65
T.C. NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ ELEKTRONİK DEVRELER-I LABORATUVARI DERSİ DENEY FÖYÜ HAZIRLAYAN ARŞ. GÖR. ERHAN KURT KAYSERİ – 2014

NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

T.C.

NUH NACİ YAZGAN ÜNİVERSİTESİ

MÜHENDİSLİK FAKÜLTESİ

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ

ELEKTRONİK DEVRELER-I

LABORATUVARI DERSİ DENEY FÖYÜ

HAZIRLAYAN ARŞ. GÖR. ERHAN KURT

KAYSERİ – 2014

Page 2: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 2

LABORATUVAR GÜVENLİK FORMU

Laboratuvar ortamında çalışanların sağlık ve güvenliği ile yürütülen çalışmaların başarısı için temel güvenlik kurallarına

uyulması büyük önem taşımaktadır. Bu sebeple aşağıda tanımlanan kurallara uyulması gerekmektedir.

13 mA’den büyük akım veya 40 V’dan büyük voltajlar insan sağlığı için tehlike arz etmektedir ve öldürücü etkisi vardır. Bu

nedenle elektrik çarpmalarından korunmak için gerekli önlemleri alınız ve görevlilerin uyarılarına mutlaka uyunuz.

Kaza ve yaralanmalar olduğu zaman görevliye derhal haber veriniz. Kazayı bildirmek için vakit geçirmeyiniz.

Hasara uğramış veya çalışmayan alet ve cihazları derhal laboratuvar görevlisine bildiriniz.

Herhangi bir nedenle hasar verdiğiniz tüm cihaz ve donanımlarının onarımı ya da yeniden alınma bedeli tarafınızdan

karşılanacaktır. Cihazların üzerine kitap defter gibi ağır malzemeler yerleştirmeyiniz ve yerlerini değiştirmeyiniz.

Multimetreleri ölçüm kademelerinin sınırı dışındaki akım veya gerilim kademelerinde çalıştırmayınız. Güç kaynaklarından

düşük gerilim alınız. Böyle bir nedenle cihazları bozan grubun cihazları kullanmayı bilmediği düşünülür ve deney notu sıfır

olur.

Laboratuvarda hiçbir zaman koşmayınız, en acil durumlarda bile yürüyünüz. Birbirinizle el şakası yapmanız veya

boğuşmanız herhangi bir kazaya sebep olabilir, alet ve cihazlar hasara uğrayabilir.

Laboratuvarların sessiz ve sakin ortamını bozacak yüksek sesle konuşma, tartışma yapılması yasaktır. Başka grupların

çalışmalarını engellemek, izin almadan laboratuvarı terk etmek, diğer gruplardan yardım almaya çalışmak ve laboratuvarda

dolaşmak laboratuvardan ihraç sebebidir

Laboratuvarlara yiyecek, içecek sokmak, sigara vb. içmek yasaktır.

Laboratuvarlarda cep telefonu kullanımı yasaktır.

Çalışma esnasında saçlar uzun ise mutlaka toplanmalıdır.

Hafta içi mesai saatleri dışında ve hafta sonu laboratuvar görevlisi olmadan çalışılması yasaktır.

Laboratuvara işi olmayan kişilerin girmesi yasaktır.

Laboratuvarlara tam zamanında geliniz ve sadece ara verildiğinde dışarı çıkınız.

Çalışma bittikten sonra kullanılan cihazlar yerlerine konulmalıdır.

Laboratuvarda çalıştığınız alanın temizliği sizin sorumluluğunuzdadır. Çalışmalar bittikten sonra gereken temizlik

yapılmalıdır.

Laboratuvar çalışmalarında çıkan atıklar, laboratuvar görevlilerinin belirlediği kurallar çerçevesinde uzaklaştırılmalıdır.

Laboratuvardan çıkmadan önce enerji kesilmelidir.

DİKKAT!

Laboratuvarda çalışan herkesin belirtilen kuralların tümüne uyması zorunludur. Bu kurallara uymayanlar laboratuvar

sorumluları tarafından uyarılacak, gerekirse laboratuvardan süreli uzaklaştırma ile cezalandırılacaklardır. Laboratuvara

kasıtlı olarak zarar verdiği tespit edilen kişiler laboratuvardan süresiz olarak uzaklaştırılacak ve verilen zarar tazmin

ettirilecektir.

Yukarıdaki kuralları okudum ve kabul ediyorum.

Tarih : ....... / ….. /2014

Öğrencinin Adı Soyadı ve İmzası

Page 3: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 3

Genel Notlandırma

Mazeretsiz olarak deneyden üçüne girmeyen kişiye FF notu verilecektir. Laboratuvar dersinin notu bütün

laboratuvarlardan alınan toplam notların ortalamasına bakılarak verilecektir.

Ölçme ve Analiz Laboratuvarı dersi vize notu aşağıda yer alan üç not ile belirlenecektir.

Deney öncesi sınav (%40)

Her laboratuar dersinin başında 10 dakikalık küçük sınavlar yapılacaktır. Küçük sınavlar önceki hafta yapılan

ve o hafta yapılacak olan deneyle ilgili sorulardan oluşacaktır. Öğrenci bu soruları tek başına

cevaplandıracaktır. Herhangi bir kopya durumunda öğrencinin deney notu sıfır olur.

Deneyler öncesi rapor(%30)

İlgili deneyin başında yapılması istenen kısımdır. Her grup üyesi ayrı olarak ön çalışmayı yapmalıdır. O hafta

yapılacak olan deneyin ön çalışması deneye gelmeden önce hazırlanmalıdır. Deney öncesi hazırlık Proteus

programı ile yapılabilir.

Uygulama kısmı (%30)

Deneyin laboratuvarda öğrenci tarafından gösterilen performansı içerir.

Genel Kurallar

Deneyler gruplar şeklinde yapılacaktır.

Deneyler süresi içerisinde bitirilmek zorundadır. Bu nedenle öğrencinin deney içeriğini dikkate alarak

zaman yönetimi yapılması gerekir.

Her öğrencinin laboratuvar güvenlik kılavuzunu imzalayarak ilk deneyde deney sorumlusuna teslim

emesi gereklidir.

Deney ön hazırlıkları, tüm deneylerin teorik sonuçlarını ve Proteus kullanarak elde edilen benzetim

sonuçlarını içermelidir. Bir ön hazırlık sayfasında sayfa sayısının az olmasına dikkat edilmelidir. Bu

nedenle sonuçlar “painte” atılarak küçültülmelidir.

Deney raporu temiz beyaz bir A4 kâğıdına yazılmalıdır. Aksi durumda raporlar değerlendirilmeyecektir.

Deney raporlarını her öğrenci sadece kendi tecrübelerini kullanarak yazmalıdır. Başka bir grubun deney

sonuçlarını veya başka kaynaklardan alınmış çıktıları getirmemelidir. Bu durumda öğrencinin deneyler

öncesi rapor notu sıfır verilecektir.

Rapor zımbalanmalıdır, ayrı bir dosya kullanılmamalıdır.

Raporda yapılan devreler ve kullanılan elemanlar özenli ve detaylı bir biçimde verilmelidir. Tüm ölçüm

ve çizimlerde kullanılan birimler mutlaka yazılmalıdır. Çizim ve tablolar mümkün olduğu kadar özenli

ve ölçekli olmalıdır.

Raporlarda bilimsel olarak anlamlı düzgün bir dil kullanılmalıdır. Basit ve gereksiz cümleler

kullanılmamalıdır basit anlatımlar kesinlikle yazılmamalıdır.

Kapaksız raporlar değerlendirilmeyecektir.

Page 4: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 4

Resim 1 Temel Elektronik Elemanlar

1.1. Temel Elektronik Elemanlar

1.1.1. Direnç: Devreye uygulanan gerilim ve akım bir uçtan diğer uca ulaşıncaya kadar izlediği yolda

birtakım zorluklarla karşılaşır. Bu zorluklar elektronların geçişini etkileyen veya geciktiren kuvvetlerdir.

İşte bu kuvvetlere direnç denir. Birimi ohm (Ω) ile gösterilir. Başka bir değişle elektrik akımına karşı

gösterilen zorluğa direnç denir. “R” harfi ile sembollendirilir.

1.1.2. Kapasitör: Kapasitör (kapasite, kondansatör, sığa), elektronların kutuplanarak elektriksel yükü elektrik

alanın içerisinde depolayabilme özelliklerinden faydalanılarak, bir yalıtkan malzemenin iki metal tabaka

arasına yerleştirilmesiyle oluşturulan temel elektrik ve elektronik devre elemanıdır. Elektrik yükü

depolama, reaktif güç kontrolü, bilgi kaybı engelleme, AC/DC arasında dönüşüm yapmada kullanılırlar

ve elektronik devrelerin vazgeçilmez elemanıdır.(A=680F, B=470F)

1.1.3. Diyot: Diyotlar yarı iletken elektronik devre elemanlarının temel yapı taşıdır. Diyot genel anlamda bir

yönde akım geçiren, diğer yönde akım geçirmeyen elektronik devre elemanıdır. Kısacası üzerinden

sadece tek yönde akım geçişine izin veren elemandır. Diyotun P kutbuna "Anot", N kutbuna da " Katot "

adı verilir.

1.1.4. Zener Diyot: Ters polarizasyon altında uçlarına uygulanan gerilimi, ters kırılma gerilimi değerinde

(zener geriliminde) sabit tutan diyot çeşidine zener diyot denir. Zener diyot kullanılarak çıkışın istenilen

sabit değerde tutulduğu gerilime zener gerilimi denir. Zener diyotlar doğru polarizasyon altında

doğrultucu olarak çalışır. Ancak genel kullanım amaçları ters kırılma gerilimi elde etmektir. Zener

1.HAFTA Temel Elektronik Elemanlar ve Diyot Karakteristiği

Amaç: Diyotların akım-gerilim davranışlarının incelenmesi ve özeğrilerinin çıkarılması.

Page 5: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 5

diyotlar ters kırılma gerilim değerleriyle anılırlar. Örneğin 3V, 4.3V, 5.1V, 6.2V, 7.5V, 9.1V, 12V zener

olarak adlandırılırlar.

1.1.5. Bjt Transistör: Alternatif işaretleri kuvvetlendirmek veya anahtarlama yapmak için kullanılan akım

kontrollü elemanlardır.

1.2. Diyot Karakteristik Eğrilerinin İncelenmesi

Diyotlar elektrik akımını tek yönde ileten devre elemanlarıdır. Diyot sembolündeki ok akım yönünü

gösterir.

Şekil 1.1 Yarı iletken diyotun yapısı ve sembolü

Yarı iletken diyot, bir p-tipi yarıiletkenle n-tipi yarıiletkenin birbirine değmesi ile oluşan eklemden

(jonksiyon) oluşur. Bir diyotun özellikleri p ve n tipi bölgelerin katkı yoğunlukları ve eklem yüzeyinin

alanına bağlı olarak değişir. Büyük akı taşıması gereken doğrultucu diyotlarda eklem alanı büyük, hızlı

küçük işaret diyotlarında ise küçük yapılır.

Bir yarıiletken diyodun akım-gerilim bağıntısı aşağıda verilmiştir:

(1.1)

Burada VD diyotun iki ucu arasındaki gerilimi, ID diyottan geçen akımı göstermekte olup 290°K oda

sıcaklığında VT = kT/q = 26 mV dur. I0 diyotun ters doyma akımı olup diyotun yapısına ve sıcaklığına

göre 10-13A ile 10-15A arasında değişir.

