171
D. DE FRENNE University Ghent Vakgroep Subatomaire en Stralingsfysica Proeftuinstraat 86, B–9000 Gent, Belgium Under Subcontract 121797 with National Nuclear Data Center Brookhaven National Laboratory Upton, New York 11973 (Received April 14, 2008; Revised February 23, 2009) Abstract: The 1998 evaluation on mass A=102 (1998De15) has been revised, taking into account all data available before december 2008. Detailed experimental information is presented from the neutron rich nucleus 102 Rb to the neutron deficient 102 Sn nucleus. No information on excited states of 102 Rb is available and very scarce for 102 Sr Especially new (HI,xnγ ) data sets for several nuclides have been evaluated and new and more accurate data for γ intensities and multipolarities obtained. For 102 Ru very precise new data of the Budapest (n, γ ) collaboration have been included.A new and very elaborated decay scheme for 102 In is obtained. Isomerism in 102 Y and 102 Nb needs further investigation due to conflicting results. General Policies and Organization of Material: See the January issue of the Nuclear Data Sheets or http://www.nndc.bnl.gov/nds/NDSPolicies.pdf. General Comments: The authors would like to thank B. Singh and the McMaster NDP group for the use of all XUNDL files they prepared for A=102. Cutoff Date: December 31, 2008. Nuclear Data Sheets for A = 102 Nuclear Data Sheets 110 (2009) 1745–1915 0090-3752/$ – see front matter © 2009 Published by Elsevier Inc. www.elsevier.com/locate/nds doi:10.1016/j.nds.2009.06.002

Nuclear Data Sheets for A = 102 - University of Notre Damesfrauend/A100tidaldata/pd/science.pdf1748 NUCLEAR DATA SHEETS Skeleton Scheme for A=102 100% 0.0 37 ms S(n) 2786SY 10 3 2

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

  • D. DE FRENNEUniversity Ghent

    Vakgroep Subatomaire en Stralingsfysica

    Proeftuinstraat 86, B–9000 Gent, Belgium

    Under Subcontract 121797 with

    National Nuclear Data Center

    Brookhaven National Laboratory

    Upton, New York 11973

    (Received April 14, 2008; Revised February 23, 2009)

    Abstract: The 1998 evaluation on mass A=102 (1998De15) has been revised, taking into account al l data available

    before december 2008. Detailed experimental information is presented from the neutron rich nucleus 102Rb to the

    neutron deficient 102Sn nucleus. No information on excited states of 102Rb is available and very scarce for 102Sr

    Especially new (HI,xnγ ) data sets for several nuclides have been evaluated and new and more accurate data forγ i n t e n s i t i e s a n d m u l t i p o l a r i t i e s o b t a i n e d . F o r 1 0 2 R u v e r y p r e c i s e n e w d a t a o f t h e B u d a p e s t ( n , γ )collaboration have been included.A new and very elaborated decay scheme for 102In is obtained. Isomerism in 102Y

    and 102Nb needs further investigation due to confl icting results.

    General Policies and Organization of Material: See the January issue of the Nuclear Data Sheets or

    http: / /www.nndc.bnl.gov/nds/NDSPolicies.pdf.

    General Comments: The authors would like to thank B. Singh and the McMaster NDP group for the use of all XUNDLfiles they prepared for A=102.

    Cutoff Date: December 31, 2008.

    Nuclear Data Sheets for A = 102

    Nuclear Data Sheets 110 (2009) 1745–1915

    0090-3752/$ – see front matter © 2009 Published by Elsevier Inc.

    www.elsevier.com/locate/nds

    doi:10.1016/j.nds.2009.06.002

  • 1 7 4 6

    NUCLEAR DATA SHEETS

    Index for A = 102

    Nuclide Data Type Page

    Skeleton Scheme for A=102 1748102Rb Adopted Levels 1750102Sr Adopted Levels, Gammas 1751

    102Rb β– Decay 1751102Y Adopted Levels, Gammas 1752

    102Sr β– Decay 1753102Zr Adopted Levels, Gammas 1755

    102Y β– Decay (0.36 s) 1760102Y β– Decay (0.298 s) 1761103Y β–n Decay 1761248Cm SF Decay 1762252Cf SF Decay 1762235U(n,F) 1764238U(α ,Fγ ) 1765

    102Nb Adopted Levels, Gammas 1767102Zr β– Decay: 2.9 s 1770252Cf SF Decay 1772

    102Mo Adopted Levels, Gammas 1774102Nb β– Decay (4.3 s) 1778102Nb β– Decay (1.3 s) 1780248Cm,252Cf SF Decay 1781100Mo(t,p) 1781100Mo(t,pγ ) 1782100Mo(18O,16Oγ ) 1782168Er(30Si,Xγ ) 1783235U(n,F) 1783238U(α ,Fγ ) 1784

    102Tc Adopted Levels, Gammas 1785102Mo β– Decay 1786102Tc IT Decay 1787100Mo(3He,p),104Ru(d,α ) 1787

    102Ru Adopted Levels, Gammas 1789102Tc β– Decay (4.35 min) 1797102Rh ε Decay (207.3 d) 1798102Rh ε Decay (3.742 y) 180096Zr(9Be,3nγ ) 180296Zr(10B,p3nγ ) 180296Zr(13C,α3nγ ) 1803100Mo(3He,n) 1806100Mo(α ,2nγ ) 1806100Mo(7Li,p4nγ ) , (7Li,d3nγ ) . . . 1807100Mo(12C,10Be) 1808101Ru(n,γ ) E=thermal 1808101Ru(n,γ ) E=resonance 1809101Ru(d,p) 1810102Ru(d,d' ) 1811

    Coulomb Excitation 1811162Dy(36S,F) 1812

    102Rh Adopted Levels, Gammas 1813102Rh IT Decay 182070Zn(36S,p3nγ ) 182098Mo(7Li,3nγ ) 1825102Ru(p,nγ ) 1827103Rh(p,d) 1829

    102Pd Adopted Levels, Gammas 1830102Rh β– Decay (207.3 d) 1837102Ag ε Decay (12.9 min) 1837102Ag ε Decay (7.7 min) 184176Ge(34S,α4nγ ) 184392Zr(13C,3nγ ) 184592Zr(13C,3nγ ) ,94Zr(12C,4nγ ) 184799Ru(α ,nγ ) ,100Ru(α ,2nγ ) 1849102Pd(p,p 'γ ) 1851Coulomb Excitation 1852103Rh(p,2nγ ) 1853

    102Ag Adopted Levels, Gammas 1855102Ag IT Decay 1858102Cd ε Decay 1858

    Nuclide Data Type Page

    102Ag (HI,xnγ ) 1860102Cd Adopted Levels, Gammas 1866

    102In ε Decay 1881103Sn εp Decay: 7.0 s 1894(HI,xnγ ) 1894

    102In Adopted Levels, Gammas 1899102Sn ε Decay 190350Cr(58Ni,αpnγ ) 190454Fe(58Ni,2αnpγ ) 1907

    102Sn Adopted Levels, Gammas 1908106Te α Decay 1908(HI,xnγ ) 1909

  • 17

    48

    NU

    CL

    EA

    R D

    AT

    A S

    HE

    ET

    S

    Sk

    ele

    ton

    Sc

    he

    me

    for A

    =1

    02

    100%

    0.0

    37 ms

    S(n) 2786SY

    103

    27Rb65

    Q–=14770SY

    100%

    0+ 0.0

    69 ms

    S(n) 5740170

    S(α ) 10170SY

    S(p) 16800200

    103

    28Sr64

    Q–=881070

    100%

    HIGHJ 0.0+x

    0.36 s

    LOWJ 0.0+y

    S(n) 5050130

    S(α ) 10010100

    S(p) 13770150

    103

    29Y63

    Q–=985070

    100%

    0+ 0.0

    2.9 s

    S(n) 635659S(α ) 752060

    S(p) 14120110

    103

    39Y64

    Q (β–n)=349090?%

    0.0

    0.23 s

    104

    20Zr62

    Q–=461030

    100%

    (4+) 0.0

    4.3 s

    1+ 0.0+x

    S(n) 548040S(α ) 630050

    S(p) 1018050

    104

    21Nb61

    Q–=721040

    100%

    0+ 0.0

    11.3 min

    S(α ) 469529

    S(n) 811620

    S(p) 1190427

    104

    22Mo60

    Q–=100822100%

    1+ 0.0

    5.28 s

    (4,5) 0.0+x

    S(α ) 346211

    S(n) 630126

    S(p) 834310

    104

    23Tc59

    Q–=45329

    0+ 0.0

    S(α ) 3411.216

    S(n) 9219.745S(p) 1005124

    104

    24Ru58

    Ground–State and Isomeric–Level Properties

    Nuclide Level Jπ T1/2 Decay Modes

    102Rb 0.0 37 ms 3 %β–=100; %β–n=18 8102Sr 0.0 0+ 69 ms 6 %β–=100; %β–n=5.5 15102Y 0.0+x high J 0.36 s 4 %β–=100; %β–n=4.9 12

    0.0+y low J 0.298 s 9 %β–=100; %β–n=4.9 12102Zr 0.0 0+ 2.9 s 2 %β–=100102Nb 0.0 (4+) 4.3 s 4 %β–=100

    0.0+x 1+ 1.3 s 2 %β–=100102Mo 0.0 0+ 11.3 min 2 %β–=100102Tc 0.0 1+ 5.28 s 15 %β–=100

    0.0+x (4,5) 4.35 min 7 %β–=98 2 ; %IT=2 2102Ru 0.0 0+ stable102Rh 0.0 (1–,2–) 207.3 d 17 %β–=22 5 ; %ε+%β+=78 5

    140.73 6(+) 3.742 y 10 %ε+%β+=99.767 24 ; %IT=0.233 24102Pd 0.0 0+ stable102Ag 0.0 5(+) 12.9 min 3 %ε+%β+=100

    9.40 2+ 7.7 min 5 %IT=49 5 ; %ε+%β+=51 5102Cd 0.0 0+ 5.5 min 5 %ε+%β+=100102In 0.0 (6+) 23.3 s 1 %ε+%β+=100; %β+p=9.3×10–3 13102Sn 0.0 0+ 3.8 s 2 %ε+%β+=100103Y 0.0 0.23 s 2 %β–n=?; . . .103Sn 0.0 (5/2+) 7.0 s 2 %εp=1.2 1 ; . . .106Te 0.0 0+ 60 μs 30 %α=100

  • 17

    49

    NU

    CL

    EA

    R D

    AT

    A S

    HE

    ET

    S

    Sk

    ele

    ton

    Sc

    he

    me

    for A

    =1

    02

    (co

    ntin

    ue

    d)

    22% 578% 5

    (1–,2–) 0.0

    207.3 d

    6(+) 140.73

    S(α ) 27726

    S(p) 61145

    S(n) 743818

    104

    25Rh57

    Q–=11505

    Q+=23235

    0+ 0.0

    S(α ) 21267

    S(p) 780617

    S(n) 1056818

    104

    26Pd56

    100%

    5(+) 0.0

    12.9 min

    2+ 9.40

    S(α ) 151530

    S(p) 413030

    S(n) 9110110

    104

    27Ag55

    Q+=566030

    100%

    0+ 0.0

    5.5 min

    S(α ) 80236

    S(p) 5740110

    S(n) 12000150

    105

    30Sn53

    Q (εp)=5420SY1.2% 1

    (5/2+) 0.0

    7.0 s

    104

    28Cd54

    Q+=25878

    100%

    (6+) 0.0

    23.3 s

    S(α ) 7413S(p) 2250190

    S(n) 10167SY

    104

    29In53

    Q+=8970110

    100%

    0+ 0.0

    3.8 s

    S(p) 3605SY

    S(n) 13440SY

    105

    62Te54

    Qα=42909100%

    0+ 0.0

    60 μs

    105

    20Sn52

    Q+=5780700

  • 1 7 5 0

    103

    27Rb65

    103

    27Rb65NUCLEAR DATA SHEETS

    Adopted Levels

    Q(β–)=14770 SY ; S(n)=2786 SY 2003Au03. ΔQ(β–)=520;ΔN=530. 1987PfZX: 600–MeV p–induced f ission of 238U.

    1995Lh03: mass separated source from 1 GeV p on uranium target.

    Although one could expect isomerism in this Rb nucleus up to new only one half–li fe is mentioned in the l iterature.

    102Rb Levels

    E(level) T1/2 Comments

    0 . 0 3 7 ms 3 %β–=100; %β–n=18 8 . %β–n,T1/2: From 1987PfZX.

  • 1 7 5 1

    103

    28Sr64

    103

    28Sr64NUCLEAR DATA SHEETS

    Adopted Levels, Gammas

    Q(β–)=8810 70 ; S(n)=5740 170 ; S(p)=16800 200 ; Q(α )=–10170 SY 2003Au03. 1987PfZX: 600–MeV p–induced f ission of 238U.

    1987PfZX,1986Hi02: mass separated source from 235U(n,F).

    102Sr Levels

    Cross Reference (XREF) Flags

    A 102Rb β– Decay

    E(level) Jπ XREF T1/2 Comments

    0 . 0 0 + A 6 9 ms 6 %β–=100; %β–n=5.5 15 . %β–n: Weighted average of 4.8% 23 (1986ReZS) and 6.0% 20 (1987PfZX. T1/2: weighted average of 72 ms 10 (1987PfZX), 69 ms 15 (1986ReZS) and 68 ms 8

    (1986Hi02). T1/2 from γ decay of 93γ and 243γ in 102Sr decay (1986Hi02), β– delayed

    neutron decay (1987PfZX) or growth and decay of β counting rate (1986ReZS). 1 2 6 . 0 2 ( 2 + ) A 3 . 0 n s 1 2 E(level) : from 1995Lh03.

    T1/2: by βγ (t) and centroid–shift method (1995Lh03). Jπ : from energy systematics of f irst 2+ state in other even–strontium isotopes.

    γ (102Sr)

    E(level) Eγ Iγ Comments

    1 2 6 . 0 1 2 6 . 0 2 1 0 0 Eγ : from 1995Lh03.

    102Rb ββββ– Decay 1995Lh03

    Parent 102Rb: E=0.0; Jπ=?; T1/2=37 ms 3 ; Q(g.s. )=15100 syst; %β– decay=100.

