Pengantar Analisis Data Edit Ok s2 Kesmas - Copy

  • View
    113

  • Download
    1

Embed Size (px)

DESCRIPTION

gjfdg

Text of Pengantar Analisis Data Edit Ok s2 Kesmas - Copy

MODUL ANALISA DATA

PROGRAM STUDI S2 KESEHATAN MASYARAKAT PASCA SARJANA UNIVERSITAS ANDALAS

1

PENGANTAR ANALISIS DATA1. Pendahuluan Setelah kita selesai melakukan pengolahan data, maka langkah selanjutnya adalah menganalisis data. Data mentah (raw data) yang sudah susah payah kita kumpulkan tidak akan ada artinya jika tidak dianalisis. Analisis data merupakan kegiatan yang sangat penting dalam suatu penelitian, karena dengan analisislah data dapat mempunyai arti/makna yang dapat berguna untuk memecahkan masalah penelitian. Analisis mempunyai posisi strategis dalam suatu penelitian. Namun perlu dimengerti bahwa dengan melakukan analisis tidak dengan sendirinya dapat langsung memberi jawaban penelitian, untuk itu perlu diketahui bagaimana menginterpretasi hasil penelitian tersebut. Menginterpretasi berarti kita menjelaskan hasil analisis guna memperoleh makna/arti. Interpretasi mempunyai dua bentuk, yaitu arti sempit dan arti luas. Interpretasi dalam arti sempit (deskriptif) yaitu interpretasi data dilakukan hanya sebatas pada masalah penelitian yang diteliti berdasarkan data yang dikumpulkan dan diolah untuk keperluan penelitian tersebut. Sedangkan interpretasi dalam arti luas (analitik) yaitu interpretasi guna mencari makna data hasil penelitian dengan jalan tidak hanya menjelaskan/menganalisis data hasil penelitian tersebut, tetapi juga melakukan inferensi (generalisasi) dari data yang diperoleh dengan teori-teori yang relevan dengan hasil-hasil penelitian tersebut. Pada umumnya analisis data bertujuan untuk: a. b. c. d. Memperoleh gambaran/deskripsi masing-masing variabel Membandingkan dan menguji teori atau konsep dengan informasi yang ditemukan Menemukan adanya konsepbaru dari data yang dikumpulkan Mencari penjelasan apakah konsep baru yang diuji berlaku umum atau hanya berlaku pada kondisi tertentu Seberapa jauh analisis suatu penelitian akan dilakukan tergantung dari: a. b. c. Jenis penelitian Jenis sampel Jenis data/variabel 2

d. a.

Asumsi kenormalan distribusi data Jenis Penelitian Jika ingin mengeahui bagaimana pada umumnya (secara rata-rata) pendapat

masyarakat akan suatu hal tertentu, maka pengumpulan data dilakukan dengan survei. Dari kasus ini maka dapat dilakukan analisis data dengan pendekatan kuantitatif. Namun bila kita menginginkan untuk mendapatkan pendapat/gambaran yang mendalam tentang suatu fenomena, maka data dapat dikumpulkan dengan fokus grup diskusi atau observasi, maka analisisnya menggunakan pendekatan analisis kualitatif. b. Jenis Sampel Analisis sangat tergantung pada jenis sampel yang dibandingkan, apakah kedua sampel independen atau dependen. Misalnya pada penelitian survei yang tidak menggunakan sampel yang sama, dapat digunakan uji statistik yang mengasumsikan sampel yang independen. Misalkan survei untuk mengetahui apakah ada perbedaan berat badan bayi antara bayi-bayi yang dilahirkan dari ibu perokok dengan bayi-bayi dari ibu yang tidak merokok. Disini berarti kelompok ibu perokok dan kelompok ibu bukan perokok bersifat independen. Sedangkan untuk penelitian eksperimen yang sifatnya pre dan post (sebelum dan sesudah adanya perlakuan tertentu dilakukan pengukuran) maka uji yang digunakan adalah uji statistik untuk data yang dependen. Misalnya, suatu penelitian ingin mengetahui pengaruh penelitian manajemen terhadap kinerja petugas kesehatan. Pertanyaan penelitiannya Apakah ada perbedaan kinerja petugas kesehatan antara sebelum dan sesudah mendapatkan pelatihan manajemen?. Dalam penelitian ini sampel kelompok petugas kesehatan bersifat dependen, karena pada kelompok (orang) yang sama diukur dua kali yaitu pada saat sebelum pelatihan (pre test) dan sesudah dilakukan pelatihan (Post Test). c. Jenis Data/Variabel Data denganjenis katagori berbeda cara analisisnya dengan data jenis numerik. Beberapa pengukuran/uji statistik hanya cocok untuk jenis data tertentu. Sebagai contoh,

