14
1 ENCV600101 - Perancangan Struktur Beton 1 Ch 3 Lentur: Balok dengan tulangan tekan Sjahril A. Rahim Departemen Teknik Sipil FTUI 2014 Pengaruh tulangan tekan pada Kekuatan dan Perilaku b h As b h d As As' d' d a 1 c 1 C c1 T=A s f y j 1 d=(d-a/2) j 2 d C s C c2 C T=A s f y a 2 c 1 c 2 ε s ε cu ε cu a 2 < a 1 Dgn tulangan tekan Tanpa tulangan tekan ε s ε s Perbandingan Tulangan tarik A s Tulanga tekan A s ’=0 C c1 =T T=A s f y C c1 > Depth a 1 > Lengan momen: j 1 d M n =A s f y (j 1 d) j 1 little > Tulangan tarik A s Tulangan tekan A s C=C c2 +C s =T T=A s f y C c2 a 2 Lengan momen: j 2 d M n =A s f y (j 2 d) j 2 Addition of comp. steel little effect on the usable ultimate moment Peningkatan kapasitas momen akibat t ulangan tekan

Perancangan Struktur Beton Bab_3

Embed Size (px)

DESCRIPTION

perancangan struktur beton

Citation preview

  • 1ENCV600101 - Perancangan Struktur Beton 1

    Ch 3 Lentur: Balok dengan tulangan tekan

    Sjahril A. RahimDepartemen Teknik Sipil FTUI

    2014

    Pengaruh tulangan tekan pada Kekuatan dan Perilaku

    b

    h

    As

    b

    h d

    As

    As'd'

    d

    a1 c1 Cc1

    T=Asfy

    j1d=(d-a/2)

    j2d

    Cs

    Cc2C

    T=Asfy

    a2 c1c2 s

    cu

    cu

    a2 < a1Dgn tulangantekan

    Tanpa tulangan tekan

    s

    s

    Perbandingan

    Tulangan tarik As Tulanga tekan As=0 Cc1=T T=Asfy Cc1 > Depth a1 > Lengan momen: j1d Mn=Asfy(j1d) j1 little >

    Tulangan tarik As Tulangan tekan As C=Cc2+Cs=T T=Asfy Cc2 a2 Lengan momen: j2d Mn=Asfy (j2d) j2

    Addition of comp. steel little effect on the usable ultimate moment

    Peningkatan kapasitas momen akibat tulangan tekan

  • 2Alasan untuk menyediakan tulangan tekan

    Mengurangi defleksi beban yang berkelanjutan

    Peningkatan daktilitas Perubahan kegagalan mode dari keruntukan

    tekan menjadi keruntuhan tarik Memudahkan fabrikasi

    Mengurangi defleksi beban yang berkelanjutan

    Meningkatkan daktilitas Merubah moda keruntuhan dari tekan ke tarik

  • 3Analysis of Beams with tension and Compression reinforcement

    As

    d=dt

    d'

    h

    b

    As'

    As1

    d=dt

    d'As'

    As2

    d=dt(d-d') (d-a/2)

    Cc

    Cs

    Cc

    Cs

    T1=As1fy T2=As2fy

    0.003 0.85fc'

    a/2fs'

    fs=fyT

    +a

    0.85fc'

    a/2

    c a

    sy

    Analysis of Beams with tension and Compression reinforcement

    The strain, stresses distribution and internal forces see figure b,c and d.The cross section was hypothetically divided in to two beams;Beam 1, consisting of the compression reinforcement at the top and sufficient at the bottom so that T1 = Cs, and beam 2, consisting of the concrete web and the remaining tensile reinforcement, as shown in Figure e and f.The strain and stress in the compression reinforcement:

    003,0''

    c

    dcs sss Ef

    If ys ' then ys ff '

    s

    yy E

    fwhere

    Case 1: Compression steel yields

    The beam can be divided in to two imaginary beams, each with C=T:Beam 1: Consist of reinforcement in tension and compression and resists moment as steel force couple.