Tipik bir silisyum diyot için bu eğri çizildiğinde yaklaşık VD≈0,6V civarında akımın mA mertebelerine

yükseldiği görülür. Pratikte bu gerilimin altında diyot akımı sıfır kabul edilir (açık devre). Şekil 1.2' de

diyotun gerçek öz eğrisi ile 1. 2. ve 3. dereceden idealleştirilmiş diyot öz eğrileri ve bunların devre

eşdeğerleri verilmiştir. Elle yapılan diyot devresi hesaplarında bu eşdeğer devrelerden biri kullanılır.

Gerçek özeğri doğrusal olmadığından basit doğrusal devre analizi yöntemlerinde kullanılamaz. Ancak

"spice" gibi bilgisayar destekli doğrusal olmayan analiz programları ile kullanılabilir.

Page 6: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 6

Şekil 1.2 Silisyum diyotun gerçek, doğrusallaştırılmış ve ideal akım-gerilim eğrileri ve eşdeğer devreleri

Yarıiletken diyotlar ters yönde kutuplandığında ihmal edilebilecek kadar küçük bir negatif akım (-I0)

akıtır. Fakat ters gerilim arttırıldığında, "ters kırılma gerilimi", VB, değerine ulaşınca ters diyot akımı çığ

ve/veya zener olayları nedeniyle birdenbire artmaya başlar. Ters kırılma gerilimi diyotların yapısına

bağlı olarak, normal diyotlarda 100 voltlar mertebesindedir ve diyot bu gerilimin altında çalıştığı sürece

diyottan ters akım akmaz."Zener diyot" adı verilen özel diyotlarda ters kırılma gerilimi 2-3 voltlara

kadar düşer. Akım-gerilim eğrisi Şekil 1.3'de verilen bu diyotlar sabit gerilim kaynağı olarak kullanılır.

Şekil 1.3 Zener diyot sembolü, akım-gerilim

1.3. Deneyden Önce Yapılacak Hesaplar

1.3.1. Formül (l.l)'i kullanarak ve I0=2,7xl0-14 alarak çeşitli gerilim değerlerine karşı düşen diyot akımlarını

hesaplayınız akım-gerilim eğrisini çiziniz.

1.3.2. Şekil 1.5'deki devrede Vz=5,6V'luk zener diyot kullanıldığında, V=12V ve R=330Ω için devreden

geçecek akımı hesaplayınız.

Page 7: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 7

1.4. Sorular

1.4.1. Şekil 1-2'de verilen eşdeğer devrelerden hangisinin kullanılacağına nasıl karar verirsiniz? Her biri için birer

örnek uygulama gösteriniz.

1.4.2. Şekil l-2a'daki gerçek diyot özeğrisi sıcaklıkla nasıl değişir? Bir diyotun özeğrisini T=20°, T=50°C ve

T=100°C için aynı grafik üzerinde çiziniz.

1.4.3. Zener diyotlarda zener gerilimi sıcaklıkla nasıl değişir? Küçük ve büyük gerilimli zener diyotlar için

açıklayınız.

1.5. Deneyin Yapılışı

1.5.1. Şekil 1-4'deki devreyi kurunuz. Tablo 1-1'deki diyot gerilimi değerlerini elde edecek şekilde gerilim bölücü

direnci ayarlayarak devreden geçen akımları okuyup tabloyu doldurun ve diyotun deneysel akım-gerilim

eğrisini teorik eğrinin bulunduğu grafiğe çiziniz.

Şekil 1.4 Diyot özeğrisinin çıkarılması

1.5.2. Bulduğunuz değerlere göre kullandığınız diyotun ters doyma akımı I0 ne olmalıdır?

1.5.3. 1N4002 doğrultucu diyot yerine 1N4148 küçük işaret diyotu koyarak 1. deneyi tekrarlayınız. Bu diyotun

akım-gerilim eğrisini aynı grafik üzerine çiziniz.

1.5.4. 5,6V'luk bir zener diyot kullanarak Şekil 1.5'teki devreyi kurunuz. Tablo 1.3'deki diyot akımı değerlerini

elde edecek şekilde en büyük giriş gerilimini ayarlayınız ve diyot gerilimini okuyarak tabloya

kaydediniz. Elde ettiğiniz değerlere göre deneysel akım-gerilim eğrisini çiziniz. Ters kırılma gerilimi

civarında daha fazla nokta alarak bu bölgeyi detaylı olarak çiziniz.

Şekil 1.5 Zener diyot özeğrisinin çıkarılması

Deney No 1 - Diyot Karakterisitiği

Deneyi Yapanlar :..............................................................

Deney Tarihi :...................................................

Page 8: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 8

Page 9: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 9

2.1. Temel Bilgiler

Diyotların en önemli uygulama alanı doğrultucu devrelerdir. Doğrultucular alternatif akımı doğru akıma

çevirmeye yarar.

2.1.1. Tek Yollu Doğrultucu

En basit doğrultucu tek bir diyot kullanılarak şekil 2.1’deki devre ile gerçekleştirilebilir.

Şekil 2.l a'daki devrede diyot sinüs biçimli v1 alternatif geriliminin sadece sıfırdan büyük değerleri için

iletimde olacağından çıkıştaki v2 gerilimi şekildeki kalın çizgili dalga şeklinde olur. Yani çıkış gerilimi her

zaman artı değerlidir. Bu gerilimin DA bileşeni dalga şeklinin ortalamasına eşittir.

(2.1)

Fakat bu gerilim girişin eksi değerde olduğu yarı peryot boyunca sıfırda kaldığından bir doğru gerilim

olarak kullanılamaz. Bu yüzden devreye Şekil 2.l b'de görüldüğü gibi bir kondansatör eklemek gerekir.

Giriş gerilimi yükselirken VD= V2 - V1 diyot gerilimi artı değerde olduğundan diyot iletimdedir ve

kondansatör dolar, çıkış gerilimi yaklaşık olarak giriş gerilimine eşit olur (gerçekte çıkış gerilimi

girişten yaklaşık bir diyot iletim gerilimi, yani 0,6...0,8V kadar düşüktür). Giriş gerilimi tepe değerine

ulaşıp düşmeye başlayınca, kondansatörün uçlarındaki gerilim aniden değişemeyeceği için çıkış gerilimi

girişten daha yüksek kalır ve diyot tıkanır. Bu durumda kondansatörü direnci üzerinden üstel olarak

T=RC zaman sabiti ile boşalır.

2.HAFTA Diyot Doğrultucu Devreleri

Amaç: Diyotlarla yapılan yarım ve tam dalga doğrultucu devrelerin incelenmesi

Page 10: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 10

(2.2)

Burada Vp giriş geriliminin tepe değeridir. v2(t)<v1(t) olduğunda diyot tekrar iletime geçer ve

kondansatör yeniden dolmaya başlar. Böylece çıkışta değeri Vs kadar dalgalanan bir doğru gerilim elde

edilmiş olur.

RC yeterince büyük seçilerek dalgalanma gerilimi istendiği kadar azaltılabilir. Girişteki sinüs biçimli

gerilim genelde 50Hz'lik şehir şebeke geriliminden elde edildiği için sinüsün peryodu T=1/50=20ms

olduğuna göre RC’nin T’den büyük değerleri için (RC > T), t ≈ T= 20ms ve üstel fonksiyon da düz bir

doğru parçası kabul edilirse;

(2.3)

eşitliği elde edilir. Burada f giriş geriliminin frekansını, I ise yük direnci R den geçen akımı

göstermektedir. Tek yollu doğrultucuda f=50Hz alınır. Kondansatör kullanıldığında çıkıştaki doğru

gerilimi aşağıdaki formülle hesaplanabilir.

(2.4)

2.1.2. İki Yollu (Çift Yollu) Doğrultucu

Hem dalgalanmayı azaltmak hem de doğrultucunun çıkış gücünü arttırmak için iki yollu doğrultucu

kullanılır. İki yollu doğrultucuda giriş geriliminin eksi değerleri de kullanılır. Bunu yapmak için ya orta uçlu

bir transformatör ve iki diyot veya 4 diyotlu köprü doğrultucu kullanılır. Her iki devrenin çıkış gerilimi de

Şekil 2-2c'deki gibidir. Bu gerilimin DA bileşeni:

(2.5)

Süzgeç kondansatörü, C, eklendiğinde çıkış dalga Şekil 2-2d'deki gibi olur. Çift yollu doğrultucu

kullanıldığında çıkış frekansı iki kat arttığı için çıkıştaki dalgalanma yarıya düşer. Bu durumda (2-3) ve

(2-4) eşitliğinde f=100Hz alınmalıdır.

Kondansatör bağlandığında çıkışta elde edilen doğru gerilimin ortalama ortalama değeri;

(2.6)

Page 11: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 11

2.2. Deneyden Önce Yapılacak Hesaplar

2.2.1. V1=12V (etkin) alarak giriş gerilimin tepe değerini hesaplayınız. R=1.5kΩ ve R=10kΩ C=47μF ve

C=470μF değerlerine karşı düşen dalgalanma gerilimlerini ve ortalama çıkış gerilimlerini hesaplayınız.

2.3. Sorular

2.3.1. Orta uçlu transformatör kullanan ve dört diyotlu tam dalga doğrultucu devreleri karşılaştırınız. Hangisi

ne bakımdan daha iyidir. 2.3.2. Büyük dalgalanma olduğunda elde edilecek dalgalanma gerilimini yaklaşıklık yapmadan (üstel

fonksiyonu kullanarak) hesaplayınız. 2.3.3. Transformatörün etkin çıkış direnci Rtr ve diyotların dinamik direnci Rd ihmal edilmezse (2-6) formülü

nasıl olur. Yeniden çıkartınız.

Page 12: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 12

2.4. DENEYİN YAPILIŞI

2.4.1. Şekil 2-3'deki devreyi R = 10kΩ için kurunuz. Multimetreyi "AC-volt" konumuna getirerek A-B

uçlarına bağlayınız ve alternatif geriliminin etkin değerini ölçünüz. Tepe değerini hesaplayınız. Osiloskobu aynı noktalara bağlayarak gerilimin tepe değerini ölçünüz. Giriş ve çıkış (C-D) dalga şekillerini üst üste çiziniz.

2.4.2. Ölçtüğünüz V1 geriliminin değerini kullanarak Tablo 2-2'deki değerleri yeniden hesaplayınız. Tablo 2-

2'ye yazınız.

2.4.3. R=l00Ω yapınız. Multimetreyi DC-volt konumuna alınız ve osiloskopla birlikte C-D uçlarına

bağlayarak çıkış geriliminin ortalama değerini (voltmetre ile), tepe değerini ve dalgalanma geriliminin

tepeden tepeye değerini (osiloskopla) ölçünüz. Dalga şekillerini çiziniz.

2.4.4. R direncinin uçlarına paralel olarak 47μF kondansatör bağlayarak 2. maddeyi tekrar yapınız.

2.4.5. 47μF yerine 470μF kondansatör bağlayarak 2. maddeyi tekrar yapınız.

2.4.6. R=1.5kΩ yaparak 2-3-4 ve 5. maddeleri tekrar yapınız. Bulduğunuz değerleri Tablo 2.2'ye yazın,

100Ω-470μF için dalga şekillerini çiziniz.

2.4.7. Çift yollu doğrultuculardan birini kurup madde 2-6'yı tekrarlayınız.

