37
Pi#ng Corrosion and Crevice Corrosion (Corrosion Engineering)

Pitting and Crevice Corrosion

Embed Size (px)

DESCRIPTION

Pitting and Crevice Corrosion

Citation preview

Page 1: Pitting and Crevice Corrosion

Pi#ng  Corrosion    and    

Crevice  Corrosion  (Corrosion  Engineering)  

Page 2: Pitting and Crevice Corrosion

Pi#ng  Corrosion  Lecture  Outline  •  Defini:on  •  Examples  •  Observa:on  •  Mechanism  •  Effect  of  Environment  •  Effect  of  Alloy  Composi:on  •  Pi#ng  Corrosion  –  Other  Alloys  •  Impacts  

Page 3: Pitting and Crevice Corrosion

Types  of  Corrosion  

•  Uniform  •  Galvanic  corrosion  •  Pi#ng  corrosion  •  Crevice  corrosion  •  Intergranular  corrosion  •  Selec:ve  leaching  •  Erosion  corrosion  and  fre#ng  •  Environmentally  induced  cracking  •  Hydrogen  damage  

Page 4: Pitting and Crevice Corrosion

Pi#ng  Corrosion  Defini:on  •  Highly  localized  aNack  occurring  at  a  rapid  penetra:on  rate  due  to  breakdown  of  a  passive  metal.    

•  The  local  sites  of  breakdown  are  oQen  associated  with  microscopic  defects  in  the  metal  or  alloy.  

•  ASM  defini:on:  – Corrosion  of  a  metal  surface  confined  to  a  point  or  small  area  that  takes  the  form  of  cavi:es  

Page 5: Pitting and Crevice Corrosion

Example  of  Pi#ng  Corrosion  

•  Requirements  for  pi#ng  corrosion:  – Alloy  composi:on  (stainless  steel,  nickel  alloys,  aluminum  alloys,  :tanium  alloys,  copper  alloys…)  

– Passive  film  – Solu:on  composi:on  (Cl-­‐,  Br-­‐,  I-­‐,  F-­‐)  

– Surface  heterogenei:es  

Page 6: Pitting and Crevice Corrosion

Observa:on  of  Pi#ng  Corrosion  

•  Visual  observa:on:  – Density  – Diameter/Area  – Depth  

•  Pit  vs.  general  corrosion  

Page 7: Pitting and Crevice Corrosion

Observa:on  of  Pi#ng  Corrosion  -­‐  2  

•  Electrochemistry:  – Change  in  environment  affects  the  current  response  

– Higher  passive  current  

– Significant  current  increase  before  transpassivity  

Log(i co

rr)  

MΔSΦ-­‐ΦSHE  

Addi:on  of  chloride  

Pi#ng  corrosion  

Passive  

Transpassive  

Page 8: Pitting and Crevice Corrosion

Pi#ng  Poten:al  and  Significant  Values  Log(i co

rr)  

MΔSΦ-­‐ΦSHE  Erep  

Transpassive  

•  Current  response  as  a  func:on  of  the  poten:al  applied  

Epit  

Metastable  pi#ng  

Ac:ve  pi#ng  

Page 9: Pitting and Crevice Corrosion

•  Determine  occurrence  of  pi#ng  knowing  the  corrosion  poten:al  in  the  environment  of  interest  

Log(i co

rr)  

MΔSΦ-­‐ΦSHE  Erep  

Transpassive  

Epit  

1.  

2.  3.  

4.  

Use  of  Pi#ng  Poten:al  

Page 10: Pitting and Crevice Corrosion

Mechanism  –  Pit  Chemistry  •  The  anodic  reac:on  (release  

e-­‐)  and  cathodic  reac:on  (consume  e-­‐)  are  separated.  

