45
Pierre Delahaye, CERN EP seminar, 2005/10 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE Design Study

Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Embed Size (px)

Citation preview

Page 1: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

The Physics requirements for advanced radioactive ion beam manipulation

Pierre Delahaye

CERN - ISOLDE

Design Study

Page 2: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

The chart of the nuclidesAn open landscape for investigations

In…• Nuclear physicsStructure, magic numbers, deformations, haloes, Superheavy elements, nuclear equation of states…• Nuclear AstrophysicsNucleosynthesis, r and rp processes, supernovae explosions, X ray bursts…• Weak Interaction physics and fundamental symmetriesCVC, CKM Unitarity, Exotic interactions…• Solid State physics&• Medical Applications!

From the EURISOL reporthttp://www.ganil.fr/eurisol/Final_Report.html

Page 3: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

The EURISOL project

Design Study

More radioactive beams for more available energies!Beta-beam aspect

Beam preparation task

Advanced techniques for theRadioactive ion beam manipulation

Page 4: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

Outline of the talk

I) Inventory of devices and techniques

II) A few examples for beam preparation• The low energy stage of REX-ISOLDE post-accelerator• The Collaps experiment at ISOLDE

III) A few examples for precision measurements• The ISOLTRAP penning trap spectrometer• The beta –neutrino angular correlation measurements at LPC Caen, ISOLDE (WITCH) and at Triumf• The 6He charge radius measurement at ANL• The HITRAP project at GSI

Page 5: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

I - InventoryWhat devices for what purpose?

• A physics experiments usually requiresHigh intensityBeam purityBeam quality (radial and longitudinal emittances)A rich variety of available beamsA rich variety of accelerated beams

• Beam preparation• Also providing powerful tools to precision

measurements!

Page 6: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

• A mass separator

ISOLDE HRS upgradeTim Giles CERN AB-OP

R=m/m~4000 in best casesUpgradeR~10,000

Better … Beam purityHigh acceptance 100%

A mass separator

Page 7: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

A charge breeder• ECR booster vs EBIS – stripping foils

Singly charged ions n+ ions transformation• More post-accelerated beams available• More radioactive isotopes available• Better purity in some cases• Some applications for physics experiments of charge bred beams • Efficiency: 1 - 20% in one charge state depending on Z

Phoenix ECRIS14GHz

Test stand at ISOLDE

REX-EBIS

Operational at REX-ISOLDE

Molecular sidebands from the ISOLDE targets

Page 8: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

Ion coolers

• RFQ coolers vs Penning trap coolers

PhD thesis of Ivan Podadera, CERN

REXTRAP at REX-ISOLDEISCOOL in its commissioning phase

Electromagnetic traps filled by buffer gas: damping of the ion motion by collisions• Better beam quality – lower transversal emittance• Possibility of beam bunching: a few µs bunches• Penning trap: the mass selection is a-priori possible | R=105 at ISOLTRAP!• The transmission depends on space charge limits

Page 9: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

Electromagnetic traps

• Penning traps

• Paul traps

• MOT

z0

r0

Penning Traps

Electrostatic quadrupolar fieldMagnetic field (superconducting magnet)

Cylindrical trapz0

r0

Penning Traps

Electrostatic quadrupolar fieldMagnetic field (superconducting magnet)

Cylindrical trap

RFVRFV

Paul Traps

Radiofrequency quadrupolar electric field

Linear trap

RFVRFV

Paul Traps

Radiofrequency quadrupolar electric field

Linear trap

6 laser beamsWith a magnetic fieldAn atom trap

Page 10: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

II - Beam preparation

• The 1+ n+ scenario for the Physics with radioactive accelerated beams

• The case of REX-ISOLDE

• The requirements for charge bred beams

• The needs for cooled and bunched beams

• The Collaps experiment

Page 11: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

ISOL and In-flight facilities

From the EURISOL report

ISOLDE, GANIL/SPIRAL, TRIUMF, …

GSI (FAIR project), MSU, ANL…

Page 12: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

The 1+n+ scenarioat ISOL facilities

ECR breeder vs EBIS | stripping foilsStripping foils requires a pre-acceleratorUsually limited to small A/q