3

nilai proporsi/persentase (pada analisis univariat) biasanya cocok untuk menjelaskan data berjenis katagorik, sedangkan untuk data jenis numerik biasanya dapat menggunakan nilai rata-rata untuk menjelaskan karakteristiknya. Untuk analisis hubungan dua variabel (analsis bivariat), uji kai kuadrat hanya dapat dipakai untuk mengetahui hubungan data katagori dengan data katagori. Sebaliknya untuk mengetahui hubungan numerik dengan numerik digunakan uji korelasi/regresi. d. Asumsi Kenormalan Jenis analisis yang akan dilakukan sangat tergantung dari bentuk distribusi datanya. Bila distribusi datanya tidak normal, maka sebaiknya digunakan prosedur uji statitik nonparametrik. Sedangkan bila asumsi kenormalan dapat dipenuhi maka dapat digunakan uji statistik parametrik. Berikut ini akan dijelaskan langkah-langkah analisis (pendekatan kuantitatif): 1. Analisis Deskriptif (Univariat) Tujuan dari analisis ini adalah untuk menjelaskan/mendiskripsikan karakteristik masing-masing variabel yang diteliti. Bentuknya tergantung dari jenis datanya. Untuk data numerik digunakan nilai mean (rata-rata), median, standard deviasi dan inter kuartil range, minimal maksimal. 2. Analisis Analitik (Bivariat) Setelah diketahui karakteristik masing-masing variabel dapat diteruskan analisis lebih lanjut. Apabila diinginkan analisis hubungan antar dua variabel, maka analisis dilanjutkan pada tingkat bivariat. Misalnya ingin diketahui hubungan antara berat badan dengan tekanan darah. Untuk mengetahui hubungan dua variabel tersebut biasanya digunakan pengujian statistik. Jenis uji statistik yang digunakan sangat tergantung jenis data/variabel yang dihubungkan. 3. Analisis Multivariat Merupakan analisis yang menghubungkan antara beberapa variabel independen dengan satu variabel dependen. Secara lebih khusus/detail analisis univariat, bivariat dan multivariat akan dipelajari pada bab tersendiri.

4

ANALISIS UNIVARIAT ( DESKTIPTIF)Tujuan dari analisis ini adalah untuk menjelaskan/mendeskriptifkan karakteristik masing-masing variabel yang diteliti. Dalam analisis data kuantitatif kita dihadapkan pada kumpulan data yang besar/banyak yang belum jelas maknanya. Fungsi analisis sebetulnya adalah menyederhanakan atau meringkas kumpulan data hasil pengukuran sedemikian rupa sehingga kumpulan data tersebut berubah menjadi informasi yang berguna. Peringkasan tersebut berupa ukuran-ukuran statistik, tabel dan juga grafik. Secara teknis pada dasarnya analisis merupakan kegiatan meringkas kumpulan data menjadi ukuran tengah dan ukuran variasi. Selanjutnya membandingkan gambarangambaran tersebut antara satu kelompok subyek dan kelompok subyek lain, sesuai dengan tujuan yang ingin dicapai dalam analisis. Berbicara peringkasan data (yang berwujud ukuran tengah dan ukuran variasi) jenis data (apakah numerik atau katagorik) akan sangat menentukan bentuk peringkasan datanya. Berikut akan diuraikan bentuk/cara peringkasan data untuk data numerik dan data katagorik. 1. a. Peringkasan Data Untuk Data Jenis Numerik Ukuran Tengah Ukuran tengah merupakan cerminan dari konsentrasi nilai-nilai hasil pengukuran. Berbagai ukuran dikembangkan utnuk mencerminkan ukuran tengah tersebut, dan yang paling sering dipakai adalah mean, median dan mode/modus. ).1 Mean Mean/average adalah ukuran rata-rata yang merupakan hasil dari jumlah semua nilai pengukuran dibagioleh banyaknya pengukuran. Secara sederhana perhitungan nilai mean dapat dituliskan dengan rumus : X = Xi / n

