11
Nuclear Incorporation of Iron during the Eukaryotic Cell Cycle Ian Robinson a,b , Yang Yang c , Fucai Zhang a,b , Christophe Lynch a,b and Yusuf Mohammed a,b a Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxon, OX11 0FA, UK b London Centre for Nanotechnology, University College London, WC1E 6BT, UK c European Synchrotron Radiation Facility, 38043 Grenoble, France Scanning X-ray fluorescence microscopy has been used to probe the distribution of S, P and Fe within cell nuclei. Nuclei, which may have originated at different phases of the cell cycle, are found to show very different levels of Fe present with a strongly inhomogeneous distribution. P and S signals, presumably from DNA, are high and relatively uniform across all the nuclei; these agree with coherent zoom holography phase contrast images of the same samples. We discuss possible reasons for the Fe incorporation. 1. Introduction Human cell nuclei are appropriate test samples for the Nanoscale Imaging (NI) branch of the new “NINA” beamline (ID16A) at ESRF, described by Martinez-Criado et al (2012). Their sizes are in the range of 10µm, which falls within the field of view of the propagation-based phase contrast imaging capability of ID16A. In addition, high-resolution substructure is expected, at least if the nuclei are close to the metaphase point of the cell cycle when the parent cell is preparing for division. For the fluorescence imaging capabilities of ID16A, known quantities of DNA and (to a lesser extent) proteins are expected to be present in a cell nucleus, which can be used in quantitative chemical analysis and to verify the calibration of the sensitivity. Nuclei close to metaphase were targeted in this study because of interest in the higher-order structure of the separated chromosomes located within them, but it was also appreciated that this really needs a three-dimensional (3D) imaging capability to segregate them. Our sample preparation methods make use of cell cycle checkpoint inhibitors to synchronize the cells during culture, but this still allows some nuclei to emerge from the preparations at other points of the cell cycle. Careful filtering is used to remove cytoplasm and most of the other cell components (Yusuf et al, 2014), so a relatively pure preparation of whole nuclei and individual chromosomes is obtained, many with the nuclear membrane intact. This strictly excludes nuclei in metaphase proper, once the nuclear membrane dissolves, but does include prophase just beforehand, when the 46 chromosomes are fully formed within a nucleus. If the cells were in G1 phase when the samples were prepared, they would contain two double-stranded copies of all the genomic DNA; if they were in G2 phase or the beginning of metaphase (M-phase), there should be four copies; in S phase, there would be somewhere between two and four copies.

Nuclear Incorporation of Iron during the Eukaryotic …ucapikr/JSR_fluor_ESRF_draft3.pdf · Nuclear Incorporation of Iron during the Eukaryotic Cell Cycle ... this really needs a

Embed Size (px)