    ''1

    '1

    1'

    1

    ddfAMAA

    fAfA

    TC

    yss

    ss

    ysys

    s

    As1

    d=dt

    d'As'

    (d-d')

    Cs=As'f's

    T1=As1fy

    Beam 1

    Case 1: Compression steel yields

    Beam 2: Consist of the concrete plus the remaining steel:

    bafCAA

    ffAAA

    cc

    ss

    ys

    sss

    '

    '1

    12

    85,0

    Since C=T for beam 2, where T=(As-As)fy, the depth of the compression stress block, a, is

    bfcfAA

    a yss'85,0

    '

    As2

    d=dt (d-a/2)

    Cc

    T2=As2fy

    a

    0.85fc'

    a/2

  • 4Case 1: Compression steel yields

    The nominal moment capacity of beam 2 is:

    2

    )( '2adfAAM yssn

    The total moment capacity of a beam with compression steel is

    2

    )()'( '' adfAAddfAM yssysn

    Case 1: Compression steel yields

    Correction due to concrete displaced by steel compression:

    285,01'85,01 ''

    '' adffAAddf

    ffAM ycssy

    y

    csn

    y

    css f

    fAA'

    '1

    85,01

    and

    bfc

    ff

    fAA

    ay

    y

    css

    '85,0

    85,01'

    '

    where

    Determination of Whether fs=fy in Compression Reinforcement

    Tulangan tekan leleh, jika:

    003,0''

    c

    dcs sss Ef

    ''

    ys ff 'kemudian

    MPa

    MPafEf y

    s

    yys 000.200

    '

    Untuk mengkonfirmasi bahwa tulangan tekan leleh, tunjukkan

    Determination of Whether fs=fy in Tension Reinforcement

    Dengan kedalaman sumbu netral diketahui, asumsi kelelehan ketegangan baja tulangan dapat diperiksa. Dari segitiga serupa dalam distribusi regangan linear pada gambar, ekspresi berikut dapat diturunkan:

    cuscus

    ccdsehingga

    ccd

    Untuk mengkonfirmasi tulangan tarik leleh, tunjukkan

    MPa

    MPafEf y

    s

    yys 000.200

    As

    d=dt

    d'

    h

    b

    As'

    0.003

    c s

  • 5Case 1: Compression steel does not yields

    If the compression reinforcement does not yield, fs is not known, and different solution is required. Assuming that tensile steel yields, the internal forces in the beam are:

    bafC

    fAT

    cc

    ys

    '85,0

    Ignoring the correction to the compressive stress in the steel:'' )( ssss AEC 003,0'1 1'

    ad

    s

    where

    From the equilibrium:

    ysssc

    sc

    fAadAEbaf

    TCC

    003,0'185,0 1''

    Case 1: Compression steel does not yields

    This can be reduced to the quadratic equation in a, given by:

    0)'003,0()003,0()85,0( 1''2' dAEafAAEabf ssysssc

    Once the depth of the stress block, a, is known, the nominalmoment capacity of the section is

    )'(2

    ddCadCM scn

    Determination of Whether fs=fy in Tension Reinforcement

    Dengan kedalaman sumbu netral diketahui, asumsi kelelehan ketegangan baja tulangan dapat diperiksa. Dari segitiga serupa dalam distribusi regangan linear pada gambar, ekspresi berikut dapat diturunkan:

    cuscus

    ccdsehingga

    ccd

    Untuk mengkonfirmasi tulangan tarik leleh, tunjukkan

    MPa

    MPafEf y

    s

    yys 000.200

    As

    d=dt

    d'

    h

    b

    As'

    0.003

    c s

    Pengecekan regangan tarik net, tb

    h ddt

    d'

    As

    As' c

    Dengan kedalaman sumbu netral diketahui, strain regangan tarik net pada tulangan tarik terjauh dapat di ceck,. Dari segitiga serupa dalam distribusi regangan linear pada gambar, ekspresi berikut dapat diturunkan:

    cut

    tcu

    t

    t

    ccdsehingga

    ccd

    t

    Untuk menjamin potongan balok daktail, pastikan bahwa regangan tarik net:t 0.004

    untuk memenuhi SNI 2847:2013, Pasal 10.3.5

  • 6Upper Limit on Reinforcement in Beams

    Under-reinforced beams fails in a ductile manner Over-reinforced beams in a brittle manner SNI section 10.3.5 attempts to prevent non-ductile failures by limiting the strain t at nominal flexural strength condition shall be greater than or equal to 0,004:

