56
Plasma Nitriding - especially in the Gear Industry Andreas Gebeshuber Ralph Trigueros Rübig GmbH & Co KG - Austria

Plasma Nitriding -especiallyin theGearIndustryindustrialheating.com.br/en/wp-content/uploads/artigos/SIR.pdf · Low friction coefficient Corrosion resistance white layer, 5-20 µm:

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

  • Plasma Nitriding

    - especially in the Gear Industry

    Andreas GebeshuberRalph Trigueros

    Rübig GmbH & Co KG - Austria

  • CONTENT

    � Overview Ruebig Company

    � Short Introduction into Plasma Nitriding Technology

    � Gear Production

    � Trends in Gear Production

    � Process Chain in Gear Production

    � Development of Process Chains in Gear Manufacturing

    � Potential of Plasma Nitriding at Gear Manufacturing

    � Load and Stress Profiles on a Gear

    � Optimized local Properties due to Plasma Nitriding

    � Economic and Ecologic Aspects

    � Examples: especially Ring Gear (Co. Oberaigner)

  • The Rubig group has been engaged in steel technolog y for more than 60 years

    Knowledge and experience are the basis for our succ ess

    The synergetic cooperation of the three different d ivisions results in newest technologies

    • RUBIG – Die Forge

    • RUBIG – Heat Treatment

    • RUBIG – Engineering

    RUBIG GROUP OF COMPANIES

  • RUBIG – Die forgeYour partner to develop forge parts also for smalle r series, up to 4 Kg part weight

    High quality management standards, we are working a ccording to TS 16949

    Mechanical machining, welding technology and heat t reatment

    RUBIG – Heat TreatmentHeat Treatment certified according to ISO 9001:2000 and VDA 6.1

    Cooperation with academic institutes and steel prod ucers are the basis for our status as technology leader

    Expertise in material science drives the developmen t for newest heat treat technologies

    RUBIG – EngineeringIndividual solutions for Plasma assisted nitriding and coating units

    Vacuum furnaces and cleaning machines distinguish u s from the competition

    Fundamental research ensures application based solu tions

    E

    RUBIG GROUP OF COMPANIES

  • PRODUCT PORTFOLIO

    PLASNIT ®plasma nitriding

    system

    GASNIT ®gas nitriding system

  • PLASTIT ®Plasma assisted CVD coating system

    PRODUCT PORTFOLIO

    PLASNIT ® / GASNIT ® :combined plasma and gas

    nitriding system

  • PRODUCT PORTFOLIO

    MICROPULS ®plasma generators

    HPG line

    MAP line

  • PRODUCT PORTFOLIO

    RUEBIG ®vacuum hardening furnace

    HELIVAC ®helium - high pressure gas quenchingsystem with integrated recycling unit

  • PRODUCT PORTFOLIO

    HYDROVAC ®metal parts cleaning unit

  • ArgentinaAustraliaBrazilHong KongIndiaIndonesiaIranJapanCanadaKoreaMexicoSingaporeSouth AfricaTaiwanThailandTurkeyUSAUnited Arab. Emirates

    OVERSEAS EUROPE

    BelgiumDenmarkGermanyFinlandFranceGreat BritainItalyLiechtensteinNetherlandAustriaPolandRomaniaSwedenSwitzerlandSlovakiaSloveniaCzech RepublicHungary

    EXPORT COUNTRIES RUBIG ENGINEERING

  • REFERENCES

  • a

    Nitriding Methods and basics of

    Plasma Nitriding Technology

  • NITRIDING

    Definition:

    The surface layer of the work piece is enriched with nitrogen by thermo chemical treatment.

    Process routes:

    � salt bath nitriding

    � gas nitriding

    � plasma nitriding

  • OXIDE LAYER, WHITE LAYER AND DIFFUSION ZONE

    oxide layer, 1-2 µm:

    � Running-in layer� Low friction coefficient� Corrosion resistance

    white layer, 5-20 µm:

    � Ceramic layer� Protection against abrasive and

    adhesive wear� High hardness

    diffusion zone, 10-1000 µm:� High compressive stress� High fatigue strength� Hardness higher than substrate

    oxide layer, Fe3O4

    white layer, Fe2-3N, Fe4N

    diffusion zone

  • COMMON NITRIDING AND NITROCARBURIZING METHODS

    salt bath nitridingno

    go!

