33
Faculdade de Engenharia NuGeo/Núcleo de Geotecnia Prof. M. Marangon Mecânica dos Solos II Edição 2018 COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 61 Capítulo 3 - COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 3.1 - Introdução Compressibilidade é uma característica de todos os materiais de quando submetidos a forças externas (carregamentos) se deformarem. O que difere o solo dos outros materiais é que ele é um material natural, com uma estrutura interna o qual pode ser alterada, pelo carregamento, com deslocamento e/ou ruptura de partículas. Portanto, devido a estrutura própria do solo (multifásica), possuindo uma fase sólida (grãos), uma fase fluída (água) e uma fase gasosa (ar) confere-lhe um comportamento próprio, tensão-deformação, o qual pode depender do tempo. Define-se compressibilidade dos solos como sendo a diminuição do seu volume sob a ação de cargas aplicadas. Considere os exemplos de obras da Figura 3.1, que referem-se à construção de aterros de grande extensão (carga distribuída com extensão muito maior que a profundidade de subsolo). Ao executar os aterros há o lançamento de sobrecarga por sobre o subsolo de cada um dos perfis de solo. A questão que se apresenta é: Como se comportará estes solos quanto a deformação esperada ? A Figura 3.2 ilustra a intensidade de carregamento para cada um dos casos. Exemplos de Obras Construção de aterro para extensão de pista de aeroporto. H = 60m Construção de aterro para implantação de via de acesso. H = 4m Imagens das obras Formação geológico-geotécnico dos subsolos Solo residual (Perfil de intemperismo) Solo sedimentar (aluvião argiloso) Figura 3.1 Exemplos de obras de aterros em Juiz de Fora-MG

Permeabilidade dos Solos - ufjf.brtulo-03-Compressibilidade-e-Adensamento-20181.pdf · Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon Mecânica dos Solos

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

61

Capítulo 3 - COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

3.1 - Introdução

Compressibilidade é uma característica de todos os materiais de quando submetidos

a forças externas (carregamentos) se deformarem. O que difere o solo dos outros materiais

é que ele é um material natural, com uma estrutura interna o qual pode ser alterada, pelo

carregamento, com deslocamento e/ou ruptura de partículas. Portanto, devido a estrutura

própria do solo (multifásica), possuindo uma fase sólida (grãos), uma fase fluída (água) e

uma fase gasosa (ar) confere-lhe um comportamento próprio, tensão-deformação, o qual

pode depender do tempo.

Define-se compressibilidade dos solos como sendo a diminuição do seu volume sob

a ação de cargas aplicadas.

Considere os exemplos de obras da Figura 3.1, que referem-se à construção de

aterros de grande extensão (carga distribuída com extensão muito maior que a

profundidade de subsolo). Ao executar os aterros há o lançamento de sobrecarga por sobre

o subsolo de cada um dos perfis de solo. A questão que se apresenta é: Como se

comportará estes solos quanto a deformação esperada ?

A Figura 3.2 ilustra a intensidade de carregamento para cada um dos casos.

Exemplos de Obras

Construção de aterro para extensão de pista

de aeroporto. H = 60m

Construção de aterro para implantação de via

de acesso. H = 4m

Imagens das obras

Formação geológico-geotécnico dos subsolos

Solo residual (Perfil de intemperismo) Solo sedimentar (aluvião argiloso)

Figura 3.1 – Exemplos de obras de aterros em Juiz de Fora-MG

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

62

Seções transversais típicas

Sobrecargas aplicadas

σ = γ . Z = 18 . 60 = 1080 kN/m2 σ = γ . Z = 18 . 4 = 72 kN/m2

Figura 3.2 – Intensidade de carregamento para exemplos da figura 3.1

Sendo os solos compressíveis, característica de todos os materiais quando

submetidos a carregamentos externos se deformarem, pergunta-se:

Qual das situações apresentará maior RECALQUE (deformação) ?

Qual o condicionante que contribui significativamente para a ocorrência de

recalque, como no caso dos exemplos ?

Os carregamentos externos, como por exemplo, da construção de um aterro, são

transmitidas ao solo gerando uma redistribuição dos estados de tensão em cada ponto do

maciço (acréscimos de tensão), a qual irá provocar deformações em maior ou menor

intensidade.

A compressibilidade depende do tipo de solo, por exemplo: a compressibilidade

em areias (solos não-coesivos) devido a sua alta permeabilidade ocorrerá rapidamente,

pois a água poderá drenar facilmente. Em contrapartida, nas argilas (solos coesivos) a

saída de água é lenta devido à baixa permeabilidade, portanto, as variações volumétricas

(deformações/recalques) dependem do tempo, até que se conduza o solo a um novo estado

de equilíbrio, sob as cargas aplicadas. Essas variações volumétricas que ocorrem em solos

finos saturados, ao longo do tempo, constituem o processo de adensamento (GURGEL,

2018).

Definem-se então alguns conceitos importantes:

Compressão (ou expansão): É o processo pelo qual uma massa de solo, sob a ação

de cargas, varia de volume (“deforma”) mantendo sua forma.

Os processos de compressão podem ocorrer por compactação (redução de volume

devido ao ar contido nos vazios do solo) e pelo adensamento (redução do volume de água

contido nos vazios do solo).

Compressibilidade: Relação independente do tempo entre variação de volume

(deformação) e tensão efetiva. É a propriedade que os

solos têm de serem suscetíveis à compressão

Adensamento: Processo dependente do tempo de variação de volume

(deformação) do solo devido à drenagem da água dos

poros

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

63

Para os exemplos das Figuras 3.1 e 3.2, apesar do “aterro de extensão de pista”

gerar um carregamento externo de 1080 kN/m2, muito maior que o da “via de acesso”, com

72 kN/m2, este segundo caso apresentará um recalque muito maior que o primeiro. Trata-se

de solo de “fundação” sedimentar argiloso, saturado, cuja compressibilidade é muito maior.

Neste caso, o “fechamento” dos vazios ocorrerá por fluxo de água que ocorrerá ao longo do

tempo, fenômeno típico de recalque por “adensamento”, a ser visto neste capítulo. No

primeiro caso é esperada deformação principalmente por saída de ar dos poros, considerado

como recalque “inicial ou imediato”.

3.2 – Compressibilidade dos solos

O solo é um sistema particulado composto de partículas sólidas e espaços vazios, os

quais podem estar parcialmente ou totalmente preenchidos com água. Os decréscimos de

volume (as deformações) dos solos podem ser atribuídos, de maneira genérica, a três

causas principais:

• Compressão das partículas sólidas;

• Compressão dos espaços vazios do solo, com a conseqüente expulsão da água (no

caso de solo saturado);

• Compressão da água (ou do fluido) existente nos vazios do solo.

Para os níveis de tensões usuais aplicados na engenharia de solos, as deformações

que ocorrem na água e grãos sólidos são desprezadas (pois, são incompressíveis).

Calculam-se, portanto, as deformações volumétricas do solo a partir da variação do

índice de vazios (função da variação das tensões efetivas).

Em solos saturados (finos – elevado índice de vazios), a variação de volume é

devida à drenagem da água. Esta situação é verificada para o caso de ocorrência de argilas

sedimentares em que se tem S 100%. Estes solos se formam pelo transporte da água –

típicos de regiões “baixas” – topografia “plana”, em que o NA é elevado.