Page 13: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 13

Page 14: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 14

3.1. Temel Bilgiler

Doğrultucu devrelerden elde edilen doğru gerilim üzerindeki dalgalanma ve çıkış geriliminin

yüke bağlı olarak degişmesi yüzünden elektronik devrelerin beslenmesinde kullanılmaya uygun

değildir. Bu yüzden doğrultucunun arkasına bir gerilim reguülatörü devresi eklenmelidir. Bu

durumda genel amaclı bir besleme devresi Şekil 3.1'deki gibi gerçekleştirilebilir.

Bir gerilim kaynağının kalitesi hat regülasyonu ve yük regülasyonu ile çıkış direnci tarafından belirlenir. Hat regülasyonu, 220V'luk giriş gerilimindeki degişimlerin, yük regülasyonu ise yük akımındaki değişimin çıkış gerilimine etkisini gösterir.

Çıkış dirençi, rç ne kadar küçükse yük regülasyonu o kadar iyi olur. Yani kaynak, ideal gerilim kaynağına o kadar yaklaşır.

3.1.1. Zener Diyotlu Regülator

En basit gerilim regülatörü bir zener diyot kullanılarak yapılabilir. Bu devre sadece küçük akımlı devrelerde kullanılabilir. Çıkış akımı zener diyottan geçebilecek en yüksek akımdan küçük olmak zorundadır. Çıkış gerilimi zener gerilimine eşittir ve akıma bağlı olarak cok az degişir. Bu degişim Iz,min= 1 - 2 mA degerinden sonra Iz,max değerine kadar sabit kabul edilebilir. Gerçekte değişim ∆V=∆I× rd kadardır. Burada rd zener diyodun dinamik eşdeğer direnci olup değeri standart zener diyotlar icin 1 - 5Ω civarındadır. Devrenin çalışabilmesi için zenerden en az Iz,min kadar, en cok Iz,max kadar akım geçmelidir. Bunun sağlanması icin seri direnç aşağıdaki sınırlar içinde seçilmelidir.

3.HAFTA Besleme Devreleri

Amaç: Elektronik devrelerin beslenmesinde kullanılan doğru gerilim kaynaklarının incelenmesi

Page 15: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 15

Olmalıdır. Devrenin çıkışına bir transistörlü emetör çıkışlı devre eklenerek çıkıştan alınabilecek akım βF kadar arttırılabilir (Şekil 3.2b). Bu durumda;

3.1.2. Tümdevre Regülatörü

Page 16: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 16

3.1.3. Anahtar Modlu Besleme Devreleri

Page 17: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 17

3.2.Deneyden Önce Yapılacak Hesaplar

Page 18: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 18

3.3. Sorular

3.4. Deneyin Yapılışı

Page 19: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 19

Page 20: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 20

4.1. Temel Bilgiler

4.1.1. Transistörün Yapısı

Transistörler, katı-hal "solid-state" devre elemanlarıdır. Transistör yapımında silisyum, germanyum veya

uygun yarıiletken karışımlar kullanılmaktadır. Transistörün temel yapısı Şekil 4. 1’ de gösterilmiştir.

Şekil 4.1 Bipolar Eklem Transistörün yapısı

BJT transistörler katkılandırılmış P ve N tipi malzeme kullanılarak üretilir. NPN ve PNP olmak üzere başlıca

iki tipi vardır. NPN transistörde 2 adet N tipi yarıiletken madde arasına 1 adet P tipi yarıiletken madde konur.

PNP tipi transistörde ise, 2 adet P tipi yarıiletken madde arasına 1 adet N tipi yarıiletken madde konur.

Dolayısıyla transistör 3 adet katmana veya terminale sahiptir.

Şekil 4.2: NPN ve PNP tipi transistörlerin fiziksel yapısı ve şematik sembolleri

4.HAFTA Transistör Karakteristiğinin İncelenmesi

Amaç: Transistörün yapısının anlaşılarak giriş ve çıkış karakteristiğinin incelenmesi

Page 21: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 21

4.1.2. Transistör Parametreleri

Transistörle yapılan her türlü tasarım ve çalışmada dikkat edilmesi gereken ilk konu, transistörün DC kutuplama

gerilimleri ve akımlarıdır. Transistörlerin DC analizlerinde kullanılacak iki önemli parametre vardır. Bu

parametreler; βDC (DC akım kazancı) ve αDC olarak tanımlanır.

Şekil 4.3’ de NPN ve PNP tipi transistörler için gerekli kutuplama bağlantıları verilmiştir. Transistörün baz-

emiter eklemine VBB kaynağı ile doğru kutulama uygulanmıştır. Baz-kollektör eklemine ise VCC kaynağı ile ters

kutuplama uygulanmıştır.

Şekil 4.3: NPN ve PNP transistörlerin kutuplandırılması

4.1.3. Beta DC (βDC) ve Alfa DC (αDC) Akım Kazançları

β akım kazancı, ortak emiter bağlantıda akım kazancı olarak da adlandırılır. Bir transistör için β akım

kazancı, kollektör akımının baz akımına oranıyla belirlenir.

(4.1)

Kollektör akımını yukarıdaki eşitlikten ICO<<IB için;

(4.2)

olarak tanımlayabiliriz. Transistörde emiter akımı;

IE = IC + IB olduğundan (4.2) ifadesi yeniden düzenlenirse;

(4.3)

bağıntısı elde edilir.

Ortak bazlı bağlantıda akım kazancı olarak bilinen α değeri; kollektör akımının emiter akımına oranı

olarak tanımlanır.

Page 22: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 22

(4.4)

Emiter akım eşitliği kullanılarak;

(4.5)

ifadesi elde edilir.

(4.6)

olarak belirlenir.

Transistörlerde β akım kazancı, gerçekte sabit bir değer değildir. Değeri kollektör akımı ve sıcaklığa

bağımlıdır.

Şekil 4.4: Sıcaklık ve kollektör akımındaki değişime bağlı olarak βDC nin değişimi

4.1.4. Transistörün Giriş Karakteristiği

Karakteristik eğri, herhangi bir elektriksel elemanda akım-gerilim ilişkisini gösterir. Transistör; giriş ve çıkış

için iki ayrı karakteristik eğriye sahiptir. Transistörün giriş karakteristiği baz emiter gerilimi(VBE) ile baz

akımı(IB) arasındaki ilişkiyi verir.

Page 23: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 23

Transistörün giriş karakteristiklerini elde etmek için, kollektör-emiter gerilim (VCE) parametre olarak alınır ve bu

gerilime göre baz akımı (IB) değiştirilir. Baz akımındaki bu değişimin baz-emiter gerilimine (VBE) etkisi ölçülür.

Şekil 4.5 Transistörün giriş karakteristiği

Grafikten de görüldüğü gibi transistörün giriş karakteristiği normal bir diyot karakteristiği ile benzerlik

gösterir. VBE gerilimi 0,5 V un altında olduğu sürece baz akımı ihmal edilecek derecede küçüktür.

Uygulamalarda aksi belirtilmedikçe transistörün iletime başladığı andaki baz-emiter gerilimi VBE = 0,7 V

olarak kabul edilir. Baz-emiter (VBE) gerilimi, sıcaklıktan bir miktar etkilenir. Örneğin, her 1lik sıcaklık

artımında VBE gerilimi yaklaşık 2,3 mV civarında azalır. C°

4.1.5. Transistörün Çıkış Karakteristiği

Transistörlerde çıkış, genellikle kollektör-emiter uçları arasından alınır. Bu nedenle transistörün çıkış

karakteristiği; baz akımındaki (IB) değişime bağlı olarak, kollektör akımı (IC) ve kollektör-emiter (VCE)

gerilimindeki değişimi verir.

Transistöre uygulanan VCE gerilimi önemlidir. Bu gerilim değeri belirli limitler dahilinde olmalıdır. Bu

gerilim belirlenen limit değeri aştığında transistörde kırılma olayı meydana gelerek bozulmaya neden olur.

Şekil 6: Transistörün IC – VCE karakteristikleri ve kırılma gerilimi

Page 24: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 24

4.2. Deneyin Yapılışı

4.2.1. PNP Transistörün Karakteristikleri Deney boardunu kullanarak Şekil 4.7’deki devreyi kurunuz.

Tablo 1’de verilen her bir IC akımına karşılık IB ve IE akımlarını ölçüp verilen tabloya kaydediniz

Şekil 4.7: PNP transistörlü devre

4.2.2. NPN Transistörün Karakteristikleri

Deney boardunu kullanarak Şekil 4.8’deki devreyi kurunuz.

Tablo 2 de verilen her bir IC akımına karşılık IB ve IE akımlarını ölçüp verilen tabloya kaydediniz.

Şekil 4.8 NPN transistörlü devre

Page 25: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 25

4.2.3. Transistörün çıkış karakteristikleri

Deney boardunu kullanarak Şekil 4.9’daki devreyi kurunuz.

VR2 direncini IB=0 μA olacak şekilde ayarlayınız. Daha sonra VR1 direncini VCE gerilimi sırasıyla

Tablo3’deki değerleri alacak şekilde ayarlayınız ve her bir VCE gerilimine karşılık IC akımını okuyarak

Tablo 3’ e kaydediniz.

IB akımının verilen diğer değerleri için yukarıdaki işlemleri tekrarlayınız.

Şekil 4.9: Transistörün çıkış karakteristiklerinin çıkarılması

Page 26: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 26

Şekil 4.10: Baz Akımı parametre olmak üzere transistörün VCE- IC karakteristiği

Page 27: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 27

5.1.Temel Bilgiler

Ortak emiterli devrede NPN transistörün aktif bölgede çalışması için uygulanan gerilimler Şekil 5.1’de

gösterilmiştir. B-E uçlarına VBE ve C-E uçlarına VCE kutuplama gerilimleri uygulanır. E-B jonksiyonu ileri

yönde kutuplanır yani VBE gerilimi pozitiftir. Kollektöre, emitere göre pozitif VCE gerilimi uygulanır.

Kollektör gerilimi tabana göre aşağıdaki gibi yazılır. VCB = VCE - VBE C-B jonksiyonunu ters kutuplamak

için VCB gerilimi pozitif olmalıdır. Yani VCE gerilimi VBE geriliminden büyük olmalıdır. VCE gerilimi

VBE ’den küçük ise VCB gerilimi negatif olur ve C-B jonksiyonu ileri yönde kutuplanır dolayısıyla transistör

doymaya girer. Ortak emiterli devrede giriş taban, çıkış kollektördür. Belirli bir IB giriş akımı için IC çıkış

akımı oluşur. Transistörün çalışması ortak tabanlı devreki gibidir. Ortak tabanlı devredeki kazanç cinsinden

IB ile IC arasındaki ilişki aşağıdaki gibi elde edilir.

Şekil5.1 Ortak Emiterli devre

5.1.1. Ortak Emiterli Devrede Çıkış Karakteristiği

Ortak emiterli devrede bir NPN transistörün çıkış karakteristiği Şekil 1.5’de verilmiştir. A noktasında

taban akımı sıfırdır ve transistörden çok küçük bir kollektör akımı geçer. Bu akım ICE0 sembolü ile

gösterilir (ICE0 = αDC .ICB). A noktasında transistör kesimdedir. B ve C noktalarında transistör aktif

bölgededir. Aktif bölgede kollektör akımı, taban akımının αDC katıdır. Karakteristik üzerinde görüldüğü

αDC gibi her noktada aynı değildir. D noktasında ise transistör doyumda çalışır. Transistörde çalışma

noktasının bulunması yük doğrusu çizilerek yapılabilir. VCE = VCC − RC.IC (Şekil 5.1’den) denklemi

5.HAFTA Ortak Emiterli Küçük Sinyal Yükseltici

Amaç: Transistör kullanarak ortak emiterli küçük sinyal yükseltici yapılması ve özelliklerinin incelenmesi

Page 28: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 28

kullanılarak yük doğrusu çizilir. Karakteristik ile çakışan nokta çalışma noktasıdır. Transistör

amplifikatör olarak kullanılıyorsa çalışma noktası dikkatli seçilmelidir.