    !! gasnitiding

    plasma nitriding

  • DESIGN AND MAIN COMPONENTS OF A RUBIG PLASMA NITRIDING

    SYSTEM

    inner fan

    pump stand

    ARCdetection

    PC - datarecording

    CPU

    gas supplysystem

    measuringelectronic

    MICROPULSpower supply

    exhaust flap

    heating

    Inlet flap (cooling)

    fan/(cooling)

    retort

    intermediate ring

    multiple cooling system

    insulationamplifier

  • DESIGN AND MAIN COMPONENTS OF A RUBIG PLASMA NITRIDING

    SYSTEM

    process control system

    and visualization

    � simple operation� control system based on

    Siemens S7� viszualization under Windows� process datad logged in real

    time� fully automatic and man-free

    operation� user surface in different

    languages available

  • DESIGN AND MAIN COMPONENTS OF A RUBIG PLASMA NITRIDING

    SYSTEM

    recipe administration

  • DESIGN AND MAIN COMPONENTS OF A RUBIG PLASMA NITRIDING

    SYSTEM

    trending diagram

  • OXIDE LAYER, WHITE LAYER AND DIFFUSION ZONE

    salt bath nitriding gas nitriding

    ...

    • high friction due to

    rough porous zone

    • post polishing necessary

    • very good corrosion

    resistance

    No GO(for comparison purposesonly)

    • low friction due to

    smooth porous zone

    • no post polishing• good corrosion

    resistance

    plasma nitriding

  • GAS vs. PLASMA; HEALTH AND ENVORNMENT RELEVANT ASPECTS

    decreased engergy demand

    used gases not relevant forthe environment

    reduced pollutant emmissions

    no greenhouse gas emmissions

    reduced cleaning expenses

    used gases not relevant forthe health

    process temperature 530 –600 °C

    process temperature 400 –600 °C

    gas nitriding plasma nitriding

    process gases for nitriding:NH3, N2

    process gases for nitriding: N2, H2

    Gas consumption in an averagefurnace size: 4000 l/h

    gas consumption in an averagefurnace size: 400 l/h

    Carbon precursor fornitrocarburizing: CO2

    Carbon precursor fornitrocarburizing: CH4

    high influence of cleaning on nitriding result final cleaning by „sputtering“

    NH3 as Nitrogen precursor N2 as Nitrogen precursor

  • ECOLOGICAL ADVANTAGE: EMISSIONS COMPARISON FOR GAS- AND

    PLASMA NITRIDERS

    � 5.500 plasma nitriders produce less NOx than one gas nitrider

    � 2.700 plasma nitriders produce less CO/CO2 than one gas nitrider

    � The gas consumption of a Plasma nitrider is at least 10 times lower than for a gas nitrider

    Facts

    Source: T. Bell

  • 650

    750

    850

    950

    1050

    1150

    1250

    Witn

    ess r

    ollers (

    1st V

    SE / 12

    -Dec

    -200

    8) avg

    .

    Witn

    ess r

    ollers (

    2nd VS

    E / 2

    4-Fe

    b-20

    09) a

    vg.

    Witn

    ess rolle

    rs (3

    rd V

    SE / 02

    -Mar-200

    9) avg

    .

    Witn

    ess r

    oller (r

    un-238

    850 / 0

    6-Mar-200

    9) avg

    .

    Witn

    ess r

    oller (r

    un-247

    984 / 2

    5-Ju

    n-20

    09) a

    vg.

    Witn

    ess r

    oller (r

    un-248

    577 / 0

    2-Ju

    l-200

    9) avg

    .

    Witn

    ess r

    oller (r

    un-249

    204 / 0

    9-Ju

    l-200

    9) avg

    .

    Witn

    ess r

    oller (r

    un-249

    768 / 1

    6-Ju

    l-200

    9) avg

    .

    Witn

    ess r

    oller (r

    un-250

    939 / 3

    0-Ju

    l-200

    9) avg

    .