    Source: from mass separated fragments of f ission of uranium carbide with 1 GeV p. Measured: Eγ , βγ (t) , T1/2. Deduced: 102Sr levels.

    102Sr Levels

    E(level) Jπ T1/2 Comments

    0 . 0 0 +

    1 2 6 . 0 2 ( 2 + ) 3 . 0 n s 1 2 T1/2: by βγ (t) and centroid–shift method. Jπ : from energy systematics of f irst 2+ state in other even–strontium isotopes.

    γ (102Sr)

    Eγ E(level)

    1 2 6 . 0 2 1 2 6 . 0

    0.0 37 ms

    %β–=100

    103

    27Rb65

    Q–=15100SY

    0+ 0.0

    (2+) 126.0 3.0 ns

    Decay Scheme

    Intensity:

    relative Iγ

    126.

    0

    103

    28Sr64

  • 1 7 5 2

    103

    29Y63–1

    103

    29Y63–1NUCLEAR DATA SHEETS

    Adopted Levels, Gammas

    Q(β–)=9850 70 ; S(n)=5050 130 ; S(p)=13770 150 ; Q(α )=–1.001×104 10 2003Au03.

    102Y Levels

    From 2007Ch07: μ=+2.34 5 for Jπ=(2) and μ=+2.68 1 for Jπ=(3). The spectroscopic electric quadrupole moment Q(s)=+1.17 13 for Jπ=(2) and Q(s)=+1.36 16 for Jπ=(3).

    Cross Reference (XREF) Flags

    A 102Sr β– Decay

    E(level)† Jπ‡ XREF T1/2 Comments

    0 . 0 + x HI GHJ A 0 . 3 6 s 4 %β–=100; %β–n=4.9 12 . %β–n: weighted average of 6.0 17 (1986ReZS) and 4.0 15 (1996Me09). Should be

    considered as a combined value for both isomers.

    E(level) : from systematics in l ighter Y isotopes, two 102Y isomers are expected.

    Experimental evidence for the existence of two isomers is based on a different

    I(152γ ) /I (326γ ) ratio obtained in the studies of 1983Sh13 and 1988HiZQ. Jπ probably high because production method via 235U(n,F) favors high–spin isomer.

    Th high spin isomer is directly produced in the f ission reaction. See also

    general comment.

    T1/2: from 1983Sh13, γ (t) . Contamination of T1/2 by low–spin isomer cannot be excluded. Others: 0.27 s 7 (1981HiZX), 0.5 s 1 , β– delayed neutron decay (1980KrZY). 0.44 s 6 (1986ReZS). 0.9 s 3 (1974GrZN) is probably incorrect.

    0 . 0 + y LOWJ A 0 . 2 9 8 s 9 %β–=100; %β–n=4.9 12 . %β–n: weighted average of 6.0 17 (1986ReZS) and 4.0 15 (1996Me09) should be

    considered as a combined value for both isomers.

    E(level) : the assignment based on mass–separated samples of A=102 produced in 235U(n,F) with 102Sr as major activity. As a consequence primarily the decay of

    the low–spin isomer of 102Y is fed in the β– decay of 102Sr and as such indirectly produced.

    T1/2: Weighted average of 0.30 s 6 (1991Hi02) and 0.29 s 2 (1996Me09). Slight

    contamination of T1/2 by high–spin isomer cannot be excluded. Other: 0.44 s 6

    (1986ReZS).

    9 3 . 8 0 + y 6 A

    2 0 8 . 2 3 + y 9 A

    2 4 3 . 8 5 + y 6 1 + A

    3 1 1 . 7 0 + y 9 A

    4 9 7 . 8 1 + y 1 0 A

    6 4 5 . 4 + y ? 4 A

    8 9 8 . 6 3 + y 2 2 A

    1 3 4 7 . 9 2 + y 1 4 1 + A

    1 6 8 9 . 5 8 + y 1 5 1 + A

    † From 102Sr β– decay. As Jπ=0+ for 102Sr g.s. , very l ikely the lowest level observed in the β– decay of 102Sr is the low–spin isomer of 102Y. The energies of the observed levels are referred to the excitation energy of the low–spin 102Y isomer However in

    a recent paper of (2007Ch07) 2 states with J=(2) and (3) are mentioned. No high spin state mentioned. So new experiments needed

    to solve that problem of isomerism. That means that the results given here should be treated with great caution.

    ‡ Based on log f t in 102Sr β–decay which indicates allowed β transition. Jπ=1+ from log f t

  • 1 7 5 3

    103

    29Y63–2

    103

    29Y63–2NUCLEAR DATA SHEETS

    102Sr ββββ– Decay 1986Hi02

    Parent 102Sr: E=0.0; Jπ=0+; T1/2=69 ms 6 ; Q(g.s. )=8810 70 ; %β– decay=100.

    102Sr–%β– decay: From absolute intensity I(243γ )=50 15 per 100 102Tc g.s. decays and delayed–neutron emission probabil it ies of 4.8% 23 for 102Sr and 6.0% 12 for 102Y. Unobserved 3% of 102Sr decay not taken into account. An

    absolute intensity for the 475γ of 6.7 per 100 decays of the 102Tc 1+ isomer was used (1986Hi02). Mass assignment from mass–separated A=102 source from 235U(n,F). Z assignment from yield, systematics, T1/2 and

    level scheme. Measured: Eγ , Iγ , γγ , T1/2. Deduced: 102Y levels, log f t , Jπ . Structure information in relation with

    this work can be found in 1986Pe04.

    102Y Levels

    log f t due to the incompleteness of the decay scheme due to the large Q value all log f t values should be considered

    as lower l imits.

    E(level) Jπ† T1/2

    0 . 0 0 . 3 6 s 4

    9 3 . 8 0 6

    2 0 8 . 2 3 9

    2 4 3 . 8 5 6 1 +

    3 1 1 . 7 0 9

    E(level) Jπ†

    4 9 7 . 8 1 1 0

    6 4 5 . 4 ? 4

    8 9 8 . 6 3 2 2

    1 3 4 7 . 9 2 1 4 1 +

    1 6 8 9 . 5 8 1 5 1 +

    † log f t 5 . 6 av Eβ=4052 385 .

    † Absolute intensity per 100 decays.

    γ (102Y)

    Eγ E(level) Iγ† Mult. α

    3 5 . 5 8 1 8 2 4 3 . 8 5 1 . 0 1 4 [M1 ] 3 . 5 3

    6 7 . 8 9 1 4 3 1 1 . 7 0 1 4 . 9 9 [M1 ] 0 . 5 4 2

    9 3 . 8 9 8 9 3 . 8 0 2 5 . 3 1 4 [ E2 ] 1 . 3 4 8

    1 0 3 . 4 2 3 1 1 . 7 0 1 . 8 3 [M1 ] 0 . 1 6 6 0

    1 1 4 . 4 6 1 5 2 0 8 . 2 3 4 . 7 5 [M1 ] 0 . 1 2 5 6

    1 5 0 . 1 5 1 0 2 4 3 . 8 5 3 4 . 0 1 8 [M1 ] 0 . 0 6 0 8

    1 8 6 . 1 5 1 5 4 9 7 . 8 1 7 . 0 7 [M1 ] 0 . 0 3 4 4

    2 0 8 . 1 6 1 3 2 0 8 . 2 3 1 4 . 9 1 1 [M1 ] 0 . 0 2 5 7

    2 1 7 . 9 2 1 5 3 1 1 . 7 0 7 . 0 6 [M1 ] 0 . 0 2 2 8 5

    2 4 3 . 8 0 8 2 4 3 . 8 5 1 0 0 5 [M1 ] 0 . 0 1 7 1 3

    2 5 3 . 9 5 1 5 4 9 7 . 8 1 2 3 . 8 1 5 [M1 ] 0 . 0 1 5 4 3

    3 1 1 . 6 2 3 1 1 . 7 0 2 . 7 5

    4 0 4 . 2 2 4 9 7 . 8 1 1 . 1 5

    Eγ E(level) Iγ†

    4 3 7 . 2 3 6 4 5 . 4 ? 1 . 9 7

    4 9 8 . 4 6 4 9 7 . 8 1 1 . 6 9

    6 5 5 . 1 3 8 9 8 . 6 3 3 . 6 8

    8 0 4 . 5 3 8 9 8 . 6 3 3 . 8 9

    x 8 1 4 . 4 3 5 . 3 1 0

    8 5 0 . 4 2 1 3 4 7 . 9 2 6 . 7 1 1

    1 0 3 6 . 0 2 1 3 4 7 . 9 2 1 4 . 0 1 8

    1 1 0 4 . 0 2 1 3 4 7 . 9 2 1 9 2

    1 1 9 1 . 8 2 1 6 8 9 . 5 8 1 7 2

    1 3 7 8 . 1 3 1 6 8 9 . 5 8 6 . 5 1 7

    1 4 4 5 . 5 3 1 6 8 9 . 5 8 6 . 1 1 4

    1 6 8 9 . 4 4 1 6 8 9 . 5 8 3 . 0 1 1

    † For absolute intensity per 100 decays, multiply by 0.53 16 .

    x γ ray not placed in level scheme.

  • 1 7 5 4

    103

    29Y63–3

    103

    29Y63–3NUCLEAR DATA SHEETS

    102Sr ββββ– Decay 1986Hi02 (continued)

    0+ 0.0 69 ms

    %β–=100

    103

    28Sr64

    Q–=881070

    0.0 0.36 s>5.6

  • 1 7 5 5

    104

    20Zr62–1

    104

    20Zr62–1NUCLEAR DATA SHEETS

    Adopted Levels, Gammas

    Q(β–)=4610 30 ; S(n)=6356 59 ; S(p)=14120 110 ; Q(α )=–7520 60 2003Au03. Q–(g.s. )=4719 keV 15 en Q–(isomer)=4626 keV 23 (2007Ri01) 2007Ri01 supersedes 2006Ha23.

    Other experimental data: Fission yields: 1987GuZX.

    102Zr Levels

    Band from 2008Li45.

    Cross Reference (XREF) Flags

    A 103Y β–n Decay E 238U(α ,Fγ ) B 102Y β– Decay (0.36 s) F 248Cm SF Decay C 102Y β– Decay (0.298 s) G 252Cf SF Decay D 235U(n,F)

    E(level)‡ Jπ† XREF T1/2§ Comments

    0 . 0 # 0 + ABCDEFG 2 . 9 s 2 %β–=100. 1/2=4.5690 fm 218 (2004An14, evaluation).

    T1/2: from 1976Ah06; half–li fe was measured by fol lowing the growth and decay

    of the niobium daughter in zirconium samples.

    1 5 1 . 7 8 # 1 1 2 + BCDEFG 1 . 8 n s 4 Jπ : 151.9γ is (E2) as seen in 235U(n,F). T1/2: From (2001Ra27). Others: 1.91 NS 25 from

    252Cf,254Cf SF decay by

    recoil–distance Doppler–shift method. 3.0 NS from γγγ (t) in 252Cf(SF)(2005Fo17)and 2.76 NS 36 from the technique of t ime–integral

    perturbed angular correlations using 252Cf SF and 248Cu SF sources

    (2004Sm04).

    β2=0.427 44 (2001Ra27). μ=+0.44 10 . μ : From G=+0.22 5 2004Sm04, 2005Sm08 with the technique of t ime–integral

    perturbed angular correlations using 252Cf SF and 248C SF decays.

    4 7 8 . 2 8 # 1 6 4 + BCDEFG

    8 9 4 . 7 9 2 1 ( 0 + ) C Jπ : γ decay to 2+ but not to 4+ suggests (0+) for this level . (1+) cannot be excluded but 0+ favored from systematics.

    9 6 4 . 7 8 # 2 4 6 + B DEFG

    1 0 3 6 . 3 e 4 ( 2 + ) FG

    1 1 5 9 . 5 0 2 2 C

    1 2 1 1 . 0 5 1 3 ( 2 + ) BC Jπ : based on systematics: from γ decay to 0+ and 2+. 1 2 4 2 . 3 e 3 ( 3 + ) B EFG

    1 3 8 6 . 7 c 6 ( 4 + )

    1 5 3 8 . 1 e 5 ( 4 + ) FG

    1 5 9 4 . 9 # 6 8 + EFG 1 . 3 9 p s 2 1

    1 6 5 2 . 8 d 5 ( 6 + ) G

    1 6 6 1 . 8& 4 ( 5 – ) E G

    1 7 9 3 . 3 7 ( 3 , 4 ) FG

    1 8 2 1 . 1@ 4 ( 4 – ) EFG

    1 8 2 2 . 5 ? 8 B

    1 8 2 9 . 4 c 6 ( 6 + ) G

    1 9 2 0 . 7 6

    1 9 3 2 . 6 a ( 8 + ) E

    1 9 8 0 . 8& 6 ( 5 – ) B EFG

    2 0 9 2 . 8& 6 ( 7 – ) E G

    2 1 7 5 . 0@ 9 ( 6 – ) EFG

    2 1 8 4 . 0 5 ( 8 + ) G

    2 3 5 1 . 5 # 8 1 0 + EFG 0 . 5 3 p s 1 0

    2 3 7 3 . 3 c 4 ( 8 + ) FG

    2 4 0 3 . 0@ 8 ( 7 – ) EFG

    2 4 6 5 . 8 a 5 ( 1 0 + ) G

    2 6 6 3 . 9& 5 ( 9 – ) E G

    2 6 6 5 . 8@ 8 ( 8 – ) EFG

    2 8 2 5 . 8 d 5 ( 1 0 + ) G

    2 9 2 4 . 7 b 6 ( 7 ) FG

    2 9 6 1 . 4@ 9 ( 9 – ) EFG

    3 0 3 3 . 3 c 5 ( 1 0 + ) G

    3 1 3 4 . 2 a ( 1 2 + ) G

    3 1 8 3 . 6 b 6 ( 8 ) G

    3 2 1 2 . 3 # 9 1 2 + E G 0 . 2 8 p s 4

    3 2 9 3 . 0& ( 1 0 – ) E

    Continued on next page (footnotes at end of table)

  • 1 7 5 6

    104

    20Zr62–2

    104

    20Zr62–2NUCLEAR DATA SHEETS

    Adopted Levels, Gammas (continued)

    102Zr Levels (continued)

    E(level)‡ Jπ† XREF

    3 3 7 1 . 0& ( 1 1 – ) E G

    3 4 7 5 . 8 b 6 ( 9 ) G

    3 5 6 7 . 5 d 6 ( 1 2 + ) G

    3 8 0 2 . 0 b 6 ( 1 0 ) G

    3 9 2 5 . 7 a ( 1 4 + ) G

    E(level)‡ Jπ† XREF

    4 1 5 3 . 4 # 1 4 + E G

    4 1 6 2 . 2 b 6 ( 1 1 ) G

    4 2 0 5 . 2& ( 1 3 – ) E G

    4 8 2 8 . 5 a ( 1 6 + ) E

    5 1 6 0 . 7@ ( 1 5 – ) E

    E(level)‡ Jπ† XREF

    5 1 6 9 . 0 # 1 6 + E G

    6 2 6 7 . 1 # 1 8 + E

    7 4 5 1 . 7 # 2 0 + E

    † Assignment is based on assumption of observed band structure in 252Cf,248Cm SF decay and 238U(α ,Fγ ) , systematics and γ decay pattern.