Şekil5.2 Ortak emiterli NPN transistörün çıkış karakteristiği

5.1.2. Kesim Bölgesi

Kesim bölgesinde transistor den taban akımı geçmez. Bu durum, B-E jonksiyonunun açık devre olması,

ters kutuplanması veya yeteri kadar kutuplanmaması ile ortaya çıkar. Transistörün kollektör-emiter

uçları açık devre gibi davranır. Kollektörden geçen akım sıfırdır ve kollektör-emiter uçlarında

maksimum gerilim oluşur Kesimde transistor den ICE0 akımıgeçer. Bu akım ihmal edilebilir.

Şekil5.3 Ortak Emiterli devrede transistor ün kesimde olması

5.1.3. Aktif Bölge ve Doyum Bölgesi

E-B jonksiyonu yeteri kadar kutuplanmışsa taban akımı geçer. Aktif bölgede kollektör akımı IC=βDC.IB

olarak hesaplanır. Taban akımı arttırıldığında kollektör akımı orantılı olarak artar. Doyma bölgesinde

taban akımının arttırılması ile kollektör akımı artmaz. Doymada kolektör akımı maksimum değerine ve

C-E gerilimi minimum değerine ulaşır. Doyma bölgesinde VCE≈0 kabul edilerek ICsat ve IBsat aşağıdaki

şekilde hesaplanır.

Page 29: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 29

Uygulama 5.1

5.1.4. Ortak Emiterli Tek Katmanlı ve Çift Katmanlı Yükselticinin Tasarlanması

Bir yükseltici yapmak için bir güç kaynağı, transistör, birkaç direnç ve kapasitör yeterlidir.Bu kısımda

istediğimiz özellikte bir bio-yükseltici adım adım tasarlanacaktır.

Şekil5.4 Ortak Emiterli Yükseltici

Her kalifiye mühendisin yaptığı gibi önce gereksinim/ihtiyacı

belirleyeceğiz. Daha sonra bazı kabuller ve katalog bilgileri kullanıp

tasarımımızı adım adım yapacağız. Bu kısımda bio-yükseltici

yapacağımız için bize yüksek bir voltaj kazancı gereklidir. Bu kazancı

ortak-emiterli bir yükseltici ile elde edebiliriz. En basit haliyle ortak

yükseltici sol taraftaki şekilde gösterilmiştir. Bu devreye ortak-emiterli

denilmesinin sebebi girişin Base, beslemenin (Vcc) kolektörden, çıkışın

C noktasından emiterin ise nötre bağlanıyor olmasındandır.

Şekil 5.5 Salınım Aralığı

RC direncinin belirlenmesi

VC = 1/2 VCC olacak şekilde sistemi konfigüre etmemiz gerekmekte.

Ohm kanununu kullanarak RC’yi hesaplayabiliriz. Transistörümüzün

kataloğuna bakarak IC akımının istediğimiz sıcaklık ve şartlarda 1mA

olduğunu öğrendikten sonra RC=(VCC-VC)/IC formülünü kullanarak

RC =(9-4,5)V/1mA = 4,5K olarak hesaplarız. Piyasada 4.5K direnç

bulunmamaktadır buna en yakın direnç 4.7KΩ bulunmaktadır ve biz

bunu kullanıyoruz.

Page 30: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 30

Şekil5.6 Emiterin transistor direncinin

gösterimi

RE direncinin belirlenmesi

Tür olarak devremizin kazancı RC/RE olacaktır. Emitör ile nötr

arasına direnç koymamış olsak bile transistörümüzün emiter çıkışının

bir direnci vardır ve bu rtr direnci aşağıdaki formül ile hesaplanır. rtr

= 0.026/IE Bizim devremiz için emitör akımını 1mA seçmiştik. Bu

durumda transistörümüzün rtr=0.026/1mA direnci 26Ω olarak

hesaplanır. Buradan kazancı hesaplarsak 4.7KΩ/26Ω = 180 çıkacaktır

bu istediğimiz değere her ne kadar yakın olsa da transistör direnci

olan rtr güvenilir sabitlikte olmadığından 1K lık bir direnç daha

eklememiz gerekecektir. Bu durumda yeni kazanç

Kazanç=RC/(RE+rtr)= 4700/(1000+26) = 4.6 olarak hesaplanacaktır.

Bu her ne kadar bizim istediğimiz kazanca yakın olmasada bu dirence

ekleyeceğimiz kapasitör sinyalin dalgalanmasında bu etkiyi yok

edecektir bu kapasitör değerini de filtremizin 300Hz nin üstündeki

sinyalleri geçirecek şekilde tasarlanması için seçeceğiz.

Şekil5.7 Emiter direncine bağlanan

kapasitör

Üst/Yüksek Geçiren Filtre Kapasitörünün Seçilmesi

Paralel direnç ve kapasitörün yüksek geçiren filtre olduğunu devre

teorisi derslerinde gördük. Buradan yola çıkarak f=12.π.R.C formülü

ile hesaplayabiliriz. Burada f = 300, R = 1KΩ seçildiğinden C= 20uF

olarak bulunur. Giriş sinyalinden hemen sonra giriş sinyalindeki DC

bileşeni çıkartmamızı sağlayacak 1uF lik kapasitörü ekledikten sonra

(DC offset’in sıfırlanması) devremiz yandaki hali alacaktır.

Şekil5.8 Kutuplama dirençlerinin

eklenmesi

Devrenin Kutuplamalarının Yapılması (Bias) Teorik derslerden

hatırlayacağımız gibi transistörümüzün iletime geçebilmesi için VBE

geriliminin 0.6-0.7V olması gerekmekte idi. Bunu sağlamak için

devreye birkaç direnç eklememiz gerekmektedir. Yandaki şekilde R2

direnci bunu sağlamak için eklenecektir. R1 direnci ise besleme

gerilimi ile R2 üzerine düşürülecek olan gerilim için gerilim bölücü

direncidir. RE direnci üzerine düşen gerilim VRE=1KΩ.1mA=1V dir.

VB noktasına düşen (transistorün B pini) gerilim ise VB=VRE+VBE

= 1V+0.6V = 1.6V olarak bulunur. VR2’nin 1.6V olması gerekmekte.

Page 31: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 31

Şekil5.9 Kutuplama dirençlerinin

hesaplanması

Gerilim bölücü değerlerinin bulunması

B noktasındaki gerilimi 1.6V ye ayarlamak için gerilim bölücü yapacak

olursak. Önce dirençlerin oranını bulmamız gerekecek.

𝑉𝑉𝐵𝐵=𝑅𝑅2𝑅𝑅1+𝑅𝑅2.𝑉𝑉𝐶𝐶𝐶𝐶 Denklemi tekrar düzenlersek

𝑅𝑅1𝑅𝑅2=𝑉𝑉𝐶𝐶𝐶𝐶−𝑉𝑉𝐵𝐵𝑉𝑉𝐵𝐵=9−1.61.6=4.6 Piyasada bulunan 1K ve 4.7K lık

dirençler ile bu oranı sağlayabiliriz.

Şekil 5.10 Tek katmanlı ortak emiterli yükselticinin son

hali

Tek katlı ortak emiterli yükselticimizin son hali

yandaki şekildeki gibidir. Çıkış sinyalimizin

tepeden tepeye genliğinin en fazla 9V olacağından

ve kazancımız 150 olduğundan bozulmadan

yükseltebileceğimiz sinyalin tepeden tepeye genliği

en fazla 9V/150 = 60mV dir.

Şekil 5.11 Çift katmanlı ortak emiterli yükseltici

Page 32: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 32

Giriş sinyalinin çok daha küçük olduğu durumlarda çıkış sinyalini güçlendirmek için ikinci bir katman

eklemek mümkündür. Şekil 5.10’da elde ettiğimiz devreden farklı olarak ikinci katmanda kullanılan

120Ω’luk direnç çok fazla kazançtan dolayı çıkış sinyalinin bozulmasını engellemek için kazancı

düşürmekte kullanılmıştır. Bu direnç kullanıcı tarafından değiştirilerek kararlılık optimize edilebilir.

5.2. Deneyin Yapılışı:

5.2.1. Deney Şekil 5.10’da gösterilen devreyi breadboard üzerinde kurunuz. Giriş sinyalinin genliğini ve

frekansını tablo 5.1’de istenenler üzerine ayarlayınız ve tabloda gösterilen değerlerde değiştirerek

istenen sonuçları not alınız.

5.2.2. Deney Şekil 5.11’de gösterilen devreyi breadboard üzerinde kurunuz. Devrenizin kararlı hale gelmesi

için 120Ω luk direnç yerine 150Ω, 220 Ω veya 1K Ω luk potunuzla uygun direnci ayarlayabilirsiniz.

Giriş sinyalinin genliğini ve frekansını tablo 5.2’de istenenler üzerine ayarlayınız ve tabloda gösterilen

değerlerde değiştirerek istenen sonuçları not alınız.

5.3. Ön Hazırlık

1. Deney 5.2.1 ve Deney 5.2.2’yi herhangi bir simülasyon programı (Örn. Proteus) ile yaparak tabloları

doldurunuz. Simülasyonu ek sayfadaki gibi yapmanız size hız kazandıracaktır simülasyondaki

voltmetrelerin AC voltmetre olduğunu ve RMS ölçüm yaptığını unutmayın tabloda sizden istenen Vpp

değerleridir RMS’den Vpp ye geçiş yapınız. Kazançları hızlı hesaplatmak için tabloyu Excel ile

hazırlayarak osiloskop ölçümü yapmak yerine voltmetreleri okuyarak RMS değerleri Vpp’ye excel’e

dönüştürtüp, kazanç kısmını excele hesaplattırabilirsiniz. Simülasyon için 120Ω luk direnç yerine 220Ω

kullanınız.

2. Uygulama 5.1 problemini çözünüz.

3. Ses dalgalarında insan kulağının hangi frekans aralığında duyduğunu, hangi frekans aralığının tiz, mid ve

bas olduğunu araştırınız.