    Witn

    ess r

    oller (r

    un-251

    419 / 0

    6-Au

    g-20

    09) a

    vg.

    Witn

    ess r

    oller (r

    un-251

    845 / 1

    3-Au

    g-20

    09) a

    vg.

    Witn

    ess r

    oller (r

    un-252

    112 / 1

    7-Au

    g-20

    09) a

    vg.

    Witn

    ess r

    oller (r

    un-252

    421 / 2

    1-Au

    g-20

    09) a

    vg.

    Witn

    ess rolle

    r (run-25

    6818

    / 08

    -Oct-200

    9) avg

    .

    Witn

    ess rolle

    r (run-25

    8059

    / 20

    -Oct-200

    9) avg

    .

    Witn

    ess rolle

    r (run-25

    8539

    / 24

    -Oct-200

    9) avg

    .

    Witn

    ess rolle

    r (run-25

    8917

    / 29

    -Oct-200

    9) avg

    .

    Witn

    ess rolle

    r (run-25

    9743

    / 06

    -Nov

    -200

    9) avg

    .

    Witn

    ess rolle

    r (run-26

    0333

    / 12

    -Nov

    -200

    9) avg

    .

    Vic

    kers

    Har

    dnes

    s [H

    V 0

    ,3]

    0,10

    0,12

    0,14

    0,16

    0,18

    0,20

    0,22

    0,24

    0,26

    0,28

    0,30

    Nitr

    idin

    g D

    epth

    [mm

    ]

    SH [HV0,3] at 0,10 mm Spec. SHmin = 810 HV0,3 Spec. SHmax = 1100 HV0,3

    CH [HV0,3] at 0,60 mm Spec. CHmin = 700 HV0,3 ND [mm]

    Spec. NDmin = 0,17mm

    evaluation period 12/2008-12/2009– wittness loads 5 samp les / charging level

    Process Reproducibility - Homogeneity

    TECHNICAL ADVANTAGE – PLASMA NITRIDING

  • aGear Production

  • AUTOMOBILE – GEAR MANUFACTURING

    Global gear production – regional production in mio.

    2007 2013

    � Japan / Korea 24 27

    � Western Europe 18 21

    � North America 10 12

    � China 5 9

    � South Asia 2 5

    � Eastern Europe + South America 4 7

    total 63 81

    Non automotive gears are not included in the numbers (approx. 11 million gear boxes

    additionally)

    + 28%

  • PROCESS CHAIN IN GEAR MANUFACTURING

    Lecture of Klocke F., Weck M. at WZL Forum 1998 in Aachen: Warum Feinbearbeitung?

    Raw material

    Turning

    Gear cutting (soft machining)

    Soft finishing

    Carburizing

    Fabricated gear

    Hard machining

    Sorting / Rejecting

  • DEVELOPMENT OF GEAR BOX PRODUCTION Factory Kassel – VW Gear Manufacturing-Engineering

    D. Knöppel, WZL Forum Aachen 1998: Möglichkeiten /Grenzen der Hartfeinbearbeitung bei PKW-Getrieben – VW

    J. Fenstermann, Near-Net-Shape Tagung 2005: Anforderungen, Stand der Technik u. Perspektiven von Verzahnungen

    J. Fenstermann, Getpro 2009: Ganzheitliche Prozessoptimierung in der Getriebefertigung bei VW

    Percentage of Hard Machined Gears at VW

    58%

    5%

    49%

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    2000 2008 2011

    Year

    Per

    cen

    tag

    e

  • REASONS FOR HARD MACHINING

    Lecture of Klocke F., Weck M. at WZL Forum 1998 in Aachen: Warum Feinbearbeitung?