    ‡ Least–squares procedure was used to calculate level energies based on adopted gammas.

    § T1/2 from short–lived isomers from Doppler–profi le method (1996Sm04), unless specif ied otherwise.

    # (A): g.s . band.

    @ (B): ν5/2[532]⊗ν3/2[411]. & (C): ν5/2[532]⊗5/2[413]. a (D): Band based on (8+).

    b (E): ΔJ=1 band based on 7. Possible configurations=ν9/2[404]⊗ν5/2[532] or ν9/2[514]⊗ν5/2[413] for 7–; ν9/2[404]⊗ν5/2[413] or ν9/2[514]⊗ν5/2[532] for 7+. c (F): ν3/2[411]⊗ν5/2[413]. d (G): ν9/2[404]⊗ν3/2[411]. Alternate configuration=ν9/2[514]⊗ν3/2[541]. e (H): Band based on (2+).

    γ (102Zr)

    E(level) Eγ† Iγ† Mult. α Comments

    1 5 1 . 7 8 1 5 1 . 7 5 8 1 0 0 ( E2 ) 0 . 2 4 3 4 B(E2)(W.u.)=105 14 .

    4 7 8 . 2 8 3 2 6 . 4 8 2 1 1 0 0

    8 9 4 . 7 9 7 4 3 . 0 1 1 8 1 0 0

    9 6 4 . 7 8 4 8 6 . 5 4 1 9 1 0 0

    1 0 3 6 . 3 8 8 4 . 5 5

    1 0 3 6 . 4 5

    1 1 5 9 . 5 0 1 1 5 9 . 4 9 2 2 1 0 0

    1 2 1 1 . 0 5 1 0 5 9 . 2 1 1 8 7 3 8

    1 2 1 1 . 0 8 1 6 1 0 0 1 0

    1 2 4 2 . 3 7 6 4 . 0 5

    1 0 9 0 . 8 4

    1 3 8 6 . 7 9 0 8 . 4 5 1 0 0 1 6 A2=–0.073 27 , A4=+0.149 40 for 908.0–326.5 γγ cascade consistent with 4–>4–>2 cascade with mult=Q for 4 –> 4 transition.

    1 2 3 4 . 5 4 3 1 4

    1 5 3 8 . 1 1 0 5 9 . 7 5 1 0 0

    1 5 9 4 . 9 6 3 0 . 1 5 1 0 0

    1 6 5 2 . 8 6 8 7 . 8 3 3 1 1

    1 1 7 4 . 4 5 1 0 0 1 5

    1 6 6 1 . 8 2 7 5 § 1 0

    6 9 7 . 2 5 1 0 0

    1 1 8 3 . 3 5 2 3

    1 7 9 3 . 3 5 5 1 . 1 5 . 4 1 9

    7 5 7 . 0 5 1 0 0 1 6

    1 8 2 1 . 1 2 7 . 2 § 1 0

    2 8 2 . 8 5 1 0 0

    5 7 9 . 0 4 8 4

    1 3 4 2 . 5 5 3 . 6

    1 8 2 2 . 5 ? 5 7 9 . 4 5 1 0 0

    1 8 2 9 . 4 8 6 4 . 6 5 1 0 0

    1 9 2 0 . 7 1 4 4 2 . 4 5 1 0 0

    1 9 3 2 . 6 9 6 8 . 7 ‡ 1 0 0

    1 9 8 0 . 8 1 5 9 . 7 4 1 0 0

    2 0 9 2 . 8 4 3 1 . 0 5 1 0 0

    4 9 8 . 1 1 0

    1 1 2 6 . 8 § Eγ : Only observed in 238U(α ,Fγ ) . 2 1 7 5 . 0 1 9 3 . 7 § 5

    2 1 8 4 . 0 5 3 1 . 8 1 0 1 0 0 5

    1 2 1 9 . 6 5 5 5 1 6

    Continued on next page (footnotes at end of table)

  • 1 7 5 7

    104

    20Zr62–3

    104

    20Zr62–3NUCLEAR DATA SHEETS

    Adopted Levels, Gammas (continued)

    γ (102Zr) (continued)

    E(level) Eγ† Iγ†

    2 3 5 1 . 5 7 5 6 . 6 5 1 0 0

    2 3 7 3 . 3 5 4 4 . 0 1 0 0 6 6

    7 7 7 . 9 4 7 7 5

    1 4 0 8 . 4 5 2 8 5

    2 4 0 3 . 0 2 2 8 . 0 5 1 0 0 1 5

    4 2 2 . 2 5 4 5 1 5

    2 4 6 5 . 8 5 3 3 . 5 1 0 0 1 3

    8 7 0 . 4 4 1 1 3

    2 6 6 3 . 9 5 6 9 . 4 1 0 0

    2 6 6 5 . 8 2 6 2 . 6 5 1 0 0 2 8

    4 9 0 . 8 5 7 2 2 2

    2 8 2 5 . 8 6 4 1 . 3 1 0 0 1 5

    1 2 3 0 . 4 3 0 1 0

    E(level) Eγ† Iγ†

    2 9 2 4 . 7 1 9 5 9 . 9 5 1 0 0

    2 9 6 1 . 4 2 9 6 . 4 5 9 0 3 0

    5 5 9 . 0 5 1 0 0 3 0

    3 0 3 3 . 3 6 6 0 . 0 1 0 0

    3 1 3 4 . 2 6 6 9 . 3 1 0 0

    3 1 8 3 . 6 2 5 7 . 2 1 0 0

    3 2 1 2 . 3 8 6 0 . 8 5 1 0 0

    3 2 9 3 . 0 3 3 1 . 5 ‡

    6 2 8 . 4 ‡

    3 3 7 1 . 0 7 0 6 . 9 1 0 0

    3 4 7 5 . 8 2 9 2 . 2 1 0 0 3 3

    5 4 9 . 4 6 7 2 2

    3 5 6 7 . 5 7 4 1 . 7 1 0 0

    E(level) Eγ† Iγ†

    3 8 0 2 . 0 3 2 6 . 2 1 0 0 2 5

    6 1 8 . 4 § 2 5 8

    3 9 2 5 . 7 7 9 1 . 5 1 0 0

    4 1 5 3 . 4 9 4 1 . 4 1 0 0

    4 1 6 2 . 2 3 6 0 . 4 1 0 0 3 5

    6 8 6 . 2 5 0 1 5

    4 2 0 5 . 2 8 3 3 . 8 1 0 0

    4 8 2 8 . 5 9 0 2 . 8 ‡ 1 0 0

    5 1 6 0 . 7 9 5 5 . 5 ‡ 1 0 0

    5 1 6 9 . 0 1 0 1 5 . 6 1 0 0

    6 2 6 7 . 1 1 0 9 8 . 1 ‡ 1 0 0

    7 4 5 1 . 7 1 1 8 4 . 6 ‡ 1 0 0

    † Weighted averages of gammas from 252Cf,242Pu SF decay, and 102Y decays i f possible. Otherwise from 252Cf,242Pu SF decay.

    ‡ Only observed in 238U(α ,Fγ ) . § Placement of transition in the level scheme is uncertain.

  • 102

    40 Zr62 NUCLEAR DATA SHEETS102

    40 Zr62

    F

    A

    A

    A

    A

    A

    A

    (A)g.s.

    band(B) ν5/2[532]⊕

    ν3/2[411](C) ν5/2[532]⊕5/2[413]

    (D)Bandbasedon (8+)

    (E) ΔJ=1bandbasedon 7

    (F) ν3/2[411]⊕ν5/2[413]

    00+

    151.782+

    478.284+

    964.786+

    1594.98+

    2351.510+

    3212.312+

    4153.414+

    5169.016+

    6267.118+

    7451.720+

    326

    487

    630

    757

    861

    941

    1016

    1098

    1185

    1821.1(4-)

    2175.0(6-)

    2403.0(7-)

    2665.8(8-)

    2961.4(9-)

    5160.7(15-)

    228

    263

    296

    1661.8(5-)

    1980.8(5-)2092.8(7-)

    2663.9(9-)

    3293.0(10-)3371.0(11-)

    4205.2(13-)

    569

    628

    707

    834

    1932.6(8+)

    2465.8(10+)

    3134.2(12+)

    3925.7(14+)

    4828.5(16+)

    969

    534

    669

    792

    903

    2924.7(7)

    3183.6(8)

    3475.8(9)

    3802.0(10)

    4162.2(11)

    1960

    257

    292

    360

    1386.7(4+)

    1829.4(6+)

    2373.3(8+)

    3033.3(10+)

    908

    865

    778

    544

    660

    102

    40Zr62

    -4 -4

    1758

  • 102

    40 Zr62 NUCLEAR DATA SHEETS102

    40 Zr62

    (G) ν9/2[404]⊕ν3/2[411] (H) Band based on (2+)

    1652.8(6+)

    2825.8(10+)

    3567.5(12+)

    742

    1036.3(2+)

    1242.3(3+)

    1538.1(4+)

    102

    40Zr62

    -5 -5

    1759

  • 1 7 6 0

    104

    20Zr62–6

    104

    20Zr62–6NUCLEAR DATA SHEETS

    102Y ββββ– Decay (0.36 s) 1991Hi02

    Parent 102Y: E=0.0+x; Jπ=?; T1/2=0.36 s 4 ; Q(g.s. )=9850 70 ; %β– decay=100.

    102Y–%β– decay: No normalization possible due to incomplete data. Assignment: mass and charge separation of f ission fragments from 235U(n,F); (K x ray)γ–coincidences. Measured: Eγ , Iγ , γγ , (K x ray)γ–coin, T1/2 deduced:

    102Zr levels.

    Others: 1991Hi02 supersedes 1974GrZN.

    From systematics, the existence of two Y isomers is expected. The production method (235U(n,F)) favors the high–spin

    isomer, so probably mainly the decay of the high–spin 102Y isomer has been observed by 1983Sh13. Existence of two

    102Y isomers has been confirmed by the different I(152γ ) /I (326γ ) ratios given by 1983Sh13 and 1991Hi02. However in a recent paper of 2007Ch07 a high spin isomer is not mentioned.

    1992Ba28 performed β–γ coincidences.

    102Zr Levels

    E(level)† Jπ‡

    0 . 0 0 +

    1 5 1 . 7 7 1 3 2 +

    4 7 8 . 4 1 2 0 4 +

    9 6 5 . 2 6 6 +

    E(level)† Jπ‡

    1 2 1 1 . 0 4 1 3 ( 2 + )

    1 2 4 3 . 1 ? 6

    1 8 2 2 . 5 ? 8

    1 9 8 2 . 3 9

    † From a least–squares procedure using measured gammas.

    ‡ From Adopted levels.

    γ (102Zr)

    E㇠E(level) I㇠Comments

    1 5 1 . 7 3 1 4 1 5 1 . 7 7 7 9 1 0

    1 5 9 . 8 † 1 1 9 8 2 . 3 8 . 0 8

    3 2 6 . 6 4 1 5 4 7 8 . 4 1 4 2 3 I(152γ ) /I (326γ )=2.3 2 . 4 8 6 . 8 † 2 9 6 5 . 2 6 . 7 1 1

    5 7 9 . 4 † 2 1 8 2 2 . 5 ? 2 8 3

    1 0 5 9 . 2 1 1 8 1 2 1 1 . 0 4 8 3

    1 0 9 1 . 3 † 3 1 2 4 3 . 1 ? 3 3 3

    1 2 1 1 . 0 8 1 6 1 2 1 1 . 0 4 1 1 4

    † ΔEγ from 1983Sh13. ‡ From 1991Hi02.

    0.0+x 0.36 s

    %β–=100

    103

    29Y63

    Q–(g.s. )=985070

    0+ 0.0

    2+ 151.77

    4+ 478.41

    6+ 965.2

    (2+) 1211.04

    1243.1

    1822.5

    1982.3

    Decay Scheme

    Intensities: relative Iγ

    151.

    73

    79

    326.

    64

    42

    486.

    8 6

    .7

    1059

    .21

    8

    1211

    .08

    11

    1091

    .3

    33579.

    4 2

    8

    159.

    8 8

    .0

    104

    20Zr62

  • 1 7 6 1

    104

    20Zr62–7

    104

    20Zr62–7NUCLEAR DATA SHEETS

    102Y ββββ– Decay (0.298 s) 1991Hi02

    Parent 102Y: E=0.0+y; Jπ=?; T1/2=0.298 s 9 ; Q(g.s. )=9850 70 ; %β– decay=100.

    102Y–%β– decay: No normalization possible due to incomplete data. Assignment: mass–separated samples of A=102 from 235U(n,F). 102Sr was selected using a high temperature ionization

    source. The existence of a second 102Y isomer is based mainly on a different I(152γ ) /I (326γ ) ratio for each isomer. Measured: Eγ , Iγ , γγ , T1/2. Deduced:

    102Zr levels.

    Others: 1991Hi02 supersedes 1988HiZQ, 1989HiZY, 1974GrZN, 1992Ba28.

    performed β–γ coincidences.