Page 33: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 33

Tablo 5.1 Tek katmanlı ortak emiterli yükseltici ölçümleri tablosu

Vgiriş (Giriş VPP) Fgiriş (Giriş Frekansı) Vçıkış (Çıkış VPP) Bozulma (Evet/Hayır) Kazanç 15mV 40 15mV 150 15mV 300 15mV 500 15mV 750 15mV 1500 15mV 2000 18mV 40 18mV 150 18mV 300 18mV 500 18mV 750 18mV 1500 18mV 2000 20mV 40 20mV 150 20mV 300 20mV 500 20mV 750 20mV 1500 20mV 2000 20mV 40 20mV 150 20mV 300 20mV 500 20mV 750 20mV 1500 20mV 2000 30mV 40 30mV 150 30mV 300 30mV 500 30mV 750 30mV 1500 30mV 2000 60mV 40 60mV 150 60mV 300 60mV 500 60mV 750 60mV 1500 60mV 2000

Page 34: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 34

Tablo 5.2 Tek katmanlı ortak emiterli yükseltici ölçümleri tablosu

Vgiriş (Giriş VPP) Fgiriş (Giriş Frekansı) Vçıkış (Çıkış VPP) Bozulma (Evet/Hayır) Kazanç 15mV 40 15mV 150 15mV 300 15mV 500 15mV 750 15mV 1500 15mV 2000 18mV 40 18mV 150 18mV 300 18mV 500 18mV 750 18mV 1500 18mV 2000 20mV 40 20mV 150 20mV 300 20mV 500 20mV 750 20mV 1500 20mV 2000 20mV 40 20mV 150 20mV 300 20mV 500 20mV 750 20mV 1500 20mV 2000 30mV 40 30mV 150 30mV 300 30mV 500 30mV 750 30mV 1500 30mV 2000 60mV 40 60mV 150 60mV 300 60mV 500 60mV 750 60mV 1500 60mV 2000

Page 35: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 35

Page 36: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 36

6.1.Temel Bilgiler

BJT ile genelde yapılan yükselticilerin tipik özellikleri Tablo 6.1’de gösterilmiştir.

Tablo6.1

6.2. Ortak Kollektörlü Devre

Şekil 6.1 Ortak Kollektörlü Devrenin tipik yapısı

Bu tip yükselticilerin tasarlanmasında temel olarak VCE (veya VCB) ve VRE (veya VB) gerilimlerinin

eşitlenmesi düşünülür.

Basitçe V𝐵𝐵 = V𝑐𝑐𝑐𝑐2

=> R1 = R2 seçilir.

Sonra, tercih edilen veya seçilen IE ve geri kalan değerler bulunur.

β=100 kabul edilerek CE devrenin kararlı çalışması için RB << ( β +1).RE seçilir

6.HAFTA Ortak Baseli ve Ortak Kollektörlü Yükseltici

Amaç: Transistör kullanarak ortak baseli ve ortak kollektörlü küçük sinyal yükseltici yapılması ve özelliklerinin incelenmesi

Page 37: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 37

IE=1mA VCC=12V seçildikten sonra RE’nin hesaplanması kolaylaşır.

Piyasada bulunan standart dirençleri kullanacak olursak R1=R2=100KΩ, RE=56KΩ olarak

bulunacaktır. Bu durumda devremizin son hali Şekil 6.2 deki gibi olacaktır.

Şekil 6.2 Ortak Kollektörlü Devre

6.3. Ortak Baseli Devre

Kutuplamaları ortak emiterli devre ile aynıdır. Ortak baseli devrelerde base nötr-toprak noktasına direk yada

bypass kapasitörü ile bağlanılır.

Şekil 6.3 Ortak Bazeli Devre

Page 38: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 38

Şekil 6.4 Kutuplandırılmış Ortak Baseli Devre

Uygulama 6.1

6.4. Ön Hazırlık

1. Şekil 6.2 deki devreden VS kaynağını ayırıp DC analizini yaparak IB, IC, IE, VB, VCE, VC gerilimlerini

hesaplayınız.

2. Şekil 6.4 deki devreden VS kaynağını ayırıp DC analizini yaparak IB, IC, IE, VB, VCE, VC gerilimlerini

hesaplayınız.

3. Şekil 6.2 ve 6.4 deki devreleri simülasyon programı kullanarak deneyde istenen değerleri bulunuz. Frekans

değişimine göre kazanç değişimi grafiğini çiziniz.

4. Sonuçları yorumlayınız.

6.5. Deneyin Yapılışı

6.5.2. Deney 1

Şekil 6.2 deki devreyi kurunuz. Giriş sinyalini 100mV VPP sinüs olacak şekilde sinyal jeneratöründen

ayarlayınız frekansını Tablo 6.2’de istenenler üzerine ayarlayınız. Tabloda değişen değerlere göre istenen

sonuçları not ediniz. Frekans değişimine göre kazanç değişimi grafiğini çiziniz.

Page 39: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 39

6.5.2. Deney 2

Şekil 6.4 deki devreyi kurunuz. Giriş sinyalini 100mV VPP sinüs olacak şekilde sinyal jeneratöründen

ayarlayınız frekansını Tablo 6.3’de istenenler üzerine ayarlayınız. Tabloda değişen değerlere göre istenen

sonuçları not ediniz. Frekans değişimine göre kazanç değişimi grafiğini çiziniz.

Tablo 6.2

Fgiriş (Giriş Frekansı)

Vçıkış (Çıkış VPP)

Bozulma (Evet/Hayır)

Kazanç

100 Hz 150 Hz 200 Hz 250 Hz 300 Hz 500 Hz 700 Hz 900 Hz 1200 Hz 1500 Hz 2000 Hz 2500 Hz 3000 Hz 3500 Hz 4000 Hz 4500 Hz 5000 Hz 6000 Hz 8000 Hz 9000 Hz 10KHz 15KHz 20KHz 25KHz 30KHz 35KHz 40KHz 45KHz 50KHz 70KHz 150KHz 200KHz 500KHz 1MHz

Page 40: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 40

Tablo 6.3

Fgiriş (Giriş Frekansı)

Vçıkış (Çıkış VPP)

Bozulma (Evet/Hayır)

Kazanç

100 Hz 150 Hz 200 Hz 250 Hz 300 Hz 500 Hz 700 Hz 900 Hz 1200 Hz 1500 Hz 2000 Hz 2500 Hz 3000 Hz 3500 Hz 4000 Hz 4500 Hz 5000 Hz 6000 Hz 8000 Hz 9000 Hz 10KHz 15KHz 20KHz 25KHz 30KHz 35KHz 40KHz 45KHz 50KHz 70KHz 150KHz 200KHz 500KHz 1MHz

Page 41: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 41

7.1. Temel Bilgiler

Bir transistörün yükseltici (amplifikatör) olarak çalışabilmesi için dc olarak kutuplanması (ön

gerilimlenmesi) gerekir. Yükseltici devrenin girişine bir AC işaret uygulandığında, çıkışta elde edilen işaret,

DC bileşen ile AC işaretin toplamıdır. Bir AC işaret uygulanmazsa devrede sadece DC bileşen mevcuttur.

Şekil 7.1’de bu durum gösterilmiştir. Uygulamada transistör iki ayrı kaynak yerine tek bir kaynak ile

kutuplanır. Şekil 7.2’de gösterilen ortak emiterli devrenin girişine bir AC gerilim uygulanmıştır ve taban

akımı 200μA ile 400μA arasında değişmektedir. Taban akımının 500 μA’den büyük olması durumunda

kollektör akımı ve gerilimi doymaya gider. Taban akımının negatif olması durumunda ise transistör kesime

gider. Çalışma noktasına ve sınırlara dikkat edilmelidir.

Şekil 7.1 Bir yükselticide DC ve AC bileşenlerin toplamı.

Şekil 7.2 Çalışma noktasının bulunması.

7.HAFTA Kutuplama Devreleri

Amaç: Transistörlerde DC kutuplama devrelerinin incelenmesi

Page 42: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 42

7.2.Taban Kutuplama Devresi

B-E ve C-E jonksiyonlarının iki ayrı kaynak yerine tek bir kaynak ile kutuplanması daha pratik bir

çözümdür. Bu devreye taban kutuplama devresi denir. Şekil 7.3’de taban kutuplama devresi gösterilmiştir.

Şekildeki ortak emiterli devrede devrenin giriş ve çıkışına kondansatör konularak DC bileşenler filtre

edilmiştir.

Şekil 7.3 Ortak emiterli devrede taban kutuplama devresi.

Devrede çalışma noktası kararlı değildir. VBE gerilimi sıcaklığın artması ile azalır. VBE geriliminin

artması taban akımını azaltır. ICB0 sızıntı akımı sıcaklıkla artar. ICB0 akımı, RB direnci üzerinde taban

akımını arttırıcı yönde bir gerilim oluşturur. βDC de sıcaklıkla değişir. Bu değişimler devrede çalışma

noktasının değişmesine yol açar. VBE ve ICB0 ’ın değişmesi VCC gerilimine göre oldukça küçüktür.

Çalışma noktasındaki kararsızlık daha çok βDC ’deki değişimden kaynaklanır.

7.3.Emiter Dirençli Kutuplama Devresi

Emiter direncinin eklenmesi kararlılığı arttırır. Çalışma noktasındaki değişim çok küçüktür.

Şekil 7.4 Emiter dirençli kutuplama devresi

Page 43: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 43

7.4.Gerilim Bölücü ile Kutuplama

En çok kullanılan kutuplama devresidir. Çalışma noktası βDC ’den bağımsızdır.

Şekil 7.5 Gerilim Bölücü Devre ile Kutuplama

Emiter akımının βDC ’den bağımsız olması nedeniyle devredeki çalışma noktası kararlıdır.

Uygulama 7.1

Şekil 7.5’deki devrede RB1 = 39 kΩ, RB2 = 3.9 kΩ , RC = 10 kΩ , RE = 1.5 kΩ, VCC = 22 V ve β = 140

olarak verilmiştir. Transistörün VCE gerilimini, iC akımını ve transistörde harcanan gücü hesaplayınız.

Örnek bir DC Kutuplama Devresinin Tasarımı

Transistörlü bir devrede çalışma noktasının önceden belirlenmesi gerekli olduğunda, devre elemanlarının

seçilerek bir tasarım yapılması gerekir. Tasarım işleminde devre türüne göre bazı özel kabuller yapılır.

Burada örnek olarak Şekil 7.5’de verilen gerilim bölücülü kutuplama devresinin tasarımı incelenecektir.

Bu devrede emiter ile toprak arasına bir direnç yerleşmek, dc kutuplama kararlılığı sağlar. Transistörün

kaçak akımları nedeniyle kollektör akımında ve transistörün β değerinde meydana gelen değişimlerin,

Page 44: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 44

çalışma noktasında büyük bir değişikliğe yol açmaması sağlanır. Emiter direnci büyük tutulmaz, çünkü

üzerinde düşen gerilim kollektör-emiter arasındaki gerilimin değişim aralığını sınırlar. Emiter direncinin

üzerindeki gerilim VCC geriliminin 1/10’u seçilerek tasarım yapılır. Önce emiter direnci seçilerek, daha

sonra RC hesaplanır. Gerilim bölücü dirençlerin hesabı baz akımı ihmal edilerek yapılır. RB1 ve RB2

dirençlerini belirlemek için bu dirençlerden geçen akımın, taban akımının 10 katı olacağını kabul edilirse

aşağıdaki eşitlikler elde edilir.

Uygulama 7.2

Gerilim bölücü ile yapılan kutuplama devresinde transistörün β akım kazancı 150 ve kaynak gerilimi

VCC = 16 V olarak bilinmektedir. Devrede çalışma noktasının IC = 1 mA ve VC = VCC / 2 olması için

devrede kullanılacak direnç değerlerini hesaplayınız.

Çözüm:

Tasarımda emiter gerilimi, kaynak geriliminin yaklaşık onda biri seçilir.

7.5.Deney Çalışması

Uygulama 7.1 ve Uygulama 7.2’yi deneysel olarak gerçekleştiriniz. Teorik ve deneysel sonuçları

karşılaştırarak yorumlayınız.

Page 45: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 45

8.1. Temel Bilgiler

Transistör anahtarlama devrelerinde yaygın olarak kullanılır. Transistör sayısal devrelerde, kontrol, sayıcı,

zamanlama, veri işleme, ölçme devrelerinde, radar, televizyon vb. devrelerinde anahtar olarak kullanılır.

