38
P f Li it f P ll l El t i Fi ld P erformance Limit of P arallel Electric Field Tunnel FET and Improvement by Modified Gate d Ch l C fi ti and Channel Configurations Yukinori Morita Takahiro Mori Shinji Migita Yukinori Morita , Takahiro Mori, Shinji Migita, Wataru Mizubayashi, Akihito Tanabe, Koichi Fukuda, Takashi Matsukawa, Kazuhiko Endo, Shin-ichi O’uchi, Yongxun Liu, Meishoku Masahara, and Hiroyuki Ota Green Nanoelectronics Center(GNC) Nanoelectronics Research Institute (NeRI) AIST Japan AIST Japan 1

P f Li it f P ll l El t i Fi ld ... - essderc2013.imt.ro

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

P f Li it f P ll l El t i Fi ld Performance Limit of Parallel Electric Field Tunnel FET and Improvement by Modified Gate

d Ch l C fi tiand Channel Configurations

Yukinori Morita Takahiro Mori Shinji MigitaYukinori Morita, Takahiro Mori, Shinji Migita,Wataru Mizubayashi, Akihito Tanabe, Koichi Fukuda,Takashi Matsukawa, Kazuhiko Endo, Shin-ichi O’uchi,Yongxun Liu, Meishoku Masahara, and Hiroyuki Ota

Green Nanoelectronics Center(GNC)Nanoelectronics Research Institute (NeRI)

AIST JapanAIST Japan

1

OutlineBackgroundBackground

- Why tunnel FET (TFET)

P ll l l t i fi ld TFET (PE TFET)- Parallel electric field TFET (PE-TFET)

Performance of PE-TFET

- Device fabrication

- Experimental resultsp

Proposal of Synthetic electric field TFET (SE-TFET)

Device fabrication- Device fabrication

- Experimental results

Summary2

For Vdd ScalingWhy tunnel FET ?

log(

I d)

log(

I d)MOSFET Tunnel FET

Ioff 60 V/d

VV

off

VgVddV

Vg

60mV/dec

VddVddVddVdd

Conventionally Vdd scaling causes a significant increase in Ioff due to the lower limit of SS (~60mV/dec.)V li ith t I i b d b t i th SS

3

Vdd scaling without Ioff increase can be done by steepening the SS

MOSFET Tunnel FET

Why tunnel FET ?

MOSFET

hi h k

Gate

Tunnel FET

hi h k

Gate

high-kn+-S n+-D

high-kp+-S n+-D

n+ pp+

n+ p

n+n n+

Carrier flow is determined by thermal-injection mechanism

Carrier flow is determined by BTBT transport mechanism

4

thermal-injection mechanismSS > 60mV/dec.

BTBT transport mechanismSS < 60mV/dec.

Lateral & vertical TFETs• Two TFET architectures

Lateral (conventional) TFET Vertical(parallel electric field) TFET

Two TFET architectures

Gatehigh-k

Gate

(p )

high-k

S D S DXBOX BOX

L : Overlap length

X

LOV: Overlap length

BTBT is limited in interface-->> Small ID

BTBT area is enlargedC H t l VLSI TSA 2008 14 (2008)>> Small ID

5

C. Hu et.al., VLSI-TSA 2008, 14 (2008)R. Li et.al., Phys. Status Solidi C 9, 389 (2012)Y. Morita et.al, Jpn. J. Appl. Phys. 52, 04CC25 (2013)

Objective of this work

Performance of the parallel electric field TFET (PE TFET) relation between ON current and (PE-TFET), relation between ON current and overlap length, is analyzed.

Proposal of modified TFET architecture to improve l t t ti (S th ti l t i fi ld TFET)electrostatics (Synthetic electric field TFET)

6

Performance of the PE-TFET

7

S/D first & "Junction‐last" TFET process

Fabrication of PE-TFET with epichannel

SOI mesa etching (a)P I/I (b)BF2 I/I (c)

Si epitaxial growth, high-k and gate (d) Gate stack etch (e)Contact

50( ) (b) 5

Activation (1000 ˚C) Sintering

(d)SOI mesa etching

(a)

50 nm

TiNHigh-k

(a) (b)

TiN

5 nm

EpichannelP ion implantation(b)

(d)SOI SOIBOX

EpichannelHigh-kGate

High-kGate

SOIS D

TiN High-kMask Mask

P ion implantation

(e)

SOI SOI

BOX

BOX

SOI

BOX SOIBF2 ion implantation G G

Mask

(c)