    102Zr Levels

    E(level)† Jπ‡ Comments

    0 . 0 0 +

    1 5 1 . 7 7 1 3 2 +

    4 7 8 . 4 1 2 0 4 +

    8 9 4 . 7 8 2 2 ( 0 + ) Jπ : γ decay to 2+ but not to 4+ suggests (0+) for this level . (1+) cannot be excluded. 1 1 5 9 . 5 0 2 2

    1 2 1 1 . 0 4 1 3 ( 2 + ) Jπ : based on systematics: from γ decay to 0+ and 2+.

    † From a least–squares procedure using measured gammas.

    ‡ From Adopted levels.

    γ (102Zr)

    Eγ† E(level) Iγ†

    1 5 1 . 7 3 1 4 1 5 1 . 7 7 1 0 0 4

    3 2 6 . 6 4 1 5 4 7 8 . 4 1 8 . 6 9

    7 4 3 . 0 1 1 8 8 9 4 . 7 8 1 7 4

    Eγ† E(level) Iγ†

    1 0 5 9 . 2 1 1 8 1 2 1 1 . 0 4 2 9 3

    1 1 5 9 . 4 9 2 2 1 1 5 9 . 5 0 1 6 . 0 1 9

    1 2 1 1 . 0 8 1 6 1 2 1 1 . 0 4 4 0 4

    † From 1991Hi02.

    0.0+y 0.298 s

    %β–=100

    103

    29Y63

    Q–(g.s. )=985070

    0+ 0.0

    2+ 151.77

    4+ 478.41

    (0+) 894.78

    1159.50

    (2+) 1211.04

    Decay Scheme

    Intensities: relative Iγ

    151.

    73

    100

    326.

    64

    8.6

    743.

    01

    17

    1159

    .49

    16.

    0

    1059

    .21

    29

    1211

    .08

    40

    104

    20Zr62

    103Y ββββ–n Decay 1996Me09

    Parent 103Y: E=0.0; Jπ=?; T1/2=0.23 s 2 ; Q(g.s. )=3490 90 ; %β–n decay=?

    Production: Fission 235U with H2 beam. Measured:β– decay half–lives and production yields.

    102Zr Levels

    E(level)

    0 . 0

  • 1 7 6 2

    104

    20Zr62–8

    104

    20Zr62–8NUCLEAR DATA SHEETS

    248Cm SF Decay 1995Du10

    Parent 248Cm: E=0.0; Jπ=0+; T1/2=3.48×105 y 6 ; %SF decay=?

    248Cm–T1/2: From 1989Ho24.

    Experiment performed at EUROGAM Daresbury. Measured Eγ , Iγ , γγγ , .

    102Zr Levels

    E(level) Jπ†

    0 . 0 0 +

    1 5 1 . 9 2 +

    4 7 8 . 6 4 +

    9 6 5 . 2 6 +

    1 0 3 6 . 4 ( 2 + )

    1 2 4 2 . 4 ( 3 + )

    E(level) Jπ†

    1 5 3 8 . 1 ( 4 + )

    1 5 9 6 . 0 8 +

    1 7 9 3 . 4 ( 3 , 4 )

    1 8 2 1 . 3 ( 4 – )

    1 9 8 0 . 6 ( 5 – )

    2 1 7 4 . 7 ( 6 – )

    E(level) Jπ†

    2 3 5 3 1 0 +

    2 4 0 2 . 8 ( 7 – )

    2 6 6 5 . 5 ( 8 – )

    2 9 6 2 . 8 ( 9 – )

    3 2 0 5 1 2 +

    † From adopted levels.

    γ (102Zr)

    E(level) Eγ†

    1 5 1 . 9 1 5 2

    4 7 8 . 6 3 2 7

    9 6 5 . 2 4 8 7

    1 0 3 6 . 4 8 8 5

    1 0 3 6

    1 2 4 2 . 4 7 6 4

    1 0 9 0

    1 5 3 8 . 1 1 0 6 0

    E(level) Eγ† Iγ‡

    1 5 9 6 . 0 6 3 0 . 5 1 7 1

    1 7 9 3 . 4 7 5 7

    1 8 2 1 . 3 2 8 3

    5 7 9

    1 3 4 3

    1 9 8 0 . 6 1 6 0

    2 1 7 4 . 7 1 9 4

    3 5 4

    E(level) Eγ† Iγ‡

    2 3 5 3 7 5 7

    2 4 0 2 . 8 2 2 8

    4 2 2 . 5 1 . 5 5

    2 6 6 5 . 5 2 6 2 . 6 1 . 8 5

    4 9 0 . 9 1 . 3 4

    2 9 6 2 . 8 2 9 7

    5 6 0

    3 2 0 5 8 5 2

    † No uncertainties given.

    ‡ No values given.

    252Cf SF Decay

    Parent 252Cf: E=0.0; Jπ=0+; T1/2=2.645 y 8 ; %SF decay=? 252Cf–T1/2: From 2003Au03.

    2008Li45: Experiment performed at LBNL. Measured Eγ , Iγ , γγ , γγ (θ ) using GAMMASPHERE array of 102 HPGe detectors with Compton suppression.

    1997Ha64,1995HaZZ: 252Cf, 242Pu(SF): measured: SF–decay data, Eγ , Iγ . Deduced: 102Zr levels, Jπ , band structure. 1991Ho16,1990Ho12: 248Cm SF. Measured: Eγ , Iγ , γγ . Deduced: 102Zr levels, Jπ . 1995Du10: 248Cm SF. Measured: Eγ , γγγ using eurogam. Deduced: 102Zr levels Jπ , neutron pairing strength. 1971Ch44: measured: fragment kinetic energies, Eγ , Iγ ; ( f ission)γ–, ( f ission)x–ray–, γγ– and (K x ray)γ–coin. 1971Ch44 gives also intensities per f ission and K x–ray per f ission.

    The results of 1980ChZM are based on 254Cf SF decay.

    Others: 1970Ch11, 1970Wa05, 1971Ho29, 1972Ho08, 1972Wi15, 1974ClZX.

    102Zr Levels

    Band from 2008Li45.

    E(level)† Jπ‡ T1/2§ Comments

    0 . 0 # 0 +

    1 5 1 . 8 # 3 2 + 1 . 9 1 n s 2 5 T1/2: weighted average of 1.71 ns 14 (1980ChZM) and 2.21 ns 17 (1974JaZN), both determined

    by recoil–distance Doppler–shift method. Others: 0.86 ns 18 , recoil–distance Doppler

    (1970Ch11); 1.7 ns 4 , Ice(t) (1970Wa05). The value 3.17 ns 25 from 1974JaYY is assumed

    to be τ , rather than T1/2, and is then identical to T1/2=2.21 ns 17 of 1974JaZN. 4 7 8 . 3 # 3 4 +

    9 6 4 . 9 # 4 6 +

    1 0 3 6 . 1 1 e 2 4 ( 2 + )

    1 2 4 2 . 2 e 3 ( 3 + )

    1 3 8 6 . 3 c 4 ( 4 + )

    1 5 3 8 . 0 e 4 ( 4 + )

    1 5 9 5 . 4 # 4 8 + 1 . 3 9 p s 2 1

    1 6 5 2 . 7 d 4 ( 6 + )

    Continued on next page (footnotes at end of table)

  • 1 7 6 3

    104

    20Zr62–9

    104

    20Zr62–9NUCLEAR DATA SHEETS

    252Cf SF Decay (continued)

    102Zr Levels (continued)

    E(level)† Jπ‡ T1/2§

    1 6 6 1 . 9& 4 ( 5 – )

    1 7 9 3 . 3 4 ( 3 , 4 )

    1 8 2 0 . 8@ 4 ( 4 – )

    1 8 2 9 . 3 c 4 ( 6 + )

    1 9 3 2 . 3 a 5 ( 8 + )

    1 9 8 0 . 7@ 5 ( 5 – )

    2 0 9 3 . 2& 4 ( 7 – )

    2 1 7 4 . 9@ 5 ( 6 – )

    2 1 8 4 . 5 d 4 ( 8 + )

    2 3 5 1 . 9 # 5 1 0 + 0 . 5 3 p s 1 0

    2 3 7 3 . 3 c 4 ( 8 + )

    E(level)† Jπ‡ T1/2§

    2 4 0 3 . 2@ 5 ( 7 – )

    2 4 6 5 . 8 a 5 ( 1 0 + )

    2 6 6 3 . 9& 5 ( 9 – )

    2 6 6 5 . 8@ 5 ( 8 – )

    2 8 2 5 . 8 d 5 ( 1 0 + )

    2 9 2 6 . 4 b 5 ( 7 )

    2 9 6 2 . 2@ 5 ( 9 – )

    3 0 3 3 . 3 c 5 ( 1 0 + )

    3 1 3 3 . 8 a 6 ( 1 2 + )

    3 1 8 3 . 6 b 6 ( 8 )

    3 2 1 2 . 5 # 6 1 2 + 0 . 2 8 p s 4

    E(level)† Jπ‡

    3 3 7 1 . 2& 6 ( 1 1 – )

    3 4 7 5 . 8 b 6 ( 9 )

    3 5 6 7 . 5 d 6 ( 1 2 + )

    3 8 0 2 . 0 b 6 ( 1 0 )

    3 9 2 5 . 3 a 6 ( 1 4 + )

    4 1 5 3 . 9 # 7 1 4 +

    4 1 6 2 . 2 b 6 ( 1 1 )

    4 2 0 5 . 2& 7 ( 1 3 – )

    4 8 2 8 . 1 a 7 ( 1 6 + )

    5 1 6 8 . 5 # 7 1 6 +

    † From least–squares f it to Eγ ' s (by evaluator) using uncertainty of 0.3 keV for each γ ray. ‡ From γγ , γγ (θ ) , observed band structure and systematics, values the same as the adopted ones. § From Doppler–profi le method (1996Sm04), unless otherwise specif ied of 0.3 keV for each γ ray. # (A): g.s . band.

    @ (B): ν5/2[532]⊗ν3/2[411]. & (C): ν5/2[532]⊗5/2[413]. a (D): Band based on (8+).

    b (E): ΔJ=1 band based on 7. Possible configurations=ν9/2[404]⊗ν5/2[532] or ν9/2[514]⊗ν5/2[413] for 7–; ν9/2[404]⊗ν5/2[413] or ν9/2[514]⊗ν5/2[532] for 7+. c (F): ν3/2[411]⊗ν5/2[413]. d (G): ν9/2[404]⊗ν3/2[411]. Alternate configuration=ν9/2[514]⊗ν3/2[541]. e (H): Band based on (2+).

    γ (102Zr)

    E(level) EㆠIㆠComments

    1 5 1 . 8 1 5 1 . 8 1 0 0 5

    4 7 8 . 3 3 2 6 . 5 6 9 3

    9 6 4 . 9 4 8 6 . 6 4 4 2

    1 0 3 6 . 1 1 8 8 4 . 3 3 . 6 5

    1 0 3 6 . 1 2 . 8 4

    1 2 4 2 . 2 7 6 3 . 9 2 . 2 3

    1 0 9 0 . 4 1 5 1 A2=–0.139 30 , A4=–0.065 44 for 1090.4–151.8 γγ cascade consistent with 3–>2–>0 cascade with mult=Q for 3 –> 2 transition. Coefficients have been corrected by the authors for perturbed

    angular correlations.

    1 3 8 6 . 3 9 0 8 . 0 3 . 7 6 A2=–0.073 27 , A4=+0.149 40 for 908.0–326.5 γγ cascade consistent with 4–>4–>2 cascade with mult=Q for 4 –> 4 transition.

    1 2 3 4 . 5 1 . 6 5

    1 5 3 8 . 0 1 0 5 9 . 7 2 . 0 3

    1 5 9 5 . 4 6 3 0 . 5 1 7 1

    1 6 5 2 . 7 6 8 7 . 8 0 . 9 3

    1 1 7 4 . 4 2 . 7 4

    1 6 6 1 . 9 6 9 7 . 0 4 . 2 6 A2=–0.118 27 , A4=–0.007 39 for 697.0–486.6 γγ cascade consistent with 5–>6>4 cascade with mult=D for 5 –> 6 transition.

    1 1 8 3 . 6 0 . 7 2

    1 7 9 3 . 3 5 5 1 . 1 0 . 2 0 7

    7 5 7 . 2 3 . 7 6

    1 8 2 0 . 8 2 8 2 . 8 8 . 0 4

    5 7 8 . 6 1 0 . 5 5 A2=–0.016 11 , A4=–0.034 16 for 578.6–1090.4 γγ cascade consistent with 4–>3–>2 cascade with mult=Q for 3 –> 2 transition and mult=D for 4 –> 3 transition.

    1 3 4 2 . 5 0 . 6 2

    1 8 2 9 . 3 4 4 3 . 0 3 . 2 5

    8 6 4 . 4 2 . 7 4

    1 3 5 1 . 0 1 . 4 2

    1 9 3 2 . 3 9 6 7 . 4 3 . 3 5 A2=+0.125 38 , A4=+0.03 6 for 967.4–486.6 γγ cascade consistent with 8–>6–>4 cascade with mult=Q for both transition.

    1 9 8 0 . 7 1 5 9 . 9 7 . 7 4

    2 0 9 3 . 2 4 3 1 . 3 3 . 3 5

    4 9 7 . 8 2 . 8 4

    Continued on next page (footnotes at end of table)

  • 1 7 6 4

    104

    20Zr62–10

    104

    20Zr62–10NUCLEAR DATA SHEETS

    252Cf SF Decay (continued)

    γ (102Zr) (continued)

    E(level) EㆠIㆠComments

    2 1 7 4 . 9 1 9 4 . 2 4 . 2 6

    3 5 4 . 1 1 . 6 5

    2 1 8 4 . 5 5 3 1 . 8 3 . 1 5

    1 2 1 9 . 6 1 . 7 5

    2 3 5 1 . 9 7 5 6 . 5 5 . 2 3

    2 3 7 3 . 3 5 4 4 . 0 2 . 1 3

    7 7 7 . 9 1 . 0 3

    1 4 0 8 . 4 1 . 1 3

    2 4 0 3 . 2 2 2 8 . 3 3 . 3 5

    4 2 2 . 5 1 . 5 5

    2 4 6 5 . 8 5 3 3 . 5 2 . 2 3

    8 7 0 . 4 0 . 9 3

    2 6 6 3 . 9 5 7 0 . 7 2 . 1 3

    2 6 6 5 . 8 2 6 2 . 6 1 . 8 5

    4 9 0 . 9 1 . 3 4

    2 8 2 5 . 8 6 4 1 . 3 2 . 0 3

    1 2 3 0 . 4 0 . 6 2

    2 9 2 6 . 4 1 9 6 1 . 5 1 . 3 4 A2=–0.07 6 , A4=–0.10 9 for 1961.5–326.5 γγ cascade consistent with 7–>6–>4 cascade with mult=D for 7 –> 6 transition.