ISOL target 1+ ion source

1+ n+1+ separator A/q separator

Accelerator

Studied in the frame of the EURISOL and RIA projects

Page 13: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

Physics with accelerated beams at REX-ISOLDE

• The REX-ISOLDE post accelerator

ROBOT

RADIOACTIVELABORATORY

GPS

HRS

REX-ISOLDE

CONTROLROOM

1-1.4 GeV PROTONS

EXPERIMENTAL HALL

NEW EXTENSION

Page 14: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

The low energy stage

PENNING Trap

EBISA/q<4.5

ISOLDEbeam60 keV

HV platform60 kV

HV platform20-60 kV

Separator(q/A)/(q/A)= 1/150

tra

nsf

er

bea

m li

ne

cooled beam of singlycharged ions 60 keV

highly chargedions 5 keV/u

REXTRAP

REX EBIS

q/A-selector

breeding time (A/q < 4.5) 20 ms

beam intensities < 109 /s

ions in one charge state < 30%

injection efficiency into EBIS >80%

efficiency REXTRAP 50%

breeding time (A/q < 4.5) 20 ms

beam intensities < 109 /s

ions in one charge state < 30%

injection efficiency into EBIS >80%

efficiency REXTRAP 50%

Limited by space charge effects above 109 ions/ cycle

Page 15: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

Experiments by REX-ISOLDE

• Mainly nuclear spectroscopy experiments

• B(E2) measurements with MINIBALL transfer reactions and Coulomb excitations

CD detector

Miniball cluster

Page 16: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

Coulomb excitation of 70Se

Mass 70: contamination of 70Ge+ from the usual ZrO target Solution: molecular sidebands from the target 70SeCO

Measurement of the B(E2) of 70Se for validation of the shape coexistence in the mass 70 region

IS397 collaboration D. Jenkins, P.A. Butler

>50% efficiency for SeCO+ cooling

REXTRAP

REXEBIS>5% SeCO+Se19+

First run partly successful this year, should be renewed next year

Page 17: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

Different cooling schemes

~120 eV

80 eV

V

X

~30 eV

15 eV

V

X

Molecular break-up

SeCO molecule trapping

Time of flight out of REXTRAP

Page 18: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

Charge bred beams at ISOLDE

H. Haas AB-Note-2004-034-OP

Page 19: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

The needs for cooled and bunched beams

• Reduction of emittance for mass separators –ISCOOL for the HRS upgrade at ISOLDE

• Reduction of emittance and bunching for the EBIS charge breeders – REXTRAP at REX-ISOLDE

• Better transport to experiments• time reference, monochromatic beam, better

injection control into spectrometers – ISCOOL for Collaps

Page 20: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

The Collaps case

• Collinear laser spectroscopy and -NMR spectroscopy

• Measurement of nuclear moments, spin and charge radii of radioactive isotopes

Page 21: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

Experimental technique

courtesy of K. Flanagan COLLAPS collaboration

Page 22: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

A RFQ cooler

Expected ISCOOL transmission: 100% (less than 100nA)Radius: a few mmBunch time width: a few µs

Page 23: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

R

Current limiting factors for laser spectroscopy

• Background of scattered laser light detected by PMT ~2000/s.• Detection efficiency within the light collection region.• Broadening of lineshape due to voltage ripples.