    Noise reduction Maximizing of bearing capacity

    Reaching the quality necessary for the application

    Reduction of gearing failures

    Angle errors

    Pitch errors

    Rotation errors

    Reeling errors

    Angle corrections

    Convexities

    Retractions

    Topological corrections

    Design optimization

    (tooth root)

    Impovement of surface qualityand fabrication of advantageous

    surface structures

    Gear modifications

  • DEVELOPMENT OF PROCESS CHAINS IN GEAR MANUFACTURING Factory Kassel – VW Gear Manufacturing-Engineering

    Passenger cars – gear box assembling

    (aprox. 16.000 gear systems for passenger cars)

    D. Knöppel, WZL Forum Aachen 1998: Möglichkeiten /Grenzen der Hartfeinbearbeitung bei PKW-Getrieben – VW

    J. Fenstermann, Near-Net-Shape Tagung 2005: Anforderungen, Stand der Technik u. Perspektiven von Verzahnungen – V

    J. Fenstermann, Getpro 2009: Ganzheitliche Prozessoptimierung in der Getriebefertigung bei VW

    Up to 40% of 40% of productionproduction costscosts are

    nowadays necessary to compensate the

    distortion due to the heat treatment

    and to improve the surface quality.

    ���� Material

    ����Soft-

    machining

    ����Hardening

    ����Hard-

    machining

  • aPotential of Plasma Nitriding

    at Gear Manufacturing

  • LOAD AND STRESS PROFILE ON A GEAR

    Tooth root Tooth flank

    Micro Pitting

    Pit Marks

  • Case depth and nitriding depth for gears according Linke (Stirnverzahnungen, 1996):

    Modulus in mm: 1,0 to 2,4 CD: 0,3 + 0,2 ND: 0,2 + 0,1

    2,5 to 3,5 0,5 + 0,3 0,3 + 0,1

    3,5 to 4 0,8 + 0,4 0,4 + 0,1

    DIFFERENT RECOMMENDATIONS FOR DIFFUSION DEPTH AT ROOT AND

    FLANK

  • OPTIMIZED LOCAL PROPERTIES

    white layer

    thin white layer on flank

    •reduces wear

    •increases sliding behaviour

    •increases pitting resistance

    no / small white layer on tooth root

    •increases tooth root bending strength

    properties on the gear tooth

    nitriding depth

    average nitriding depth on flank

    •increases pitting resistance

    small nitriding depth at tooth root

    •increases tooth bending strength

    Plasmanitriding offers an intelligent material / heat treatment design

    � required material properties exactly were they are needed

    symbolic picture

  • MICROGRAPH OF A RING GEAR, MODULUS 0,35

  • CORE MESSAGE

    Considerably more homogeneous fatigue values compared to carburized gears

    The material properties exactly where they are needed and adjustable according to demands

    AppropriateMaterial

    Adequate MicropulsPlasmanitriding

    The same or even better mechanical poperties than carburized gear parts

    +offers

  • modulus1,25 modulus2,75

    tooth root bending strength

    until end of 2009

    tooth flank pitting strength

    until middle 2010

    RCF testsuntil end of 2007

    rotating bending testsuntil middle 2007

    samples

    RUBIG PLASMA NITRIDING INITIATIVE

  • TOOTH ROOT FATIGUE STRENGTH

    Comparison case hardening and gas- / plasma nitridingto

    oth

    root

    fatig

    uest

    reng

    th[N

    /mm

    2 ]

    fatigue strength value DIN 3990-5 Diss. Schlötermann

    1988

    RÜBIGactual data

    100

    0

    400

    300

    200

    600

    500

    carb

    uriz

    edal

    loyd

    stee

    l

    310

    550

    heat

    trea

    ted

    stee

    lga

    s ni

    trid

    ed

    270

    430he

    attr

    eate

    dni

    trid

    ing

    stee

    lga

    s ni

    trid

    ed

    280

    470

    plas

    man

    itrid

    edni

    trid

    ing

    stee

    l

    590

    340

    deve

    lope

    men

    tR

    ÜB

    IG

    - R935

    - 31CrMoV9

    tests with shaved and plasma nitrided gears, m=1,25 and 2,75; done at FZG- Institute TU-Munich2007 to 2010

    material570

    432

    modulus1,25 2,75

    Data from DIN 3990 – Literature Data – Rübig Tests

  • VAR 3VAR 2VAR 1Plasma nitriding - variants

    540340390N/mm²tooth root fatigue strengthσσσσFlim (DIN 3990)