•  Cathodic  reac:on  on  passive  film:  

O2+2H2O+e-­‐è4OH-­‐  •  Anodic  reac:on  in  pit:  FeèFe2++2e-­‐  •  Hydrolysis  of  metal  ion:  Fe2++2Cl-­‐+2H2OèFe(OH)2+2HCl  •  Hydrolysis  acidifies  the  pit  

solu:on  

Page 11: Pitting and Crevice Corrosion

Mechanism  –  Ini:a:on  1    •  Mul:ple  mechanisms  suggested:  Chloride  adsorp:on.     (a)  

FeOOH  èFe3+  +  3OH-­‐  

 (b)    FeOOH  +  Cl-­‐  è  FeOCl  +  OH-­‐    

FeOCl  +  H2O  è  Fe3+  +  Cl-­‐  +  2OH-­‐  

 (c)    Fe  è    Fe2+  +  2e-­‐  

     

Page 12: Pitting and Crevice Corrosion

Mechanism  –  Ini:a:on  2    •  Structural  defects  (grain  boundaries  or  disloca:on  pile  ups).  •  Weaken  passive  film.  •  Preferen:al  passive  film  dissolu:on  exposing  the  bare  

material  and  ini:a:ng  pi#ng  corrosion.  

Passive  film   Passive  film  

Passive  film   Passive  film  

Page 13: Pitting and Crevice Corrosion

Mechanism  –  Ini:a:on  3    •  Chemical  heterogenei:es.  Such  as  Manganese  Sulfide  (MnS)  in  Stainless  Steels.  

Passive  film   Passive  film  MnS  

Passive  film   Passive  film  

– Weak  passive  film    –  Suggested  mechanism:  

•  MnS  dissolve  preferen:ally  

•  Bare  surface  exposed  •  Pi#ng  corrosion  ini:ates  

–  OR  •  MnS/Matrix  galvanic  cell  •  Matrix  dissolve  and  undercut  MnS  

•  Bare  surface  exposed  •  Pi#ng  corrosion  ini:ates  

Page 14: Pitting and Crevice Corrosion

Effects  of  Environment  –  Chloride    •  Pi#ng  corrosion  is  highly  dependent  on  the  chloride  concentra:on  – Pi#ng  poten:al  increases  – Repassiva:on  poten:al  stays  constant  

Epit  

Erep  

Poten:

al  

Pi#ng  Poten

:al  

Page 15: Pitting and Crevice Corrosion

Effect  of  Environment  –  Temperature  1  •  The  pi#ng  poten:al  decreases  as  the  temperature  increases.  

•  Materials  resistant  to  pi#ng  corrosion  at  low  temperature  may  become  suscep:ble  at  high  temperature  

Page 16: Pitting and Crevice Corrosion

Effect  of  Environment  –  Temperature  2  

•  Cri:cal  pi#ng  temperature  CPT:  temperature  above  which  a  significant  current  density  is  measured  when  a  fixed  poten:al  is  applied  

Time

Tem

pera

ture

Current

density

CPT

100 µA/cm2

Page 17: Pitting and Crevice Corrosion

Effect  of  Alloy  Composi:on  1  

•  Pi#ng  Resistance  Equivalent  Number  (PREN)  empirical  equa:on  to  rank  stainless  steels      

 PREN=  Cr+3.3(Mo+0.5W)+16N  

Page 18: Pitting and Crevice Corrosion

Effect  of  Alloy  Composi:on  2  •  Alloy  composi:on  impact  microstructure  and  defects.    

