27
Numerical simulations Numerical simulations of astrophysical of astrophysical dynamos dynamos Axel Brandenburg ( Axel Brandenburg ( Nordita, Nordita, Stockholm Stockholm ) ) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear Constrained by magnetic helicity: need fluxes How high do we need to go with Rm? MRI and low PrM issue

Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear

Embed Size (px)

Citation preview

Page 1: Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear

Numerical simulations of Numerical simulations of astrophysical dynamosastrophysical dynamos

Axel Brandenburg (Axel Brandenburg (Nordita, StockholmNordita, Stockholm))

• Dynamos: numerical issues• Alpha dynamos do exist: linear and nonlinear• Constrained by magnetic helicity: need fluxes• How high do we need to go with Rm?• MRI and low PrM issue

Page 2: Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear

2

Struggle for the dynamoStruggle for the dynamo• Larmor (1919): first qualitative ideas• Cowling (1933): no antidynamo theorem• Larmor (1934): vehement response

– 2-D not mentioned• Parker (1955): cyclonic events, dynamo waves• Herzenberg (1958): first dynamo

– 2 small spinning spheres, slow dynamo (~Rm-1)

• Steenbeck, Krause, Rädler (1966): dynamo– Many papers on this since 1970

• Kazantsev (1968): small-scale dynamo– Essentially unnoticed, simulations 1981, 2000-now

Page 3: Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear

3

Mile stones in dynamo researchMile stones in dynamo research

• 1970ies: mean-field models of Sun/galaxies

• 1980ies: direct simulations

• Gilman/Glatzmaier: poleward migration

• 1990ies: compressible simulations, MRI– Magnetic buoyancy overwhelmed by pumping– Successful geodynamo simulations

• 2000- magnetic helicity, catastr. quenching– Dynamos and MRI at low PrM=

Page 4: Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear

4

Easy to simulate?Easy to simulate?

• Yes, but it can also go wrong

• 2 examples: manipulation with diffusion

• Large-scale dynamo in periodic box– With hyper-diffusion curl2nB

– ampitude by (k/kf)2n-1

• Euler potentials with artificial diffusion– D/Dt=, D/Dt=gradxgrad

Page 5: Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear

Dynamos withDynamos withEuler PotentialsEuler Potentials

• B = grad x grad• A = grad, so A.B=0• Here: Robert flow

– Details MNRAS 401, 347

• Agreement for t<8– For smooth fields, not for -correlated initial fields

• Exponential growth (A)• Algebraic decay (EP)

Page 6: Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear

6

Reasons for disagreementReasons for disagreement

• because dynamo field is helical?

• because field is three-dimensional?

• none of the two: it is because is finite

Page 7: Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear

7

Is this artificial diffusion kosher?Is this artificial diffusion kosher?

R2222

D

D

D

D

tt

R

Make very small, it is artificial anyway,Surely, the R term cannot matter then?

Page 8: Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear

8

Problem already in 2-D nonhelicalProblem already in 2-D nonhelical

• Works only when and are not functions of the same coordinates

0

coscos

sinsin

,

0

sin

0

sincos ,cos

yx

yx

y

yxy

R

)sinsin,0,0( 2 yxB

xyy cos ,2sin41

21 Alternative

possible in 2-D

Remember:

Page 9: Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear

9

Method of choice? No, thanks

• It’s not because of helicity (cf. nonhel dyn)

• Not because of 3-D: cf. 2-D decay problem

• It’s really because (x,y,z,t) and (x,y,z,t)

Page 10: Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear

10

Other good examples of dynamosOther good examples of dynamosHelical turbulence (By) Helical shear flow turb.

Convection with shear Magneto-rotational Inst.

1t

21t

kc

k

Käp

yla

et a

l (20

08)

Page 11: Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear

11

One big flaw: slow saturation (explained by magnetic helicity conservation)

2f

21 , bbjBBJ

bjBJBJ

kk

bjBJBJ

2f

21

211 22 bBB kk

dt

dk

)(2

1

22 s211 ttkf e

k

k bB

molecular value!!

BJBA 2dt

d

2f

21 , bbjBBJ kk

Page 12: Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear

12

Helical dynamo saturation with Helical dynamo saturation with hyperdiffusivityhyperdiffusivity

23231 f

bB kk

for ordinaryhyperdiffusion

42k

221 f

bB kk ratio 53=125 instead of 5

BJBA 2d

d

t

PRL 88, 055003

Page 13: Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear

13

Test-field results for Test-field results for and and tt kinematic: independent of Rm (2…200)kinematic: independent of Rm (2…200)

1frms3

10

rms31

0

ku

u

Sur et al. (2008, MNRAS)

1frms

231

0

31

0

ku

u

Page 14: Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear

14

RRmm dependence for B~B dependence for B~Beqeq

(i) is small consistency(ii) 1 and 2 tend to cancel(iii) making small(iv) 2 small

Page 15: Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear

15

Boundaries instead of periodicBoundaries instead of periodic

Brandenburg, Cancelaresi, Chatterjee, 2009, MNRAS

FbjBEba 22t

Page 16: Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear

16

Boundaries instead of periodicBoundaries instead of periodic

FbjBEba 22t

Hubbard &

Brandenburg, 2010, G

AF

D

Page 17: Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear

17

Connection with MRI turbulenceConnection with MRI turbulence

5123

w/o hypervisc.t = 60 = 2 orbits

No large scale field(i) Too short?(ii) No stratification?

Page 18: Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear

18

Low PrLow PrMM issue issue

• Small-scale dynamo: Rm.crit=35-70 for PrM=1 (Novikov, Ruzmaikin, Sokoloff 1983)

• Leorat et al (1981): independent of PrM (EDQNM)

• Rogachevskii & Kleeorin (1997): Rm,crit=412

• Boldyrev & Cattaneo (2004): relation to roughness

• Ponty et al.: (2005): levels off at PrM=0.2

Page 19: Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear

19

Re-appearence at low PrRe-appearence at low PrMM

Iskakov et al (2005)

Gap between0.05 and 0.2 ?

Page 20: Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear

20

Small-scale vs large-scale dynamoSmall-scale vs large-scale dynamo

Page 21: Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear

21

Low PrLow PrMM dynamos dynamos

with helicity do workwith helicity do work• Energy dissipation via Joule• Viscous dissipation weak• Can increase Re substantially!

Page 22: Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear

22

Comparison with Comparison with stratifiedstratified runs runsB

rand

enbu

rg e

t al.

(199

5)

<By >

Dynamo wavesVersus

Buoyant escape

Page 23: Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear

23

Phase relation in dynamosPhase relation in dynamos

2

2

23

2

2

z

BB

t

B

z

B

z

B

t

B

y

Tx

y

x

T

yx

kkc

ctzkB

ctzkB

Tk

cx

x

4/3

sin2

sin

43

Mean-field equations: Solution:

Page 24: Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear

24

Unstratified: also LS fields?Unstratified: also LS fields?L

esur

& O

gilv

ie (

2008

)B

rand

enur

g et

al.

(200

8)

Page 25: Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear

25

Low PrLow PrMM issue in unstratified MRI issue in unstratified MRI

Käpylä & Korpi (2010): vertical field condition

Page 26: Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear

26

LS from Fluctuations of LS from Fluctuations of ijij and and ijij

Incoherent effect(Vishniac & Brandenburg 1997,Sokoloff 1997, Silantev 2000,Proctor 2007)

Page 27: Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear

27

ConclusionsConclusions

• Cycles w/ stratification• Test field method robust

– Even when small scale dynamo

– 0 and t0

• Rotation and shear: *ij

– WxJ not (yet?) excited– Incoherent works