No caso de solos de formação não sedimentar, (formados no mesmo local da

rocha de origem) correspondente a situações de cotas mais “elevadas”, não se tem o NA

elevado, frequentemente se encontram não saturados. Desta forma não se esperam

adensamento destes solos, assim como em solos granulares que apresentam permeabilidade

elevada, não sendo submetidos ao processo de drenagem lenta como no caso dos solos

argilosos – “sujeitos ao efeito do adensamento”.

O fluxo (drenagem) da água no solo é governado pela lei de Darcy → v = k.i a

variação de volume não é imediata, sendo função da velocidade com que ocorre o fluxo.

A compressibilidade de um solo irá depender do arranjo estrutural das partículas

que o compõe e do grau em que estas são mantidas uma em contato com a outra.

Variação de volume → devido à variação das tensões efetivas

No caso do carregamento confinado a deformação volumétrica corresponde à

deformação específica vertical

=0h

hV

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

64

3.3 – Ensaio de adensamento ou de compressão confinada (edométrico)

Dentre os parâmetros de compressibilidade que o engenheiro geotécnico necessita

para a execução de projetos e o estudo do comportamento dos solos, destacam-se a pressão

de pré-adensamento ’vm, o índice de compressão Cc, e o coeficiente de adensamento Cv.

A obtenção desses parâmetros se dá a partir da realização de ensaios de compressibilidade

do solo.

O estudo de compressibilidade dos solos é normalmente efetuado utilizando-se o

edômetro, que foi desenvolvido por Terzaghi para o estudo das características de

compressibilidade e da taxa de compressão do solo com o tempo. A Figura 3.3 apresenta o

aspecto do recipiente do aparelho em que é colocada a amostra, utilizado nos ensaio de

compressão confinada.

A Figura 3.4 mostra a imagem de tubos “shelby” em câmara úmida (com amostra

interna de argila mole) e do equipamento de adensamento.

Figura 3.3 – Edômetro utilizado nos ensaios de compressão confinada (de adensamento)

Figura 3.4 – Imagens de tubos “shelby” em câmara úmida e do equipamento de adensamento

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

65

O ensaio de compressão oedométrica (também referido como ensaio de

compressão confinada ou ensaio de adensamento) é o mais antigo e mais conhecido para a

determinação de parâmetros de compressibilidade do solo. O ensaio consiste na

compressão de uma amostra de solo, compactada ou indeformada, pela aplicação de

valores crescentes de tensão vertical, sob a condição de deformação radial nula. As

condições de contorno estão apresentadas na Figura 3.5.

Figura 3.5 – Condições de contorno do ensaio de compressão confinada

O ensaio é realizado mantendo a amostra saturada (se for o caso) e utilizando duas

pedras porosas (uma no topo e uma na base) de modo a acelerar a velocidade dos recalques

na amostra e, conseqüentemente, diminuir o tempo de ensaio. Durante cada carregamento,

são efetuadas leituras dos deslocamentos verticais do topo da amostra e do tempo.

• Procedimento do ensaio (resumido)

NBR 12007 MB 3336 (ABNT) – Solo – Determinação de Adensamento Unidirecional

− Saturação da amostra (se for o caso)

− Aplicação do carregamento

− Leituras, geralmente efetuadas em uma progressão geométrica do tempo

(15s, 30s, 1min, 2min, 4min, 8min, ... 24hs), dos deslocamentos verticais do

topo da amostra através de um extensômetro

− Plotar gráficos com as leituras efetuadas da variação da altura ou recalque

versus tensões aplicadas

− A partir da interpretação dos gráficos, decidir se um novo carregamento

deve ser aplicado. Repetem-se os processos anteriores.

− Última fase: descarregamento da amostra.

• Seqüências usuais de cargas

(em kPa) : 10, 20, 40, 80, 160, 320, 640, etc

em geral são aplicados de 5 a 8 carregamentos → podendo chegar a quase 2

semanas de ensaio

3.4 – Interpretação dos resultados de um ensaio de compressão confinada

Existem diversos modos de se representar os resultados do ensaio de adensamento.

A taxa de deformação do solo no início do ensaio é bem veloz, mas como o decorrer do

ensaio ela decresce. Depois de transcorrido o tempo necessário para que as leituras se

tornem constantes, os resultados de cada estágio são colocados em um gráfico, em função

do logaritmo do tempo. A curva de compressão do solo é normalmente representada em

função do índice de vazios versus o logaritmo da tensão vertical.

A deformação final (recalque) pode ser calculada em termos de índice de vazios, a

partir do ilustrado na Figura 3.6, como:

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

66

O recalque é, portanto, o resultado do produto da variação do índice de vazios e da

altura de sólidos (Hs). Como Hs é constante, este valor pode se estabelecido em função

das condições iniciais da camada, conforme demonstrado na Figura 3.6.

Figura 3.6 – Subdivisão de fases de um solo e cálculo do recalque (GERSCOVICH, 2008)

Sendo 0h

hV

= então

e

eV

+

−=

1

O valor do índice de vazios ao final de cada estágio de carregamento pode ser

obtido considerando-se a hipótese de carregamento confinado, a partir da relação da

deformação volumétrica com o índice de vazios:

Logo: ( )0

0

0 1. eh

hee f +

−=

Onde:

ef é o índice de vazios ao final do estágio de carregamento atual

h é a variação da altura do corpo de prova (acumulada) ao final do estágio

h0 é a altura inicial do corpo de prova (antes do início do ensaio)

e0 é o índice de vazios inicial do corpo de prova (antes do início do ensaio)

O índice de vazios inicial do corpo de prova (“e0”) pode ser obtido a partir da

relação:

e0 = - 1 = peso específico das partículas sólidas

s o s o = peso específico seco na condição inicial

Para a condição inicial da amostra, pode-se calcular o grau de saturação (“So”) a

partir da relação:

S0 = hi hi = teor de umidade na condição inicial

e0 e0 = índice de vazios inicial da argila

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

67

Resultados do Ensaio

Os gráficos da Figura 3.7 mostram a representação dos resultados do ensaio de

compressão confinada.

Figura 3.7 – Representação dos resultados em termos de índice de vazios x tensão vertical

O valor da tensão a qual separa os trechos de recompressão e compressão virgem do

solo na curva de compressão do solo é normalmente denominado de tensão de pré-

adensamento, e representa, conceitualmente, o maior valor de tensão já sofrido pelo solo

em campo (no resultado mostrado na curva acima, se aproxima de 100 kPa). Corresponde

ao início do trecho virgem de compressão (em que se tem o comportamento linear do

índice de vazios com o log da tensão vertical aplicada).

Interpretação dos Resultados

Para o melhor entendimento de alguns conceitos do ensaio de compressão

confinada, analisaremos o exemplo dos gráficos da Figura 3.8 (resultados de ensaio

oedométrico realizado em uma argila normalmente adensada, com um descarregamento

no meio do ensaio e com tensão de carregamento inicial - 175 kPa - acima dos valores

correspondentes ao trecho não virgem), plotados no gráfico em escala semi-log (nota-se

que os resultados podem ser aproximados por dois trechos lineares) e no gráfico das

tensões em escala não logarítmica.