    004,0t

    new

    As

    d=dt

    d'

    h

    b

    As'Cs

    Cc

    0.003 0.85fc'

    a/2fs'

    fs=fyT

    c a

    s=0.004

    Upper Limit on Double Reinforcement in Beams

    Strain compatibility: tscu

    cu dc

    tcu

    cu dc004.0

    Equilibrium: C=T

    ysy

    s

    ys

    cu

    cu

    y

    c

    yycsc

    ffifff

    ffif

    ff

    bdbdfbdfbcfCabf

    ''

    max

    'max

    '

    1max

    max'

    1'

    '

    '

    004.085.0

    ''85.085.0

    Tulangan minimum pada komponen struktur lentur

    ACI 318/SNI 2847:2013 Pasal 10.5.1 menentukan luas minimum tulangan longitudinal berikut untuk potongan balok yang di lentur positif,

    y

    ww

    y

    cs f

    dbdbf

    fA 4.1

    25.0 'min,

    fc dan fy dalam Mpa.bw = lebar badan balok, d = tinggi efektif balok

    (10.3)

    Ties for Compression Reinforcement

    As the ultimate load is approach the compression steel in a beam may buckle, causing the surface layer of concrete to spall off, possibly leading to failure. For this reason it is necessary to enclose compression reinforcement with closed stirrup or ties. Please refer to SNI 9.11 for details.

  • 7Analysis procedure of a Beam with Compression Reinforcement: Compression

    reinforcement yields Assuming that fs=fy and fs=fy and divide the beam

    into two components Compute a for beam 2 Check if compression reinforcement steel yields Check if fs=fy and whether the section is tension-

    controlled Check if As As,min Compute Mn

    Analysis procedure of a Beam with Compression Reinforcement: Compression reinforcement yields

    Assume fs=fyfs=fy

    '1 ss AA 12 sss AAA

    bffAA

    ac

    yss'

    '

    85,0)(

    1

    Beam 1 Beam 2Y

    cus cdc

    ''

    1ac

    Analysis procedure of a Beam with Compression Reinforcement: Compression reinforcement yields

    1

    ys ff '

    Y2

    Check yielding ofcompression reinforcement ys

    '

    s

    yy E

    f

    cus ccd

    ys

    Analysis procedure of a Beam with Compression Reinforcement: Compression reinforcement yields

    2

    yy

    cs f

    bdbdff

    A 4,14

    '

    min,

    min,ss AA Increase AsN

    YBeam 1 Beam 2

    Check for minimum reinforcement

    ''1 ddfAM ysn

    2

    )( '2adfAAM yssn

    21 nnn MMM 3

  • 8Analysis procedure of a Beam with Compression Reinforcement: Compression reinforcement yields

    cut

    t ccd

    3

    t0.005

    0.005

  • 9Analysis procedure of a Beam with Compression Reinforcement: Compression reinforcement Does

    Not Yields3

    ''

    '

    '85,0

    ssss

    cus

    cc

    AECc

    cdbafC

    )'(2

    ddCadCM scn

    4

    Analysis procedure of a Beam with Compression Reinforcement: Compression reinforcement Does

    Not Yields

    cut

    t ccd

    4

    t0.005

    0.005

  • 10

    Latihan 2 Analisis

    d'

    b

    dh

    2D28 mm

    6D28 mm

    Figure 1

    Case 2: d=80 mm

    Rectangular beam with compression reinforcementCompute Mn for the beam shown in Figure 1, where fc=20 MPa, fy=400 MPa, b=300 mm, d=810 mm, dt= 935 mm, d=80 mm and h=900 mm.