(e)n-TFET p-TFET

High-k

8

S SD DBOX BOX

Operation of p- & n-PE-TFETs

ID-VG

TFET TFETG G

n-TFET p-TFET

High-k

S SD DBOX

9

Effect of LOV increaseRelation between ID and LOV

1.2(a) 101(b)

Relation between ID and LOVG

S D

0.8

/µm

) 10-1

/µm

)

S D

LOV

0.4I D (µ

A/

ID increase 10-3I D (µ

A/

00 40 80

10-5

100 101 102 103 1040 0 80LOV (nm) LOV (nm)

Confirming ID increase with increasing LOVConfirming ID increase with increasing LOVON current degraded at LOV > 1000 nm

10

Effect of LOV increaseAnalysis using a distributed-element circuit

( )

Gate insulatorThin channelID flow (voltage drop)

( d )Gate

y g

(x)VD

GiG C GC Ci

RC RC(x + dx)Gate

Thin channelGate insulator

xSource well

x = 0

L

x + dx RSRS

Source well

LOVSource input point

dv(x)dv(x)dx- = Rci(x)

di(x)dx- = Gv(x)

In ideal case (RS ~ 0),i-v relation can be describes as,

dx ( )

11

Effect of LOV increaseRelation between ID and LOV

2 RC

G VD

~GRC

1 =

(a)

101R

C

G VD~Ideal case(RS = 0)

(b)G

S D

Relation between ID and LOV

1.2

1.6

A/µm

)

CGRC

Ideal case10-1

A/µm

)

C SS D

LOV

0 4

0.8

1.2

I D (µ

A Ideal case(RS = 0)

Considering RS10-3I D

(µA

Considering RS

0

0.4

0 40 80 120L ( )

C s g S

10-5

100 101 102 103 104

LOV (nm) LOV (nm)

Upper limit of ON current ! G V

12

Upper limit of ON current !RC

VD~

Experimental results

Limit of drain current in PE-TFET

I G VIONMAX ~ GRC

VD

-->> Self-voltage-drop effect in thin channel

Trade offEnhancing G <<-->> Reducing RCEnhancing G << >> Reducing RC

Balance between tunnel conductance and h l i t i iti l

13

channel resistance is critical.

Proposal of modified TFET architecture

14

Proposal of synthetic electric field TFET

• Multiplication of lateral & vertical electric fields

Lateral TFET Synthetic electric field TFET(a)

Ultrathin undoped channel

(c)

Gate

(d)

Gate

High-kBOX

Gate

n+ S p+ D

EGATE

IT

undoped channel

Parallel electric field TFET

Gate

n+ SE

ESideIT

ESynth

WCH DEPIDEPI(b)

G t

n+ S p+ DBOX

ITBOX

ETop

WCHLOVBOX

Gate

p+ Dn+ SEGATE

IT

Slide 1515

Fabrication of SE-TFET with epichannel

• Based on source/drain-first CMOS process

(b) (c) (d)(a)As ion implantation

MaskMask MaskBF2 ion implantation

(b) (c) (d)

SOI

(a)

SOI

Channel epitaxial growth

SOIBOX

SOIBOX BOX BOX

Gate insulator(f) G t t h( )p-TFET n-TFET

Mesa-etching(e)Gate insulator& Gate electrode

(f) Gate etch(g)

BOX BOX BOXDSDS

Slide 16

BOX BOX BOX

16

Device structures

• Small amount of defects at epitaxial channel/source interface

Epitaxial h l

Gate electrode (TiN)

Channel cross-section

Gate cross section

50 nmn+ Source

channel Gate cross-section

Gate (TiN)HfO2

Gate insulator(HfO2)

( )

Source

50 nm

Slide 1717

Operation mechanism

Conventional (lateral) TFETSE-TFET

BOX p+ SEC

IT

ITI

n+ D

BTBT window

IT

Top E-field Side + Top E-fieldsBOX

Gate

n+ S p+ DEGATE

IT

Slide 18

Top E field Side + Top E fields

18

Simulation of electric field

• Electric field at edges is enlarged by SE-effect.• Scaling of channel thickness and width enhances

SE-effect

Electric field (V/cm)

Electric field distribution

3x106

9x105

lect c eld (V c )

EC

9x104

3x105

Electric field

1x104

3x104n+ Senhancement

W 20 D 10

Slide 19

WCH = 20 nm DEPI = 10 nm

19

Impact of channel width

• Better performance in narrower channel device

102ID-VG

100

10VD = -0.05 VWCH

0.17 um1

LOV = 400 nm100

de)

DEPI = 10 nm VD = -0.05 VLOV = 400 nm

4

10-2

uA/u

m)

= 52

1 um10 um

80

mV/

deca

d10-6

10-4

I D (u

SSMI

N =60

SSMI

N (m

10-8

10

-2.0 -1.0 0.0

DEPI = 10 nm 40102 103 104

Slide 20

VG (V) WCH (nm)

20

Impact of channel width

• ID at WCH = 0 corresponds to the edge current.