•  Alloy  composi:on  changes  the  pH  of  the  pit  solu:on.  – Room  temperature  pH  of  concentrated  salt  solu:ons  

Salt   1N   3N   Saturated  

NiCl2   3.0   2.7   2.7  

FeCl2   2.1   0.8   0.2  

CrCl3   1.1   -­‐0.3   -­‐1.4  

Page 19: Pitting and Crevice Corrosion

Pi#ng  Corrosion  –  Other  Alloys  •  Nickel  alloys  are  highly  resistant  to  pi#ng  corrosion  

•  Aluminum  alloys:  light  alloys  used  for  aeronau:c  and  automo:ve.  Pi#ng  ini:ates  at  microstructures  (e.g.  Cu-­‐rich  phases)  linked  to  micro-­‐galvanic  cells  

•  Copper:  annealed  or  half-­‐hard  tubes  in  cold  tap  water.  Other  possible  as  a  func:on  of  pH,  material  condi:on  and  temperatures  

•  Other  materials:  Titanium,  Zinc,  Tin,  Cadmium,  Zirconium,  Magnesium  

Page 20: Pitting and Crevice Corrosion

Impact  •  High  localized  stress  

leading  to  fracture  (failed  axle)  

 •  Leaks  with  low  amount  

of  materials  damage  

•  Explosion  if  under  pressure  

Page 21: Pitting and Crevice Corrosion

Lecture  Review  •  Require  passive  alloy  and  chloride  solu:on  •  Pi#ng  poten:al:    

Ecorr<Epit  :  no  corrosion    Ecorr>Epit  :  corrosion  •  anode  in  the  pit  and  cathode  outside  •  Solu:on  in  the  pit  contains  chloride  and  low  pH  •  Compe::on:  

Crea.on>Diffusion:  corrosion    Crea.on<Diffusion:  no  corrosion  

•  Chloride,  temperature  and  alloy  composi:on  greatly  affect  pi#ng  corrosion  

•  Nickel  alloys,  aluminum  alloys,  copper  and  others  may  suffer  pi#ng  corrosion  

Small  damages  result  in  big  failures  

Page 22: Pitting and Crevice Corrosion

Crevice  Corrosion  

Page 23: Pitting and Crevice Corrosion

Crevice  Corrosion  Lecture  Outline  •  Defini:on  •  Examples  •  Observa:on  •  Mechanism  •  Effect  of  Environment  •  Effect  of  Alloy  Composi:on  •  Pi#ng  Corrosion  –  Other  Alloys  •  Impacts  

Page 24: Pitting and Crevice Corrosion

Crevice  Corrosion  Defini:on  

•  Breakdown  of  passivity  on  a  metal  or  alloy  at  a  :ght  crevice  site  due  to  the  development  of  an  aggressive  crevice  solu:on.  

•  ASM  Defini:on:  – Localized  corrosion  at  or  immediately  adjacent  to  an  area  that  is  shielded  from  full  exposure  to  the  environment  due  to  close  proximity  between  the  metal  and  the  surface  of  another  material  

Page 25: Pitting and Crevice Corrosion

Example  of  Crevice  Corrosion  •  Requirements  for  crevice  corrosion:  –  Creviced  system  combined  to  exposed  area  

– Alloy  composi:on  (stainless  steel,  nickel  alloys,  aluminum  alloys,  :tanium  alloys,  copper  alloys…)  

–  Passive  film  –  Solu:on  composi:on  (Cl-­‐,  Br-­‐,  I-­‐,  F-­‐)  

Page 26: Pitting and Crevice Corrosion

Observa:on  •  Visual:  

–  Expose  creviced  specimens  and  perform  visual  assessment  of  crevice  corrosion  

–  Amount  of  “feet”  having  corroded  

–  Extent  of  corrosion  

Page 27: Pitting and Crevice Corrosion

Observa:on  2  •  Electrochemically:  

– Crevice  poten:al  to  iden:fy  when  crevice  will  ini:ate  

– Can  crevice  corrosion  or  pi#ng  corrosion  ini:ate?  

