Author
aerodanger
View
113
Download
8
Embed Size (px)
DESCRIPTION
Orto Ploce
1
ČELIČNE ORTOTROPNE PLOČE
Elementi
Uzdužna rebra
PREDNOSTI MANEa) jednostavnost rasprostiranje koncentriranog opt.
pristupačnost razmak poprečnih nosačavariranje visine zavarivanje
veća težina
b) rasprostiranje opt. komplikacije oko izvedbetanji elementirazmak PNzavarivanje
2
ANALIZA: SISTEM I – izotropna ploča
SISTEM II – ortotropna ploča
SISTEM III – ortotropna ploča – roštilj
SISTEM IV – spregnuto s glavnim nosačima
SUPERPOZICIJA:LIM (I), II, III, IV
UZDUŽNA REBRA II, III, IV
POPREČNI NOSAČI II, III
GLAVNI NOSAČI IV
3
NOSIVI SISTEM I – IZOTROPNA PLOČA
•minimalna debljina lima = 12 mm•razmak između uzdužnih rebara = 300 mm•minimalna debljina lima može se odrediti i iz empirijskog obrasca:
30,072t a p≥ ⋅ ⋅NOSIVI SISTEM II
• savijanje ortotropne ploče prema Huberovoj diferencijalnoj jednadžbi4 4 4
4 2 2 42 ( , )x yw w wD H D p x yx x y y
∂ ∂ ∂+ + =
∂ ∂ ∂ ∂
3
212(1 )x x
R Ry
x y
EtD EI
EI EID ilia a e
H k D D
ν= =
−
=+
=
Efektivna torzijska krutost:
2 1TGIHa e
μ μ= ⋅ <+
Rješenje:
ea a≤≥
h p
h
p
w w w
ww
= +
homogeno -> Fourierov red
partikularno (Fourierov red)
4
[ ]
[ ]
[ ]
1 2 3 4
1 2 3
44
1 24
sin
2
' sin
...
''' sin
n n n n
ny
n xw C sh y C ch y C y Cb
n Hb D
w n xw C ch y C sh y Cy b
w n xw C sh y C ch yy b
πα α α
πα
πα α α
πα α α
= + + +
=
∂= = + +∂
∂= = +∂
Rubni uvjeti...konstante C1, C2...Sve u Fourierovim članovima reda
Partikularni dio – opterećenje, također s Fourierovim redomw -> progibw’ -> zakretanjew’’ -> mxw’’’ -> QxwIV -> p
PRIMJER
s
b
m=0
wo’w1’
m=11 1 sin n xM M
bπ
=
Rubni uvjeti:
za y=0 w=0 My=0za y=s w=0 My=M1
11 2
2 4
13 3
1sinh
0
1
y
y
MCD s
C C
MCD s
α α
α
= ⋅
= =
= ⋅
5
FOURIEROVA ANALIZA OPTEREĆENJA
Pojednostavljenje: Pelikan W. – Esslinger M.
Otvorena rebra: Dx~2H~04
4 ( , )ywD p x y kontinuirana greday
∂=
∂
Zatvorena rebra: Dx~0
4 4
2 2 42 ( , )yw wH D p x y
x y y∂ ∂
+ =∂ ∂ ∂
( )1
1 2 3 4
1 2 3 4
cosh sin
2 ; , , , .
n
n n n n n n n n
n n n n ny
w w
n xw C sh y C y C y Cb
n H C C C C konstb D
πα α α
πα
∞
=
= + + +
= =
∑
6
NOSIVI SISTEM III – ELASTIČNO POPUŠTANJE
1/R – malo, Dx=H~0 QR Cδ= ⋅
7
Niz traka Dy zadovoljava ako je P=f(sinx).
Za n-tu sin-komponentu biti će na 0-tom.
( )0 0
404
0
4
14
14
14
1
sin
1 sin
1 ...2 ... 23 ... 3
Q nn n n n
nQn n
Q Q
Qnn Q
n
Q
n xR Q Cl
l n xR dx QEI EI n l
R nC EIlza n Cza n C
zanemarivoza n C
C C EIl
πϑ δ
ϑ πδπ
πδ
π
= = ⋅
⎛ ⎞= = ⎜ ⎟⎝ ⎠
⎛ ⎞= = ⎜ ⎟⎝ ⎠
=
= ⋅<
= ⋅
⎛ ⎞= = ⎜ ⎟⎝ ⎠
∫∫∫ ∫
Kontinuirani nosač na elastičnim osloncima
( )
3
3 3
4 4
4 3 4 3
/
1 1
1 1 1 1( )
L
R R
R R
Q Q
EI CsEI EIodnosnoa s C a e s C
I Il la s I a e s I
γ
γ γ
π π
=
= =⋅ +
↓ ↓
+
- veliko -> veliko popuštanje, C-mali, EIc-veliko
- malo, C – veliko -> malo popuštanje
γγ
Momenti savijanja ΔM – razlika
m m
ss
M P R
razlika elastično popustljivi nosač
η η
η η
Δ = ⋅ = ⋅
↓ ↓
−
∑
8
.
0
( 0)
rošt k k
imi m
za ležajeve je
M M M
M P R
η η η η η
η
η η∞
= + =
↓ == + Δ
Δ = = ⋅∑ ∑
9
10
11
12
DETALJI PRIKLJUČAKA UZDUŽNIH REBARA I POPREČNOG NOSAČA
Otvorena rebra: a) i b) stabilnost ?c) bolje (zabranjeno u UK)d) kompliciranoe) ograničeno
13
Zatvorena rebra: a) diskontinuitetb) diskontinuitet s podlogomc) i d) kontinuitete) kombinirano
3. 12,5 25b bKlasa odnosnot t≤ ≤
14
15
OSOBITOSTI:
• e/t ≤ 25, • t ≥ 10 mm, e/t ≤ 40• razmak poprečnih nosača 2-3 m – otvorena rebra• razmak poprečnih nosača 3-5 m – zatvorena rebra• izolacija bitumen ili umjetna smola na bazi epoksidnih smola• zaštitni sloj – asfaltni mastiks i lijevani asfalt 35 mm• habajući sloj – lijevani asfalt (asfalt-beton)• izolacija na pjeskarenu plohu čistoće SA 2 ½, danas plamenikom
zbog zaštite okoliša• pukotine uzdužne uglavnom nad hrptovima krutih uzdužnih nosača• minimalne krutosti u DIN 18809 u ovisnosti o rasponu• HUBER jednadžba aproksimacije jer pretpostavlja simetriju oko
neutralne osi (ravnine) ploče• klasična teorija – proširenje na ravninski problem (disk) i pločasti
dio