L 400 V = 1 V

2 0

2.5LOV = 400 nm VD = -1 V

VG = -2 V

1.5

2.0

I D (uA)

DEPI = 10 nm

0.1 uA/um

0.5

1.0DEPI = 16 nm0.7 uA

0.0 0 5 10 15 20W (um) 5 4 10 3 A/

0.2 uA

Slide 21

WCH (um) 5.4 x 10-3 uA/um

21

Impact of channel width

• Edge current is enhanced by DEPI scaling.

L 400 V = 1 V

2 0

2.5LOV = 400 nm VD = -1 V

VG = -2 V

1.5

2.0

I D (uA)

DEPI = 10 nm

0.1 uA/um

0.5

1.0DEPI = 16 nm0.7 uA

0.0 0 5 10 15 20W (um) 5 4 10 3 A/

0.2 uA

Slide 22

WCH (um) 5.4 x 10-3 uA/um

22

Impact of channel width

• Scaling of both DEPI and WCH enhance performance

102

100

102

)

4 nm(Prediction)

DEPI = 16 nm

10-2

100

(uA/

um)

10 nmDEPI = 16 nm

GateG t

FinFET-like structure is better

10-4

10 2

I D

EC

Gate

S

EC

Gate

S10 4

100 101 102 103 104 105

n+ Sn+ S

Slide 23

WCH (nm)

23

ID‐VG ID‐VD

Performance of SE-tunnel FinFET

1

103 VD = -0.2, -1.0 V

6070 -1.0 V V

G 0.1 V step

10-1

101

A/um

) LG

60 nm=405060

A/um

) -0.9 V

10-3I D (uA L

OV

WFIN

D

10 nm

12 nm7 nm

=

==

2030I D (u

A

-0.8 V

-0.7 V

10-7

10-5

2 1 0

DSOI

DEPI

SSMIN

= 58

7 nm25 nm

==

010

0 8 0 4 0 0

-0.6 V-0.5 V-0.4 V

-2 -1 0V

G (V)

-0.8 -0.4 0.0V

D (V)

Significant performanceSS 58 I 4 uA/um @(V V ) ( 0 5 0 2 V)

24

SSMIN = 58, ID = 4 uA/um @(VG,VD)=(-0.5,-0.2 V)400 uA/um @(VG,VD)=(-2,-1 V)

Summary

Parallel electric field TFET• Limit of ON current• Balance between tunnel conductance and channel Balance between tunnel conductance and channel

resistance is critical

S th ti l t i fi ld TFETSynthetic electric field TFET• Scaling induced performance enhancement• FinFET-like slim device is promising.p g.• Significant performance in small voltage

SSMIN = 58, ID = 4 uA/um @(VG,VD)=(-0.5,-0.2 V)400 A/ @(V V ) ( 2 1 V)400 uA/um @(VG,VD)=(-2,-1 V)

• The concept can be applicable to Ge or III-V TFETs.

25

The concept can be applicable to Ge or III V TFETs.

Acknowledgement

This research was supported by JSPS through the First Program, “Development of Core Technologies

for Green Nanoelectronics”.

Thank you for your kind attention.

Slide 2626

2

Benchmark

101

102um

)[1] G. Zhou, et al., IEDM 2012[2] A. Villalon, et al., VLSI2012[3] G. Dewey, et al., IEDM 2011

[1]

[2][4]

100

10

curre

nt (u

A/u [4] W. Choi,et al., EDL28 2007

[5] K. Tomioka, et al., VLSI2012

[2][3] (0.3V)

[5]

10-1

ON c

Red: Si, SiGe

10-2

0 60 120 180SS (mV/dec)

Blue: III-V

SS (mV/dec)

Our data(No strain, no Ge, no metal SD, only by device consideration)

Impact of LOV

WCH = 10 um

• Maximum ID at LOV ~ 50 nm

0 15

0.20

)CH

0.10

0.15

D (uA/

um

DEPI = 10 nm

0.05

I D

DEPI = 16 nm

0.001 10 100 1000

Slide 28

LOV (nm)

Scaling of channel width

SE-tunnel FinTFET

• Scaling of both DEPI and WFIN enhance performance.

p+ Source

BTBT IT

BTBT window

Slide 29

Both Sides + Top E-fields

29

1 E+04

1,E+03

1,E+04WFIN-scaling-induced ID

increase

1,E+02

um)

1,E+01

I D(u

A/u

DEPI = 7 nm

1,E-01

1,E+00

DEPI = 16 nm 10 nm

DEPI 7 nm

,1,E+00 1,E+01 1,E+02 1,E+03 1,E+04 1,E+05

WFIN (nm)

SIMS analysis of dopant profiles

• Dopant steepness in the epitaxial channel is maintained below 900 ˚C.