Citation preview

NuclearIncorporationofIronduringtheEukaryoticCellCycleIanRobinsona,b,YangYangc,FucaiZhanga,b,ChristopheLyncha,bandYusufMohammeda,baResearchComplexatHarwell,RutherfordAppletonLaboratory,Didcot,Oxon,OX110FA,UKbLondonCentreforNanotechnology,UniversityCollegeLondon,WC1E6BT,UKcEuropeanSynchrotronRadiationFacility,38043Grenoble,FranceScanningX-rayfluorescencemicroscopyhasbeenusedtoprobethedistributionofS,PandFewithincellnuclei.Nuclei,whichmayhaveoriginatedatdifferentphasesofthecellcycle,arefoundtoshowverydifferentlevelsofFepresentwithastronglyinhomogeneousdistribution.PandSsignals,presumablyfromDNA,arehighandrelativelyuniformacrossallthenuclei;theseagreewithcoherentzoomholographyphasecontrastimagesofthesamesamples.WediscusspossiblereasonsfortheFeincorporation.1.IntroductionHumancellnucleiareappropriatetestsamplesfortheNanoscaleImaging(NI)branchofthenew“NINA”beamline(ID16A)atESRF,describedbyMartinez-Criadoetal(2012).Theirsizesareintherangeof10µm,whichfallswithinthefieldofviewofthepropagation-basedphasecontrastimagingcapabilityofID16A.Inaddition,high-resolutionsubstructureisexpected,atleastifthenucleiareclosetothemetaphasepointofthecellcyclewhentheparentcellispreparingfordivision.ForthefluorescenceimagingcapabilitiesofID16A,knownquantitiesofDNAand(toalesserextent)proteinsareexpectedtobepresentinacellnucleus,whichcanbeusedinquantitativechemicalanalysisandtoverifythecalibrationofthesensitivity.Nucleiclosetometaphaseweretargetedinthisstudybecauseofinterestinthehigher-orderstructureoftheseparatedchromosomeslocatedwithinthem,butitwasalsoappreciatedthatthisreallyneedsathree-dimensional(3D)imagingcapabilitytosegregatethem.Oursamplepreparationmethodsmakeuseofcellcyclecheckpointinhibitorstosynchronizethecellsduringculture,butthisstillallowssomenucleitoemergefromthepreparationsatotherpointsofthecellcycle.Carefulfilteringisusedtoremovecytoplasmandmostoftheothercellcomponents(Yusufetal,2014),soarelativelypurepreparationofwholenucleiandindividualchromosomesisobtained,manywiththenuclearmembraneintact.Thisstrictlyexcludesnucleiinmetaphaseproper,oncethenuclearmembranedissolves,butdoesincludeprophasejustbeforehand,whenthe46chromosomesarefullyformedwithinanucleus.IfthecellswereinG1phasewhenthesampleswereprepared,theywouldcontaintwodouble-strandedcopiesofallthegenomicDNA;iftheywereinG2phaseorthebeginningofmetaphase(M-phase),thereshouldbefourcopies;inSphase,therewouldbesomewherebetweentwoandfourcopies.

Thefullhumangenomecontains3.2x109basepairs(bp)perdouble-strandofDNA,whichisdividedintothe23chromosomes.Associatedwitheachbasepairaretwophosphates,oneoneachstrand.ThesearebyfarthelargestexpectedcontributiontothePfluorescentX-raysignal,withsmalladditionalamountscomingfrombuffers,thelipidsinthecellmembranesandanyresidualRNAorATP.Soacellnucleusshouldhaveawell-definedsignalfromthese2.6x1010Patomsinitsfluorescentimagesifitisinthesecondhalfofthecellcycle(G2orMphase),or1.3x1010Patomsinitsfluorescentimagesifitisinthefirsthalfofthecellcycle(G1phase).Similarly,theSsignalwouldbemostlyattributedtoCysteine(Cys)andMethionine(Met)residuesinthenuclearproteins.Fortunately,muchisknownaboutthemake-upofthe(mostlystructural)chromosomalproteinsfoundinmetaphasefromtheworkofUchiyamaetal(2005):71%ofthetotalmassishistones,whicharethecoreproteinsaroundwhichtheDNAisspooledtomakenucleosomes.ThehistonescontainmanybasicArginineandLysinegroups,whichhelpneutralizethenegativechargecarriedbytheDNA.Onenucleosometypicallyoccupies170basepairsofDNAand,sincemostoftheDNAcanbeassumedtohavecondensedintonucleosomes,wecanusethistoestimatetheexpectedtotalamountofproteinpernucleus.Moreover,thehistonesequencesareallknown,sowecanexpecttheretobe14Satoms(2xCysand12xMet)per170bpofDNAassociatedwiththehistones(Mariño-Ramírezetal,2011).Wethereforeexpectacellnucleustohave2.1x109SatomsinitsfluorescentimagesinG2orMphaseand1.0x109SatomsinG1phase.ThepresenceofFeinthecellnucleushasbeendiscussedrepeatedlyinthescientificliterature.Yagietal(1992)havesuggestedtheremaybeanevolutionaryconnectionbetweenironandDNAbecauseofthepowerfulredoxpotentialofFe.Feisanessentialelementofproteins,oftenintheformofiron-sulfur(FeS)clustersusedinelectrontransportenzymes(Johnsonetal,2005)orinhemecomplexesincytochromes(Dawson,1988).Ironcanbetoxictocellsviathegenerationoffreeradicals(Yagietal,1992).SincethepresenceofironcanleadtoDNAdamagepathways,theremaybeevolutionaryadvantagetokeepingtheDNAinitsownnuclearcompartment,awayfrommanyofthemetabolicprocesses.DespitetheviewthatFe-containingenzymeswouldnotbewidelyusedwithinthenuclearcompartmentofthecell,therehavebeenrecentreportsofFeS-containingenzymesdirectlyinvolvedwithDNAreplication.DNAprimasewasfoundtocontainanFeSdomain(Klingeretal2007,Weineretal2007)alongwithDNAhelicase(WuandBrosh,2012)andDNArepairglycosylases(WuandBrosh,2012).AreviewbyLilletal(2006)namedfiveassociationsofFeSproteinswiththecellnucleus:DNAglycosylase(Ntg2),Histoneacetyltransferase(Elp3),P-loopATPase(Nbp35),Iron-onlyhydrogenase(Nar1)andABCprotein(Rli1).AllofthesesfunctionsarebelievedtobeassociatedwithDNAreplicationandrepairsoshouldbeexpressedonlyduringS-phaseofthecellcycleandshouldbeabsentduringotherphases.