Figura 3.8 – Resultado do ensaio de adensamento de uma argila normalmente adensada

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

68

Nota-se que a amostra foi comprimida, em primeiro carregamento, do ponto A até o

ponto B. Em seguida, sofreu um processo de descarregamento até o ponto D, para

finalmente ser recarregada até aproximadamente o ponto B, e novamente aplicado o

carregamento levou a amostra a atingir o ponto C.

A expressão primeiro carregamento significa que os carregamentos que ora se

impõem ao solo superam o maior valor por ele já sofrido em sua história de carregamento

prévia. É um conceito de grande importância, pois o solo (e todo material de

comportamento elastoplástico) guarda em sua estrutura indícios de carregamentos

anteriores. Assim, da curva apresentada na Figura 3.8, temos:

• Trecho A-B: trecho de carregamento virgem, no sentido que a amostra ensaiada

nunca experimentara valores de tensão vertical daquela magnitude. Quando isto

ocorre, dizemos que a amostra está em níveis de tensões correspondente à condição

de “normalmente adensada (NA)”.

• Trecho B-D-B (descarga/recarregamento): não é normalmente adensada, pois a

tensão a qual lhe é imposta é inferior à tensão máxima por ela experimentada (ponto

B), sendo classificado como solo “pré-adensado (PA)”.

• Trecho B-C: apresenta um estado de tensão superior ao maior estado de tensão já

experimentado, sendo classificado como normalmente adensado.

A Tabela 3.1 apresenta um resumo do exposto anteriormente.

Tabela 3.1 – Comparação entre pressões atual ’v e máxima passada ’vm

PRESSÃO COMPORTAMENTO DA ARGILA

’v < ’vm Solo pré adensado (PA)

Deformações pequenas e reversíveis

Comportamento elástico

’v ’vm Solo normalmente adensado (NA)

Deformações grandes e irreversíveis

Comportamento plástico

Um outro exemplo que pode ser analisado refere-se a uma argila hipotética, cuja

relação índice de vazios em função da pressão de adensamento é indicada na Figura 3.9.

Esta argila foi adensada, no passado, segundo a curva tracejada na figura, até uma

tensão efetiva igual a aproximadamente o valor “3” – entre 2 e 4 (as tensões estão

indicadas por valores absolutos, independentes do sistema de unidades; 3 poderia ser 300

kPa, por exemplo). Veja que esta argila apresenta, atualmente (executado o ensaio de

laboratório), a curva de índice de vazios em função da tensão confinante indicada pela

linha contínua.

Considerando o nível de tensões de 4 a 8, estas tensões correspondem a valores

atuantes no solo argiloso na condição de argila normalmente adensada (ou seja, esta argila

ainda não tinha experimentado este nível de tensão, portanto não se pode atribuir à

condição de pré-adensada).

Considerando o nível de tensões de 0,5 a 2, estas tensões correspondem a valores

menores que a máxima tensão experimentada pelo solo (em sua história de vida –

geralmente atribuída a uma condição geológica do passado). Assim estes valores se

referem a uma condição de argila pré-adensada (ou seja, esta argila já foi submetida a valor

de tensão superior a estes valores).

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

69

Figura 3.9 – Relação índice de vazios em função da pressão de adensamento

3.5 – Tensão de pré-adensamento

O valor da tensão a qual separa os trechos de recompressão e compressão virgem do

solo na curva de compressão do solo é normalmente denominado de tensão de pré-

adensamento, e representa, conceitualmente, o maior valor de tensão já sofrido pelo solo

em campo.

A determinação da tensão de pré-adensamento é feita por processos gráficos,

dentre os quais podemos citar o método de Casagrande e o método de Pacheco e Silva.

A) Método de Casagrande

Para a determinação de ’vm , segue-se os seguintes passos (Figura 3.10):

a) Obter na curva índice de vazios x logaritmo da tensão efetiva o ponto de maior

curvatura ou menor raio (R);

b) Traçar uma tangente (t) e uma horizontal (h) por R;

c) Determine e trace a bissetriz do ângulo formado entre (h) e (t);

d) A abscissa do ponto de intersecção, da bissetriz com o prolongamento da reta virgem

corresponde à pressão de pré-adensamento.

Figura 3.10 – Determinação da tensão de pré-adensamento por Casagrande

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

70

B) Método de Pacheco e Silva

Para a determinação de ’vm , segue-se os seguintes passos (Figura 3.11):

a) Traçar uma horizontal passando pela ordenada correspondente ao índice de vazios

inicial;

b) Prolongar a reta virgem e determinar seu ponto de intersecção (p) com a reta definida

no item anterior;

c) Traçar uma reta vertical por (P) até interceptar a curva índice de vazios x logaritmo da

tensão efetiva (ponto Q);

d) Traçar uma horizontal por (Q) até interceptar o prolongamento da reta virgem (R). A

abscissa correspondente ao ponto (R) define a pressão de pré-adensamento.

Figura 3.11– Determinação da tensão de pré-adensamento por Pacheco e Silva

A Figura 3.12 ilustra a obtenção da tensão de pré-adensamento, para a mesma curva

obtida no ensaio de adensamento, pelos dois métodos apresentados.

Figura 3.12 - Tensão de pré-adensamento obtida por Casagrande e Pacheco e Silva

Efeito de amolgamento da amostra

A qualidade da amostra (Figura 3.13) a ser submetida ao ensaio de adensamento, no

que se refere ao seu possível amolgamento (perturbação) durante a sua coleta, transporte ao

laboratório ou ainda na sua preparação antes de ser submetida à prensa do edômetro

(adensamento), influencia diretamente na qualidade dos resultados a serem obtidos.

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

71

Moldagem de amostra indeformada para

ensaio de adensamento

Curva típica “e” x log tensão efetiva

(observe o efeito curvo na compressão)

Figura 3.13 – Moldagem de amostra e resultados típicos esperados (“e” x “log ’”)

A Figura 3.14 mostra resultados de ensaios para um mesmo material com diferentes

condições de amolgamento do corpo de prova. Observa-se o traçado diferenciado para a

mesma amostra, apresentando “com curva” a amostra indeformada de boa qualidade.

Figura 3.14 – Efeito do amolgamento de amostra, observado na curva “e” x “log ’”

3.6 – Determinação da condição de adensamento

história de tensões que “viveu” o solo

Em algumas situações de análise do comportamento dos solos em Engenharia

Geotécnica faz-se necessário determinar as condições de adensamento em que o solo se

encontra, ou seja, determinar a história de tensões que o solo já foi submetido.

A razão de pré-adensamento (OCR) de um solo é a relação entre a máxima tensão

efetiva vertical já experimentada pelo solo e a tensão efetiva vertical atual de campo, ou

seja, é a razão entre a tensão de pré-adensamento do solo (obtida em laboratório) e a sua

tensão efetiva vertical que atua hoje no solo, conforme ilustrado na Figura 3. 15. O OCR é

dado por:

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

72

Vcampo

vm

Vcampo

VRCO

'max... == , onde ’vm representa a tensão de pré-adensamento do solo

Ou ainda: '

0v

'

vmOCR

= razão de pré-adensamento (“overconsolidation ratio”)

Se OCR > 1 → solo pré-adensado (ou sobre adensado)

Se OCR = 1 → solo normalmente adensado

Se OCR < 1 → solo sub-adensado (solo em processo de adensamento).