    100

    159

    63

    100

    72

    115%percentage

    0,40,30,4mmnitriding depth Nd in tooth root

    780750750HV 0,5case hardness

    363660hoursnitriding time

    520520530°Cnitriding temperature

    nonewithwithµµµµmwhite layer WS

    950950950N/mm²core hardness

    source: Schlötermann, K.: Auslegung nitrierter Zahnradgetriebe , Dissertation RWTH Aachen, 1988 (131 Seiten) - Untersuchungen zu den Auswirkungen unterschiedlicher Nitrierparameter auf den Werkstoffzustand und die Tragfähigkeit von Zahnrädern

    toot

    h ro

    ot fa

    tigue

    str

    engt

    h σ

    Flim

    [N/m

    m²]

    E

    0

    100

    200

    300

    400

    500

    600

    VAR 1 VAR 2 VAR 3

    +59%

    +38%

    Test results of plasma nitrided gears 31CrMoV9 modulus 5 mm

    INFLUENCE OF WHITE LAYER ON TOOTH ROOT FATIGUE STRENGTH

  • PITTING RESISTANCE σσσσHlim- SITUATIONStandard- and test values of literature / data Rübig

    Values diss. Schlötermann, m= 5

    PN: σσσσHlim = 1590 – 1760 N/mm2Failure not by pitting, only by wear on the driving gear between, pitch circle and tooth root (load = 8,5 * 10 7 )

    Standard DIN 3990 values σσσσHlim(fatigue strength, 1% failure probability)

    Carburizing 1300 – 1650 N/mm²

    Nitriding 1120 – 1450 N/mm²

    fatig

    ue s

    tren

    gth

    σσ σσ Hlim

    [N/m

    m2 ]

    fatigue data according DIN 3990-5 DissertationSchlötermann

    1988

    RÜBIGActual data

    1000

    0

    1600

    1400

    1200

    1800

    case

    -har

    dene

    d st

    eel

    case

    -har

    dene

    d

    1300

    1650

    tem

    pere

    dst

    eel

    gas

    nitr

    ided

    780

    1220ni

    trid

    ing

    stee

    lga

    s ni

    trid

    ed1120

    1450

    nitr

    idin

    g st

    eel

    plas

    ma

    nitr

    ided

    1760

    1340

    deve

    lope

    men

    tR

    ÜB

    IG

    1760

    1400

    600

    400200

    800

  • APPLICATION – COATING OF GEARS

    →→→→ Increase of pitting resistance through coating: 27 %

  • COMMERCIAL ADVANTAGE – LESS HARD MACHINING

    Raw material / processing (forging)

    Turning

    Gear cutting (soft machining)

    Carburizing Plasmanitriding

    Sorting/rejecting

    Hard machining

    Soft finishing

    Fabricated gear

    Today Tomorrow

  • aExamples

  • EXAMPLES OF GEARS AND OTHER PARTS PERFECTLY DEDICATED FOR

    PLASMA NITRIDING

  • EXAMPLES OF GEARS AND OTHER PARTS PERFECTLY DEDICATED FOR

    PLASMA NITRIDING

  • EXAMPLES OF GEARS AND OTHER PARTS PERFECTLY

    DEDICATED FOR PLASMA NITRIDING

    � PN 100/180 DUO

    � installation in production area

    � process time

    20 hours.

    � ∆T = ±3°C

    Distance from surface [mm]

    100

    hard

    ness

    [HV

    0,5]

    200

    300

    400

    500

    600

    700

    800

    flank

    root

    0,2 0,4 0,6 0,8 1,00,1 0,3 0,5 0,7 0,9 1,10,00

  • COMPANY WILHELM OBERAIGNER GMBH

    �Founded 1977 – aprox. 80 Employees

    �One of the leading specialists in development and

    production of automotive system components

    �Service offer includes also complete drive axles,

    differential locks and gear drives

    �Company Wilhelm Oberaigner GmbH is also responsible for the development and supply of components

    for the AWD-versions of Mercedes Vito/Viano (NCV2) and Mercedes Sprinter (T1N & NCV3)

    �The drive components for these cars are produced at Oberaigner and sent directly to the assembly lines of

    the appropriate factories

    �Oberaigner invests essential amounts in R&D as well as in the production of new technologies like Hybrid

    or Electro drives

    �Furthermore Oberaigner Aerospace (aircraft engines and business jets) is in development

