17
Piecewise Polynomial Spaces The reason for introducing a mesh of a domain is that it allows for a construction of piecewise polynomial function spaces on this domain c by ax y x p ) , ( 7 2 3 ) , ( y x y x p Definition: linear function in x and y Is a linear function in x and y Example:

Piecewise Polynomial Spaces

Embed Size (px)

DESCRIPTION

Piecewise Polynomial Spaces. The reason for introducing a mesh of a domain is that it allows for a construction of piecewise polynomial function spaces on this domain. Definition: linear function in x and y. Is a linear function in x and y. Example:. Piecewise Polynomial Spaces. - PowerPoint PPT Presentation

Citation preview

Page 1: Piecewise Polynomial Spaces

Piecewise Polynomial Spaces

The reason for introducing a mesh of a domain is that it allows for a construction of piecewise polynomial function spaces on this domain

cbyaxyxp ),(

723),( yxyxp

Definition:

linear function in x and y

Is a linear function in x and y

Example:

Page 2: Piecewise Polynomial Spaces

Piecewise Polynomial Spaces

Definition:

be the space of linear functions on

Remark:

)(1 KP

We observe that any member in is uniquely determined by its nodal values

triangle with nodesK 321 ,, NNN

1N

2N 3N

)(1 KP

Example: Find a linear polynomial on the triangle K such that p(N1)=2 , p(N2) = 3, p(N3)=1

),( yxp

K

cbyaxyxp ),(

K

)3,2(1 N

)2,1(2 N

)1,3(3 N

K

1

3

2

113

121

132

c

b

a

4),( xyxp

Page 3: Piecewise Polynomial Spaces

Local basis functions

Example:

Find a linear function on the triangle K such that p(N1)=2 , p(N2) = 3, p(N3)=1

),( yxp

cbyaxyxp ),(

)3,2(1 N

)2,1(2 N

)1,3(3 N

K4),( xyxp

Example:

Find a linear function on the triangle K such that p(N1)=1 , p(N2) = 0, p(N3)=0p(N1)=0 , p(N2) = 1, p(N3)=0p(N1)=0 , p(N2) = 0, p(N3)=1

),( yxp

3/)52(),(1 yxyx3/)72(),(2 yxyx

3/)1(),(3 yxyx

Remark: 3211 ,,)( spanKP any member in can be expressed as a linear combination of these three functions

)(1 KP

Example:

4),( xyxp

321 32

Page 4: Piecewise Polynomial Spaces

K)( 1,1 yx

1

2

3 )( 3,3 yx

)( 2,2 yx

0

0

1

1

1

1

1

1

1

33

22

11

c

b

a

yx

yx

yx

)2/(

23

32

2332

1

1

1

K

xx

yy

yxyx

c

b

a

33

22

11

1

1

1

2

1

yx

yx

yx

K

0

1

0

1

1

1

2

2

2

33

22

11

c

b

a

yx

yx

yx

)2/(

31

13

3113

2

2

2

K

xx

yy

yxyx

c

b

a

1

0

0

1

1

1

3

3

3

33

22

11

c

b

a

yx

yx

yx

)2/(

12

21

1221

3

3

3

K

xx

yy

yxyx

c

b

a

ycxbaK111

)(1

ycxbaK222

)(2

ycxbaK333

)(3

The local basis functions for the triangle K are

Local basis functions

321 ,,

Page 5: Piecewise Polynomial Spaces

Local basis functions

Find three linear functions on the reference triangle such that

Reference triangle

Exercise3

1)1,0(~

,0)0,1(~

,0)0,0(~

0)1,0(~

,1)0,1(~

,0)0,0(~

0)1,0(~

,0)0,1(~

,1)0,0(~

333

222

111

321

~,

~,

~

Then find a linear function on the reference triangle K such that p(0,0)=2 , p(1,0) = 3, p(0,1)=1

),( yxp

Page 6: Piecewise Polynomial Spaces

Continuous Piecewise Polynomial Spaces

Definition:

the space of all continuous functions

KKPv

CvV

K

h trianglesallfor )(

),(

1

0

Definition:

h

)(0 C

be a triangulation of

the space of all continuous piecewise linear polynomials

An example of a continuous piecewise linear function

Page 7: Piecewise Polynomial Spaces

Global Basis Functions for

KKPv

CvV

K

h trianglesallfor )(

),(

1

0

the space of all continuous piecewise linear polynomials

hV

To construct a basis for this space we note that a function v in this space is uniquely determined by its nodal values

},,,,{ 321 nh spanV

where n is the number of nodes in the mesh

10

11)(1 k

kNk

jk

jkNkj 0

1)(

Page 8: Piecewise Polynomial Spaces

} , ,, { 1321 spanVh

Example (for global basis functions)

Page 9: Piecewise Polynomial Spaces

global basis functions

12

3 4

5

6

7

8

9

1011

12 13

),(5 yx

0)nodes o(

1)5.0,5.0(

5

5

ther

} , ,, { 1321 spanVh

Page 10: Piecewise Polynomial Spaces

12

3 4

5

6

7

8

9

1011

12 13

),(10 yx

0)nodes o(

1)75.0,75.0(

10

10

ther

global basis functions

} , ,, { 1321 spanVh

Page 11: Piecewise Polynomial Spaces

Global basis functions related to interior nodes

Page 12: Piecewise Polynomial Spaces

global basis functions),(5 yx

0)nodes o(

1)5.0,5.0(

5

5

ther

12

3 4

6

7

8

9345 x

0

0

0

0

0

0

0

0

0

0

0 0

145 x

345 y1011

5

145 y1312

Page 13: Piecewise Polynomial Spaces

1

23

4

56

78

910

1112

13

14

15

16

),(5 yx

4,15,166,7,8,13,11,2,3,4,5,ii

9

12

11

10

5

K0

K34

K14

K14

K34

),(

in

inx

iny

inx

iny

yx

Page 14: Piecewise Polynomial Spaces

),(10 yx

0)nodes o( ,1)75.0,75.0( 1010 ther

12

3 4

6

7

8

910

0

0

0

0

0

0

0 0

1011

5

1312

0

0 10

10

10

10

10

Exercise4: Find in explicit form 10

Page 15: Piecewise Polynomial Spaces

Remark:

Continuous Piecewise Linear Interpolation

Definition:

we define its continuous piecewise linear interpolant by

)(0 CfLet

n

kkkNff

1

)( hVf

approximates by taking on the same values in the nodes Ni.

f f

f

f

Page 16: Piecewise Polynomial Spaces

[p,e,t] = initmesh('squareg','hmax',0.7); % meshx = p(1,:); y = p(2,:); % node coordinatespif = x.^2+ y.^2; % nodal values of interpolantpdesurf(p,t,pif') % plot interpolant %pdeplot(p,e,t,'xydata',pif,'zdata',pif,'mesh','on');

to draw πf given fto draw πf given f

Page 17: Piecewise Polynomial Spaces

Piecewise Polynomial Spaces

KDefinition:

be the space of linear functions on

Remark: Reference triangle

)(1 KP

We observe that any function inP1(K) is uniquely determined by its nodal values

triangle with nodes