Figura 3.15 – Valor da tensão efetiva vertical in situ, que atua hoje no solo

As argilas sedimentares se formam sempre com elevados índices de vazios (são

solos muito compressíveis). Quando elas se apresentam com índices de vazios baixos,

estes são conseqüentes de um pré-adensamento. Em virtude disso, uma argila, com

diferentes índices de vazios iniciais apresentarão curvas tensão-deformação, após atingirem

a pressão de pré-adensamento correspondente, “fundidas” em uma única reta virgem.

Consequentemente a isto, tem-se que o comportamento de uma argila é

altamente dependente do índice de vazios em que ela se encontra, que é fruto das

tensões atuais e passadas, e da estrutura da argila. Assim o comportamento destes solos

é determinado pelas tensões efetivas que estiveram submetidos em relação ao nível de

tensão que se apresenta hoje, no material.

O valor da razão de pré-adensamento pode influenciar na determinação dos

diversos parâmetros que expressam o comportamento dos solos, como, por exemplo no

cálculo do coeficiente de empuxo no repouso K0 (relação entre as tensões efetivas

horizontal e vertical, a ser estudada no Capítulo 06 neste curso), representado pela equação:

'

v

'

h

0K

=

• Para argila normalmente adensada (OCR = 1)

'sen95,00 −K equação empírica

• Para argila pré-adensada (OCR > 1)

( ) '

0 .'95,0 senOCRsenK −= equação empírica

A expressão é função do parâmetro ’ - ângulo de atrito do solo, parâmetro

relacionado à resistência ao cisalhamento do solo, conforme será também estudado

posteriormente neste curso (Capítulos 04 e 05).

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

73

3.7 – Parâmetros de compressibilidade por compressão primária

Realizado o ensaio de adensamento tem-se, a partir das curvas obtidas em função da

tensão efetiva vertical (’v) (plotado com log ou não) os coeficientes (compressibilidade -

Figura 3.16 e compressibilidade volumétrica - Figura 3.17), o Módulo de Elasticidade

edométrico (Figura 3.17) e os índices (compressão, expansão e recompressão) - Figura

3.18:

- Coeficiente de Compressibilidade av

Figura 3.16 – Obtenção do coeficiente av, na curva ’v x e

- Coeficiente de Compressibilidade Volumétrica mv e Módulo Edométrico E oed

Figura 3.17 – Obtenção do coeficiente mv e do módulo Eoed, na curva ’v x εv

- Índices de compressão (Cc), expansão (Cs) e recompressão (Cr)

Figura 3.18 – Obtenção dos índices Cc, Cs e Cr, na curva log ’v x e

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

74

Podem-se se distinguir nesse gráfico, três partes distintas:

O primeiro trecho representa uma recompressão do solo, até um valor característico

da tensão de pré-adensamento (’vm). Tal reta apresenta um coeficiente angular

denominado índice de recompressão (Cr).

Ultrapassando o valor de ’vm o corpo de prova comprime-se, sob tensões

superiores a esta, corresponde ao trecho reto do gráfico - reta virgem de adensamento. Tal

reta apresenta um coeficiente angular denominado índice de compressão (Cc).

O terceiro trecho corresponde à parte do ensaio, quando o corpo de prova é

descarregado gradativamente, e pode experimentar ligeiras expansões, denominado índice

de expansão (Cs).

São determinados pelas expressões a seguir apresentadas:

- Índice de Compressão, expansão ou recompressão: Cc = Cs = Cr = e

log ’v

Observa-se poder escrever:

−===

vi

vf

if

rSC

eeCCC

log

E ainda: e = Ci . log ’v = Ci .

vi

vf

log

Esta última expressão, que corresponde à variação do índice de vazios (e) é

extremamente útil para o cálculo de “recalques” como será visto.

3.8 – Recalque Total por Compressão Primária

O recalque primário ocorre durante o processo de Adensamento e equivale à

variação de altura da camada de solo, a qual pode ser representada pela variação da altura

de vazios, como visto no item 3.4:

Sendo:

(∆H) é o valor do recalque do solo, em relação à superfície (referência)

e é a variação do índice de vazios correspondente à nova tensão aplicada

e0 é o índice de vazios inicial do solo

H0 é a altura inicial da camada de solo compressível (ou da camada de solo para a

qual se quer calcular o recalque)

O recalque (∆H) pode ser expresso em função do índice de compressão “Cc” e/ou

do índice de recompressão “Cr” e da diferença dos logs das tensões efetivas consideradas

(igual “log” da divisão de tensões), bastando substituir o valor da diferença dos índices

de vazios (e), como se vê nas expressões apresentadas, dependendo de cada caso.

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

75

Então, em função dos níveis de tensões aplicados (inicial σ’vo - e final σ’vf) temos

para o recalque, conforme apresentado na Figura 3.19, as expressões abaixo, referido à

tensão de pré-adensamento aplicada (’vm):

Figura 3.19 - Diferentes níveis de tensões aplicadas em função da tensão de pré-adensamento

Solo Normalmente Adensado (NA)

A variação de tensões verticais aplicadas se dá na zona de compressão virgem.

Por exemplo, inicial σ’vo = ’vm = P e final σ’vf = C (entre P e C)

Recalque para solos NA (função do CC, apenas)

Solo Pré-Adensado (PA)

A variação de tensões verticais aplicadas se dá na zona de recompressão ou na parte

na zona de recompressão e em parte na compressão virgem.

Por exemplo, inicial σ’vo = A e final σ’vf = B (entre A e B) ou inicial σ’vo = A e final

σ’vf = C (entre A e C)

Recalque para solos PA (função do Cr, apenas ou do Cr e CC)

Considerando a variação linear do acréscimo de tensões ao longo da camada

compressível, costuma-se calcular o acréscimo na cota média e admiti-lo como

representativo de toda a camada. Conhecido o acréscimo Δσ′ (final σ’vf - inicial σ’vo), pode-se

calcular o recalque total da camada, como visto.

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

76

Para o caso da compressibilidade ser definida apenas em termos do coeficiente de

compressibilidade volumétrica (mV), sem levar em consideração a variação de tensões

aplicadas, como apresentado anteriormente, pode-se definir o recalque (∆HV) como sendo:

Em termos do módulo edométrico (Eoed), parâmetro inverso do mV define-se o

recalque (∆HV):

No caso de se definir compressibilidade em termos do coeficiente de

compressibilidade (av), define-se o recalque (ρ = ∆HV) como:

Observa-se que de maneira geral os recalques podem ser divididos em três

categorias como mostra a Figura 3.20. Além do recalque primário ou de adensamento,

estudado neste capítulo, tem-se o recalque inicial e o recalque secundário. O Recalque

total (∆HT) é, então, determinado somando-se todas as parcelas.

Figura 3.20 - Evolução dos recalques com o tempo

Recalque Inicial: O recalque inicial ocorre em solos não saturados e, no caso de

solos saturados, quando as condições possibilitam a existência de deformações verticais e

horizontais. Nesses casos parte das tensões, geradas pelo carregamento são transmitidas

imediatamente ao arcabouço sólido e são calculados pela Teoria da Elasticidade.