    2 9 6 2 . 2 2 9 6 . 4 0 . 9 3

    5 5 9 . 0 1 . 0 3 Initial level=2692.2 in Table 1 of 2008Li45 seems a misprint.

    3 0 3 3 . 3 6 6 0 . 0 1 . 0 3

    3 1 3 3 . 8 6 6 8 . 0 1 . 8 5

    3 1 8 3 . 6 2 5 7 . 2 0 . 9 3

    3 2 1 2 . 5 8 6 0 . 6 0 . 9 3

    3 3 7 1 . 2 7 0 7 . 3 1 . 5 5

    3 4 7 5 . 8 2 9 2 . 2 0 . 9 3

    5 4 9 . 4 0 . 6 2

    3 5 6 7 . 5 7 4 1 . 7 0 . 9 3

    3 8 0 2 . 0 3 2 6 . 2 0 . 4 1

    6 1 8 . 4 ‡ 0 . 1 0 3

    3 9 2 5 . 3 7 9 1 . 5 1 . 0 3

    4 1 5 3 . 9 9 4 1 . 4 0 . 5 2

    4 1 6 2 . 2 3 6 0 . 4 0 . 2 0 7

    6 8 6 . 2 0 . 1 0 3

    4 2 0 5 . 2 8 3 4 . 0 0 . 8 2

    4 8 2 8 . 1 9 0 2 . 8 0 . 8 2

    5 1 6 8 . 5 1 0 1 4 . 6 0 . 3 1

    † From 2008Li45 they state that the uncertainty ranges from 5% for strong transitions to 30% for weak transitions. The evaluator

    assign as fol lows: 5% for Iγ>5, 15% for Iγ=2–5 and 30% for Iγ

  • 1 7 6 5

    104

    20Zr62–11

    104

    20Zr62–11NUCLEAR DATA SHEETS

    235U(n,F) 1973Kh05 (continued)

    γ (102Zr)

    E(level) Eγ Iγ† Mult. Comments

    1 5 1 . 7 8 1 5 1 . 7 5 1 2 ( E2 ) K/L=6.

    Mult. : from K/L ratio.

    Eγ : from adopted levels. Measured conversion electrons. 4 7 8 . 2 8 3 2 5 3 1 6 8

    9 6 4 . 7 8 4 8 6 . 5 4 1 9 Not observed by 1973Kh05, from adopted gammas.

    1 5 4 6 ? 5 8 1 4 1 5 8

    † Relative intensity per f ission.

    238U( αααα ,F γγγγ) 2004Hu02

    E=30MeV. Measured Eγ , Iγ , γγ with Rochester 4π , highly segmented heavy–ion detector array CHICO, in coincidence with the GAMMASPHERE detector array.

    102Zr Levels

    E(level)† Jπ‡ Comments

    0 . 0 § 0 +

    1 5 1 . 8 § 2 +

    4 7 8 . 3 § 4 +

    9 6 3 . 9 § 6 +

    1 2 4 2 . 4 ( 3 + )

    1 5 9 4 . 7 § 8 +

    1 6 6 0 . 1 # ( 5 – )

    1 8 2 1 . 9& ( 4 – )

    1 9 3 2 . 6@ ( 6 – ) Jπ : Adopted value is (8+) with different band interpretation. 1 9 8 1 . 1& ( 5 – )

    2 0 9 0 . 7 # ( 7 – )

    2 1 7 5 . 0& ( 6 – )

    2 3 5 1 . 9 § 1 0 +

    2 4 0 2 . 4& ( 7 – )

    2 4 6 4 . 9@ ( 8 – ) Jπ : Adopted value is (10+) with different band interpretation. 2 6 6 0 . 1 # ( 9 – )

    2 6 6 4 . 6& ( 8 – )

    2 9 6 1 . 5& ( 9 – )

    3 1 3 4 . 2@ ( 1 0 – ) Jπ : Adopted value is (12+) with different band interpretation. 3 2 1 2 . 0 § 1 2 +

    3 2 9 3 . 0& ( 1 0 – )

    3 3 6 7 . 0 # ( 1 1 – )

    3 9 2 5 . 7@ ( 1 2 – ) Jπ : Adopted value is (14+) with different band interpretation. 4 1 5 3 . 4 § 1 4 +

    4 2 0 0 . 8 # ( 1 3 – )

    4 8 2 8 . 5@ ( 1 4 – ) Jπ : Adopted value is (16+) with different band interpretation. 5 1 5 6 . 3 # ( 1 5 – )

    5 1 6 9 . 0 § 1 6 +

    6 2 6 7 . 1 § 1 8 +

    7 4 5 1 . 7 § 2 0 +

    † From 2004Hu02, no uncertainties given by the authors.

    ‡ From adopted levels, unless noted otherwise.

    § (A): g.s . band.

    # (B): Kπ=5–, α=1. Possible configuration=ν5/2[532]⊗ν5/2[413]. @ (C): Kπ=5–, α=0. Possible configuration=ν5/2[532]⊗ν5/2[413]. & (D): (4–) band. Possible configuration=ν5/2[532]⊗ν3/2[411].

  • 1 7 6 6

    104

    20Zr62–12

    104

    20Zr62–12NUCLEAR DATA SHEETS

    238U( αααα ,F γγγγ) 2004Hu02 (continued)

    γ (102Zr)

    E(level) Eγ

    1 5 1 . 8 1 5 1 . 8

    4 7 8 . 3 3 2 6 . 5

    9 6 3 . 9 4 8 5 . 6

    1 2 4 2 . 4 1 0 9 0 . 6 †

    1 5 9 4 . 7 6 3 0 . 8

    1 6 6 0 . 1 6 9 6 . 2 †

    1 1 8 1 . 8 †

    1 8 2 1 . 9 5 7 9 . 5 †

    1 9 3 2 . 6 9 6 8 . 7 †

    1 9 8 1 . 1 1 5 9 . 2 †

    2 0 9 0 . 7 4 3 0 . 6

    4 9 6 . 0 †

    1 1 2 6 . 8 †

    E(level) Eγ

    2 1 7 5 . 0 1 9 3 . 9 †

    3 5 3 . 1 †

    2 3 5 1 . 9 7 5 7 . 2

    2 4 0 2 . 4 2 2 7 . 4 †

    4 2 1 . 3 †

    2 4 6 4 . 9 5 3 2 . 3

    8 7 0 . 2 †

    2 6 6 0 . 1 5 6 9 . 4

    2 6 6 4 . 6 2 6 2 . 2 †

    4 8 9 . 6 †

    2 9 6 1 . 5 2 9 6 . 9 †

    5 5 9 . 1 †

    3 1 3 4 . 2 6 6 9 . 3

    E(level) Eγ

    3 2 1 2 . 0 8 6 0 . 1

    3 2 9 3 . 0 3 3 1 . 5 †

    6 2 8 . 4 †

    3 3 6 7 . 0 7 0 6 . 9

    3 9 2 5 . 7 7 9 1 . 5

    4 1 5 3 . 4 9 4 1 . 4

    4 2 0 0 . 8 8 3 3 . 8

    4 8 2 8 . 5 9 0 2 . 8

    5 1 5 6 . 3 9 5 5 . 5

    5 1 6 9 . 0 1 0 1 5 . 6

    6 2 6 7 . 1 1 0 9 8 . 1

    7 4 5 1 . 7 1 1 8 4 . 6

    † From level–energy difference; not quoted by 2004Hu02. No uncertainties given by the authors.

  • 1 7 6 7

    104

    21Nb61–1

    104

    21Nb61–1NUCLEAR DATA SHEETS

    Adopted Levels, Gammas

    Q(β–)=7210 40 ; S(n)=5480 40 ; S(p)=10180 50 ; Q(α )=–6.30×103 5 2003Au03. Following (2007Ri01), from mass measurements, the energy difference between 102Nb gs and 102Nb isomer is 93 keV 23

    with the high spin isomer being the ground state.

    102Nb Levels

    The level scheme of 102Nb is extremely complicated and it is not even clear what the Jπ of the ground state and the long l ived isomer is . Therefore the experimental results are given in 3 subsets of data as no unique level scheme

    could be obtained. Further experiments are absolutely necessary to solve that problem.

    All band assignments are from 2001Hw01,1998Hw08 in 252Cf SF decay. Due to the controversy about the position of the

    ground state an the isomer, BAND (B) on the Jπ=1+ state mentioned in 252Cf SF decay has been omitted.

    Cross Reference (XREF) Flags

    A 102Zr β– Decay: 2.9 s B 252Cf SF Decay

    E(level)‡ Jπ† XREF T1/2§ Comments

    0 . 0 ( 4 + ) AB 4 . 3 s 4 %β–=100. %β–=100. Jπ : 1976Ah06 proposed a high spin for this level because it decays to levels with

    spin 3+,4+ and 6+ in 102Mo. From mass measurements of 2007Ri01 it is clear that

    the high spin level is the ground state and not the low spin state. 2007Ha32

    claims the opposite but the data of 2007Ri01 are more convincing. J suggested from

    absence of IT from 1+ isomeric state.

    0 . 0 + x 1 + A 1 . 3 s 2 %β–=100. %β–=100; no it decay reported. E(level) : x=93 23 fol lowing 2007Ri01 from mass measurements.

    Jπ : from allowed β–transition with log f t=4.71 from 0+, 102Zr g.s. decay. 2 0 . 3 7 + x 9 A

    6 4 . 3 9 + x 9 ( 2 + ) A

    9 3 . 9 5 + x 1 7 A

    1 5 6 . 3 6 + x 1 1 A

    1 6 0 . 7 2 + x 2 1 A

    2 4 6 . 3 1 + x 1 8 A

    2 5 8 . 4 3 + x 1 5 A

    4 3 0 . 7 + x 6 A

    5 9 9 . 4 9 + x 8 1 + A Jπ : from allowed β–transition with log f t=4.8 from 0+, 102Zr g.s. decay. 7 0 5 . 0 8 + x 2 4 ( 1 ) A Jπ : From log f t=5.65. 9 4 0 . 5 + x 4 ( 1 ) A Jπ : From log f t=5.82. 0 + y ( 1 + ) B

    6 4 . 5 + y ( 2 + ) B

    1 6 1 . 9 + y ( 3 + ) B

    2 8 7 . 4 + y ( 4 + ) B

    4 5 3 . 1 + y ( 5 + ) B

    6 3 2 . 5 + y # ( 6 + ) B

    8 7 1 . 1 + y # ( 7 + ) B

    1 0 9 9 . 6 + y # ( 8 + ) B

    1 4 0 6 . 9 + y # ( 9 + ) B

    1 6 7 7 . 5 + y # ( 1 0 + ) B

    0 . 0 + z @ ( 3 – ) B Eγ=z could be γ to (4+) g.s. and not to a level at 120 keV as suggested by 2001Hw01. 1 6 2 . 8 + z& ( 4 – ) B

    3 5 6 . 2 + z @ ( 5 – ) B

    4 4 0 . 8 + z a ( 2 – ) B

    5 4 5 . 0 + z b ( 3 – ) B

    5 8 0 . 6 + z& ( 6 – ) B

    6 7 7 . 2 + z a ( 4 – ) B

    8 3 3 . 0 + z @ ( 7 – ) B

    8 5 2 . 0 + z b ( 5 – ) B

    1 0 4 5 . 1 + z a ( 6 – ) B

    1 1 1 6 . 9 + z& ( 8 – ) B

    1 2 8 4 . 2 + z b ( 7 – ) B

    1 4 2 1 . 7 + z @ ( 9 – ) B

    1 5 8 4 . 0 + z a ( 8 – ) B

    1 7 5 8 . 2 + z& ( 1 0 – ) B

    1 8 5 4 . 2 + z b ( 9 – ) B

    2 2 8 6 . 4 + z a ( 1 0 – ) B

    Footnotes continued on next page

  • 1 7 6 8

    104

    21Nb61–2

    104

    21Nb61–2NUCLEAR DATA SHEETS

    Adopted Levels, Gammas (continued)

    102Nb Levels (continued)

    † The consequence of the fact that the high spin level would be the ground state and not the low spin is that the spin

    assignments proposed by 2001Hw01,1998Hw08 in (HI,xnγ ) become very uncertain as they sti l l consider the low spin isomer as the ground state.All other proposed spins for excited states are based on that assumption. Maybe what they consider as a 120 keV

    level could be the ground state.

    ‡ Calculated by the evaluator using a least–squares procedure based on adopted gammas.

    § From β–delayed gammas in 102Nb β– decay (1976Ah06). # (A): ΔJ=1 Band based on (6+). @ (B): Kπ=3–, α=1. π1/2[431]ν5/2[532] band, Semi–decoupled band. & (C): Kπ=3–, α=0. π1/2[431]ν5/2[532] band. a (D): Kπ=2–, α=0. π1/2[431]ν5/2[532] band, Semi–decoupled band. b (E): Kπ=2–, α=1. π1/2[431]ν5/2[532] band.

    γ (102Nb)

    Two sets of γ ' s 64.5 and 64.46 keV and 97.4 and 96.4 keV appear in both data sets and are very probably the same. However their exact position in the level scheme is not clear for the moment and more experiments are needed

    because the level scheme of 102Nb remains very speculative.