Ferritin,theEukaryoticironstorageprotein,isnotexpectedtobecolocalizedwithDNA,yetthiswasreportedinafewdiverseexamplesbyThompsonetal(2002).NuclearferritinmightbeassociatedwiththeprotectionofDNAorconverselywithoxidativeDNAdamage.Ifnuclearferritinispresent,itmightbeexpectedtobeassociatedwiththenuclearmembrane,ratherthanmixedinwiththeDNA-containingchromatin.Toaddressthesequestions,FluorescentX-rayimagingofhumancellnucleiwasundertakenintheworkreportedhere.2.Methods2.1SamplepreparationNucleiwerepreparedaccordingtoapreviouslypublishedfiltration-basedprotocolforchromosomes(Yusufetal,2014)withmodificationstopreservetheintactnuclei.HumanLymphocytecellswerecultivatedinFetalBovineSerum(FBS)andtreatedwithColcemidtoarresttheminmetaphase.Followingextraction,thenucleiwerefixedin0.5%Glutaraldehydecontaining10mMHepes-KOHand5mMMgCl2.Thesampleswerepipettedin5µLdropsonto200nmthicksiliconnitridewindowsandstainedwith150µMSybergolddye.Afterwashinginwater,thesampleswerelefttodryinair.TheywereimagedusingaZeissAxioZ2microscope(using“Isis”software)toobtainvisiblelightandopticalfluorescenceimagesforreferenceandcorrelationwiththeX-rayresults.ForX-rayimaging,severalmembraneswerepreparedwiththesamesamplematerial.Theresultingsampleswerefoundtocontainalargenumberofintactnuclei,butalsochromosomespreadsandindividualchromosomesfromburstnuclei.Someofthemembrane-boundsampleswerestainedwithplatinumblue(WannerandFormanek,1995),at5mMfor30minutesandwashedinwater,butnosignificantdifferenceswerefoundinthephasecontrastimagesandnoPtsignalwasdetectedinfluorescence.ResultsarereportedfromsamplespreparedwithoutPtstaining.AftertheX-rayexperiment,thesampleswerereimageswithanOlympusLEXT4000confocalmicroscopetoobtainfurtherreferenceimagesoftherelevantsamples.2.2X-raymeasurementsSamplesonmembraneswereclampedintothesampleinsertionstubsdesignedforID16A.Thesewereload-lockedintotheUHVsamplechamberundervacuumatroomtemperaturebydroppingthemfromamanipulatorintothepiezo-drivensamplestage.Thepiezodrivesystemwaskeptactiveduringthisoperationsothatthecontactforcescouldbemonitoredinordertopreventoverloadingthestages.TheID16AbeamlinehasamultilayercoatedKirkpatrick-Baez(KB)focusingmirrorpairlocatedat185mfromanundulatorsourceoperatingat17keV(Moraweetal,2015).TheKBsystem,withextremedemagnificationdesignedfora14x14nmfocus,producedameasuredfocusof20x30nmwithveryhighfluxfromthebroadbandpassofthemultilayer.

