Nondestructive Multicomponent Terahertz Chemical Imaging of Medicine in Tablets page 1
Nondestructive Multicomponent Terahertz Chemical Imaging of Medicine in Tablets page 2
Nondestructive Multicomponent Terahertz Chemical Imaging of Medicine in Tablets page 3
Nondestructive Multicomponent Terahertz Chemical Imaging of Medicine in Tablets page 4
Nondestructive Multicomponent Terahertz Chemical Imaging of Medicine in Tablets page 5

Nondestructive Multicomponent Terahertz Chemical Imaging of Medicine in Tablets

Embed Size (px)

Text of Nondestructive Multicomponent Terahertz Chemical Imaging of Medicine in Tablets

  • Journal of The Electrochemical Society, 161 (9) B171-B175 (2014) B171

    Nondestructive Multicomponent Terahertz Chemical Imagingof Medicine in TabletsKatsuhiro Ajito,a,z Jae-Young Kim,a Yuko Ueno,a Ho-Jin Song,a Keisuke Ueda,bWaree Limwikrant,b,c Keiji Yamamoto,b and Kunikazu Moribeb

    aNTT Microsystem Integration Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198, JapanbGraduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan

    Molecular networks based on noncovalent bonds have resonant frequencies in the terahertz (THz) region. THz spectroscopy is apowerful tool for identifying molecular bonds, such as intermolecular or intramolecular hydrogen bonds, in pharmaceuticals. ATHz chemical imaging (TCI) system was developed by combining a THz time-domain spectrometer with a translational stage toobtain two-dimensional distributions of molecular networks in tablet samples. Since THz spectral peaks of pharmaceuticals arebroad at room temperature, multicomponent chemical analysis with the TCI system has some limitations. In this paper, we describemulticomponent chemical analysis of pharmaceuticals using a sample chamber cooled by a cryostat. TCI measurement at lowtemperature sharpens spectral peaks and/or shifts peak frequencies, enabling us to determine the distribution of several kinds ofpharmaceuticals in a tablet. The TCI system provides THz images of polymorphic form distribution of famotidine binding withD-mannitol in an over-the-counter pharmaceutical tablet. Furthermore, the molecular mechanics method was used to determine thevibrational modes of the peaks in the spectra of famotidine polymorphic forms. The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative CommonsAttribution 4.0 License (CC BY,, which permits unrestricted reuse of the work in anymedium, provided the original work is properly cited. [DOI: 10.1149/2.0201409jes] All rights reserved.

    Manuscript submitted April 3, 2014; revised manuscript received May 12, 2014. Published May 31, 2014. This was Paper 3844presented at the Honolulu, Hawaii, Meeting of the Society, October 712, 2012.

    Terahertz (1012 Hz) (THz) light, which occupies the region of theelectromagnetic spectrum between microwaves and infrared light, hasfrequencies from 0.3 to 10 THz, corresponding to wavelengths from30 to 1000 m. THz light is advantageous for safe, non-destructiveinspection applications because it has linear propagation character-istics and can penetrate a large variety of materials, such as plastic,paper, rubber, wood, and ceramics. THz chemical imaging (TCI) isfundamentally different from conventional X-ray imaging in that it canbe used for material recognition based on spectroscopy of molecularnetworks.1,2 Molecular networks are created by noncovalent bonds,such as hydrogen bonds and ionic bonds, and van der Waals forcesbetween molecules, which have a resonance frequency in the THz re-gion. THz spectroscopy is a powerful tool for identifying intermolec-ular and intramolecular hydrogen bonds in biological samples, suchas amino acids,39 polypeptides,10,11 DNA,12 protein,13,14 sugars,15,16

    pharmaceuticals,1719 and cancer cells. Molecules of amino acid andpharmaceutical crystals exhibit several peaks in THz spectra, makesquantitative analyses possible. Their peak frequencies are stronglyaffected by the hydrogen-bond network of the molecular crystals.3,20

    Applications such as pathological examinations of tissues2123 andidentification of drugs or explosives in postal packages have receivedattention.24,25

    TCI has the potential to reveal not only molecular distributions butalso molecular networks, which could lead to new medical diagnos-tic and evaluation techniques. THz light penetrates pharmaceuticaltablets and enables us to inspect the homogeneity of their coating26

    and identify polymorphic forms of crystals.27,28 Polymorphic forms ofmolecular crystals have different crystal structures comprising differ-ent types of hydrogen bonds between molecules in the crystals and thusshow different chemical properties, such as solubility, hygroscopicity,and bioavailability as medicines. Bioavailability indicates the rate andextent of drug absorption, which is largely determined by the prop-erties of the dosage form, rather than by the drugs physicochemicalproperties, which determine absorption potential. Regardless of theseadvantages, the number of chemical species in a tablet that can beseparated is limited because their spectral peaks in the THz frequencyregion are broad.