    E(level) Eγ† Iγ† Mult.‡

    2 0 . 3 7 + x 2 0 . 3 8 9 1 0 0 ( E1 )

    6 4 . 3 9 + x 6 4 . 4 6 1 3 1 0 0 M1

    9 3 . 9 5 + x 7 3 . 5 8 1 4 1 0 0

    1 5 6 . 3 6 + x 1 3 6 . 3 5 2 2 4 1 1 8

    1 5 6 . 1 4 1 4 1 0 0 2 4

    1 6 0 . 7 2 + x 9 6 . 4 5 1 0 0

    2 4 6 . 3 1 + x 8 5 . 5 9 1 2 7 0 3 0

    1 5 2 . 4 6 0 1 0 0 4 0

    2 2 5 . 3 5 3 2 8 7 3 0

    2 4 6 . 5 5 2 6 5 6 8

    2 5 8 . 4 3 + x 1 0 2 . 0 2 1 7 1 0 0 1 1

    2 5 8 . 5 2 2 2 5 0 7

    4 3 0 . 7 + x 2 7 0 . 0 5 1 0 0

    5 9 9 . 4 9 + x 4 4 2 . 3 5 3 . 5 1 5

    5 3 5 . 1 3 9 7 7 7

    5 9 9 . 4 8 9 1 0 0 9

    7 0 5 . 0 8 + x 4 5 8 . 6 9 2 1 6 9 2 5

    5 4 9 . 0 5 1 0 0 3 1

    6 4 1 . 2 8 3 4 1 3

    9 4 0 . 5 + x 8 7 5 . 8 8 5 5 1 8

    9 4 0 . 6 4 1 0 0 1 8

    0 + y y

    6 4 . 5 + y 6 4 . 5 1 0 0

    1 6 1 . 9 + y 9 7 . 4 1 0 0

    2 8 7 . 4 + y 1 2 5 . 5 1 0 0

    2 2 2 . 9 1 7

    4 5 3 . 1 + y 1 6 5 . 7 1 0 0

    2 9 1 . 2 1 . 6

    6 3 2 . 5 + y 1 7 9 . 4 1 0 0

    3 4 5 . 1 6

    8 7 1 . 1 + y 2 3 8 . 6 1 0 0

    4 1 8 . 0 1 9

    1 0 9 9 . 6 + y 2 2 8 . 5 1 0 0

    4 6 7 . 1 2 6

    1 4 0 6 . 9 + y 3 0 7 . 3 1 0 0

    5 3 5 . 8 2 8

    1 6 7 7 . 5 + y 2 7 0 . 6 1 0 0

    E(level) Eγ† Iγ†

    1 6 7 7 . 5 + y 5 7 7 . 9 3 1

    0 . 0 + z z

    1 6 2 . 8 + z 1 6 2 . 8 1 0 0

    3 5 6 . 2 + z 1 9 3 . 4 1 0 0

    3 5 6 . 2 2 7

    4 4 0 . 8 + z 2 7 8 . 0 7 5

    4 4 0 . 8 1 0 0

    5 4 5 . 0 + z 1 0 4 . 2 1 0 0

    1 8 8 . 8 3 6

    3 8 2 . 2 5 0

    5 8 0 . 6 + z 2 2 4 . 4 1 0 0

    4 1 7 . 8 5 0

    6 7 7 . 2 + z 9 6 . 6 §

    1 3 2 . 2 1 0 0

    2 3 6 . 4 9

    8 3 3 . 0 + z 2 5 2 . 4 1 0 0

    4 7 6 . 8 4 2

    8 5 2 . 0 + z 1 7 4 . 8 1 0 0

    3 0 7 . 0 1 3

    1 0 4 5 . 1 + z 1 9 3 . 1 1 0 0

    2 1 2 . 1 §

    3 6 7 . 9 5 8

    1 1 1 6 . 9 + z 2 8 3 . 9 1 0 0

    5 3 6 . 3 7 2

    1 2 8 4 . 2 + z 2 3 9 . 1 1 0 0

    4 3 2 . 2 3 0

    1 4 2 1 . 7 + z 3 0 4 . 8 8 6

    5 8 8 . 7 1 0 0

    1 5 8 4 . 0 + z 3 0 1 . 8 1 0 0

    5 4 0 . 9 5 0

    1 7 5 8 . 2 + z 3 3 6 . 5 §

    6 4 1 . 3 1 0 0

    1 8 5 4 . 2 + z 2 6 8 . 2 1 0 0

    5 7 0 . 0 4 6

    2 2 8 6 . 4 + z 4 3 2 . 2 1 0 0

    7 0 0 . 4 4 7

    † Adopted gammas either from 102Zr β– decay (mostly low–spin states) or from 252Cf SF decay (mostly high–spin states) . ‡ Based on measured conversion coeff icients.

    § Placement of transition in the level scheme is uncertain.

  • 102

    41 Nb61 NUCLEAR DATA SHEETS102

    41 Nb61

    B

    B

    B

    C

    (A) ΔJ=1band

    based on(6+) (B) Kπ=3-, α=1 (C) Kπ=3-, α=0 (D) Kπ=2-, α=0 (E) Kπ=2-, α=1

    632.5+y(6+)

    871.1+y(7+)

    1099.6+y(8+)

    1406.9+y(9+)

    1677.5+y(10+)

    239

    467

    228

    536

    307

    578

    271

    0.0+z(3-)

    356.2+z(5-)

    833.0+z(7-)

    1421.7+z(9-)

    356

    477

    589

    162.8+z(4-)

    580.6+z(6-)

    1116.9+z(8-)

    1758.2+z(10-)

    418

    536

    641

    440.8+z(2-)

    677.2+z(4-)

    1045.1+z(6-)

    1584.0+z(8-)

    2286.4+z(10-)

    441

    236

    368

    212

    541

    700

    545.0+z(3-)

    852.0+z(5-)

    1284.2+z(7-)

    1854.2+z(9-)

    382

    189

    307

    432

    570

    102

    41Nb61

    -3 -3

    1769

  • 1 7 7 0

    104

    21Nb61–4

    104

    21Nb61–4NUCLEAR DATA SHEETS

    102Zr ββββ– Decay: 2.9 s 2007Ri01

    Parent 102Zr: E=0.0; Jπ=0+; T1/2=2.9 s 2 ; Q(g.s. )=4626 23 ; %β– decay=100.

    102Zr–Q(β–) : From mass measurements of Nb isotopes by 2007Ri01 and those of Zr isotopes by 2006Ha03. 2007Ri01:Measured Eγ , Iγ , γγ , βγ coin, xγ coin, Q(β–) values using plastic scintil lator for β rays and Ge detectors for γ rays and xrays. Most of the data given here are from 2007Ri01 and data received through e–mail reply on January 30, 2007 from S.

    Rinta–Antila.(2008SiZZ) They are more recent and precise than the data of 1989SiZR.

    102Nb Levels

    E(level)† Jπ‡ Comments

    0 . 0 + x 1 + E(level) : x=93 23 (2007Ri01).

    2 0 . 3 7 + x 9

    6 4 . 3 9 + x 9 ( 2 + )

    9 3 . 9 5 + x 1 7

    1 5 6 . 3 6 + x 1 1

    1 6 0 . 7 2 + x 2 1

    2 4 6 . 3 1 + x 1 8

    2 5 8 . 4 3 + x 1 5

    4 3 0 . 7 + x 6

    5 9 9 . 4 9 + x 8 1 +

    7 0 5 . 0 8 + x 2 4 ( 1 )

    9 4 0 . 5 + x 4 ( 1 )

    > 9 4 1 + x

    † From least–squares f it to measured Eγ ' s by the evaluator. ‡ From Adopted levels, gammas.

    β– radiations

    Eβ– E(level) Iβ–‡§ Log f t† Comments

    ( 3 6 8 5 – x 2 3 ) > 9 4 1 + x

    ( 3 6 8 6 – x 2 3 ) 9 4 0 . 5 + x 1 . 7 3 5 . 8 2 9

    ( 3 9 2 1 – x 2 3 ) 7 0 5 . 0 8 + x 3 . 3 7 5 . 6 5 1 0

    ( 4 0 2 7 – x 2 3 ) 5 9 9 . 4 9 + x 2 5 2 4 . 8 2 5

    ( 4 1 9 5 – x 2 3 ) 4 3 0 . 7 + x 0 . 2 6 9 6 . 8 8 1 6

    ( 4 3 6 8 – x 2 3 ) 2 5 8 . 4 3 + x 2 . 4 2 5 . 9 9 5

    ( 4 3 8 0 – x 2 3 ) 2 4 6 . 3 1 + x 2 . 2 8 6 . 0 4 1 7

    ( 4 4 6 5 – x # 2 3 ) 1 6 0 . 7 2 + x < 0 . 7 > 6 . 6 Iβ–: 0.2 5 . ( 4 4 7 0 – x 2 3 ) 1 5 6 . 3 6 + x 1 . 3 7 6 . 3 0 2 4

    ( 4 5 3 2 – x 2 3 ) 9 3 . 9 5 + x 0 . 8 5 6 . 5 3

    ( 4 5 6 2 – x # 2 3 ) 6 4 . 3 9 + x 2 . 1 2 1 > 5 . 7

    ( 4 6 0 6 – x 2 3 ) 2 0 . 3 7 + x 2 . 1 1 4 6 . 2 3

    ( 4 6 2 6 – x 2 3 ) 0 . 0 + x 5 9 3 4 . 7 1 4

    † Values are deduced by the evaluator using "LOGFT" code available at www.nndc.bnl.gov; value of x is assumed as 0 for this

    calculation. From βγ counting the ground state feeding upper l imit was deduced to be 59% 3. All values should be treated as lower l imits since possible feedings to higher levels are unknown. For the calculation of conversion coeff icients all low–energy

    transitions for which the multipolarity could not be determined experimentally are considered [M1] because from systematics and

    structure point of view M1 is a good guess as multipolarity.

    ‡ All values should be treated as upper l imits since possible feedings to higher levels are unknown.

    § Absolute intensity per 100 decays.

    # Existence of this branch is questionable.

    γ (102Nb)

    The γγ coin information is from e–mail reply of Jan 30, 2007 from s. Rinta–Antila (2008SiZZ). Iγ normalization: Intensities l isted by 2007Ri01 are per 100 decays of 102Zr.

    Eγ† E(level) Iㆧ Mult. α I(γ+ce)‡§ Comments

    2 0 . 3 8 9 2 0 . 3 7 + x 0 . 5 6 1 1 ( E1 ) 1 0 . 3 6 . 3 1 2 α (K)exp=7.9 25 (2007Ri01). 6 4 . 4 6 1 3 6 4 . 3 9 + x 8 . 6 1 0 M1 0 . 7 8 1 1 5 . 3 1 8 α (K)exp=0.78 16 (2007Ri01). 7 3 . 5 8 1 4 9 3 . 9 5 + x 1 . 1 7 1 4 [M1 ] 0 . 5 3 5 1 . 8 0 2 2

    8 5 . 5 9 1 2 2 4 6 . 3 1 + x 0 . 7 3 [M1 ] 0 . 3 4 9 0 . 9 4

    Continued on next page (footnotes at end of table)

  • 1 7 7 1

    104

    21Nb61–5

    104

    21Nb61–5NUCLEAR DATA SHEETS

    102Zr ββββ– Decay: 2.9 s 2007Ri01 (continued)

    γ (102Nb) (continued)

    Eγ† E(level) Iㆧ Mult. α I(γ+ce)‡§ Comments

    9 6 . 4 5 1 6 0 . 7 2 + x 1 . 1 2 [M1 ] 0 . 2 5 0 1 . 3 8 2 5

    1 0 2 . 0 2 1 7 2 5 8 . 4 3 + x 1 . 3 7 1 5 [M1 ] 0 . 2 1 4 1 . 6 6 1 8

    1 3 6 . 3 5 2 2 1 5 6 . 3 6 + x 1 . 4 6 [M1 ] 0 . 0 9 6 1 . 5 6

    1 5 2 . 4 6 0 2 4 6 . 3 1 + x 0 . 9 9 4 0 0 . 9 9 4 0

    1 5 6 . 1 4 1 4 1 5 6 . 3 6 + x 3 . 4 8 [M1 ] 0 . 0 6 7 3 . 6 8

    2 2 5 . 3 5 3 2 2 4 6 . 3 1 + x 0 . 8 7 3 0 0 . 8 7 3 0

    2 4 6 . 5 5 2 6 2 4 6 . 3 1 + x 0 . 5 6 8 0 . 5 6 8

    2 5 8 . 5 2 2 2 2 5 8 . 4 3 + x 0 . 6 9 9 0 . 6 9 9

    2 7 0 . 0 5 4 3 0 . 7 + x 0 . 2 6 9 0 . 2 6 9

    x 3 6 2 . 9 4 0 . 9 3 In γγ coin with x–rays, 64γ , 136γ and 157γ . This transition is not assigned in the level–scheme figure

    of 2007Ri01.

    4 4 2 . 3 5 5 9 9 . 4 9 + x 0 . 4 9 2 0 0 . 4 9 2 0

    4 5 8 . 6 9 2 1 7 0 5 . 0 8 + x 1 . 1 4 1 . 1 4

    5 3 5 . 1 3 9 5 9 9 . 4 9 + x 1 0 . 7 1 0 1 0 . 7 1 0

    5 4 9 . 0 5 7 0 5 . 0 8 + x 1 . 6 5 1 . 6 5

    5 9 9 . 4 8 9 5 9 9 . 4 9 + x 1 3 . 9 1 3 1 3 . 9 1 3

    6 4 1 . 2 8 7 0 5 . 0 8 + x 0 . 5 5 2 0 0 . 5 5 2 0

    8 7 5 . 8 8 9 4 0 . 5 + x 0 . 6 2 0 . 5 7 1 4

    9 4 0 . 6 4 9 4 0 . 5 + x 1 . 1 2 1 . 1 2

    † From data received through e–mail reply on January 30, 2007 from s. Rinta–Antila (2008SiZZ).

    ‡ Based on photon intensities and conversion coeff icients deduced by the evaluator using BrIcc code available at www.nndc.bnl.gov

    For the calculation of conversion coeff icients all low–energy transitions for which the multipolarity could not be determined

    experimentally are considered [M1]. For the calculation of absolute intensities 2007Ri01 assumed also M1 for low energy γ ' s with the exception of the 20.38 G where EKC pointed to E1.

    § Absolute intensity per 100 decays.

    x γ ray not placed in level scheme.