Forfluorescentimagingexperiments,thesamplewasraster-scannedacrossthebeamatthefocuspositionin30nmsteps.Theforwardandbackwarddirectedfluorescencewasdetectedbyapairof6-elementsilicondriftdiodedetectorswithadwelltimeof100ms(CHECK).SpectraweredecomposedintopuresignalsfromtheP-K,S-KandFe-Lemissionlinesat2014,2308and705eVrespectively(CHECK)byprinciplecomponentanalysisandcalibratedwithstandardsamplesofknownmassdensity(DETAILS).Dataforthephasecontrastimageswereobtainedbymovingthesampledownstreamofthefocusbyarangeofdistances(DETAILS)andrecordingtheprojectedimageonalens-coupledFReLoNdetectorwith2048x2048pixels,givinganeffectivepixelsizeof1.1µm.Thesedata,measuredcoherentlyatfourdifferentmagnifications,werecombinedusingtheholotomographymethod,nowcalled“zoom”tomography,toobtainfull-fieldquantitativephasecontrastimagesofthesampleintransmission(Cloetensetal,1999).3.ResultsandDiscussionFigure1showsanoverviewopticalfluorescenceimagetakenundertheexcitationconditionsforSybergolddye,whichbindsspecificallytoDNA.Whilethenucleiareclearlywellisolatedonthemembrane,itisclearthatnotallofthemareequallybright.Thissuggeststhateitherthedyeisunabletopenetratethesamplesuniformlyor,morelikely,thatsomenucleihavebecomedepletedintheirDNAcontent.Thismighthaveoccurredduringthewashingstepsofthesamplepreparation,orpossiblyduringhandlingofthesamples.Wenotethattheimagewastakenshortlyaftersamplepreparation,beforetransportingthesamplestoESRF,sothisdoesnottakeintoaccounttheeffectsofthevacuumsampletransferintotheID16Ainstrument.Figure2showscomparisonimagesofanisolatednucleusbybothavailableX-rayimagingmethods:zoomtomographyphasecontrastandscanningX-rayfluorescenceoftheP,SandFelines.Thetotalsignalsforthethreeelements,integratedovertheimagesandcalibratedinunitsofnumbersofatoms,arelistedinTable1.Thefieldofviewofthisimagealsocontainsoneortwoindividualchromosomesinasmallclusterattheside.ThisnucleuscontainstheleastquantityofFeobserved,thelowestlevelofPandthehighestS.ThedistributionoftheP-andS-signalsoverlaywellontopofeachotherandalsoagreewiththedistributionofphaseshiftmeasured(QUANTITATIVEANALYSISOFPHASEVALUES??).Thedome-shapeddistributionofallthreeimagesisroughlywhatwouldbeexpectedforasphericalorhemisphericalnucleuswithauniformdensityofchromatinmatterwithinitsvolume.ThetotalPsignalcomingfrom3.9x109Patomsisafactor-of-threebelowthelowerestimateof1.3x1010Patoms,givenabove,expectedforanucleusinthefirsthalfofthecellcycle.ThissuggestseitheracalibrationerrororthatsomePhasbeenlost