1020

1021

m-3

)

1000 oC

Epitaxialchannel n+ S

100m/d

ec)

1019

1020

ratio

n (c

m

o

1000 C

10

adien

t (nm

1017

1018

Conc

entr 900 oC

1op

ant g

raB

As

1016

10

10 20 30 40 50

C

as-epi. As600 800 1000

Do

o

B

Slide 31

Depth (nm) Post-anneal temp.(oC)

Impact of SE effect

• Significant increase of ID in the SE-TFET

GateID-VG

100

With SE effect

WCH

= 10 um DEPI

= 10 nmGate

BOXn+ S

E`C

10-4

10-2

uA/u

m) BOX

SE-TFET

10-6

10

I D (u

GateEC

10-8-2.0 -1.0 0.0

V (V)

Without SE effectBOXn+ S

EC

Slide 32

VG (V)Parallel electric field TFET

This work This work This work This workVillalon et alVLSI2012

[8]

Villalon et alVLSI2012

[8]

Knoll et alEDL2013

[9]

Zhou et alIEDM2012

[10]

Zhou et alIEDM2012

[10]

Dewey et alIEDM2011

[11]Types p p p p p p p n n nTypes p p p p p p p n n n

Materials Si Si Si Si SiGe30% SiGe30% Si GaSb/InAs GaSb/InAs InGaAsStructures DL Fin DL Fin DL Fin DL Fin ETSOI ETSOI Nanowire Vertical Vertical Vertical

Boosters DL Fin DL Fin DL Fin DL Fin Strain Strain StrainM t l S/D III-V III-V III-VMetal S/D

VD (V) -1 -1 -0.2 -0.2 -1 -1 -0.5 1 0.5 0.3VG (V) -2 -1 -1 -0.5 -2 -1 -1 1 0.5 ~0.48

VON-VOFF(V) -2 -1 -1 -0.5 -2 -1 -1 2 1.5 0.5(V) 0 5 5 0 5

ION (uA/um) 417 82 40 4 ~300 ~10 ~5 380 180 5.7IMIN (uA/um) 2.00E-04 2.00E-04 2.00E-06 2.00E-06 3.70E-05 3.70E-05 ~2e-6 5.07E-02 3.00E-02 1.00E-04

ION/IMIN 2.09E+06 4.10E+05 2.00E+07 2.00E+06 8.11E+06 2.70E+05 2.50E+06 7.50E+03 6.00E+03 5.70E+04SSMIN

(mV/dec) 70 70 58 58 ~120 ~120 90 200 200 58

EOT (nm) 1.3 1.3 1.3 1.3 1.25 1.25 3 nm HfO2 1.3 1.3 1.1LG (nm) 60 60 60 60 200 200 200 - - 100

ID-VG of SE-TFETs

• Symmetric operation of p & n SE‐TFETs 

102 LG = 100 nm WCH = 60 nm

100D

EPI = 9 nm

10-4

10-2

(uA/

um)

SSMIN

= 70SS = 69

10-6

10 4

I D (

VD = -0.2, V

D = 0.2,

MINSSMIN

69

10-8-2.0 -1.0 0.0 1.0 2.0

V (V)

-1 V 1 V

Slide 34

VG (V)

p‐TFETLg = 1 um

Tunability of LOV

Lg = 1 umLw = 10 um

35

Device simulation of SE-TFET

Device structure

Gate

X=0.2

Gate

Slide 36

HyENEXSSTM, v.5.5, Selete, 2011.

Sub‐threshold condition (Potential) X=0.2

source

sourceBOX

Saturation condition (Potential)

source

sourceBOX

Slide 37

sourceBOX

Sub‐threshold condition (Potential) X=0.2

source

sourceBOX

Saturation condition (Potential)

Potential difference > Si band gap

BTBT i d t dsource

sourceBOX

BTBT window opens at edge.

Slide 38

sourceBOX