    This paper describes multicomponent imaging of pharmaceuticalcrystals using a TCI combined with a vacuum chamber cooled by

    cPresent Address: Faculty of Pharmacy, Mahidol University, Ratchatewi, Bangkok10400, Thailand


    a cryostat. The TCI provides frequency-dependent THz images of atablet at low temperature and enables us to determine the distributionof several kinds of pharmaceuticals within a tablet. Two-dimensionaldistributions of the polymorphic forms of famotidine in an over-the-counter tablet are shown by using their THz peaks which are calculatedby the molecular mechanics method.


    Figure 1 is a diagram of the TCI system composed of a THz time-domain spectroscope (THz-TDS) with the vacuum chamber mountedon a three-dimensional translational stage.28 For multicomponentchemical analysis, a cryostat was added to the vacuum chamber. Thesample holder inserted into the chamber has a quartz plate bottomand can be cooled down to 77 K by the cryostat using liquid nitrogenand an electric heater. The stability of the cryostat is less than 2 K.The THzTDS consists of a 9-fs near-infrared pulse laser (IntegralPro, Femtolasers), two gallium arsenide photoconductive antennas(AISPEC), a mechanical stage delay line, and mirrors. One photo-conductive antenna is an emitter and the other is a detector. A 13-fsnear-infrared pulse laser (Fusion, Femtolasers) is also used for TDSmeasurement. The delay line is used to obtain a time-domain wave-form, which is converted to a frequency-domain spectrum by Fouriertransformation. The three-dimensional translational stage with 0.1-mm-step resolution and the THz-TDS are controlled by a personalcomputer to obtain a THz time-domain spectrum at each point in asample tablet. The acquisition time for obtaining a 12 12 mm2image is about seven hours. The image consists of 60 60 pixelsin 200-m increments. The sample measurement spatial resolutionsin the horizontal and vertical directions are about 0.5 and 1 mm, re-spectively. The number of accumulations for obtaining time-domainwaveforms is 32, and no accumulations are acquired at each pixelposition during THz imaging.

    Sample tablets studied were made of famotidine, which is a his-tamine H2-receptor antagonist for the prevention and treatment ofstomach and intestinal ulcers. Two polymorphic crystalline forms offamotidine form A and form B were obtained by recrystallization inhot water and hot methanol aqueous solution, respectively.29 Originalfamotidine reagent was purchased commercially (ICN Pharmaceuti-cals). The polymorphic form was determined by differential scanningcalorimetry (SSIC-5200, Seiko Instruments), which measured heat ca-pacity at the melting point each form. D-mannitol of analytical grade(Sigma-Aldrich) was used without further purification. D-mannitol

    ) unless CC License in place (see abstract). address. Redistribution subject to ECS terms of use (see on 2014-11-16 to IP

  • B172 Journal of The Electrochemical Society, 161 (9) B171-B175 (2014)

    Vacuum chamber with a cryostat

    THz pulseemitter

    THz pulsedetector

    Three-dimensional stage


    laser light






    Sample tablet

    Figure 1. Diagram of TCI system composed of a THz-TDS, vacuum chamberwith a cryostat, and a three-dimensional translational stage.

    is sometimes used in famotidine tablets to control solubility in thebody. The crystals were crushed into fine powder and then dilutedwith polyethylene powder (Sigma-Aldrich). Tablets were then formedwith a mechanical compress machine. The diameter and thickness ofeach 100-mg tablet were about 10 and 1.5 mm, respectively. For thetest tablets used in imaging measurements, a piece was cut from eachtablet and multiple tablet pieces were compressed within additionalpolyethylene powder to form a tablet 10 mm in diameter and about2-mm thick. The amount of famotidine in an over-the-counter tabletpurchased from a drug store was 10 mg.

    For the molecular mechanics method calculation for famotidineform A and form B, we used CONFLEX ver. 6 and BARISTA ver.1 (Conflex Corp), with the crystal structure data measured by X-raydiffraction.

    Results and Discussion

    Figure 2 shows the concentration-dependent spectra of (A) famo-tidine form A, (B) famotidine form B, and (C) D-mannitol. Eachspectrum measured at room temperature in a vacuum chamber wasaccumulated 32 times to obtain a better signal-to-noise ratio. Theform-A spectrum shows peaks at 0.90 and 1.63 THz, and the form-B has peaks at 1.07, 1.20, and 1.32 THz in the range of 0.3 to 3.3THz as shown in Figs. 2A and 2B. D-mannitol, one of the pharma-ceutical excipients generally used in over-the-counter pharmaceuticaltablets, shows peaks at 1.11 and 1.48 THz at room temperature. Thepeaks at less than 2 THz are indicated by asterisks. The numberof famotidine peaks above 2 THz is greater than those at less than2 THz, and broad spectral peaks above 2 THz overlap. Theref