Recalque primário ou de adensamento: O recalque primário, estudado aqui, ocorre

durante o processo de transferência de esforços entre a água e o arcabouço sólido,

associado à expulsão da água dos vazios (a ser melhor detalhado no item seguinte, 3.9).

Recalque secundário: Também chamado de fluência (“creep”) está associado a

deformações observadas após o final do processo de adensamento primário, quando as

tensões efetivas já se estabilizaram. Ocorre para tensões efetivas constantes.

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

77

No estudo da compressibilidade dos solos, o comportamento de alguns solos

típicos deve ser ressaltado, como destaca Pinto (2006):

Solos Colapsíveis

Solos colapsíveis são solos não saturados que apresentam uma considerável e

rápida compressão quando submetidos a um aumento de umidade sem que varie a tensão

normal a que estejam submetidos.

O fenômeno de colapsividade é geralmente estudado por meio de ensaios de

compressão edométrica. A Figura 3.21 apresenta, esquematicamente, resultados de ensaios

feitos com um solo colapsível. A curva A indica o resultado de um ensaio em que o corpo

de prova permanece com seu teor de umidade inicial; a curva B representa o resultado de

um ensaio em que o corpo de prova foi previamente saturado; a curva C o de um corpo de

prova, inicialmente com sua umidade natural e que, quando na tensão de 150 kPa, foi

inundado, apresentando uma brusca redução do índice de vazios.

Figura 3.21 – Ensaio de compressão edométrica de um solo colapsível

O valor de recalque resultante do umedecimento depende do estado de saturação em

que o solo se encontra e do estado de tensões a que está submetido, como se depreende da

análise da Figura 3.21.

O colapso é devido à destruição dos meniscos capilares, responsáveis pela tensão de

sucção, ou a um amolecimento do cimento natural que mantinha as partículas e as

agregações de partículas unidas. Fisicamente, o fenômeno do colapso está intimamente

associado ao da perda de resistência dos solos não saturados, conforme visto no item

anterior.

Solos Expansivos

Ao contrário dos solos colapsíveis, certos solos não saturados, quando submetidos à

saturação, apresentam expansão. Esta expansão é devida à entrada de água nas interfaces

das estruturas mineralógicas das partículas argilosas, ou à liberação de pressões de

sucção a que o solo estava submetido, seja por efeito de ressecamento, seja pela ação de

compactação a que foi submetido. A expansibilidade é muito ligada ao tipo de mineral

argila presente no solo, sendo uma das características mais marcantes das argilas do tipo

esmectita. Mas solos essencialmente siltosos e micáceos, geralmente decorrentes de

desagregação de gnaisse, apresentam-se expansivos quando compactados com umidade

abaixo da umidade ótima.

A exemplo dos solos colapsíveis, o estudo da expansividade dos solos é geralmente

feito por meio de ensaios de compressão edométrica. Inunda-se o corpo de prova quando as

deformações decorrentes de certa pressão já se estabilizam e mede-se a expansão ocorrida.

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

78

3.9 – Adensamento dos solos

Adensamento: Processo gradual dependente do tempo, de variação de volume do

solo devido à drenagem da água dos poros, compressão com diminuição de pressão neutra

e consequente aumento de tensões efetivas.

Quando: u = 0 → o adensamento primário cessa e toda a tensão é suportada

pelo esqueleto sólido;

(u → excesso de pressão neutra)

3.9.1 – Analogia mecânica do processo de adensamento de Terzaghi

Conforme já descrito anteriormente, sendo o solo saturado e as partículas de água e

sólidos incompressíveis, toda variação de volume deverá ocorrer em função da variação do

índice de vazios. Esta variação somente ocorrerá por expulsão de água dos vazios

(processo de compressão) ou absorção de água para dentro dos vazios (processo de

expansão). Logo, para que o solo se deforme é necessário que haja um processo de fluxo

de água em seu interior.

Processo de Adensamento e Teoria de Terzaghi:

hipótese simplificadora → relação entre “e” e ’v é assumida como linear.

Terzaghi apresenta a seguinte analogia, para explicar o processo do adensamento:

Uma mola de altura inicial H é imersa em água em um cilindro de pistão de área

transversal A, através do qual uma carga axial pode ser transmitida ao sistema, que

representa o solo saturado, como apresentado na Figura 3.22 A mola tem função análoga à

estrutura de solo e a água do cilindro, à pressão neutra. O pistão possui uma válvula que

controla a facilidade com que a água sai do sistema cuja função é a representação do

coeficiente de permeabilidade do solo. Aplica-se uma carga P ao pistão.

Figura 3.22 – Analogia de Terzaghi

Considerações da analogia apresentada por Terzaghi: Válvula: Permeabilidade do solo

Mola: Rigidez do esqueleto sólido

a

0

0

uh

= e

a

uh

=

= deslocamento do pistão devido à aplicação da carga

Pressões: = ’ + u, mas u= uo + u

uo = pressão hidrostática (inicial)

u = excesso de poro pressão (carregamento)

Têm-se as seguintes situações:

1. Válvula fechada: a pressão (σ = P/A) decorrente da aplicação da carga P será

suportada pela água, sendo a força suportada pela mola ainda nula.

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

79

2. Válvula aberta: expulsão da água a uma velocidade que é função da diferença entre

a pressão da água e a pressão atmosférica. Com isso, o pistão se movimenta e a

mola passa a ser solicitada em função do deslocamento. À medida que a água é

expulsa, a poropressão diminui e aumenta a tensão na mola. Em qualquer instante,

as forças exercidas pela mola e pela água no pistão devem ser iguais a P. O

processo continua até P ser suportado pela mola, sendo a pressão da água devida

somente ao peso próprio. Neste ponto não há mais fluxo para fora. O aumento da

pressão sobre o esqueleto sólido corresponde ao aumento de pressão efetiva.

A Figura 3.23 ilustra o Modelo Hidromecânico de Terzaghi.

Figura 3.23– Modelo Hidromecânico de Terzaghi para explicar o processo de adensamento

Cada fase do processo descrito anteriormente pode também ser observada nos

gráficos apresentados na Figura 3.24.

Após constatar que uma amostra de argila saturada sujeita a um aumento de

carga P apresentava deformações “retardadas” devido à sua baixa permeabilidade,

Terzaghi (1925) desenvolveu uma formulação matemática para esse fenômeno. No

desenvolvimento dessa formulação, foi necessário que Terzaghi elaborasse uma série de

hipóteses simplificadoras, dentre as quais, algumas são de conseqüências muito

importantes sobre a possibilidade de se aplicar esta teoria ao estudo de um caso real.

A seguir, o princípio básico do fenômeno de adensamento é apresentado e então, as

diferentes hipóteses de Terzaghi serão examinadas e suas consequências estabelecidas.