    0+ 0.0 2.9 s

    %β–=100

    104

    20Zr62

    Q–=462623

    1+ 0.0+x4.7159

    20.37+x6.22.1

    (2+) 64.39+x>5.72.1

    93.95+x6.50.8

    156.36+x6.301.3

    160.72+x>6.6941+x

    Log f tIβ–

    Decay Scheme

    Intensities: I(γ+ce) per 100 parent decays

    20.3

    8 (E

    1)

    6.3

    64.4

    6 M

    1 1

    5.3

    73.5

    8 [M

    1]

    1.80

    136.

    35 [

    M1]

    1.

    5

    156.

    14 [

    M1]

    3.

    6

    96.4

    [M

    1]

    1.38

    85.5

    9 [M

    1]

    0.9

    152.

    4 0

    .99

    225.

    35

    0.87

    246.

    55

    0.56

    102.

    02 [

    M1]

    1.

    66

    258.

    52

    0.69

    270.

    0 0

    .26

    442.

    3 0

    .49

    535.

    13

    10.7

    599.

    48

    13.9

    458.

    69

    1.1

    549.

    0 1

    .6

    641.

    2 0

    .558

    75.8

    0.

    57

    940.

    6 1

    .1

    104

    21Nb61

  • 1 7 7 2

    104

    21Nb61–6

    104

    21Nb61–6NUCLEAR DATA SHEETS

    252Cf SF Decay 2001Hw01,1998Hw08

    Parent 252Cf: E=0; Jπ=0+; T1/2=2.645 y 8 ; %SF decay=3.092 8 . 252Cf–%SF decay: %SF=3.092 8 ( from 'adopted levels ' for 252Cf in ENSDF database).

    Measured γ , γγγ using GAMMASPHERE array of 72 Ge detectors.

    102Nb Levels

    E(level)† Jπ‡ Comments

    0 . 0 + y # ( 1 + ) E(level) : This level is considered by 1998Hw08 as the ground state of 102Nb but is very probably the

    isomeric state fol lowing 2007Ri01. The energy of the isomer would be then 93 23 keV.

    6 4 . 5 + y # ( 2 + )

    1 6 1 . 9 + y # ( 3 + )

    2 8 7 . 4 + y # ( 4 + )

    4 5 3 . 1 + y # ( 5 + )

    6 3 2 . 5 + y § ( 6 + )

    8 7 1 . 1 + y § ( 7 + )

    1 0 9 9 . 6 + y § ( 8 + )

    1 4 0 6 . 9 + y § ( 9 + )

    1 6 7 7 . 5 + y § ( 1 0 + )

    x@ ( 3 – ) E(level) : This level with unknown excitation energy is considered as the lowest energy level to which two

    ΔJ=1 bands f inally decay fol lowing 2001Hw01. 1 6 2 . 8 + x& ( 4 – )

    3 5 6 . 2 + x@ ( 5 – )

    4 4 0 . 8 + x a ( 2 – )

    5 4 5 . 0 + x b ( 3 – )

    5 8 0 . 6 + x& ( 6 – )

    6 7 7 . 2 + x a ( 4 – )

    8 3 3 . 0 + x@ ( 7 – )

    8 5 2 . 0 + x b ( 5 – )

    1 0 4 5 . 1 + x a ( 6 – )

    1 1 1 6 . 9 + x& ( 8 – )

    1 2 8 4 . 2 + x b ( 7 – )

    1 4 2 1 . 7 + x@ ( 9 – )

    1 5 8 6 . 0 + x a ( 8 – )

    1 7 5 8 . 2 + x& ( 1 0 – )

    1 8 5 4 . 2 + x b ( 9 – )

    2 2 8 6 . 4 + x a ( 1 0 – )

    † Levels of the different parts of the level scheme calculated with a least–squares procedure using the observed gammas.

    ‡ From observed band structure and systematics (2001Hw01). Supersedes the Jπ ' s of (1998Hw08) for Kπ=3– and Kπ=2– band members which were much higher. But the suggested spins are very doubtful The consequence of the fact that the high spin level would be

    the ground state and not the low spin is that the spin assignments proposed here become very uncertain as they sti l l consider

    the low spin isomer as the ground state.(see also Adopted Levels Gammas) All other proposed spins for excited states are based

    on that assumption. Probably what they consider as a 120 keV level could be the ground state.New experiments to clarify that

    situation are highly recommended by the evaluator.In the meantime the spins of the levels and the partial level schemes should

    be considered as very preliminary.

    § (A): ΔJ=1 Band based on (6+). # (B): Kπ=1+, π5/2[422]ν3/2[411]. @ (C): Kπ=(3–), π1/2[431]ν5/2[532] band, α=1. Semi–decoupled band. & (D): Kπ=3–, π1/2[431]ν5/2[532] band, α=0. a (E): Kπ=2–, π1/2[431]ν5/2[532] band, α=0. Semi–decoupled band. b (F): Kπ=2–, π1/2[431]ν5/2[532] band, α=1.

    γ (102Nb)

    E(level) Eγ† Iγ Mult.‡

    6 4 . 5 + y 6 4 . 5 (M1 )

    1 6 1 . 9 + y 9 7 . 4 (M1 )

    2 8 7 . 4 + y 1 2 5 . 5 6 0

    2 2 2 . 9 1 0

    4 5 3 . 1 + y 1 6 5 . 7 3 2

    2 9 1 . 2 0 . 5

    6 3 2 . 5 + y 1 7 9 . 4 1 7

    3 4 5 . 1 1 . 0

    8 7 1 . 1 + y 2 3 8 . 6 7 . 7

    E(level) Eγ† Iγ

    8 7 1 . 1 + y 4 1 8 . 0 1 . 5

    1 0 9 9 . 6 + y 2 2 8 . 5 3 . 9

    4 6 7 . 1 1 . 0

    1 4 0 6 . 9 + y 3 0 7 . 3 1 . 8

    5 3 5 . 8 0 . 5

    1 6 7 7 . 5 + y 2 7 0 . 6 1 . 6

    5 7 7 . 9 0 . 5

    x x

    1 6 2 . 8 + x 1 6 2 . 8 1 0 0

    E(level) Eγ† Iγ

    3 5 6 . 2 + x 1 9 3 . 4 3 3

    3 5 6 . 2 9 . 2

    4 4 0 . 8 + x 2 7 8 . 0 1 5

    4 4 0 . 8 2 0

    5 4 5 . 0 + x 1 0 4 . 2 3 0

    1 8 8 . 8 1 1

    3 8 2 . 2 1 5

    5 8 0 . 6 + x 2 2 4 . 4 2 0

    4 1 7 . 8 1 0

    Continued on next page (footnotes at end of table)

  • 1 7 7 3

    104

    21Nb61–7

    104

    21Nb61–7NUCLEAR DATA SHEETS

    252Cf SF Decay 2001Hw01,1998Hw08 (continued)

    γ (102Nb) (continued)

    E(level) Eγ† Iγ

    6 7 7 . 2 + x 9 6 . 6 §

    1 3 2 . 2 3 9

    2 3 6 . 4 3 . 6

    8 3 3 . 0 + x 2 5 2 . 4 1 2

    4 7 6 . 8 5 . 0

    8 5 2 . 0 + x 1 7 4 . 8 2 6

    3 0 7 . 0 3 . 3

    1 0 4 5 . 1 + x 1 9 3 . 1 1 1

    2 1 2 . 1 §

    E(level) Eγ† Iγ

    1 0 4 5 . 1 + x 3 6 7 . 9 6 . 4

    1 1 1 6 . 9 + x 2 8 3 . 9 7 . 1

    5 3 6 . 3 5 . 1

    1 2 8 4 . 2 + x 2 3 9 . 1 8 . 6

    4 3 2 . 2 2 . 6

    1 4 2 1 . 7 + x 3 0 4 . 8 3 . 0

    5 8 8 . 7 3 . 5

    1 5 8 6 . 0 + x 3 0 1 . 8 3 . 0

    5 4 0 . 9 1 . 5

    E(level) Eγ† Iγ

    1 7 5 8 . 2 + x 3 3 6 . 5 §

    6 4 1 . 3 1 . 0

    1 8 5 4 . 2 + x 2 6 8 . 2 2 . 8

    5 7 0 . 0 1 . 3

    2 2 8 6 . 4 + x 4 3 2 . 2 1 . 5

    7 0 0 . 4 0 . 7

    † From 1998Hw08.

    ‡ From 1998Hw08.

    § Placement of transition in the level scheme is uncertain.

  • 1 7 7 4

    104

    22Mo60–1

    104

    22Mo60–1NUCLEAR DATA SHEETS

    Adopted Levels, Gammas

    Q(β–)=1008 22 ; S(n)=8116 20 ; S(p)=11904 27 ; Q(α )=–4695 29 2003Au03. Q–=996 14 (2006Ha32) with Penning trap setup at IGISOL.

    102Mo Levels

    Cross Reference (XREF) Flags

    A 102Nb β– Decay (1.3 s) F 235U(n,F) B 102Nb β– Decay (4.3 s) G 238U(α ,Fγ ) C 248Cm,252Cf SF Decay H 100Mo(t,p)

    D 100Mo(t,pγ ) I 168Er(30Si,Xγ ) E 100Mo(18O,16Oγ )

    E(level)# Jπ‡§ XREF T1/2† Comments

    0 . 0@ 0 + ABCDEFGHI 1 1 . 3 m i n 2 %β–=100. T1/2: weighted average of : 11.2 min 3 (1980De06), 11.8 min 4 (1976Ki11),

    11.0 min 5 (1966Ga28), 11.0 min 3 (1954Wi32), 11.5 min 5 (1954Fl21).

    2 9 6 . 6 1 0@ 4 2 + ABCDEFGHI 1 2 5 p s 4 T1/2: from βγ (t) on mass separated f ission products (1991Li39). and time–integral perturbed angular correlations with Gammasphere

    (2005Sm08). Other: 114 ps 3 from 100Mo(18O,16Oγ ) , see also 2001Ra27. β2=0.311 5 (2001Ra27). Other: 0.28 1 deduced from T1/2 (1991Li39).

    Jπ : L(t ,p)=2. μ=+0.84 14 (1985Me13,1987Bo17,2005St24,1989Ra17). μ : From PAC measurements of the (401γ–296γ ) cascade in the β– decay of

    102Nb (high spin + low spin isomer); + from 2005Sm08. Other: +0.8 4

    (2005Sm08).

    6 9 8 . 2 6 c 1 2 0 + AB DEFGH 2 8 p s 1 1 Jπ : L(t ,p)=0. 7 4 3 . 7 3@ 5 4 + BCDE G I 1 2 . 5 p s 2 5 β2=0.27 3 (1991Li39).

    β2: Deduced from T1/21/2 (1991Li39). Jπ : L(t ,p)=(4) and J=4 from γγ (θ ) in 102Nb β– decay (4.3 s) .

    8 4 7 . 8 9 b 6 2 + AB DEFGH Jπ : L(t ,p)=2. 1 1 4 4 . 5 c 1 0 ( 2 + ) G No detailed arguments given for Jπ assignment (2004Hu02) but γ to 0+. 1 2 4 5 . 5 4 9 ( 3 + ) AB D Jπ=(3+) based on the γ decay pattern in 102Nb β– decay (4.3 s) (1988GiZX). 1 2 4 9 . 7 4 9 2 + H Jπ : L(t ,p)=2. 1 3 2 7 . 9 1@ 1 0 6 + BCDE G I

    1 3 3 4 5 0 + H Jπ : L(t ,p)=0. 1 3 9 8 . 3 9 b 8 ( 4 + ) B D G Jπ : from (t ,pγγ ) . Based on systematics and branching pattern. 1 6 0 8 2 2 + H Jπ : L(t ,p)=2. 1 6 1 6 . 8 9 1 2 B

    1 7 4 7 . 7 6 1 2 B

    1 8 6 9 . 7 6 1 3 B

    1 8 8 1 5 3 – H Jπ : L(t ,p)=3. 2 0 1 0 . 4 b 1 0 ( 6 + ) G No detailed arguments given for Jπ assignment by 2004Hu02 but γ to (4+). 2 0 1 8 . 8 2@ 1 4 8 + CD G I 1 . 8 p s 3

    2 1 0 8 3 1 – H Jπ : L(t ,p)=1. 2 1 2 2 5 0 + H Jπ : L(t ,p)=0. 2 1 4 7 . 5& 5 ( 5 – ) I

    2 2 3 9 5 ( 4 + ) H Jπ : L(t ,p)=(4) . 2 2 4 8 7 2 + H Jπ : L(t ,p)=2. 2 3 0 5 3 2 + H Jπ : L(t ,p)=2. 2 3 2 1 8 2 + H Jπ : L(t ,p)=2. 2 3 6 6 1 2 + H Jπ : L(t ,p)=2. 2 4 1 2 4 H

    2 4 1 8 . 1 2 2 5 ( 1 0 + ) D Jπ : suggested from level at 2416 keV in (t ,p) and (t ,pγγ ) results in which a 399.3γ from an observed γ–ray triplet at 400–keV decays to (8+) level .

    2 4 6 0 . 3 a 5 ( 6 – ) I Jπ : Jπ=(5–) suggested in 238U(α ,Fγ ) . 2 4 8 0 . 9 4 8 ( 3 + ) B D Jπ : from γγ (θ ) in 102Nb β– decay (4.3 s) . Absence in (t ,p) suggests

    positive parity.

    2 4 8 5 4 2 + H Jπ : L(t ,p)=2. 2 5 0 2 1 4 + H Jπ : L(t ,p)=4. 2 5 2 2 2 3 – H Jπ : L(t ,p)=3. 2 5 4 7 . 8& 5 ( 7 – ) I Jπ : Jπ=(4+) suggested in 238U(α ,Fγ ) . 2 6 0 8 1 H

    2 6 5 9 4 4 + H Jπ : L(t ,p)=4.

    Continued on next page (footnotes at end of table)

  • 1 7 7 5

    104

    22Mo60–2

    104

    22Mo60–2NUCLEAR DATA SHEETS

    Adopted Levels, Gammas (continued)

    102Mo Levels (continued)

    E(level)# Jπ‡§ XREF T1/2† Comments

    2 6 8 4 7 3 – H Jπ : L(t ,p)=3. 2 7 0 4 4 0 + H Jπ : L(t ,p)=0. 2 7 4 2 2 H

    2 7 9 0 . 3@ 6 ( 1 0 + ) C G I 1 . 0 3 p s 1 8 Jπ : from γγ and band structure in 248Cm SF. T1/2: from Doppler–profi le method in

    248Cm SF (1996Sm04).