duringthesamplepreparationandinsertionintovacuum.Wedonotattributethistoradiationdamagebecausethesignallevelsintheimageswerefoundtobereproducibleuponrepeatedscanning.Ontheotherhand,thetotalfluorescentSsignalof4.3x109atomsissubstantiallyhigherthanthehigherestimateaboveof2.1x109SatomsinG2orMphase.Sincethisappearstobehomogeneouslydistributedwithinthechromatinfilledregionofthenucleus,thissuggeststhattheextrasignalmaybecomingfromthe29%non-histoneproteins,whichmayhavehigherrelativelevelsofCysandMetaminoacids(Uchiyamaetal,2005).Correspondingimagesfromthreemorenuclei,aslabelledinFig1andshowninFig3,gavetheintegratedsignalslistedinTable1.ThetrendissimilarwithanunderrepresentationofPandoverrepresentationofS.FortheSandPsignalsfrom5nucleimeasured,therearefactorsof2variationsfromonenucleustoanother,whichmightbeinherentmeasurementerrorsorvariationsofsamplepreparation.ThehighestPsignaldoesjustreachthelowerestimatefortheamountofDNApresentinG1phase,asdoesthelowestSsignalcrossovertheexpectedlevelforG2/M.MuchgreatervariationwasfoundinboththemassesanddistributionsoftheFesignal,forwhicha27xvariationwasfound.Fig2showsthenucleuswiththesmallestlevelofFe,whilethatofFig3(a)hasthehighestlevel.UnlikeSandP,theFesignalsarestronglyclusteredandoftenseentobelocatedattheperipheryofthenuclei.ItisthereforeconcludedthemostoftheFesignaliscomingfromthenuclearmembranestructures,ratherthanthecentralregions,asdiscussedfurtherbelow.WealsonotethattheseparatedchromosomestructureseenatthetopofFig2hascolocalisedPandSsignalscomingfromitsdistinctarmregionsandaseparateFesignalinthecentre,whichisdepletedinPandS.ThisisappearstobeanagglomerationoftwochromosomesontheleftandrightsidesandmaybeapieceofFe-richnuclearmembraneinthecentre.4.ConclusionsForthehumanlymphocytecellnucleipresentedinthisstudy,thedistributionsofPandSX-rayfluorescence,associatedwiththeDNA-proteincomplexofchromatin,arefoundtoberelativelyuniformandstructureless.Thiscouldbebecausethecellsareininterphase(G1,S,orG2ofthecellcycle),whenthechromatinisdecondensed,oritcouldbebecauseofinsufficientresolutiontoseetheindividualchromosomes.AcertainamountofmodulatedstructurecanbedistinguishedinthePsignalsofFig3(a)and3(c),whichresemblestheexpectedpatternofcondensedmetaphasechromosomes,eventhoughtheyarenotfullyresolved.Ifso,thesenucleiareinprophase,sincetheystillpossesstheirnuclearmembrane.ThelevelsofbothPandSarerelativelyreproduciblefromnucleustonucleus,withinafactorof2.ThelevelofPissystematicallylowerthanexpectedfromthenumberofPatomscontainedintheDNAofthehumangenome.Notingthatsome