Transistör anahtar olarak kullanıldığında iletim ve kesim olmak üzere iki konumda çalışır. İletim

konumunda direnci 0.1-100 Ω arasındadır ve kısa devre kabul edilebilir. Kesim konumunda transistör açık

devre gibi davranır ve direnci 100-1000 MΩ arasındadır. Transistörün anahtarlama hızı da önemli bir

değişkendir. Transistörün iletime ve kesime girme sürelerinin toplamı 1 μs civarında ise, transistörün

çalışabileceği maksimum frekans f = 1 / T = 1 MHz olur. Şekil 8.1’de transistörün anahtar olarak

kullanıldığı bir devre ve yük geriliminin değişimi verilmiştir.

Şekil 8.1 Transistörün anahtar olarak kullanılması.

8.2. İnverter Devresi

Transistörün anahtar olarak kullanıldığı devrelerden biri de inverter devresidir. İnverter devresi sayısal

devrelerin temelidir. İnverter devresinde girişe kare dalga gerilim uygulanır. Kollektör ile toprak arasından

alınan çıkış gerilimi giriş geriliminin tersidir. Giriş gerilimi 0 iken transistör kesimdedir ve çıkış gerilimi 5

V’tur. Giriş gerilimi 5 V iken transistör iletime girer ve çıkış gerilimi 0 olur. Devre transistör iletimde iken

doymada çalışacak şekilde tasarlanır. Şekil 3.17’de transistörlü inverter devresi ile giriş ve çıkış gerilimleri

gösterilmiştir.

Şekil 8.2 Transistörlü inverter devresi.

8.HAFTA Transistörün Anahtar Olarak Kullanılması

Amaç: Transistörlü anahtarlama devrelerinin yapısının incelenmesi

Page 46: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 46

Uygulama 8.1

Şekil 8.3’de verilen devrede transistör anahtar olarak çalışmakta ve bir lambayı kontrol etmektedir. Giriş

gerilimi 6 V iken lamba yanmaktadır. Lamba 24 V’ta 20 mA geçirmektedir.

a) Giriş gerilimi 6 V iken transitörün doymada çalışması için akım kazancı ne olmalıdır?

b) Lambaya verilen güç ile transistörün giriş gücünü hesaplayınız.

Şekil 8.3 Transistörlü anahtarlama devresi

8.3.Deney Çalışması

Uygulama 8.1’i deneysel olarak gerçekleştiriniz. Teorik ve deneysel sonuçları karşılaştırarak yorumlayınız.

Page 47: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 47

9.1. Temel Bilgiler

9.1.1. Terimler

Ofset: İdeal işlemsel yükseltecin giriş gerilimi sıfır olduğunda çıkış gerilimi de sıfır olur. Ancak gerçekte

işlemsel yükseltecin devresindeki düzensizlikler nedeniyle giriş sıfır olduğunda çıkış sıfır olmaz. Bu gerilim

seviyesi ofset olarak adlandırılır. Bazı işlemsel yükselteçlerinde ofset gerilimini sıfırlamak için özel uçlar

bulunur.

CMRR: Genel Mod Ret Oranı CMMR veya ρ ile gösterilir ve mümkün olduğunca büyük olması istenir.

Açık Çevrim Kazancı: Açık çevrim kazancı çok büyük olup ideal işlemsel yükselteç için değeri sonsuzdur.

Kapalı Çevrim Kazancı: Açık çevrim kazancı çok büyük olduğu için işlemsel yükselteç kolaylıkla

doyuma ulaşmaktadır. Bu durum çoğu uygulama için kullanışsızdır. Kapalı çevrimde negatif geri belseme

ile kazancın kontrol edilebilir olması sağlanır.

İşlemsel yükselteç bir tür tüm devre olup kısaca OPA olarak adlandırılmaktadır.

OPA biri eviren diğeri evirmeyen olmak üzere iki girişe sahiptir.

Şekil 9.1 İşlemsel yükseltecin şematik gösterimi

Genelde simetrik güç kaynağı ile çalışırlar. Çalışma gerilimi ±3 V ile ± 24 V arasında değişmektedir.

Şekil 9.2 İşlemsel yükseltecin besleme gerilimleri

İdeal işlemsel yükseltecin gerilim kazancı sonsuzdur.

İdeal işlemsel yükseltecin giriş empedansı sonsuzdur.

İdeal işlemsel yükseltecin çıkış empedansı sıfırdır.

İdeal işlemsel yükseltecin bant genişliği sonsuzdur.

İdeal işlemsel yükseltecin ofset gerilimi sıfırdır.

İdeal işlemsel yükseltecin karakteristikleri ısıya bağlı değildir.

9.HAFTA İşlemsel Yükselteçler ( Op-amp)

Amaç: İşlemsel yükselteçli temel devre yapılarının incelenmesi

Page 48: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 48

Dönme Hızı (Slew Rate, SR): İşlemsel yükseltecin sinyal iletim hızı dönme hızı ile ifade edilir. Dönme

hızı işlemsel yükseltecin yüksek frekanslı işaretleri iletme kapasitesini göstermektedir. Genelde dönme

hızı büyük olan işlemsel yükselteçlerin bant genişlikleri de büyüktür.

Bant Genişliği: İdeal işlemsel yükseltecin bant genişliği sonsuzdur. Fakat gerçekte bant genişliği sınırlı

olup, değeri işlemsel yükseltece ait veri dosyasında yazmaktadır.

9.2. Deneyin Yapılışı:

9.2.1. İşlemsel Yükseltecin Temel Özellikleri

1. Şekil 9.3’deki devreyi kurunuz.

Şekil 9.3 İşlemsel yükseltecin temel özellikleri deneyi

2. Sinyal üretecinin çıkış işaretinin 1 kHz sinüs olacak şekilde ayarlayıp, devreye bağlayınız.

3. Osiloskobun birinci kanalını girişe ikinci kanalını çıkışa bağlayınız.

4. VR3 ayarlı direncinin BC uçları arasındaki direnç değerini 100 kΩ olacak şekilde ayarlayınız. Giriş ve

çıkış işaretlerinin genliklerini ölçüp, gerilim kazancını hesaplayınız.

Vİ=…………………….. V0=………………………… AV=…………………….

5. VR3 = 100 kΩ için devrenin gerilim kazancı ifadesini çıkartınız ve gerilim kazancını hesaplayınız.

Ölçerek ve hesaplayarak bulduğunuz gerilim kazançlarını karşılaştırıp, yorumlayınız.

AV = ..…………………………………………………………………………….

AV ölçülen = ……….……….

AV hesaplanan = ……….……….

Yorum :……….…………………………………………………………………………………………..

…………………………………………………………………………………………………………….

6. VR3 = 0 kΩ için 4. ve 5. maddeyi tekrarlayınız.

Vİ=…………………….. V0=………………………… AV=…………………….

AV = ..…………………………………………………………………………….

AV ölçülen = ……….……….

AV hesaplanan = ……….……….

Yorum :……….…………………………………………………………………………………………..

…………………………………………………………………………………………………………….

Page 49: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 49

7. VR3 = 40 kΩ için 4. ve 5. maddeyi tekrarlayınız.

Vİ=…………………….. V0=………………………… AV=…………………….

9.2.2. Dönme Hızı

Deneyin Yapılışı:

1. Şekil 9.4’deki devreyi kurunuz. Gerilim kazancı ifadesini çıkarıp, gerilim kazancını hesaplayınız.

AV = ..…………………………………………………………………………….

Şekil 9.4 Dönme hızı deneyi

2. Sinyal üretecinin çıkış işaretinin 1 kHz kare dalga olacak şekilde ayarlayıp, devreye bağlayınız. 3. Osiloskobun birinci kanalını girişe ikinci kanalını çıkışa bağlayınız. 4. Çıkış sinyalinin tepeden tepeye genliğini ve yükselme zamanını ölçüp dönme hızını hesaplayınız.

9.2.3. Bant Genişliği

Deneyin Yapılışı: 1. Şekil 9.5’deki devreyi kurunuz. Gerilim kazancı ifadesini çıkarıp, gerilim kazancını hesaplayınız.

AV = ..…………………………………………………………………………….

Şekil 9.5 Bant genişliği deneyi

2. Sinyal üretecinin çıkış işaretinin tepeden tepeye genliği 50 mV frekansı 1 kHz sinüs olacak şekilde ayarlayıp,

devreye bağlayınız. 3. Osiloskobun birinci kanalını girişe ikinci kanalını çıkışa bağlayıp, aşağıdaki tabloyu doldurunuz.

Vi [mV] Vo [mV] AV 50 100 200

Page 50: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 50

4. Giriş sinyalinin genliğini tepeden tepeye 100 mV olacak şekilde ayarlayıp aşağıdaki tabloyu doldurunuz.

f [Hz] Vo [mV] AV AV [dB] 50 200 500

1.000 2.000 5.000 10.000 12.000 15.000 30.000

4. Normalize gerilim kazancını hesaplayıp, kesim frekansını ve bant genişliğini yaklaşık olarak bulunuz. Kesim

frekansı, normalize gerilim kazancının kök ikide birine veya 0.707’de birine düştüğü noktadır.

Burada; AVn normalize gerilim kazancını ve AVmax ise en büyük gerilim kazancını göstermektedir. Normalize

gerilim kazancı 0 ile 1 arasında olmalıdır.

f [Hz] AV AVn 50 200 500

1.000 2.000 5.000 10.000 12.000 15.000 30.000

Bant genişliği =……….……….

6. Normalize gerilim kazancının grafiğini çizip, grafik üzerinde kesim frekansını ve bant genişliğini gösteriniz.

Page 51: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 51

10.1. Temel Bilgiler

Schmitt trigger (tetikleyici) devresi, giriş sinyalinin dalga biçimine bağlı olmayan fakat bu sinyalin

genliği ile belirlenen bir kare dalga üreten devredir. Giriş sinyalinin genliği önceden belirlenen bir eşik

değerini aştığında çıkış lojik-1 düzeyine ulaşır, diğer bir eşik değerinin altına indiğinde ise lojik-0

düzeyine iner. Böylece iki kararlı bir yapı elde edilir. Kare dalga üretmek için kullanılmasının yanı sıra

otomatik kontrol sistemlerinde sensörlerden gelen bilgilere göre keskin şekilde lojik-1 ve lojik-0

değişimlerini elde etmek için schmit trigger devreleri kullanılmaktadır.

10.2.Transistörlü Schmitt Trigger Devresi

Transistörler lineer (doğrusal) çalışan elektronik anahtarlardır. Transistörün baz akımı artarken kolektör

akımı da bununla orantılı olarak artar. Transistörün kolektörüne yük olarak bir röle bağlıysa rölenin çekme

akımında kontaklar titreşir. Kolektör akımının doğrusal artışı istenmeyen bir durum yaratır. Bu sorunu

önlemenin en iyi yöntemi transistörü birdenbire kesime ya da doyuma ulaştırmaktır. Transistörün bu

çalışmayı göstermesinin en iyi yollarından biri schmitt trigger bağlantısı kullanmaktır. Schmitt-trigger

bağlantıda şekil 10.1’de görüldüğü gibi emiter dirençleri ortak olarak kullanıldığından iki transistörün

emiter akımları aynı direnç üzerinden geçmektedir. Bu nedenle Q1’in iletkenliği Q2’nin yalıtkanlığını,

Q2’nin iletkenliği de Q1’in yalıtkanlığını kolaylaştırır ve böylece transistörlerin birdenbire doyuma ya da

kesime gitmesi sağlanmış olur.