    2 7 9 7 4 H

    2 8 2 8 . 8 a 8 ( 8 – ) G Jπ : Jπ=(7–) suggested in 238U(α ,Fγ ) . 2 8 5 1 1 H

    2 8 7 2 3 2 + H Jπ : L(t ,p)=2. 2 9 4 3 4 0 + H Jπ : L(t ,p)=0. 2 9 8 8 1 1 4 + H Jπ : L(t ,p)=4. 3 0 0 5 . 9& 1 1 ( 9 – ) I Jπ : Jπ=(6+) suggested in 238U(α ,Fγ ) . 3 0 1 0 7 2 + H Jπ : L(t ,p)=2. 3 0 6 3 2 4 + H Jπ : L(t ,p)=4. 3 0 9 1 3 3 – H Jπ : L(t ,p)=3. 3 1 2 5 3 2 + H Jπ : L(t ,p)=2. 3 1 6 2 5 4 + H Jπ : L(t ,p)=4. 3 1 9 3 7 2 + H Jπ : L(t ,p)=2. 3 2 4 8 1 H

    3 3 6 9 . 5 a 1 3 ( 1 0 – ) G Jπ : Jπ=(9–) suggested in 238U(α ,Fγ ) . 3 6 1 4 . 9& 1 5 ( 1 1 – ) I Jπ : Jπ=(8+) suggested in 238U(α ,Fγ ) . 3 6 2 5 . 2@ 1 2 ( 1 2 + ) G I

    3 6 3 2 . 3 8 ( 1 2 + ) C 0 . 6 6 p s 1 2 Jπ : from γγ and band structure in 248Cm SF. Following 2007La03 3625 keV level is member of DJ=2 GS Yrast band and not 3622.3 keV level .

    4 0 5 3 . 1 1 6 ( 1 1 – ) G

    4 3 6 3 . 7 1 8 ( 1 0 + ) G

    4 5 0 4 . 4@ 1 5 ( 1 4 + ) G

    4 8 5 6 . 8 1 9 ( 1 3 – ) G

    5 2 3 0 . 8 2 1 ( 1 2 + ) G

    5 4 7 0 . 9@ 1 8 ( 1 6 + ) G

    5 7 6 4 . 6 2 2 ( 1 5 – ) G

    6 2 0 0 . 5 2 3 ( 1 4 + ) G

    † Unless noted otherwise, determined by the recoil–distance Doppler–shift method (1975Bo39) from 100Mo(18O,16Oγ ) , except for g.s. and 296 level .

    ‡ Unless noted otherwise, from observed band structure and systematics in 238U(α ,Fγ ) and 168Er(30Si,xγ ) . § After contact with S.Lalkowski,( November 14, 2007), one of authors of the 168Er(30Si,Xγ ) experiment (2007La03), the evaluator got convincing evidence for the correctness of the level scheme and Jπ assignments for members of band(β ) presented by (2007La03) over these of (2004Hu02) in 238U(α ,Fγ ) . The interpretation of the observed band structure given by (2007La03)is a.o. based on systematics of very reliable data on 98,100Mo and 104Ru. Nevertheless an experimental confirmation of the results of

    2007La03 would be very welcome.

    # The level energies were calculated using a least–squares procedure using the Adopted Gammas.

    @ (A): Probable member of a ΔJ=2 g.s. Yrast band. (2004Hu02,2007La03). & (B): γ sequence based on (5–) (2007La03). a (C): γ sequence based on (6–) (2007La03). b (D): γ band (2004Hu02). c (E): β band (2004Hu02).

    γ (102Mo)

    E(level) Eγ† Iγ‡ Mult.§ α Comments

    2 9 6 . 6 1 0 2 9 6 . 6 1 1 4 1 0 0 [ E2 ] 0 . 0 2 5 7 B(E2)(W.u.)=74 9 .

    6 9 8 . 2 6 4 0 1 . 8 9 1 3 1 0 0 [ E2 ] B(E2)(W.u.)=70 30 .

    6 9 6 . 6 E0 I(696)/I(401)=4.2×10–3 (1989Es01). 7 4 3 . 7 3 4 4 7 . 1 3 6 1 0 0 [ E2 ] B(E2)(W.u.)=89 18 .

    8 4 7 . 8 9 5 5 1 . 6 3 8 1 0 0 5

    8 4 7 . 3 7 9 5 8 6

    1 1 4 4 . 5 4 4 6 . 2 1 0 0

    1 2 4 5 . 5 4 3 9 7 . 6 9 2 0 1 9 4

    9 4 8 . 8 5 1 1 1 0 0 1 1

    1 2 4 9 . 7 4 4 0 1 . 7 3 2 5 1 3

    Continued on next page (footnotes at end of table)

  • 1 7 7 6

    104

    22Mo60–3

    104

    22Mo60–3NUCLEAR DATA SHEETS

    Adopted Levels, Gammas (continued)

    γ (102Mo) (continued)

    E(level) Eγ† Iγ‡ Mult.§ Comments

    1 2 4 9 . 7 4 5 0 6 . 1 0 2 0 2 5 1 3

    5 5 2 . 0 0 2 0 5 0 1 3

    9 5 3 . 2 0 2 0 1 0 0 2 5

    1 2 4 9 . 1 0 2 0 7 5 2 5

    1 3 2 7 . 9 1 5 8 4 . 1 9 8 1 0 0

    1 3 9 8 . 3 9 5 5 0 . 2 5 1 5 9 4 5

    6 5 4 . 6 4 9 1 0 0 7

    1 1 0 2 . 4 0 2 0 4 4 1 1

    1 6 1 6 . 8 9 3 6 7 . 3 0 2 0 7 8 2 2

    8 7 3 . 5 3 2 2 1 1

    1 3 2 0 . 2 0 2 0 1 0 0 2 2

    1 7 4 7 . 7 6 1 0 0 4 . 0 0 2 0 1 0 0 2 1

    1 4 5 1 . 1 0 2 0 3 7 8

    1 8 6 9 . 7 6 6 2 4 . 1 0 2 0 3 9 9

    1 0 2 1 . 9 0 2 0 1 0 0 2 2

    1 1 2 6 . 1 0 2 0 3 0 9

    2 0 1 0 . 4 6 1 2 . 0

    2 0 1 8 . 8 2 6 9 0 . 9 0 1 0 1 0 0

    2 1 4 7 . 5 1 4 0 3 . 6 5 1 0 0

    2 4 1 8 . 1 2 3 9 9 . 3 0 # 2 0 1 0 0

    2 4 6 0 . 3 1 1 3 2 . 4 5 1 0 0

    2 4 8 0 . 9 4 7 3 3 . 1 0 2 0 3 . 6 7

    8 6 4 . 3 0 2 0 4 . 3 7

    1 0 8 2 . 6 0 2 0 4 . 3 7

    1 2 3 1 . 0 0 2 0 3 . 6 7

    1 2 3 5 . 3 0 2 0 3 3 5

    1 6 3 3 . 1 0 2 0 1 0 0 1 2

    1 7 3 7 . 2 0 2 0 5 . 0 1 2

    2 1 8 4 . 3 2 1 5 . 0 2 1 (M1 +E2 ) δ : –0.5. δ : from γγ (θ ) in 102Nb β– decay (4.3 s) .

    2 5 4 7 . 8 4 0 0 . 1 5 1 0 0 4

    1 2 2 0 . 1 5 5 0 5

    2 7 9 0 . 3 7 7 1 . 5 5 1 0 0

    2 8 2 8 . 8 3 6 8 . 4

    8 1 0 . 0

    3 0 0 5 . 9 4 5 8 . 1

    3 3 6 9 . 5 5 4 0 . 7

    3 6 1 4 . 9 6 0 9 . 0

    3 6 2 5 . 2 8 3 4 . 9

    3 6 3 2 . 3 8 4 2 . 0 5

    4 0 5 3 . 1 6 8 3 . 6

    4 3 6 3 . 7 7 4 8 . 8

    4 5 0 4 . 4 8 7 9 . 2

    4 8 5 6 . 8 8 0 3 . 7

    5 2 3 0 . 8 8 6 7 . 1

    5 4 7 0 . 9 9 6 6 . 5

    5 7 6 4 . 6 9 0 7 . 8

    6 2 0 0 . 5 9 6 9 . 7

    † The gamma energies were calculated using as a weighted average using gammas of 102Nb b± decay (1.3 s) ,102Nb b± decay (4.3 s) , 100Mo(18O,16O), 248Cm,252Cf SF decay, 100Mo(t,pγ ) , 238U(α ,Fγ ) and 168Er(30Si,xγ ) . ‡ Relative branchings of each level were deduced as a weighted average of data from 102Nb β– decay (4.3 s) , 100Mo(t,pγγ ) ,168Er(30Si,Xγ ) and 100Mo(18O,16O). § Unless noted otherwise, deduced from level scheme.

    # Placement of transition in the level scheme is uncertain.

  • 102

    42 Mo60 NUCLEAR DATA SHEETS102

    42 Mo60

    A

    A

    A

    A

    A

    A

    A

    (A) Probable member of aΔJ=2 g.s.

    yrast

    band

    (B) γsequence

    based on(5-)

    (C) γsequence

    based on(6-) (D) γ band (E) β band

    0.00+

    296.6102+

    743.734+

    1327.916+

    2018.828+

    2790.3(10+)

    3625.2(12+)

    4504.4(14+)

    5470.9(16+)

    297

    447

    584

    691

    772

    835

    879

    966

    2147.5(5-)

    2547.8(7-)

    3005.9(9-)

    3614.9(11-)

    400

    458

    609

    2460.3(6-)

    2828.8(8-)

    3369.5(10-)

    1132

    810

    368

    541

    847.892+

    1398.39(4+)

    2010.4(6+)

    847

    552

    1102

    655

    550

    612

    698.260+

    1144.5(2+)

    697

    402

    446

    102

    42Mo60

    -4 -4

    1777

  • 1 7 7 8

    104

    22Mo60–5

    104

    22Mo60–5NUCLEAR DATA SHEETS

    102Nb ββββ– Decay (4 .3 s)

    Parent 102Nb: E=0.0; Jπ=(4+); T1/2=4.3 s 4 ; Q(g.s. )=7210 40 ; %β– decay=100.

    1976Ah06: assignment by chemical separation of niobium from 235U,239Pu,249Cf(n,F); measured Eγ , γγ–coin, T1/2. 1977SeZK: mass separation of f ission fragments; measured γγ angular correlation. 1985Me13: source is a mixture of mass–separated 102Nb fission fragments from 235U(n,F). Measured: PAC for

    (296γ–400γ ) cascade. Deduced: g–factor for 296–keV level . 1988GiZX: mass–separated samples of niobium fission fragments from 235U, 239Pu(n,F). Measured: Eγ , Iγ , γγ–coin, γγ (θ ) . Decay scheme very probably incomplete due to the high value for Q=7210 keV so all logft values should be treated as

    lower l imits T1/2. Deduced: 102Mo levels.

    102Mo Levels

    E(level)† Jπ‡ T1/2 Comments

    0 . 0 0 +

    2 9 5 . 9 2 8 2 + 1 2 5 p s 4 T1/2: from 1991Li39.

    g=0.42 7 (1985Me13).

    g: From PAC for (296γ–400γ ) cascade. 6 9 7 . 0 5 1 9 0 +

    7 4 3 . 0 3 1 0 4 +

    8 4 7 . 4 8 8 2 +

    1 2 4 4 . 9 5 1 1 ( 3 + )

    1 2 4 9 . 1 0 1 1 2 +

    1 3 2 7 . 1 3 2 3 6 +

    1 3 9 7 . 8 5 1 3 ( 4 + )

    1 6 1 6 . 2 2 1 4

    1 7 4 7 . 0 8 1 4

    1 8 6 9 . 1 9 1 4

    2 4 8 0 . 2 8 1 1 ( 3 + ) Jπ : J=3 from γγ (θ ) results of 1988GiZX if J(296)=2 and δ=–0.5 for 2184γ .

    † From a least–squares f it to measured gammas.

    ‡ From adopted levels.

    β– radiations

    Eβ– E(level) Iβ–† Log f t Comments

    ( 4 7 3 0 4 0 ) 2 4 8 0 . 2 8 7 1 6 4 . 8 6 av Eβ=2085 34 . ( 5 3 4 0 4 0 ) 1 8 6 9 . 1 9 3 . 9 7 6 . 3 6 av Eβ=2378 34 . ( 5 4 6 0 4 0 ) 1 7 4 7 . 0 8 1 . 8 7 6 . 7 4 av Eβ=2437 34 . ( 5 8 1 0 4 0 ) 1 3 9 7 . 8 5 6 . 3 1 1 6 . 3 1 av Eβ=2605 34 . ( 5 8 8 0 ‡ 4 0 ) 1 3 2 7 . 1 3 1 . 2 3 7 . 0 6 av Eβ=2639 34 .

    Log f t : This logft value is far too small for a second forbidden β transition (see also general comment).

    ( 5 9 7 0 4 0 ) 1 2 4 4 . 9 5 9 3 6 . 2 1 av Eβ=2678 34 . ( 6 4 7 0 4 0 ) 7 4 3 . 0 3 7 . 6 2 3 6 . 4 4 av Eβ=2919 34 .

    † Absolute intensity per 100 decays.

    ‡ Existence of this branch is questionable.

    γ (102Mo)

    Absolute intensities calculated with the assumption of no g.s. β feeding and mult=E2 for 296γ .

    Eγ† E(level) Iㆇ Mult. α

    1 5 1 § 1 8 4 7 . 4 8 1 . 5 3 [ E2 ] 0 . 2 7 2

    2 9 6 . 0 1 2 9 5 . 9 2 8 1 8 [ E2 ] 0 . 0 2 5 3

    3 6 7 . 3 2 1 6 1 6 . 2 2 0 . 7 2

    3 9 7 . 4 2 1 2 4 4 . 9 5 3 . 5 7

    4 0 1 . 0 3 6 9