Currently the minimum ion beam diameter reached is ~6mm

Within the light collection region the ion beam should have zero divergence (parallel beam)

In order to maximize the detection efficiency good overlap between laser and ion beams is necessary

This results in a high background level from scattered lightK. Flanagan COLLAPS collaboration

Cold and bunched beams for Collaps

Page 24: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

Cold and bunched beams for Collaps

• A reduction in the ion beam diameter will allow the laser to be reduced in diameter (and therefore power) with no detrimental effect on the detection efficiency.• Immediate consequences for the detected background

Bunching ions in the RFQ cooler

Trap and accumulates ions – typically for 300 ms

Releases ions in a 15 µs bunch

Background suppression equal to the ratio of the trapping time to the bunch width 300ms/15 µs ~ 104

K. Flanagan COLLAPS collaboration

Page 25: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

JYFL experiment

8000 ions/sec

5.3 hours

Data from work at Jyvaskyla JYFL J.Billowes

Photons from laser-excitation of radioactive 88Zr

Laser frequency

200

100

30

0

BEFORE

AFTER

(Photon-ion coincidence

method)

2000 ions/sec

48 minutes

For optical measurements the minimum

ion beam intensity is 106/s

Compare to COLLAPS

K. Flanagan COLLAPS collaboration

Page 26: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

III - Precision measurements

• The ISOLTRAP penning trap spectrometer

• The beta –neutrino angular correlation measurements at LPC Caen, ISOLDE (WITCH) and at Triumf

• The 6He charge radius measurement at ANL

• The HITRAP project at GSIElectromagnetic traps as a precision measurement tool

Page 27: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

The ISOLTRAP mass spectrometer

Stable alkali reference ion

source

ISOLDE beam60 keV

Carbon cluster ion source

RFQ cooler buncher

Cooling Penning trap

Precision Penning trap

MCP1

MCP3

MCP5

2.8 keV ion bunches

Precision trap

Precision measurement of c=qB/m

Page 28: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

Ion motion manipulation

Magnetron excitation:

Cyclotron excitation: +

1071195 1071200 1071205 1071210 1071215 1071220 1071225

200

220

240

260

280

300

320

340

Measurement Theoretical Fit

85Rb

Tim

e-of

-flig

ht [

s]

Excitation frequency [Hz]

TOF vs. excitation frequency

c = Bqm

Sca

n Q

P-e

xcita

tion

freq

. r

f a

bout

c

Quadrupolar excitation rf

TOF resonance

Radial energy axial energy

Magnetron excitation

Relative accuracy: (m/m) 10-7

Page 29: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

• The mass as a fundamental quantity for– Reactions (Q values)– Nuclear models

– Nuclear Structure (S2n)– shell closure, magic numbers, deformations, IMME…

– Astrophysics - waiting points, decay rates– Weak interaction physics - Tests of CVC and

the unitarity of the CKM matrix

The physical aims

Page 30: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

FT value measurements

Superallowed transitions: 0+ -> 0+

Comparative half-life

corrected ft

Is constant in the CVC hypothesis

R radiative correctionC isospin symmetry-breaking correctionR

V nucleus independent radiative correction

f~Q5

Page 31: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

CVC test

22Mg

74Rb

F. Herfurth et al., Eur. Phys. J. A 15, 17 (2002)A. Kellerbauer et al., Phys. Rev. Lett.93, 072502 (2004)M. Mukherjee et al., Phys. Rev. Lett. 93, 150801 (2004)

[I.S. Towner & J.C. Hardy, Phys. Rev. C 71, 055501 (2005)]

34Ar

T. Eronen et al., to be published (2005)G. Savard et al., Phys. Rev. Lett. 95, 102501 (2005)

Limit from QEC(38Ca)

62GaJYFLTRAP

LEBIT38Ca

CPT46V

66As

ISOLTRAP mass measurements 22Mg → 22Na : Q=0.28 keV, 34Ar → 34Cl : Q=0.41 keV, 74Rb → 74Kr : Q=4.5 keV

CVC hypothesis confirmed in this mass region

From Klaus Blaum, NUPAC meeting at ISOLDE 2005/10/11

Page 32: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

The angular correlation in nuclear decay

• Test of the V-A theory

• Sensitive to exotic interactions S,T• Pure Fermi transitions • Pure Gamow Teller transitions