Şekil 10.1'deki devrede Schmitt tetikleyicisinin transistörlü devresi gösterilmiştir. Vi sinüzodial girişinin

negatif alternansında Q1 transistörü kesimde, R4 ve R1 dirençleriyle baz polarması alan Q2 transistörü ise

doyumdadır. Bu durumda Vo< Vcc olur. Girişe uygulanan sinüzodial sinyal belirli bir V1 eşik değerine

ulaştığında ise Q1 transistörü doyuma, Q2 transistörü kesime geçer. Dolayısıyla Vo = Vcc olur. Bundan

sonra giriş sinyali artmaya devam ettiği halde çıkışta herhangi bir değişiklik görülmez. Giriş sinyali tepe

değerinden sıfıra doğru azalmaya başlar. Giriş sinyali belirli bir V2 eşik değerine ulaştığı anda Q1

transistörü kesime, Q2 transistörü doyuma gider. Bu anda tekrar Vo < Vcc olur. Çalışma bu şekilde sürekli

olarak devam eder. Şekil 10.2’de bu durum gösterilmektedir.

10.HAFTA SCHMITT TRIGGER (TETİKLEYİCİ) DEVRELERİAmaç: Schmitt Trigger devre yapısını ve çalışma şeklinin incelenmesi

Page 52: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 52

Şekil 10.1 Transistörlü Schmitt trigger devresi Şekil 10.2 Transistörlü Schmitt trigger devresi dalga

Şekilleri ( Volt/div=5V Time/div=500µs )

Şekil 10.3: Transistörlü Schmitt Trigger karakteristik eğrisi

Bu karakteristikte V1 ve V2 değerleri birbirinden farklıdır. Bu farka "histerizis" adı verilir. Devredeki

eleman değerlerinin ayarlanması suretiyle V1 ve V2 ‘nin değerleri birbirlerine yakınlaştırılabilir. Schmitt

tetikleyici devrelerde histerizis önemlidir. Örneğin DC sinyalin seviyesi belirli bir değeri aştığında

operatöre bir uyarı, ikaz verilmesi isteniyorsa, bu durumda, eğer V1 = V2 olursa, işaret üzerine binecek

istenmeyen gürültü sinyalleri nedeniyle devre titreşim şeklinde peş peşe uyarı verecektir. Eşik değerlerinin

farklı olması, uyarı noktası ile uyarıyı kaldırma noktası arasında belirli bir fark meydana getireceğinden

kontrol sistemi böyle ufak değişimlerden etkilenmeyecektir.

Page 53: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 53

10.3. İşlemsel Yükselteçli Schmitt Trigger Devresi

Şekil 10.4 OP-AMP’lı faz çeviren Schmitt trigger devresi

OP-AMP ile yapılan schmitt-trigger devresi faz çeviren ve faz çevirmeyen olmak üzere iki çeşittir.

Şekil 10.4'de görüldüğü gibi faz çeviren özellikteki schmitt-trigger devresine giriş sinyali OP-AMP’ın faz

çeviren (-) girişine uygulanır. Devrede OP-AMP olarak LM358 OP-AMP’ı kullanılmıştır. Bu OP-AMP’ı

kullanmanın en büyük avantajı tek kaynak ile beslenebilmesidir. Devre girişinden 2V genlikli 100 Hz

frekanslı sinüzodial sinyal uygulanmış, çıkıştan kare dalga sinyal elde edilmiştir.

Şekil 10.5 OP-AMP’lı faz çeviren Schmitt-trigger devresi

sinyal diyagramları (Time/div=5ms Volt/div-giriş=2V Volt/div-çıkış=5V)

Şekil 10.5’de OP-AMP’lı faz çeviren schmitt-trigger devresinin giriş-çıkış sinyal diyagramları

görülmektedir. Görüldüğü gibi kare dalganın yükselme ve düşme eşik gerilimleri çok az da olsa farklıdır.

Ttl Dönüştürücülü Schmıtt Trıgger Devresi

Schmitt-trigger devre gereken uygulamalarda daha çok schmitt trigger özellikli lojik kapı entegreleri

kullanılır. Bu entegrelerde lojik kapı girişleri schmitt-trigger özelliğine uygun olarak tetikleme almaktadır.

Lojik kapı aldığı tetikleme eşik gerilimini lojik-0 (0V) ve lojik-1 (5V) değerlerine dönüştürür. Özellikle

Page 54: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 54

mikrodenetleyicili uygulamalarda herhangi bir yerden gelen sensör bilgisinin uygun lojik değerlere

getirilmesinde schmitt-trigger özellikli TTL dönüştürücüler kullanılmaktadır. Bu entegreler ile girişe

uygulanan yavaş değişimlere hızlı olarak çıkışta cevap verilir.

Schmitt-trigger özellikli bir lojik kapının sembolünde schmitt karakterisitik eğrisine benzer bir sembol yer

alır. Aşağıda örnek olarak schmitt-trigger özellikli bir NOT kapısı görülmektedir.

Şekil 10.6 Schmitt-trigger NOT kapısı

Şekil 10.7’de schmitt trigger girişli bir NOT kapısı ile gerçekleştirilmiş kare dalga osilatörü görülmektedir.

Bu devre aslında lojik kapılı bir astable multivibratörüdür. Devre bir schmitt trigger NOT kapısı ve RC

devresinden oluşmuştur.

Şekil 10.7 Schmitt trigger not kapılı osilatör ve sinyal şekilleri

Devreye enerji verildiğinde kondansatör üzerindeki gerilim Vc = 0V olduğundan çıkış gerilimi lojik-1

seviyesindedir. Kondansatör çıkıştaki lojik-1 geri beslemesi ile R direnci üzerinden şarj olacaktır.

Kondansatör sarj gerilimi NOT kapısının (VT+) eşik gerilimine ulaşınca çıkış konum değiştirir ve lojik-0

değeri alır. Vout=0V olduğundan, kondansatör direnç üzerinden deşarj olmaya başlar. Kondansatör

üzerindeki deşarj gerilimi (VT-) eşik gerilimine ulaşınca çıkış gerilimi tekrar lojik-1 değerine ulaşır.

Çıkışın yüksek gerilim seviyesinde kalma süresi ( OH T ) ve düşük gerilim seviyesinde kalma süresi

( OL T ) aşağıdaki formüllerle hesaplanabilir.

Aşağıda 74HC14 schmitt trigger girişli CMOS NOT kapısı ile yapılan astable multivibratör devresindeki

örnek hesaplamalar görülmektedir. Çıkış sinyalinin yüksekte kaldığı süre, sinyalin alçakta kaldığı süre,

çıkış sinyalinin peryodu ve frekansı aşağıda hesaplanmıştır.

Page 55: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 55

Şekil 10.8: 74HC14 CMOS entegreli schmitt-trigger osilatör örneği

Page 56: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

Elektrik Elektronik Mühendisliği Elektronik Devreler-I Laboratuvarı 56

Deney Çalışması

Şekil 10.9 da verilen shmitt triger devresini kurarak girişine 5V üçgen ve sinüs dalgaları vererek V0

çıkışını inceleyiniz.

Şekil 10.9: Öğrenme Faaliyeti-4 uygulama devresi

Page 57: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

EKLER

Page 58: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

DS28002 Rev. 8 - 2

1 of 3 www.diodes.com

1N4001-1N4007© Diodes Incorporated

1N4001 - 1N4007 1.0A RECTIFIER

Features • Diffused Junction • High Current Capability and Low Forward Voltage Drop • Surge Overload Rating to 30A Peak • Low Reverse Leakage Current • Lead Free Finish, RoHS Compliant (Note 3)

Mechanical Data • Case: DO-41 • Case Material: Molded Plastic. UL Flammability Classification

Rating 94V-0 • Moisture Sensitivity: Level 1 per J-STD-020D • Terminals: Finish - Bright Tin. Plated Leads Solderable per

MIL-STD-202, Method 208 • Polarity: Cathode Band • Mounting Position: Any • Ordering Information: See Page 2 • Marking: Type Number • Weight: 0.30 grams (approximate)

Dim DO-41 Plastic Min Max

A 25.40 ⎯ B 4.06 5.21 C 0.71 0.864 D 2.00 2.72 All Dimensions in mm

Maximum Ratings and Electrical Characteristics @TA = 25°C unless otherwise specified

Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Characteristic Symbol 1N4001 1N4002 1N4003 1N4004 1N4005 1N4006 1N4007 Unit Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage

VRRM VRWM

VR 50 100 200 400 600 800 1000 V

RMS Reverse Voltage VR(RMS) 35 70 140 280 420 560 700 V Average Rectified Output Current (Note 1) @ TA = 75°C IO 1.0 A Non-Repetitive Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load IFSM 30 A

Forward Voltage @ IF = 1.0A VFM 1.0 V Peak Reverse Current @TA = 25°C at Rated DC Blocking Voltage @ TA = 100°C IRM 5.0

50 μA

Typical Junction Capacitance (Note 2) Cj 15 8 pF Typical Thermal Resistance Junction to Ambient RθJA 100 K/W Maximum DC Blocking Voltage Temperature TA +150 °C Operating and Storage Temperature Range TJ, TSTG -65 to +150 °C

Notes: 1. Leads maintained at ambient temperature at a distance of 9.5mm from the case. 2. Measured at 1.0 MHz and applied reverse voltage of 4.0V DC. 3. EU Directive 2002/95/EC (RoHS). All applicable RoHS exemptions applied, see EU Directive 2002/95/EC Annex Notes.

Page 59: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

1994. 3. 2 1/2

SEMICONDUCTORTECHNICAL DATA

BC237/8/9EPITAXIAL PLANAR NPN TRANSISTOR

Revision No : 0

GENERAL PURPOSE APPLICATION.LOW NOISE AMPLIFIER APPLICATION.

FEATURES High Voltage : BC237 VCEO=45V.

Low Noise : BC239 NF=0.2dB(Typ.), 3dB(Max.)

(VCE=6V, IC=0.1mA, f=1kHz).

For Complementary With PNP type BC307/308/309.

MAXIMUM RATING (Ta=25 )

TO-92

DIM MILLIMETERSA

B

CD

F

G

HJ

K

L

4.70 MAX

4.80 MAX

3.70 MAX0.451.00

1.27

0.85

0.4514.00 0.50

0.55 MAX

2.30

D

1 2 3

B

AJ

KG

H

F F

L

E

C

E

C

M

N

0.45 MAXM

1.00N

1. COLLECTOR

2. BASE

3. EMITTER

+_

CHARACTERISTIC SYMBOL RATING UNIT

Collector-Base Voltage

BC237

VCBO

50

VBC238 30

BC239 30

Collector-Emitter Voltage

BC237

VCEO

45

VBC238 20

BC239 20

Emitter-Base Voltage

BC237

VEBO

6

VBC238 5

BC239 5

Collector Current

BC237

IC

100

mABC238 100

BC239 50

Emitter Current

BC237

IE

-100

mABC238 -50

BC239 -50

Collector Power Dissipation PC 625 mW

Junction Temperature Tj 150

Storage Temperature Range Tstg -55 150

Page 60: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

1997 Mar 27 2

Philips Semiconductors Product specification

PNP general purpose transistors BC556; BC557; BC558

FEATURES

• Low current (max. 100 mA)

• Low voltage (max. 65 V).