5

Keuntungan nilai mean adalah mudah menghitungnyadan sudah melibatkan seluruh data dalam penghitungannya. Namun kelemahan dari nilai mean adalah sangat dipengaruhi oleh nilai ekstrim, baik ekstrim tinggi maupun rendah. Oleh karena itu pada kelompok data yang ada nilai ekstrimnya (sering dikenal dengan distribusi data yang menceng/miring), Mean tidak dapat mewakili rata-rata kumpulan nilai pengamatan. Sebagai contoh data yang ada nilai ekstrimnya adalah data penghasilan. Apabila mean pendapatan perbulan adalah Rp 10.000.000,- , sebenarnya sebagian besar orang pendapatannya di bawah Rp 10.000.000,- . Mean sebesar Rp 10.000.000,diperoleh karena tarikan sekelompok kecil orang (misalnya konglomerat) yang pendapatannya sangat tinggi. Dengan demikian penggunaan mean untuk data yang ada nilai ekstrimnya (data yang distribusinya menceng) kurang tepat. Contoh; ada 5 pasien diukur lama hari rawatnya : 1 hr, 3 hr, 4 hr, 2 hr, 90 hr. Mean = (1+3+4+2+90)/5 = 20 hr. Dari hasil penghitungan didapatkan rata-rata lama hari rawat 20 hari, hasil ini tentunya tidak dapat mewakili karena secara visual datanya sebagian besar kurang dari 5 hari. Keadaan ini bisa terjadi karena kumpulan data di atas ada nilai ekstrimnya. ).2 Median Median adalah nilai dimana setengah banyaknya pengamatan mempunyai nilai di bawahnya dan setengahnya lagi mempunyai nilai di atasnya. Berbeda dengan nilai mean, penghitungan median hanya mempertimbangkan urutan nilai dasil pengukuran, besar beda antar nilai di abaikan. Karena mengabaikan besar beda, maka median tidak dipengaruhi oleh nilai ekstrim. Prosedur penghitungan median melalui langkah a). Data diurutkan/di-array dari nilai kecil ke besar b). Hitung posisi median dengan rumus (n+1)/2 c). Hitung nilai mediannya Contoh ada usia 6 mahasiswa 20 th, 26 th, 24 th, 30 th, 40 th, 36 th Data diurutkan: 20, 24, 26, 30, 36, 40 Posisi = (6+1)/2 = 3,5

6

Mediannya adalah data yang urutannya ke 3,5 yaitu (26 + 30)/2 = 28 Jadi 50% mahasiswa berumur dibawah 28 tahun dan 50% mahasiswa berumur di atas 28 tahun 3). Mode/Modus Mode adalah nilai pengamatan yang mempunyai frekuensi/jumlah terbanyak. Contoh mode data umur mahasiswa: 18 th, 22 th, 21 th, 20 th, 23th, 20 th. Dari data tersebut berarti mode-nya adalah 20 tahun

Bentuk Distribusi DataHubungan nilai mean, median dan mode akan menentukan bentuk distribusi data: distribusi datanya normal Bila nilai mean > median > mode, maka bentuk distribusi datanya menceng/miring ke kanan Bila nilai mean < median < mode, maka bentuk distribusi data