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

80

Figura 3.24 – Fases de carregamento e variações nas tensões no processo de adensamento

3.9.2 – Teoria do adensamento 1-D de Terzaghi

O desenvolvimento da Teoria do Adensamento de baseia nas seguintes hipóteses:

1. O solo é totalmente saturado (Sr = 100%);

2. A compressão é unidimensional;

3. O fluxo de água é unidimensional e governado pela Lei de Darcy;

4. O solo é homogêneo;

5. As partículas sólidas e a água são praticamente incompressíveis perante a

incompressibilidade do solo;

6. O solo pode ser estudado como elementos infinitesimais;

7. As propriedades do solo não variam no processo de adensamento e não há diferença

de comportamento entre massas de solos de pequenas e grandes dimensões;

8. O índice de vazios varia linearmente com o aumento da tensão efetiva durante o

processo de adensamento.

Dedução da teoria:

Objetivo: Determinar para qualquer instante (tempo – “t”) e em qualquer posição

(profundidade - “z”) o grau de adensamento de uma camada, ou seja, as deformações, os

índices de vazios, as tensões efetivas e as pressões neutras correspondentes.

Considere um elemento de solo submetido ao processo de adensamento conforme a

Figura 3. 25.

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

81

Figura 3.25 – Elemento de solo submetido ao processo de adensamento

Sendo a equação de fluxo permanente (não há variação de volume) num solo

saturado, a variação de volume pelo tempo se escreve:

0dz.dy.dx.z

h.k

y

h.k

x

h.k

t

V2

2

z2

2

y2

2

x =

+

+

=

Equação de Laplace para fluxo

tridimensional.

No estudo do adensamento, o fluxo ocorre somente na direção vertical e a

variação de volume não é nula. A quantidade de água que sai do elemento é menor do

que a que entra. A equação de fluxo, neste caso, se reduz a:

dz.dy.dx.z

h.k

t

V2

2

=

→ Equação 1

Mas a variação de volume do solo é a variação do volume de vazios, já que

consideramos a água e os grãos sólidos praticamente incompressíveis em relação à

estrutura sólida do solo. Logo, a variação de volume com o tempo é dada pela expressão:

+

=

dz.dy.dx.

e1

e

tt

V ou

e1

dz.dy.dx.

t

e

t

V

+

=

→ Equação 2

Uma vez que e1

dz.dy.dx

+é o volume dos sólidos, e, portanto, invariável com o tempo,

temos igualando as equações 1 e 2, que:

e1

dz.dy.dx.

t

edz.dy.dx.

z

h.k

2

2

+

=

e1

1.

t

e

z

h.k

2

2

+

=

→ Equação 3

Só a carga que excede a hidrostática provoca fluxo. Portanto, a carga h pode ser

substituída pela pressão na água, ou seja, u/a. Mas, sabemos que, du.ade V= . Substituindo

estes valores na equação 3, obtemos:

( )t

u

z

u.

.a

e1.k2

2

av

=

+ → Equação de adensamento 1-D

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

82

Esta equação expressa a variação da pressão neutra em relação ao tempo, função da

variação de u com a profundidade, multiplicada por conjunto de parâmetros. Na equação:

k é o coeficiente de permeabilidade

e é o índice de vazios

av é o coeficiente de compressibilidade

a é o peso específico da água

u é o excesso de pressão neutra (u)

z é a variável espacial (profundidade)

t é o tempo

Para a solução da equação acima, foram consideradas as condições de contorno

desta equação, conforme apresentadas na Tabela 3.2, e interpretadas na figura 3.26.

Tabela 3.2 - Condições de contorno consideradas na solução da equação

Tempo Profundidade Pressão (excesso)

para

t = 0

e

0 z H u (z,0) = u0

para

0 t

e

z = 0 u (0,t) = 0

para 0 t e

z = H 0

z

u=

Figura 3.26 – Exemplo de adensamento com a interpretação das condições de contorno

O coeficiente do primeiro membro da equação de adensamento reflete as

características do solo (permeabilidade, porosidade e compressibilidade) e é denominado

Coeficiente de Adensamento – Cv. Seu valor é admitido como constante para cada

acréscimo de tensões. Tem-se, portanto:

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

83

( )

av

v.a

e1.kc

+=

Logo, a equação diferencial do adensamento assume a expressão: t

u

z

u.c

2

2

v

=

.

O Coeficiente de Compressibilidade Volumétrica, dado por e1

am v

v+

= , é obtido

pela inclinação da curva de compressão do diagrama ’v x v. Logo, podemos escrever o

coeficiente de adensamento como:

avav

v.m

k

.a

)e1.(kc

=

+= , então o coeficiente de permeabilidade é obtido: k = cv . mv . γa

Na integração da equação de adensamento, a variável fator tempo T (adimensional)

aparece sempre associada ao coeficiente de adensamento e a maior distância de percolação,

dada pela expressão:

2

d

v

H

t.cT =

O fator tempo T correlaciona os tempos de recalque às características do solo,

através do Cv, e às condições de drenagem do solo, através do Hd.

O termo Hd refere-se, portanto, à distância de drenagem da camada de solo (Figura

3.27) e é igual a maior distância que a água tem que percorrer para alcançar uma camada

drenante. O seu valor dependerá das condições de drenagem, como se vê.

Figura 3.27 - Condições de drenagem: Duas diferentes formas de ilustrar

O coeficiente de adensamento (Cv) pode ser obtido a partir da realização de ensaio

de adensamento, em laboratório, aplicando-se os métodos usuais de Taylor ou Casagrande.

Consiste em aplicar a expressão para a variável tempo T, associada a uma determinada

percentagem de adensamento decorrida. O método de Taylor relaciona o tempo (“t”)

necessário para completar 90% do adensamento primário e o método de Casagrande

relaciona o tempo (“t”) necessário para completar 50% do adensamento primário.

Observa-se ser um cálculo simples, com a maior dificuldade recaindo sobre a

determinação destes tempo “t”. Para tanto são utilizados métodos próprios (segundo seus

autores), que consistem basicamente em traçar gráficos com resultados de ensaio e assim

obter o valor de “t” pretendido. As Figuras 3.28 e 3.29 ilustram os métodos, que serão

melhor apresentados na parte prática deste curso.

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

84

Método de Taylor

(raiz de t)

Cv = 0,848 . H2

t90

Figura 3.28 - Método de Taylor para obtenção do coeficiente de adensamento

Método de Casagrande

(log de t)

Cv = 0,197 . H2

t50

Figura 3.29 - Método de Casagrande para obtenção do coeficiente de adensamento

A equação de adensamento 1–D, consideradas as suas condições de contorno

fornece a seguinte solução para o excesso de pressão neutra u, à uma profundidade z

decorrido o tempo t:

( )( ) ( )

4

T..1m2m

0m d

0

22

e.H

z.

2

.1m2sen.

1m2

1.u.

4t,zu

+−=

=

+

+= → Equação 1

onde: “u0” é o excesso de pressão neutra inicial (após o carregamento)

“e” é a base do logaritmo natural

“T” é o fator adimensional de tempo

“Hd” é a distância de drenagem da camada de solo

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

85

3.9.3 – Grau ou porcentagem de adensamento

Define-se como grau ou porcentagem de adensamento a relação entre a

deformação () ocorrida num elemento numa certa posição, caracterizada pela sua

profundidade “z”, num determinado tempo “t” e a deformação total (f) deste elemento

no final de todo o processo de adensamento:

f

zU

=

Podemos expressar o grau ou porcentagem de adensamento em função dos índices

de vazios, ou em termos de tensão efetiva, como ilustrado na Figura 3.30.