MΔSΦ-­‐ΦSHE  

Passive  

Log(i co

rr)  

Epit  Ecrev  

Transpassive  

Page 28: Pitting and Crevice Corrosion

Mechanisms  

•  Three  models  suggested:  – Acidifica:on:  similar  to  pi#ng  corrosion  

–  IR  drop:  poten:al  drop  due  to  solu:on  resistance  

– Stabiliza:on  of  metastable  pi#ng  

Page 29: Pitting and Crevice Corrosion

Mechanism  –  Acidifica:on  1  1.  Deple:on  of  oxygen  

in  crevice  2.  Separa:on  of  the  

anode  and  the  cathode  

3.  Chloride  diffusion  and  hydrolysis  of  metal  ion  

4.  Aggressive  environment  depassivate  crevice  

M+  

M  

O2   OH-­‐   M+  

M  

O2   OH-­‐  

M+  

M   e-­‐  

M(OH)a  +  aH+  

Cl-­‐  

O2   OH-­‐  

M+  

M   e-­‐  

M(OH)a  +  aH+  

Cl-­‐  

O2   OH-­‐  

Page 30: Pitting and Crevice Corrosion

Mechanism  –  Acidifica:on  2  

Reduc:on  Cathodic  

Chloride  diffusion  

Hydrolysis  

Oxida:on  Anodic  

Page 31: Pitting and Crevice Corrosion

Mechanism  –  IR  Drop  1.  Current  is  flowing  

through  the  crevice  from  inside  to  the  mouth  

2.  Due  to  the  solu:on  resistance,  the  poten:al  drops:  

E=IR  3.  As  the  poten:al  

decreases,  it  reaches  the  ac:ve  peak  

Page 32: Pitting and Crevice Corrosion

Mechanism – Stabilization of metastable pitting

•  Metastable  pits  die  because    the  pit  solu:on  diffuse  out  in  “infinite”  bulk  solu:on  

•  Crevice  ini:ate  because  the  metastable  pit  solu:on  diffuse  out  in  a  small  crevice  solu:on  

Neutral  pH  Low  Cl-­‐  

Acidic  pH  High  Cl-­‐  

Page 33: Pitting and Crevice Corrosion

Crevice  Former  Proper:es  effect  •  Porous  crevice  former:  Solu:on  diffuse  out  

•  Small  crevice  length:  Solu:on  diffuse  out  

•  Wide  crevice  gap:  Lower  corrosion  rate  ANack  near  the  mouth  

 

Page 34: Pitting and Crevice Corrosion

Pi#ng  vs.  Crevice  Corrosion    :  Epit  in  1  M  NaCl  :  Ecrev  in  0.5  M  NaCl  :  Ecrev  in  1  M  NaCl  (fine)  :  Ecor  in  1  M  NaCl  

       

•  Can  pi#ng  corrosion  occur?  

•  Can  crevice  corrosion  occur?  

•  Which  one  is  more  likely?  

Page 35: Pitting and Crevice Corrosion

Effect  of  Environment  

•  Chloride   •  Temperature/pH  

•  What  is  the  likeliness  of  crevice  corrosion  when  you  increase  the  chloride  content?  

•  What  is  the  likeliness  of  crevice  corrosion  when  you  decrease  the  pH?  

•  How  do  the  cri:cal  temperatures  compare?  

Page 36: Pitting and Crevice Corrosion

Examples  of  Crevice  

•  Flanges  •  Rivets  •  Rocks  •  ?  

Page 37: Pitting and Crevice Corrosion

Lecture  Review  •  Requirements:  crevice,  passivity,  chloride  •  Observa:on:  visual  or  electrochemical  •  Crevice  poten:al  above  which  crevice  corrosion  occurs  •  Mechanisms:  acidifica:on,  IR  drop  or  metastable  pit  •  Compe::on:  

   Crea:on  (dissolu:on,  hydrolysis)  vs.  Diffusion    •  Small  crevice  former:  less  crevice  corrosion  •  Loose  crevice  former:  less  crevice  corrosion  •  Ecrev  <  Epit  :  if  possible,  crevice  corrosion  ALWAYS  occur  before  pi#ng  corrosion  

•  High  chloride  •  High  temperature        BAD  •  Low  pH