23
CO 2 Transport CO 2 transport 2010 IEAGHG INTERNATIONAL CCS SUMMER SCHOOL Mona J. Mølnvik Chief Scientist SINTEF Energy Research Contributing: Svend Tollak Munkejord, Peder Aursand and Jana P. Jakobsen

Norske lysark 2001 - IEAGHG

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Norske lysark 2001 - IEAGHG

CO2 Transport

CO2 transport

2010 IEAGHG INTERNATIONAL CCS SUMMER SCHOOL

Mona J. MølnvikChief Scientist

SINTEF Energy Research

Contributing: Svend Tollak Munkejord, Peder Aursand and Jana P. Jakobsen

Page 2: Norske lysark 2001 - IEAGHG

CO2 Transport

CO2 transport

Outline►Overview

►CO2 transport – some challenges

►The research

Page 3: Norske lysark 2001 - IEAGHG

CO2 Transport

Current experience with CO2 transport►Experience with the transportation of CO2 of natural origin in

pipelines: ~3100 km CO2 pipelines using naturally occurring CO2 for EOR in USA

with a capacity of 44 Mt/yr

Also EOR projects in Hungary, Turkey, Brazil, Croatia

►CCS projects including CO2 transport/injection: CO2 of anthropogenic origin

Might need long distance onshore and offshore pipelines

Page 4: Norske lysark 2001 - IEAGHG

CO2 Transport

Sleipner – CO2 removal from natural gas and re-injection

► Started 1996► 1 million tonne CO2/year► 9,5% CO2► The Utsira formation► Salin Aquifer

Page 5: Norske lysark 2001 - IEAGHG

CO2 Transport

Hammerfest LNG plant

►CO2 is separated from the natural gas and re-injected a porous sandstone called the Tubåen formation

►5-6% CO2 in the natural gas►145 km CO2 pipeline►2,500 depth►700,000 tonnes of CO2/year

Page 6: Norske lysark 2001 - IEAGHG

CO2 Transport

Lacq deep gas reservoir

OxygenProduction

Unit

Lacq gas production

1

Natural gas inlet

2

Lacq gas power plant

3

Commercial gas

4

UtilitiesBoiler oxycombustion

5

CO2

6

CO2 Transportation

7

Compression

8CO2 injection

9

CO2 storage

10

4000 m

4500 m Natural gas

Steam

Purification / CO2 dehydration

Compression

Rousse reservoir

CO2 injection

CO2 transportation

CO2 capture

Gas production

Lacq deep gas reservoir

OxygenProduction

Unit

OxygenProduction

Unit

Lacq gas production

1

Lacq gas production

1

Natural gas inlet

2

Natural gas inlet

2

Lacq gas power plant

3

Lacq gas power plant

3

Commercial gas

4

Commercial gas

4

UtilitiesBoiler oxycombustion

5

UtilitiesBoiler oxycombustion

5

CO2

6

CO2

6

CO2 Transportation

7

CO2 Transportation

7

Compression

8

Compression

8CO2 injection

9

CO2 injection

9

CO2 storage

10

CO2 storage

10

4000 m4000 m

4500 m4500 m Natural gasNatural gasNatural gas

SteamSteamSteam

Purification / CO2 dehydrationPurification / CO2 dehydration

CompressionCompression

Rousse reservoirRousse reservoir

CO2 injection

CO2 transportation

CO2 capture

Gas production

Lacq CCS Pilot

► CO2 injection in a depleted gas field► 120.000 ton CO2 to be injected in two years► 30 MW oxy-combustion boiler► 35 km low-pressure CO2 transport (30 bar)► 92% CO2, 4% O2, 3,7% Ar, 0,3% N2

Page 7: Norske lysark 2001 - IEAGHG

CO2 Transport

CO2 transport

Outline►Overview

►CO2 transport – some challenges

►The research

Page 8: Norske lysark 2001 - IEAGHG

CO2 Transport

CO2 transport and the CCS chain

technical and legal CO2 requirements

CO2injection

CO2purification

andconditioning

Sources StorageTransport

industry

power plants

ships

pipelines

EOR/EGR

storage in saline aquifers

gas processing

composition, T, P

Page 9: Norske lysark 2001 - IEAGHG

CO2 Transport

Design and operation of CO2 pipelinesSome challenges

►Designing efficient and safe long-distance CO2 transport systems

►The effect of the quality of the CO2

►CO2 injection►Consequences of depressurisation causing phase

transition and hence cooling Planned and controlled Accident – pipe rupture

►Consequences of leakages on shore and off shore►Public acceptance

Page 10: Norske lysark 2001 - IEAGHG

CO2 Transport

Example - CO2 pipeline depressurization

Modified from: “Construction of a CO2 pipeline test rig for R&D and operator training”, Pettersen, J., de Koeijer, G. and Hafner, A., GHGT-8, Trondheim, June 2006