V-A aF=1 V-A aGT=-1/3Johnson et al. (1963!)Adelberger et al. (1999)

32Ar 6He

& if & if

Page 33: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

46V

er=180°

er=0°

a

• Fermi transition (J=0)

6He

er=180°

er=0°

• Gamow-Teller transition (J=0±1)

decay spectrum

The - angular correlation in nuclear decay

Page 34: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

A Paul trap as the center of the detection setup

particle Recoil ion

Beta telescopeSilicone stripped detector

+ Scintillator

- Transparent Paul trap, UHV- Ions confined in the middle of the device, nearly at rest- In coincidence detection of the electron and the recoil ion

In coincidence measurement of: the time of flight of the recoil ion tR

the beta particle energy E

the angle between these two particles er

E, tstarttstop

er

Pierre Delahaye et al., Hyp. Int. 132(2001)479

MCPDelay lines anode

LPCTRAP collaboration, at GANIL

Page 35: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

Experimental setup

DSSD +scintillator

MCP +DL anode

MonitorMCP

"Ring"trap

RFQ cooler

buncher

pulse down

Paul trapchamber

SPIRAL beam

HT

20 cm

LPCTRAP collaboration

Page 36: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

First TOF spectrum

(V-A theory)• conditioned spectrum

Oscar Naviliat, Scientific council of GANIL, June 2005

LPCTRAP collaboration, at GANIL

Page 37: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

The WITCH retardation spectrometer

D. Beck NIM A 503(2003)567

Recoil ion energy spectrum

35Ar decaySearch for scalar interaction

The WITCH experiment IKS Leuven at ISOLDE

Page 38: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

The TRINAT experiment at TRIUMF

J. Behr et al, Phys. Rev. Lett. 79, 375

A MOT as the center of the detection setup

From Dan Melconian, PhD, Triumf

A. Gorelov et al, Phys. Rev. Lett. 94, 142501

e- shakeoff

Page 39: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

6He - Single Atom Spectroscopy

Photoncounter

Zeemanslower

MOT

Transversecooling

389 nm 1083 nm

Atom Trapping of 6He

6Hetrapping rate

~ 2 / min

0 5 10 15 200.0

0.2

0.4

0.6

0.8

1.0

1.2

Ph

oto

n c

ou

ntr

ate

/ kH

z

Time (s)-8 -6 -4 -2 0 2 4 6 8

50

100

150

200

250

300

Frequency (MHz)

Ph

oto

n c

ou

nts

Single atom signal

One 6He atom

6He spectroscopy

~150 6He in 1 hr

RF -Discharge

Krcarrier

gas

He*

Spectroscopy389 nm

2 3S1

1 1S0

2 3P2

3 3P2

Trap1083 nm

He level scheme

Courtesy of Peter Müller, Argonne Nat. Lab

6He

7Li3+

60 MeV

6He Production @ ATLAS

Graphite

~ 1106 / s

Page 40: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

6He - Nuclear Charge RadiusIsotope shift

(23S1 - 33P2, 6He – 4He)

43 194.772(56) MHz

6He rms charge radius

2.054(14) fm (0.7%)

L.-B. Wang et al.,PRL 93, 142501 (2004)

1.7 1.8 1.9 2.0 2.1 Point-Proton Radius of He-6 (fm)

He-6

Reaction collision

Elastic collision

Atomic isotope shift

Cluster models

No-core shell model

Quantum MC

Modelindependent!

Exp

erim

ent

The

ory

Tanihata ‘92

Alkhazov ‘97

This work

Csoto ‘93

Funada ‘94

Varga ‘94

Wurzer ‘97

Esbensen ‘97

Navratil ‘01

Pieper ’05priv. comm.

