; Control of the Ground Spin State, V. Marvaud, C. Decroix, A. Scuiller, C. Guyard-Duhayon, J. Vaissermann, F. Gonnet, and M. Verdaguer, Chem. Eur. J., 9, 1677 (2003)Figure 2. Synthetic strategy scheme.

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHHexacyanometalate Molecular Chemistry: Heptanuclear Heterobimetallic Complexes; Control of the Ground Spin State, V. Marvaud, C. Decroix, A. Scuiller, C. Guyard-Duhayon, J. Vaissermann, F. Gonnet, and M. Verdaguer, Chem. Eur. J., 9, 1677 (2003)

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHHexacyanometalate Molecular Chemistry: Heptanuclear Heterobimetallic Complexes; Control of the Ground Spin State, V. Marvaud, C. Decroix, A. Scuiller, C. Guyard-Duhayon, J. Vaissermann, F. Gonnet, and M. Verdaguer, Chem. Eur. J., 9, 1677 (2003)

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA KOORDYNACYJNYCHHexacyanometalate Molecular Chemistry: Heptanuclear Heterobimetallic Complexes; Control of the Ground Spin State, V. Marvaud, C. Decroix, A. Scuiller, C. Guyard-Duhayon, J. Vaissermann, F. Gonnet, and M. Verdaguer, Chem. Eur. J., 9, 1677 (2003)

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA JONOWYCHPODOBNIE, JAK W KOMPLEKSACH KOORDYNACYJNYCH

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA -KWAS - -ZASADAAmphiphilic Bistable Rotaxanes, Jan O. Jeppesen,*[a, b] Kent A. Nielsen,[a, b] Julie Perkins, Scott A. Vignon, Alberto Di Fabio, Roberto Ballardini, M. Teresa Gandolfi, Margherita Venturi, Vincenzo Balzani, Jan Becher, and J. Fraser Stoddart, Chem. Eur. J., 9, 2982 (2003)Figure 1. Molecular formulas of the single-station [2]rotaxane 1 4PF6 , the slow two-station [2]rotaxane 2 4PF6 , and the fast two-station [2]rotaxane 3 4PF6 (only one translational isomer is shown in each case).

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA -KWAS - -ZASADAAmphiphilic Bistable Rotaxanes, Jan O. Jeppesen,*[a, b] Kent A. Nielsen,[a, b] Julie Perkins, Scott A. Vignon, Alberto Di Fabio, Roberto Ballardini, M. Teresa Gandolfi, Margherita Venturi, Vincenzo Balzani, Jan Becher, and J. Fraser Stoddart, Chem. Eur. J., 9, 2982 (2003)Figure 1. Molecular formulas of the single-station [2]rotaxane 1 4PF6 , the slow two-station [2]rotaxane 2 4PF6 , and the fast two-station [2]rotaxane 3 4PF6 (only one translational isomer is shown in each case).

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA -KWAS - -ZASADAAmphiphilic Bistable Rotaxanes, Jan O. Jeppesen,*[a, b] Kent A. Nielsen,[a, b] Julie Perkins, Scott A. Vignon, Alberto Di Fabio, Roberto Ballardini, M. Teresa Gandolfi, Margherita Venturi, Vincenzo Balzani, Jan Becher, and J. Fraser Stoddart, Chem. Eur. J., 9, 2982 (2003)

  • SAMOORGANIZACJA NIEKOWALENCYJNA WYKORZYSTANIE WIZA HYDROFOBOWYCH

  • FORMOWANIE WARSTWA Z BOLA-AMFIFILAMI

  • WYTWARZANIE ZEWNTRZNEJ WARSTWY POLIMERYCZNEJ

  • MICELLE

  • Schematyczna reprezentacja powstawania membrany pcherzykowej

  • Supra-organizacja micellarna dyskotyczna

  • Schematyczna reprezentacja micelli

  • Hydrofobowe substraty tworz heterogeniczny dimer w micelli SDS.

  • Sposb formownia rurek lipidowych

  • Obraz mikroskopowy nanorurek otrzymanych w wyniku samoorganizacji micellarnej

  • Model 3D z rozcignitymi konformacjami 72 czsteczek

  • MEZOFAZY

  • Liquid crystal state and History1888 Freidrick Reinitzer,cholesteryl benzoate1968 RCA-first experimental LCD

  • What are Liquid Crystals?Liquid Crystal a thermodynamic stable phase without the existence of a 3-dimensional crystal lattice generally lying between the solid and isotropic(liquid) phase.