  • COMPANY WILHELM OBERAIGNER GMBH

  • ALL-WHEEL FRONT AXLE: RING GEAR INTEGRATED INTO THE AXLE

    HOUSING

    � Increase of clearance height due to bevel gear (i ≈≈≈≈ 1,5)

    � Planetary gear set in front axle (integrated in axle casing)

    � speed reduction due to planetary gear set (i ≈≈≈≈ 2,5)

  • GOAL

    � since approx. 7 years ring gear is in use as linear/straight ring gear

    � Heat treatment

    � Carburizing + bolt hardening� reduction of distortion to increase quality concerning

    homogenous case depth and to reduce hard machining (grinding,…)

    � However very much effort for hard machining

    � Goal

    � Noise reduction

    � Elimination / Reduction of hard machining

    � No loss in performance!

  • RING GEAR ���� SPECIFICATION

    Bolt case hardening Plasma nitriding

    Material: 20MnCrS5 (1.7149) Material: 31CrMoV9 (1.8519)

    Surface hardness [HRc]: 58 + 4 Surface hardness [HV10]: 750 + 150

    Case depth [mm]: 0,65 + 0,2 Nitriding depth [mm]: 0,2 + 0,2

    Core hardness [MPa]: > 1000 Core hardness [MPa]: 1000 - 1200

    Gear grade: 6-7 (Automotive)

  • Paramter Position Measured value

    Surface hardnessTarget: 750-900 HV10

    Tooth crest 862 HV10

    White layerTarget: 4-10µm

    Tooth flank 6,7µm

    Tooth root 3,0µm

    Nitriding depthTarget: 0,2-0,4mm

    Tooth flank 0,27mm

    Tooth root 0,24mm

    RING GEAR ���� RESULTS AFTER PLASMA NITRIDING

  • RING GEAR ���� RESULTS AFTER PLASMA NITRIDING

    Nitriding depth

    300

    400

    500

    600

    700

    800

    900

    0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70

    Distance from surface [mm]

    Har

    dnes

    s [H

    V0,

    5]Tooth flank 1

    Tooth flank 2

    Tooth root

    Limit hardness

  • 0

    1

    2

    3

    4

    5

    6

    7

    8

    angle form total angle form total

    0

    10

    20

    30

    40

    50

    60

    roundnessflange

    BCH PN

    profile deviation flank deviation

    pitch - deviation

    µµµµm

    µµµµm

    single pitch errortotal

    Comparison of average difference valuesbefore and after PN and BCH. Maximal difference values are by PN and DEH approximately with factor 2 higher.

    Measures at respectively ten gears - left and right flank (PN and BCH). For each gear fourteeth were measured and mean value was created. With these mean values the averagedifference values were calculated and displayed in the charts.

    RING GEAR – DISTORTION COMPARISON; m = 1,5, flange ∅∅∅∅ = 125, width = 32Comparison Plasma Nitriding (PN) with Bolt-Case Hardening (BCH)

  • portion of costs in %

    -8-

    32--

    Var. B

    31CrMoV9 - PN

    --32

    997

    326154

    4

    6

    17

    --

    67

    16-

    Var. A20MnCrS5 –

    BCH

    RING GEAR – COST COMPARISONPlasma Nitriding (PN) with Bolt-Case Hardening (BCH)

    0

    20

    40

    60

    80

    100 savings

    structure honing

    hard machining

    hardening

    soft finishing

    stress annealing

    pre-machining

    material

    %

    Plasma Nitriding

    Route A Route B Bolt-CaseHardening 125

    ∅∅∅∅

  • SUMMERY & OUTLOOK

    Summery

    � Distortion

    � Distortion after plasma nitriding only a fraction compared to bolt case hardening

    � No change of gear grade after plasma nitriding

    � Probably no subsequent machining necessary

    � Costs

    � Reduction of costs: 16 – 17%

    � Throughput time

    � Reduction: 8 – 14%

    Outlook

    � First performance check positive

    � Currently endurance test in a 6x6 Mercedes Sprinter

  • Thank youfor yourattention!

    Contact: Ralph Trigueros [email protected]