''

''

12

1

12

1

−=

−=

ee

eeU z

Figura 3.30 - Variação linear do índice de vazios com a pressão efetiva

A porcentagem de adensamento pode ser expressa por relação direta (relação entre

“pressão dissipada” e “total de pressão a dissipar”) ou expressa pelo seu complemento: 1 –

relação entre o “excesso de pressão a dissipar” e “total de pressão a dissipar”, vejamos:

0

),(11

u

u

u

uU

tz

wi

wz −=−=

Onde: u(z,t) é o excesso de pressão neutra u, à uma profundidade z, decorrido o

tempo t - excesso de pressão que falta dissipar

u0 é o excesso de pressão neutra inicial (após o carregamento) - excesso

total gerado pelo carregamento

Em termos de porcentagem de adensamento na profundidade z, o valor de Uz

pode ser expresso a partir da relação de u(z, t) (equação 1) e u0 , então, obtém-se:

( ) ( )4

T..1m2m

0m d

z

22

e.H

z.

2

.1m2sen.

1m2

1.

41U

+−=

=

+

+−= → Equação 2

Ou, de forma simplificada, sendo o valor de ( )

2

.1m2M

+= :

=

=

−=

m

0m

T.M

d

Z

2

e.H

z.senM.

M

21U → Equação 3

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

86

Os valores da porcentagem de adensamento (de pressão neutra dissipada) Uz

podem ser obtidos atribuindo-se valores a z/Hd e T, com os quais se constroem as curvas

da Figura 3.31.

Para um determinado solo (cv e Hd) e para um tempo “t”, tem-se um fator “T”.

Então, a uma profundidade z, observadas as curvas de “T”, obtém-se a percentagem de

dissipação da pressão neutra “Uz” e consequentemente obtém-se o valor de “ganho” de

tensão efetiva no solo (no gráfico, da esquerda para a direita, de “0” a “1.0”- 100%,

indicado como ∆σ’(t)/∆u0). Observe que o complemento corresponde a porcentagem do

excesso de pressão ainda a dissipar - ∆u(t)/∆u0.

Figura 3.31 – Grau de adensamento Uz em função da profundidade z e do fator tempo T

Nota-se que, para z=Hd=1:

t = 0+ → Uz = 0 %

t = → Uz = 100 %

Nota-se que, para z=0:

t = 0+ → Uz = 100 %

t = → Uz = 100 %

Observe-se ainda que as curvas indicam, para a profundidade de menor condição

de drenagem (maior distância à face drenante), uma maior percentagem de adensamento

Uz. Na profundidade zero (superfície da camada drenante) ou próxima a ela, Uz é próximo

de zero, ou seja, a pressão neutra já dissipou totalmente, sendo transferida para a parcela

de tensão efetiva.

O adensamento ocorre mais rapidamente nas

proximidades das faces drenantes (Uz maior) e mais

lentamente (Uz menor) no centro da camada ou na

extremidade não drenante.

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

87

3.9.4 – Grau de adensamento médio

Observa-se que o adensamento ocorre mais rapidamente nas proximidades das faces

drenantes (Uz maior) e mais lentamente (Uz menor) no centro da camada ou na extremidade

não drenante, para um tempo t. Logo, a porcentagem média U (sem índice) de

adensamento ao longo de toda a camada de espessura “z” será a média dos valores de Uz,

obtidos para as várias profundidades “z”, considerada a espessura total da camada “H”,

podendo ser expresso de diferentes formas, como abaixo:

H

UU

z

−=

H

O f

dzee

ee

HU

0

01

ou, de acordo com a equação 0

),(1

u

uU

tz

z −= −=

H

O

tzdz

u

u

HU )1(

1

0

),(

Então se obtém para a porcentagem média de adensamento a expressão abaixo

(Equação 4), que pode ser representada como na Figura 3.32, plotada em escala

logarítmica.

→ Equação 4

Figura 3.32 – Valores de grau de adensamento médio U em função do fator tempo T, em log

A equação teórica U = f(T) – equação 4 pode ser expressa pelas seguintes relações

empíricas, para fins práticos, para facilidade de cálculo:

2

100

U.

4T

= → para U < 60%

( )U100log.933,0781,1T −−= → para U > 60%

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

88

Na prática, há interesse na determinação da porcentagem média de recalque (ou de

adensamento), que se refere a toda a camada compressível. Logo, a partir deste conceito, o

valor de U pode ser calculado ainda da seguinte forma:

ph

thU

=

)(

Sendo:

∆h(t) = recalque parcial, depois de ocorrido um tempo t

hp = recalque total final da camada, por adensamento ou compressão primária,

considerado decorrido um tempo “infinito”

O recalque que se observa na superfície do terreno é resultante da somatória das

deformações dos diversos elementos ao longo da profundidade. A média dos graus de

adensamento, ao longo da profundidade, dá origem ao grau de adensamento médio,

também denominado Porcentagem de Recalque, pois indica a relação entre o recalque

sofrido até o instante considerado e o recalque total correspondente ao carregamento.

A porcentagem de recalque (ou de adensamento) pode ser também representada

graficamente de acordo com a Figura 3.33, sendo que o fator T não está expresso em log, e

sim, em escala aritmética.

Figura 3.33 – Valores de porcentagem de recalque U em função do fator tempo T

3.9.5 – Cálculo de recalque por adensamento

O recalque em qualquer ponto “t” poderá ser calculado multiplicando o grau de

adensamento médio (o quanto já adensou toda a camada) pelo recalque total previsto.

Assim, pode-se escrever para o recalque parcial:

phUth = .)(

Uma sequência prática para o cálculo do recalque parcial assim se descreve, o que

permite conhecer a evolução desta deformação ao longo do tempo (obtenção da curva

recalque x tempo):

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

89

• Calcular hp

• Com o tempo “t”, calcular o fator tempo pela equação 2

d

V

H

t.cT =

• Com o valor de “T”, calcula-se U

• Calcular phUth = .)(

• Repetir para vários tempos “t” e

traçar a curva recalque versus

tempo.

3.10 – Compressão secundária

Depois de cessado o processo de adensamento (compressão primária), o solo

continua a se deformar com o tempo, de modo que a curva recalque da amostra versus log

(t) passa a representar um trecho aproximadamente constante. Este trecho é denominado

compressão secundária do solo ou recalque de fluência, como mostra a Figura 3.34, sendo

que no processo de compressão secundária o solo apresenta um comportamento mais

viscoso.

Em resumo: compressão secundária é o decréscimo de volume do solo

(deformação) sob ’v = constante, como abordado e ilustrado também na Figura 3.20. Em

aplicações práticas admite-se que a compressão secundária manifesta-se apenas após a

dissipação total de poropressões (t100).

Este tipo de compressão não será detalhado neste curso de graduação.

Figura 3.34 – Deformação (recalque) por compressão secundária, com o tempo “t”

3.11 – Exercícios de Aplicação

1 – Sobre um perfil de 7,0m de argila mole saturada, de índice de vazios inicial igual a 0,9,

serão lançados 2 aterros de grandes dimensões em um intervalo de 6 meses. O primeiro

aterro terá 1m de altura e o segundo 2m de altura. Ambos serão construídos com solo local

e atingirão um peso específico após a compactação de 18,1 KN/m3.