relativelyempty(deflated)nucleiwereobservedintheopticalfluorescenceimageofFig1,thismaybecausedbypartiallossofchromosomesduringthewashingstepofsamplepreparation.ItisunfortunatethatsuchlosseshavetakenplaceasareliablePlevelmeasurementcouldhavebeenausefuldeterminationofthephaseofthecellcycle.BoththelevelsofSandtheS/Pratiosarefoundtobehigherthanexpectedfromthehistoneproteinsalone,whichcomprise71%ofthetotalchromosomalprotein.Thissuggeststhatthenon-histoneproteinsmaybericherinCysandMetresidues.TheFeconcentration,while3ordersofmagnitudelowerthanPorS,ismuchmorevariedamongthesamplesexamined,by27-foldamongtheintegratedsignalsinTable1.FeisnotexpectedtobeassociatedwithDNAingeneralforevolutionaryreasons(Yagietal,1992),yetsomeexceptions,particularlyduringDNAreplicationinSphase,arenotedabove.Feisseentoformsmallbrightspots,about100nmindiameter,inthesamplesshowninthelow-concentrationcasesinFigs2and3(b).Inonecase,Fig3(b),FespotsarecolocalisedwithS,perhapssuggestingthepresenceofFeSenzymes;intheothercases,Fig2,FeandSareseparatelylocalizedinspots.Feisseentoformshell-likecrescent-shapedplaquesaroundtheedgesofthehigh-FeconcentrationnucleiinFigs3(a)and3(c).TheseareastrongsuggestionofFebeinglocatedinthenuclearmembrane,ratherthanthechromatin-filledcentres.InmostcasestheFesignalcanbeseentosurroundthatofthePandS.ThismaythereforebeconsistentafterallwiththeevolutionaryhypothesisofYagietal(1992).Asfaraswecantell,thezoomtomographymeasurementsdidnonoticeabledamagetothesamples,evenaftermultipleandlongerexposuresweretested.Thebeamissubstantiallyoutoffocushere,enlargedtomorethanthe20x20µmfieldofviewintheclosest-distancecase.Howevertheraster-scanningfluorescencemeasurementdidcausevisiblechangestothesample,asrecordedinFig4.Thinningofthemembraneovertheentirescannedareacanbedetectedintheconfocalheightmap(greyscaleimage).Multipleoverlappingscannedareascanbeobservedfortheuppernucleus,forwhichtheimagesappearinFig3(b).However,nomasslossbetweenthesesscanswasdetectedinthefluorescencesignal.AcknowledgementsThisworkwassupportedbyaBBSRCProfessorialFellowshipBB/H022597/1"DiamondProfessorialFellowshipforimagingchromosomesbycoherentX-raydiffraction".AdditionalsupportcamefromanEPSRCgrantEP/I022562/1“PhasemodulationtechnologyforX-rayimaging”.WethankESRFforbeamtimeandhospitalityduringthemeasurements.References

Cloetens,P.,Ludwig,W,Baruchel,J,VanDyck,D,VanLanduyt,J,Guigay,JPandSchlenker,M(1999),Holotomography:Quantitativephasetomographywithmicrometerresolutionusinghardsynchrotronradiationxrays,Appl.Phys.Letts.752912-2914Dawson,JH(1988)ProbingStructure-FunctionRelationsinHeme-ContainingOxygenasesandPeroxidases,Science240433-439Johnson,DC,Dean,DR,Smith,ADandJohnson,MK(2005),Structure,function,andformationofbiologicaliron-sulfurclusters,Ann.Rev.Biochemistry74247-281Klinge,S.,Hirst,J.,MamanJD,KrudeT.andPellegrini,L.(2007),Iron-sulfurdomainoftheeukaryoticprimaseisessentialforRNAprimersynthesis,NatureStructural&MolecularBiology14875Lill,R.,Dutkiewicz,R.,Elsässer,H-P,Hausmann,A.Netz,DJA,Pierik,AJ,Stehling,O.,Urzica,E.andMühlenhoff,U.,(2006),Mechanismsofiron–sulfurproteinmaturationinmitochondria,cytosolandnucleusofeukaryotes,BiochimicaetBiophysicaActa1763652Mariño-Ramírez,L.,Levine,K.M.,Morales,M.,Zhang,S.,Moreland,R.T.,Baxevanis,A.D.,andLandsman,D.(2011)TheHistoneDatabase:anintegratedresourceforhistonesandhistonefold-containingproteins.DatabaseVol.2011:articleIDbar048,doi:10.1093/database/bar048.Martinez-Criado,G,Tucoulou,R,Cloetens,P,Bleuet,P,Bohic,S,Cauzid,J,Kieffer,I,Kosior,E,Laboure,S,Petitgirard,S,Rack,A,Sans,JA,Segura-Ruiz,J,Suhonen,H,Susini,J.andVillanova,J(2012),StatusofthehardX-raymicroprobebeamlineID22oftheEuropeanSynchrotronRadiationFacility,JournalofSynchrotronRadiation1910-18Morawe,C,Barrett,R,Cloetens,P,Lantelme,B,Peffen,JC,Vivo,A(2015),GradedmultilayersforfiguredKirkpatrick-BaezmirrorsonthenewESRFendstationID16A,AdvancesinX-Ray/EUVOpticsandComponentsX,ProceedingsofSPIE9588958803-1Thompson,KJ,Fried,MG,Ye,Z.,BoyerP.andConnor,JR,(2002),Regulation,mechanismsandproposedfunctionofferritintranslocationtocellnuclei,JournalofCellScience1152165Wanner,G;Formanek,H(1995),ImagingofDNAinHumanandPlantChromosomesbyHigh-ResolutionScanningElectron-Microscopy,ChromosomeResearch3368-374