  • Classes of liquid CrystalsThermotropic:nematic and isotropic

  • NematicSmectic and Chiral Nematic

  • Transitions

  • LCDsNematic crystals between to pieces of polarized glass at right angles.Microscopic grooves in glass align closest layer of LC, creating twisting.Twisted layers guide light through LCD.Electric current causes LCs to untwist causing black appearance

  • Backlit and reflectiveActive and passive matrices

  • Lyotropic Liquid CrystalsInduced by the influence of solvent

    Rod-like in shape

    Amphiphilic in natureLyophilic (solvent-attracting) partLyophobic (solvent-repelling) part

    When concentration of mesogens increases, solvent induced aggregation of the constituent mesogens leads to micellar structures

  • Lyotropic Liquid Crystals

    In the presence of solvent, the lyopobic ends will stay together and the lyophilic ends extend outward toward the solution. When concentration of mesogens increases, micelles become large and swollen.

    Lyotropic liquid crystal bilayerLyotropic liquid crystal micelle

  • Lyotropic Liquid Crystals

    Mesophase is temperature sensitiveConformation of mesogen is temperature sensitive Also solvent and concentration dependentprincipal interaction is the solute-solvent interactione.g. polypeptides in water, DNA

  • Liquid Crystalline Phases of Disc-like Compounds

    Characterization of columar arrangement dependent ofThe order or disorder of the molecular stacking in the columnThe two-dimensional lattice symmetry such as hexagonal : Dh, rectangular: Dr

  • Examples of Discotic Liquid Crystals21345671 hexa-n-alkanoates of benzene; 2 hexa-substituted anthraquinones; 3 tri-substituted benzenes; 4 bipyrene derivates; 5 scyllo-inosithe hexa-acetate; 6 octa-substituted phthalocyanine derivates; 7 hexa-substituted tribenzocyclononene.

  • Polymorphism and Phase SequencesGeneralized sequence rule:Solid Smectic B Smectic C Smectic A Nematic IsotropicNo single compound show complete sequenceIt is possible to have re-entrant phase sequencee.g. Nre SA Ne.g. SA re Nre SA NNo generalized sequence rule for disc-like molecules

  • General Structural Requirements for Rod-like MesogensA. Anisotropic GeometryElongated in shapeB. RigidityRigid along the molecular axise.g.VSAlka-2,4-dienoic AcidsAlkanoic Acids

  • Structure-Property Relationships in Thermotropic Liquid CrystalsTypical molecular structure of rod-shaped liquid crystal

    ABBXYZZA linking groupB, B ring systemsX, Y terminal groupsZ, Z lateral substituents

  • OlefinAcetyleneAzomethine(schiffs base)NitroneEsterAzoxyAzo5-SteroidAcid dimerCommon Central Linkages of Mesogens

  • Roles of Central Linking Group

    Most of the linkages are highly polarizable with the exception of 5 steroid ring system and acid dimer (but still rigid and linear.In general, the stronger the dipole or the easier the polarizability of the central group, the better the thermal stabilibities of the mesophases are.

  • Roles of Central Linking Groupe.g.

    VSForm more stable mesophaseEsters of cholesterol VS Esters of cholestanol

  • Roles of Central Linking GroupThe more extended the conjugated central linkage, the more lathlike the molecule and the more enhanced the mesophase-forming properties will be. e.g. N I 121 C N I 297.5 C

  • Roles of Central Linking GroupThe more polar the linking group, the higher is the viscosity.e.g.X N-I (C )Visc. 20C (mm2/s)131171404819044.2158103

  • Roles of Central Linking Group

    Azomethoxy system (schiffs base) shows a good liquid crystal phase stability but poor stability to water.In term of stability, the weakest part of most liquid crystal molecules is the linking group.4-alkyl-4-cyanobiphenyl, the first series stable room temp. L. C. invented at Hull University, England

  • Roles of Terminal GroupsUsually extending the molecular axis (long axis increasing liquid crystal thermal stabilityThe presence of the dipolar terminal gives higher thermal stability of the mesogen.e.g.

    VSN-I is 40 C higher

  • Common Terminal Groups of MesogensALKYL- may be branchedALKYLOXY; also internal ETHERSALKYLCARBOXYALKYLCARBONATOHALOGENCYANONITROAMINO R may be H

  • Roles of Terminal GroupsTerminal carboxylic acid group may induce a much high L.C. thermal stability.e.g.

    the carboxylic acid forms a dimer, doubling the overall length of the molecule without broadening it.VSC-S = 67.5 C, S-I = 107 CC-Sc = 213 C, Sc-N = 243 CN-I = 272.5 C

  • Roles of Lateral SubstituentsIn general, it will broaden the molecule thus reducing lateral attractions and lowering stabilities of nematic and smectic phases.The substitution effect depends onThe position of the groupThe nature of the groupThe polarity of the groupThe size of the group

  • Roles of Lateral SubstituentsWith an addition of a substituent ortho to the polar terminal group, it can hinder the molecular association leads to a higher .e.g.XYC-N/CN-I/CHH 56.8 63.420.7HF 20 3048.9