    Design procedure of a Beam with Compression Reinforcement:

    1. Calculate the maximum moment that can be resisted by the undereinforced section with =max, or 0.005 to ensure =0.90. The corresponding tensile area is As=bd, and Mn=Asfy(d-a/2), with a=(Asfy)/(0.85fcb)

    2. Find the excess moment, if any, that must be resisted, and set M2=Mn, as calculated in step 1, M1=Mu/-M2. Now As from step 1 is defined as As2, ie., that part of the tension steel area in the double reinforced beam that works with the compression force in the concrete, As-As=As2.

    3. Tentatively assume that fs=fy. Then As=M1/(fy(d-d). Alternatively, if the compression reinforcement is known not to yield, go to step 6.

    4. Add an additional amount of tensile steel As1=As. Thus, the total tensile steel reinforcement area As is As2 from step 2 plus As1.

    5. Analyze the doubley reinforced beam to see if fs=fy; that is, check the tensile reinforcement ratio against cy.

    Design procedure of a Beam with Compression Reinforcement:

    6. If

  • 11

    M2=Mn

    21 MMM u

    ss AA 2

    sy

    6

    1

    c=a/1

    cus cdc

    ''

    f s=fy

    )'(1'

    ddfMA

    ys

    As1=As

    As=As1+As2

    2

    Design procedure of a Beam with Compression Reinforcement:

    yn

    Analysis procedure of a Beam with Compression Reinforcement: Compression reinforcement yields

    Assume fs=fyfs=fy

    '1 ss AA 12 sss AAA

    bffAA

    ac

    yss'

    '

    85,0)(

    3

    Beam 1 Beam 2Y

    cus cdc

    ''

    1ac

    2

    Analysis procedure of a Beam with Compression Reinforcement: Compression reinforcement yields

    3

    ys ff '

    Y4

    Check yielding ofcompression reinforcement ys

    '

    s

    yy E

    f

    cus ccd

    ys

    Analysis procedure of a Beam with Compression Reinforcement: Compression reinforcement yields

    4

    yy

    cs f

    bdbdff

    A 4,14

    '

    min,

    min,ss AA Increase AsN

    YBeam 1 Beam 2

    Check for minimum reinforcement

    ''1 ddfAM ysn

    2

    )( '2adfAAM yssn

    21 nnn MMM 5

  • 12

    Analysis procedure of a Beam with Compression Reinforcement: Compression reinforcement yields

    cut

    t ccd

    5

    t0.005

    0.005

  • 13

    Analysis procedure of a Beam with Compression Reinforcement: Compression reinforcement Does

    Not Yields

    9

    Y

    10

    y

    ww

    y

    cs f

    dbdbff

    A 4,14

    '

    min,

    min,ss AA Increase AsN

    Y

    Check for minimum reinforcement

    Check for tension control

    cus ccd

    ys

    1ac

    Analysis procedure of a Beam with Compression Reinforcement: Compression reinforcement Does

    Not Yields10

    ''

    '

    '85,0

    ssss

    cus

    cc

    AECc

    cdbafC

    )'(2

    ddCadCM scn

    11

    Analysis procedure of a Beam with Compression Reinforcement: Compression reinforcement Does

    Not Yields

    cut

    t ccd

    11

    t0.005

    0.005

  • 14

    Daftar referensi

    1. James K Wight, James McGregor : Reinforced Concrete, Mechanics and Design, Sixth Edition, Pearson, 2012

    2. ________________, Persyaratan beton struktural untuk bangunan gedung, SNI 2847:2013, Badan Standarisai nasional

    3. ________________, Building Code requirements for Structural Concrete, ACI 318-2011, American Concrete Institute

    Alternative determination of Whether fs=fy in Tension Reinforcement

    The tension steel will yield if a tension or balanced failure occurs. If fs=fy, the balance conditions:

    yc

    yysss

    fbdffffAA

    600600

    '85,0/

    1

    ''

    Substituting =As/bd and =As/bd gives

    yy

    c

    by

    s

    fff

    ff

    60060085,0' '1

    '

    ys

    bysys

    ffffff

    )/'()/'( '' If then

    Old

    Upper Limit on Tension Reinforcement in Beams with Compression Steel

    b)'(75,0)'(

    where

    yy

    cb ff

    f600

    60085,0''

    1

    yy

    c

    by

    s

    fff

    ff

    60060085,0' '1

    '

    or

    Old