-60

-50

-40

-30

-20

-10

0

10

20

time (s)

T (o

C)

2 phase region

gas

liquid

dry ice + gas

liquid + gas

Experimental data

©SINTEF Energy Research

Page 11: Norske lysark 2001 - IEAGHG

CO2 Transport

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90 100

Press( Bar)

Den

sity

(kg/

m^3

)

Measured values from NISTLK: Lee-KeslerBWRS: Benedict-Webb-Rubin-StarlingSoave Redlich Kwong

0°C10°C 20°C

27°C

37°C

Example - CO2 density, effect of EOS

Liquid

Liquid + gas

Gas

Page 12: Norske lysark 2001 - IEAGHG

CO2 Transport

0 20 40 60 80 100 120 1400

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P(Bar)

yH2O

(%)

24 to 28 °C

pure CO2

CO2 and 5% CH4

Example - impact of methane in water solubility

“Thermodynamic models for calculating mutual solubilities in H2O-CO2-CH4 mixtures”, Austegard, A., Solbraa, E., de Koeijer, G. and Mølnvik, M.J. Trans IChemE, Sept. 2006.

©SINTEF Energy ResearchSoave-Redlich-Kwong equation of state with Huron-Vidal mixing rules (SRK-HV)

Page 13: Norske lysark 2001 - IEAGHG

CO2 Transport

Some requirements to meet the challenges –Research Tasks

For a safe and efficient design and operation of CO2 transport and injection systems, we should be able to perform the following type of calculations:

►Phase equilibria, thermodynamical and transport properties for CO2 mixtures in the relevant pressure and temperature range and for the relevant mixtures.

►Depressurization of a CO2 transport pipe.

►Operational issues, e.g. possible precipitations or phase transitions because of varying pressure and temperature along the pipe.

►Onset and arrest of running ductile fractures in CO2 pipelines

Page 14: Norske lysark 2001 - IEAGHG

CO2 Transport

CO2 transport

Outline►Overview

►CO2 transport – some challenges

►The research

Page 15: Norske lysark 2001 - IEAGHG

CO2 Transport

CO2 Transport: CO2 pipeline integrity

► The objective is to contribute to safe and cost effective CO2

transport and avoid running ductile fractures in pipelines pressurised with CO2 and CO2 mixtures

► A fluid-structure fracture assessment model is under development: Coupled structural and fluid models

Thermodynamical and fluid dynamical models• Thermodynamics for CO2 and mixtures of CO2

• Phase transfer

• Fluid dynamics

• Numerical models

Fracture resistance models

SINTEF M&C

Page 16: Norske lysark 2001 - IEAGHG

CO2 Transport

The fracture race

► Crack-propagation speed Pipe material

Pipe geometry

Pressure

Temperature

► Pressure-propagation speed (sound speed) Gas, liquid or mixture

Fluid composition

Pressure

Temperature

Fluid flow

Page 17: Norske lysark 2001 - IEAGHG

CO2 Transport

Fluid model, geometry and setup►One-dimensional flow in x-direction

►Crack opening width: 2re(x)

►1st version is one-phase flow, CO2 will require a two-phase flow model with phase transfer

Page 18: Norske lysark 2001 - IEAGHG

CO2 Transport

Example – phase transfer ►Calculating two-phase flow assuming equilibrium between the

phases gives too low speed of sound

►The calculated speed of sound is dependent of; The equation of state

The number of equilibrium assumptions made

The numerical model

Page 19: Norske lysark 2001 - IEAGHG

CO2 Transport

Phase equilibrium

►Real case

►Equilibrium Mechanical (p)

Thermal (T)

Chemical (μ)

►Phase transfer relaxation model Mechanical and thermal equilibrium

Gas-liquid approaches equilibrium at a limited speed

Page 20: Norske lysark 2001 - IEAGHG

CO2 Transport

Two-phase flowContinuity equations

►Equilibrium

►Phase transfer relaxation model

- phase transfer relaxation coefficient

Page 21: Norske lysark 2001 - IEAGHG

CO2 Transport

Example with CO2 in a 100 m pipeline

No phase transfer

liquid gas

Always equilibrium

Page 22: Norske lysark 2001 - IEAGHG

CO2 Transport

Effect of equilibrium assumptions

Lund Halvor, Flåtten Tore (2010). Equilibrium Conditions and Sound Velocities in Two-Phase Flows. 2010 SIAM Annual Meeting (AN10) , Pittsburgh, PA, USA, jul 12 - jul 16

Important to calculate speed of sound correct

Page 23: Norske lysark 2001 - IEAGHG

CO2 Transport

Concluding remarks

►CO2 transport is taking place today

►Realising industrial CCS requires that all operations along the chain are efficient and safe

►The engineering tools for CO2 transport should handle CO2

mixtures at relevant conditions

►Research contributes with improved understanding of underlying phenomena and improved methods for addressing central issues

Thank you!