APPLICATIONS

• General purpose switching and amplification.

DESCRIPTION

PNP transistor in a TO-92; SOT54 plastic package.NPN complements: BC546, BC547 and BC548.

PINNING

PIN DESCRIPTION

1 emitter

2 base

3 collector

Fig.1 Simplified outline (TO-92; SOT54)and symbol.

handbook, halfpage1

32

MAM281

3

2

1

QUICK REFERENCE DATA

SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT

VCBO collector-base voltage open emitter

BC556 − −80 V

BC557 − −50 V

BC558 − −30 V

VCEO collector-emitter voltage open base

BC556 − −65 V

BC557 − −45 V

BC558 − −30 V

ICM peak collector current − −200 mA

Ptot total power dissipation Tamb ≤ 25 °C − 500 mW

hFE DC current gain IC = −2 mA; VCE = −5 V

BC556 125 475

BC557; BC558 125 800

fT transition frequency IC = −10 mA; VCE = −5 V; f = 100 MHz 100 − MHz

Page 61: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

2N3819

SiliconixS-52424—Rev. C, 14-Apr-97

1

N-Channel JFET

Product SummaryVGS(off) (V) V(BR)GSS Min (V) gfs Min (mS) IDSS Min (mA)

–8 –25 2 2

Features Benefits Applications Excellent High-Frequency Gain:

Gps 11 dB @ 400 MHz Very Low Noise: 3 dB @ 400 MHz Very Low Distortion High ac/dc Switch Off-Isolation High Gain: AV = 60 @ 100 A

Wideband High Gain Very High System Sensitivity High Quality of Amplification High-Speed Switching Capability High Low-Level Signal Amplification

High-Frequency Amplifier/Mixer Oscillator Sample-and-Hold Very Low Capacitance Switches

DescriptionThe 2N3819 is a low-cost, all-purpose JFET which offers goodperformance at mid-to-high frequencies. It features low noiseand leakage and guarantees high gain at 100 MHz.

Its TO-226AA (TO-92) package is compatible with varioustape-and-reel options for automated assembly (see PackagingInformation). For similar products in TO-206AF (TO-72) andTO-236 (SOT-23) packages, see the2N4416/2N4416A/SST4416 data sheet.

1

TO-226AA(TO-92)

Top View

S

D

G 2

3

Absolute Maximum RatingsGate-Source/Gate-Drain Voltage –25 V. . . . . . . . . . . . . . . . . . . . . . . . . .

Forward Gate Current 10 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Storage Temperature –55 to 150C. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Operating Junction Temperature –55 to 150C. . . . . . . . . . . . . . . . . . . .

Lead Temperature (1/16” from case for 10 sec.) 300C. . . . . . . . . . . . . . .

Power Dissipationa 350 mW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Notesa. Derate 2.8 mW/C above 25C

Updates to this data sheet may be obtained via facsimile by calling Siliconix FaxBack, 1-408-970-5600. Please request FaxBack document #70238.

Page 62: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

R1

240 W

R2

2.4 kW

INPUT OUTPUT

ADJUST

LM317

VI

RS

0.2 W

Product

Folder

Sample &Buy

Technical

Documents

Tools &

Software

Support &Community

LM317SLVS044W –SEPTEMBER 1997–REVISED OCTOBER 2014

LM317 3-Terminal Adjustable Regulator1 Features 3 Description

The LM317 device is an adjustable three-terminal1• Output Voltage Range Adjustable

positive-voltage regulator capable of supplying moreFrom 1.25 V to 37 Vthan 1.5 A over an output-voltage range of 1.25 V to

• Output Current Greater Than 1.5 A 37 V. It requires only two external resistors to set the• Internal Short-Circuit Current Limiting output voltage. The device features a typical line

regulation of 0.01% and typical load regulation of• Thermal Overload Protection0.1%. It includes current limiting, thermal overload• Output Safe-Area Compensation protection, and safe operating area protection.Overload protection remains functional even if the2 Applications ADJUST terminal is disconnected.

• ATCA SolutionsDevice Information(1)

• DLP: 3D Biometrics, Hyperspectral Imaging,PART NUMBER PACKAGE (PIN) BODY SIZE (NOM)Optical Networking, and Spectroscopy

SOT (4) 6.50 mm × 3.50 mm• DVR and DVSTO-220 (3) 10.16 mm × 8.70 mm• Desktop PC LM317TO-220 (3) 10.16 mm × 8.59 mm

• Digital Signage and Still CameraTO-263 (3) 10.18 mm × 8.41 mm

• ECG Electrocardiogram(1) For all available packages, see the orderable addendum at• EV HEV Charger: Level 1, 2, and 3 the end of the data sheet.

• Electronic Shelf Label4 Battery-Charger Circuit• Energy Harvesting

• Ethernet Switch• Femto Base Station• Fingerprint and Iris Biometrics• HVAC: Heating, Ventilating, and Air Conditioning• High-Speed Data Acquisition and Generation• Hydraulic Valve• IP Phone: Wired and Wireless• Infusion Pump• Intelligent Occupancy Sensing• Motor Control: Brushed DC, Brushless DC, Low-

Voltage, Permanent Magnet, and Stepper Motor• Point-to-Point Microwave Backhaul• Power Bank Solutions• Power Line Communication Modem• Power Over Ethernet (PoE)• Power Quality Meter• Power Substation Control• Private Branch Exchange (PBX)• Programmable Logic Controller• RFID Reader• Refrigerator• Signal or Waveform Generator• Software Defined Radio (SDR)• Washing Machine: High-End and Low-End• X-ray: Baggage Scanner, Medical, and Dental1

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,intellectual property matters and other important disclaimers. PRODUCTION DATA.

Page 63: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

DCY (SOT-223) PACKAGE(TOP VIEW)

INPUT

OUTPUT

ADJUST

OU

TP

UT

KTE PACKAGE(TOP VIEW)

INPUT

OUTPUT

ADJUSTOU

TP

UT

KC (TO-220) PACKAGE(TOP VIEW)

OUTPUTINPUT

ADJUST

OU

TP

UT

KTT (TO-263) PACKAGE(TOP VIEW)

INPUT

OUTPUT

ADJUST

OUTPUT

INPUT

ADJUST

OU

TP

UT

KCS / KCT (TO-220) PACKAGE(TOP VIEW)

OU

TP

UT

LM317www.ti.com SLVS044W –SEPTEMBER 1997–REVISED OCTOBER 2014

6 Pin Configuration and Functions

Pin FunctionsPIN

TYPE DESCRIPTIONDCY, KCS,NAME KCT, KTTADJUST 1 I Output voltage adjustment pin. Connect to a resistor divider to set VO

INPUT 3 I Supply input pinOUTPUT 2 O Voltage output pin

Copyright © 1997–2014, Texas Instruments Incorporated Submit Documentation Feedback 3

Product Folder Links: LM317

Page 64: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

3 2 1 20 19

9 10 11 12 13

4

5

6

7

8

18

17

16

15

14

NC

2OUT

NC

2IN−

NC

NC

1IN−

NC

1IN+

NC

NC

1O

UT

NC

NC

NC

NC

GN

D

NC

CC

+V

2IN

+

1

2

3

4

8

7

6

5

1OUT

1IN−

1IN+

GND

VCC

2OUT

2IN−

2IN+

LM158, LM158A, LM258, LM258ALM358, LM358A, LM2904, LM2904V

www.ti.com SLOS068S –JUNE 1976–REVISED MAY 2013

Dual Operational AmplifiersCheck for Samples: LM158, LM258, LM258A, LM358, LM358A, LM2904, LM2904V

1FEATURES DESCRIPTIONThese devices consist of two independent, high-gain• Wide Supply Rangesfrequency-compensated operational amplifiers– Single Supply: 3 V to 32 V (26 V for designed to operate from a single supply over a wide

LM2904) range of voltages. Operation from split supplies also– Dual Supplies: ±1.5 V to ±16 V (±13 V for is possible if the difference between the two supplies

is 3 V to 32 V (3 V to 26 V for the LM2904), and VCCLM2904)is at least 1.5 V more positive than the input• Low Supply-Current Drain, Independent ofcommon-mode voltage. The low supply-current drainSupply Voltage: 0.7 mA Typ is independent of the magnitude of the supply

• Wide Unity Gain Bandwidth: 0.7MHz voltage.• Common-Mode Input Voltage Range Includes Applications include transducer amplifiers, dcGround, Allowing Direct Sensing Near Ground amplification blocks, and all the conventional• Low Input Bias and Offset Parameters operational amplifier circuits that now can be

implemented more easily in single-supply-voltage– Input Offset Voltage: 3 mV Typsystems. For example, these devices can beA Versions: 2 mV Typ operated directly from the standard 5-V supply used

– Input Offset Current: 2 nA Typ in digital systems and easily can provide the requiredinterface electronics without additional ±5-V supplies.– Input Bias Current: 20 nA Typ

A Versions: 15 nA Typ• Differential Input Voltage Range Equal to

Maximum-Rated Supply Voltage: 32 V (26 V forLM2904)

• Open-Loop Differential Voltage Gain: 100dBTyp

• Internal Frequency Compensation• On Products Compliant to MIL-PRF-38535,

All Parameters Are Tested Unless OtherwiseNoted. On All Other Products, ProductionProcessing Does Not Necessarily IncludeTesting of All Parameters.

LM158, LM158A . . . FK PackageLM158, LM158A . . . JG Package (Top View)

LM258, LM258A . . . D, DGK, or P PackageLM358 . . . D, DGK, P, PS, or PW Package

LM358A . . . D, DGK, P, or PW PackageLM2904 . . . D, DGK, P, PS, or PW Package

(Top View)

NC − No internal connection

1

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications ofTexas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Copyright © 1976–2013, Texas Instruments IncorporatedProducts conform to specifications per the terms of the TexasInstruments standard warranty. Production processing does notnecessarily include testing of all parameters.

Page 65: NUH NACİ YAZGAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ... devreler lab föyü EKLİ.pdf · Elektrik Elektronik Mühendisliği. Elektronik Devreler - I Laboratuvarı 4. Resim

LM741

www.ti.com SNOSC25C –MAY 1998–REVISED MARCH 2013

LM741 Operational AmplifierCheck for Samples: LM741

1FEATURES DESCRIPTIONThe LM741 series are general purpose operational

2• Overload Protection on the Input and Outputamplifiers which feature improved performance over

• No Latch-Up When the Common Mode Range industry standards like the LM709. They are direct,is Exceeded plug-in replacements for the 709C, LM201, MC1439

and 748 in most applications.

The amplifiers offer many features which make theirapplication nearly foolproof: overload protection onthe input and output, no latch-up when the commonmode range is exceeded, as well as freedom fromoscillations.

The LM741C is identical to the LM741/LM741Aexcept that the LM741C has their performanceensured over a 0°C to +70°C temperature range,instead of −55°C to +125°C.

Connection Diagrams

LM741H is available per JM38510/10101

Figure 1. TO-99 Package Figure 2. CDIP or PDIP PackageSee Package Number LMC0008C See Package Number NAB0008A, P0008E

Figure 3. CLGA PackageSee Package Number NAD0010A

1

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications ofTexas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

2All trademarks are the property of their respective owners.

PRODUCTION DATA information is current as of publication date. Copyright © 1998–2013, Texas Instruments IncorporatedProducts conform to specifications per the terms of the TexasInstruments standard warranty. Production processing does notnecessarily include testing of all parameters.