Weiner,B.E.,HuangH.,Dattilo,BM,NilgeMJ,FanningE.andChazin,W.J.(2007),AnIron-SulfurClusterintheC-terminalDomainofthep58SubunitofHumanDNAPrimase,J.BiologicalChemistry28233444WuY.andBrosh,R.M.(2012),DNAhelicaseandhelicase–nucleaseenzymeswithaconservediron–sulfurcluster,NucleicAcidsResearch404247Yagi,K.,Ishida,N.,Komura,S.,Ohishi,N.,Kusai,M.andKohno,M,(1992),Generationofhydroxylradicalfromlinoleicacidhydroperoxideinthepresenceofepinephrineandiron,Biochem.Biophys.Res.Commun.183945–951Yusuf,M,N.Parmar,G.K.BhellaandI.K.Robinson(2014),Asimplefiltrationtechniqueforobtainingpurifiedhumanchromosomesinsuspension,BioTechniques56257-261

FiguresandTables

Figure1.LowmagnificationopticalfluorescenceimagetakenundertheexcitationconditionsforSybergolddyeusingaZeissAxioZ2microscope.Boxesandlabelsindicatethenucleithatareanalysedfurtherinthiswork.

Figure2.X-rayimagesofthenucleusoutlinedinFig1,withagroupofindividualchromosomesontheupperside.Topleft:zoom-tomographyphasecontrastimage.Otherpanels:elementaldistributionsfromraster-scannedfluorescencemapping.

Figure3.X-rayimagesofthreemorenucleioutlinedinFig1.Leftcolumn:zoom-tomographyphasecontrastimage.Centrecolumns:elementaldistributionsfromraster-scannedfluorescencemapping,scaledtothemaximumpixelvalue.Right:opticalconfocalheightmap,measuredaftertheX-rayexperiment.Thescalebarappliestoallpanels.

Figure4.Grey-scaleconfocalimagemeasuredwitha50xlensonanOlympusLEXT4000microscopeaftertheX-rayexperiment.Nuclei3(b)and3(c)canbeseen,alongwithaclearmodificationtothemembraneintheregionwherethefluorescencemappinghadtakenplace.

Sample Pcount Scount FecountFig2 3.9x109 4.3x109 2.8x106Fig3(a) 9.3x109 2.6x109 7.6x107Fig3(b) 6.1x109 1.5x109 5.6x106Fig3(c) 7.1x109 1.8x109 5.0x107Nucleus7 12.8x109 1.4x109 1.1x107Average 7.8x109 2.3x109 G1phase 13x109 1.0x109 G2orMphase 26x109 2.1x109 Table1.CalibratedX-rayfluorescentsignals,integratedoverthefivemostreliablerasterscansofhumancellnuclei.DerivedmasseshavebeenconvertedintonumbersofatomsfoundwithinthenuclearregionsofthesamplesmeasuredatID16A.Thelasttworowsgivethecountsexpectedfordifferentphasesofthecellcycle,asdiscussedinthetext.