  • Applications of Liquid Crystals1. Liquid Crystal Displays (LCDs)

    2. Liquid Crystal Thermometers/Pressure Sensors

    3.Switchable Windows

  • SAMOORGANIZACJA NA POWIERZCHNIACHPOWIERZCHNIE STAE3D SURFACES

    ELEMENTS: Ag, Au, Cu, platinum metals, C, Si,

    SEMICONDUCTORS: CdS, CdSe, HgTe, TiO2, ZrO2, PbS, ZnSe, GaN

    INSULATORS: SiO2

    2D SURFACES

    ELEMENTS: Ag, Au, Cu, platinum metals, C, Si

  • ANCHORING FUNCTIONAL GROUPS:COVALENT BINDINGSi(OMe)3, NCS, NCO, COCl, for surfaces with OH groups: SiO2, C, Si, TiO2, ZrO2, In-Sn-oxide (ITO), metal oxides of:Al, Zr, Ti, Si, B, Ge, Hf, Ta, Nb, V, Ge, Sn, In, YNON-COVALENT BINDINGRS, RSSR, RNHCS2, RS2O3-, thiophene, RSe, RSeSeR, for surfaces: Au, Ag, Cu, platinum metals, CdS, ZnSe, HgTeRCOO, for AgRPO32-, for Al2O3, TiO2, ZrO2

  • SURFACE PREPARATION AND TSF BUILD-UP

    SURFACE CLEANING/HYDROPHILISATION CONDITIONING IN THE PRESENCE OF TRANSITION METAL ALKOXIDES HYDROLYIS, WASHING, DRYING CONDITIONING IN THE PRESENCE OF TRANSITION METAL ALKOXIDES HYDROLYIS, WASHING, DRYING, etc. FINAL SURFACE MODIFICATION WITH POLYFUNCTIONAL MATERIALS POSESSING ANCHORING GROUPS

    VARIOUS METAL ALKOXIDES CAN BE USED IN EVERY SINGLE STEP

  • SURFACE MODIFICATION WITH METAL OXIDES AND THIOLSM(OR)n conditioning M = Al, Zr, Ti, Si, B, Ge, Hf, Ta, Nb, V, Ge, Sn, In, Yhydrolysis, drying, conditioningsurface conditioning with thiols

  • HETEROMETALLIC OXIDE TSF BUILD-UP

  • Ligands with triethoxysilyl anchoring groups from commercially available di-, and triaminesSILANE ANCHORING GROUPSligand 2ligand 3

  • SILICA IMPREGNATED WITH Zr SOLligand 2ligand 3exc = 275 nmTb emissionTb emissionlight scattering from silica

  • Adsorpcja nanoczstek siarczku kadmu na monowarstwie osadzonej na zocie

  • SAMOORGANIZACJA NA POWIERZCHNI CIECZY: GRANICA FAZ CIECZ-POWIETRZE. FILMY LANGMUIRA I LANGMUIRA-BLODGETTIzotermy Langmuira dla filmw krystalicznych i amorficznych

  • SAMOORGANIZACJA NA POWIERZCHNI CIECZY: GRANICA FAZ CIECZ-POWIETRZE. FILMY LANGMUIRA I LANGMUIRA-BLODGETTCzsteczki tworzce filmy molekularne na granicy faz woda-powietrze skadaj si z czsteczek posiadajcych grup hydrofilow i hydrofobow. Grupa hydrofilowa zanurzona jest w wodzie, hydrofobowa wystaje ponad powierzchnie wody.

  • What are Langmuir-Blodgett Films?

  • Langmuir-Blodgett FilmsLB technique provides a window to nanotechnology: manufacture of nanoscale structures with relatively conventional equipment.

    LB films configure a path to nanotechnology: first step in the manufacture of nanosensors and nanoparticles.

  • Langmuir-Blodgett Films: ApplicationsManufacturing of nano-particlesLimited growth in 2-DBio-mimeticsPhospho-lipids films with protein inclusionsNonlinear opticsHundred of layers!Ultra dense magnetic storage mediaMagnetic nano-particles and nano-filmsNano-sensorsCombination of MEMS and NEMSMany nano-technology applicationsIn Nature function and order go together!

  • Applications: Carbon nanotubes for energy storage

  • Applications: Nanosensors

  • Sketch of Experimental Setup

  • LANGMUIR-BLODGETT (LB) TECHNIQUE

  • Multilayer Deposition: Y TO X and Y to Z Transitions

  • X, Y AND Z-TYPE DEPOSITION AND TRANSFER RATIO

  • Oddziaywanie hydrofobowe acuchw wglowodorowych nad powierzchni cieczy i oddziaywanie grup polarnych w subfazie wodnej

  • Gsto upakowana warstwa potrjna

  • Rozpoznanie molekularne w subfazie wodnej, zawierajcej analit