Estime o recalque de adensamento primário final considerando o coeficiente de

compressibilidade médio na camada de argila de av = 1x10-4 m2/KN.

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

90

Solução:

i) cálculo do acréscimo de tensão vertical, considerado aterro infinito

Aterro 1 = ΔσV = 18,7 X 1 = 18,7 kN/m²

Aterro 2 = ΔσV = 18,7 X 2 = 37,4 kN/m²

ii) A expressão para cálculo do recalque em função do coeficiente de compressibilidade é:

Nesta expressão, o termo H0/(1+e0) representa a altura de sólidos (item 3.4), sendo portanto

constante para ambos os carregamentos. Assim sendo, refere-se ao aterro final:

2 – As sondagens procedidas num certo local indicaram o perfil de subsolo mostrado na

Figura 3.35. Duas torres, iguais e distantes 80 metros, foram construídas com grande área

de aplicação de carga. Os recalques de cada torre foram registrados na tabela 3.3, em cm.

Figura 3.35 – Esquema do perfil de subsolo

Tabela 3.3 – Valores dos recalques das torres A e B

Tempo Torre A Torre B

0 0 0

3 meses 6,02 0,93

6 meses 10,12 1,54

1 ano 14,50 2,20

2 anos 20,60 3,15

3 anos 25,40 7,65

5 anos 32,00 9,35

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

91

A diferença dos recalques observados levou os engenheiros a uma análise mais detalhada

das condições do subsolo nas regiões das torres A e B. Constatou-se que:

1. A camada de argila nas duas regiões é da mesma formação e tem os mesmos índices de

compressão e coeficiente de adensamento;

2. Foram encontrados na região da torre B antigos blocos de pedra que teriam sido as

fundações de um antigo monumento indígena.

Pergunta-se:

a) Explicar as diferenças dos recalques entre A e B;

b) Calcular o recalque total provável da torre A;

c) Calcular o tempo para recalque final da torre A;

(considere finalizado o recalque com 93% de adensamento)

d) Caso o terreno tivesse dupla drenagem qual seria o recalque da torre A em 3 anos ?

Resolução:

a) A diferença dos recalques entre as torres A e B deve-se provavelmente ao fato da

camada de argila da região da torre B ser pré-adensada, isto é, um antigo monumento

indígena provocou um recalque da argila na região de B (houve remoção de sobrecarga

em época anterior, de construção antiga, ...).

b) Cálculo do recalque total da torre A.

O recalque da torre A pode ser calculado a partir de qualquer data indicadas na Tabela 3.3.

Sabe-se que: 2

d

v

H

t.cT =

• Para t = 1 ano, temos: 045,010

1x5,4T

2==

A porcentagem média de adensamento para t = 1 ano é: ... U = f(T)

2

100

U.

4T

= supondo U < 60%

=

=045,0x10000x4xT10000x4

U U = 24% → A hipótese está correta!

Sabe-se também que: phUth = .)( . Logo, U

thhp

)(=

Como hp para t = 1 ano é de 14,50 cm, temos:

24,0

5,14h p = hp = 60,4 cm

É interessante verificar se esta solução é acertada, ou seja, se a argila segue a teoria

unidimensional do adensamento. Para tanto, calcularemos o recalque total a partir da

leitura dos 3 anos.

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

92

• Para t = 3 anos, temos: 135,010

3x5,4T

2==

A porcentagem média de adensamento para t = 3 anos é: ... U = f(T)

2

100

U.

4T

= supondo U < 60%

=

=135,0x10000x4xT10000x4

U U = 42% → A hipótese está correta!

Sabe-se também que: phUth = .)( . Logo, U

thhp

)(=

Como hp para t = 3 anos é de 25,40 cm, temos:

42,0

4,25h p = hp = 60,5 cm

Concluímos, portanto, que o resultado está correto.

c) Cálculo do tempo para recalque final da torre A (com 93% de adensamento)

O tempo decorrido “t” relaciona-se com o fator de tempo “T”

• Para U = 95%, no gráfico U=f(T) tem-se T=1

(obtido diferentemente do calculado no item anterior, que se utilizou das

equações empíricas que relacionam U e T)

Então, temos: anostt

2,2210

.5,41

2==

d) Caso o terreno tivesse dupla drenagem qual seria o recalque da torre A em 3 anos.

• Para t = 3 anos, temos: 54,05

35,42

==x

T

A porcentagem média de adensamento para t = 3 anos é: ... U = f(T)

No gráfico U x T ... U = 77%

Sabe-se que: phUth = .)( .

Como hp = 60,5 cm, para t = 3 anos temos:

cmth 6,465,60.77,0)( ==

(diferente dos 25,4 cm medidos, por ser simples drenagem)

2 – Uma camada de argila de 1,5m de espessura está localizada entre duas camadas de

areia. No centro da camada de argila, a tensão total vertical é de 200kPa e a poropressão é

100kPa. O aumento de tensão vertical causado pela construção de uma estrutura de aterro,

no centro da camada de argila será de 100kPa. Assumindo o solo saturado, com Cr = 0,05,

Cc = 0,3 e e0 = 0,9, pede-se:

Estimar o recalque primário da argila, considerando as situações:

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon

Mecânica dos Solos II – Edição 2018

COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS

93

a) solo normalmente adensado,

b) solo pré-adensado (OCR = 2),

c) solo pré-adensado (OCR = 1,5).

Resolução:

Condições iniciais (condição “atual” do solo, antes da obra – condição histórica):

σv0 = 200 kPa

u0 = 100 kPa

então, σ’v0 = 100 kPa

Condições finais (após obra de aterro):

σvf = σv0 + Δσv = 200 + 100 = 300 kPa

uf = 100 kPa

então, σ'vf = 200 kPa

a) se solo considerado normalmente adensado (NA)

Então OCR = 1 e a tensão de pré-adensamento é igual ao valor atual (σ’vm = 100 kPa)

Fazendo o cálculo considerando as expressões em função da variação dos índices de

vazios ... (recalque para solos NA – Pto C>P, Figura 3.19)

b) se solo considerado pré-adensado (PA) – com OCR = 2

Sendo OCR = 2, a tensão de pré-adensamento é igual ao dobro da atual (σ’vm = 200 kPa)

Fazendo o cálculo considerando as expressões em função da variação dos índices de

vazios ... (recalque para solos PA – Pto A e B<P, Figura 3.19)

c) se solo considerado pré-adensado (PA) – com OCR = 1,5

Sendo OCR = 1,5, a tensão de pré-adensamento é igual a 1,5 da atual (σ’vm = 150 kPa)

Fazendo o cálculo considerando as expressões em função da variação dos índices de

vazios ... (recalque para solos PA – Pto A<P e C>P, Figura 3.19)

Observe que o recalque calculado nas letras “a” e “b” referem-se à alteração de tensão

inicial de 100kPa para 200kPa, igualmente, mas por apresentarem OCRs diferentes o

recalque do solo na condição pré-adensado foi muito menor que na condição normalmente

adensado.