Page 41: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

P. Delahaye

EXPERIMENTS WITH HIGHLY CHARGED IONS AT EXTREMELY LOW ENERGIES:

stable and radioactive isotopes

collisions at very low velocities, surface studies

laser and x-ray spectroscopy

g-factor measurements of the bound electron

fundamental constants

mass measurements of extreme accuracy

polarization of radionuclides, decay spectroscopy of

highly charged radionuclides

EXPERIMENTS WITH HIGHLY CHARGED IONS AT EXTREMELY LOW ENERGIES:

stable and radioactive isotopes

collisions at very low velocities, surface studies

laser and x-ray spectroscopy

g-factor measurements of the bound electron

fundamental constants

mass measurements of extreme accuracy

polarization of radionuclides, decay spectroscopy of

highly charged radionuclides

strippertarget

ESR

electron coolingand deceleration down to 4 MeV/u

U73+

U92+

4

00

MeV

/u

UNILAC

coolerPenning

trap

experiments with particles at rest or

at low energies

U92+

post-decelerator SIS

The HITRAP Project for Highly Charged IonsGSI Darmstadt

Courtesy of W. Quint and the HITRAP collaboration

Page 42: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

P. Delahaye

Precisiontrap

Other experimental setups(beam line height: 1.25 m)

Re-injection channel

5 keV*q

MAX-EBIS

LEBT

verticalbeam line

Operational Parameters:

Deceleration from 4 MeV/u to keV/u

HCI with M/q 3

Beam intensity: some

105 ions/pulse for U92+

Repetition time: 10 s

Operational Parameters:

Deceleration from 4 MeV/u to keV/u

HCI with M/q 3

Beam intensity: some

105 ions/pulse for U92+

Repetition time: 10 s

HITRAP at the Experimental Storage Ring ESRCourtesy of W. Quint and the HITRAP collaboration

Page 43: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

P. Delahaye

GSI Future Project FAIR:FLAIR - Facility for Low-Energy Antiproton and Ion Research

• NESR– Pbar & ions– 30 – 400 MeV

• LSR:– Standard ring– Min. 300 keV (CRYRING)

• USR– Electrostatic– Min 20 keV (MPI KP HD)

• HITRAP– Pbars and ions– Stopped & extracted @ 5 keV– (under construction for ESR)

energy range: 400 MeV – 1 meV

Page 44: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

Conclusion• Intensive studies of Mass separators, charge

breeders and ion coolers for the next generation facilities are going on

• Electromagnetic traps are particularly suited for precision experiments

• The advanced techniques for radioactive ion beam manipulation: a field in effervescence!

Thank you for your attention!

Page 45: Pierre Delahaye, CERN EP seminar, 2005/10/31 The Physics requirements for advanced radioactive ion beam manipulation Pierre Delahaye CERN - ISOLDE

Pierre Delahaye, CERN EP seminar, 2005/10/31

Thanks to my colleagues

REX- ISOLDE

REX-ISOLDE

R. Savreux, T. Sieber, F. Wenander, D. Voulot, P. Delahaye and the REX-ISOLDE collaboration

The IS397 collaboration

C. J. Barton, K. Connell,T. Fritioff, O. Kester, T. Lamy, M. Lindroos, M. Marie-Jeanne, P.

Sortais, P. Suominen, G. Tranströmer, F. Wenander, P. Delahaye, …ISOLTRAP

G.Audi, K. Blaum, G. Bollen, D.Beck, C. Guénaut, F. Herfurth, A. Herlert, A. Kellerbauer, H.-J. Kluge, D. Lunney, S. Schwarz, L. Schweikhard, C. Weber, C. Yazidijan , P.

Delahaye ..., the ISOLTRAP and ISOLDE collaborationLPC CAEN (LPCtrap collaboration)

Gilles Ban, Guillaume Darius, Dominique Durand, Xavier Flechard, Mustapha Herbane, Marc Labalme, Etienne Lienard, François Mauger, Alain Mery, Oscar Naviliat, Pierre Delahaye