81
NIKHEF Annual Report NIKHEF Annual Report 2006 2006

NIKHEF Annual Report 2006

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

NIKHEFAnnual Report

NIKH

EF Annual Report 2006

2 0 0 6

Annual Report2006

ColophonPublication edited for NIKHEFNationaal Instituut voor Kernfysica en Hoge-Energie FysicaNational Institute for Nuclear Physics and High-Energy Physics

Address: Postbus41882,1009DBAmsterdam Kruislaan409,1098SJAmsterdamTelephone: +31205922000Fax: +31205925155E-mail: [email protected]

Editors: NicolodeGroot,KeesHuyser,LoukLapikás&GabbyZegersLayout/art-work: KeesHuyserPhotos/illustrations: AMS-IX,MateuszAtroszko,ErnstBode,MarcdeBoer,GerjanBobbink,CERN,DESY,Fermilab,GaryFordham,Durk

Gardenier,PeterGinter,AartHeijboer,KeesHuyser,IBM,GordonLim,TonMinnen/NFP,ClaraNatoli,PANalytical,SonyEricsson,MarcelVervoort,RobWaterhouse,CarlosZaragoza

Cover: ANTARESeventbyAartHeijboerURL: http://www.nikhef.nl

NIKHEFistheNationalInstituteforNuclearPhysicsandHigh-EnergyPhysicsintheNetherlands,inwhichtheFoundationforFundamen-talResearchonMatter(FOM),theUniversiteitvanAmsterdam(UvA),theVrijeUniversiteitAmsterdam(VUA),theRadboudUniversiteitNijmegen(RU)andtheUniversiteitUtrecht(UU)collaborate.NIKHEFco-ordinatesandsupportsallactivitiesinexperimentalelementaryparticleorhigh-energyphysicsintheNetherlands.

NIKHEFparticipatesinthepreparationofexperimentsattheLargeHadronCollideratCERN,notablyATLAS,LHCbandALICE.NIKHEFisactivelyinvolvedinexperimentsintheUSA(DØatFermilab,BaBaratSLACandSTARatRHIC)andinGermanyatDESY(ZEUSandHERMES).Furthermore,astroparticlephysicsispartofNIKHEF’sscientificprogramme,throughparticipationinthePierreAugerlargeareacosmicraydetectionfacilityinArgentinaandthroughparticipationintheANTARESproject:aneutrinotelescopeunderconstruc-tionintheMediterraneanSea.DetectorR&D,designandconstructionofdetectorsandthedata-analysistakeplaceatthelaboratorylocatedatScienceParkAmsterdamaswellasattheparticipatinguniversities.NIKHEFhasatheorygroupwithbothitsownresearchprogrammeandclosecontactswiththeexperimentalgroups.

ContentsIntroduction 4

Reviews 7

TheInternet:aclashofcultures 8

MedipixandRELAXD:successfulcollaborationbetweenScienceandIndustry 14

ASearchforGravitationalWaveswithVIRGO 18

CPViolationandtheriddleofantimatter 20

IntegratedCircuits 23

Research 27

ALICE 29

DetectorResearch&Development 31

ThePierreAugerObservatory 34

TheHERMESExperiment 35

Theory 36

TrackinginLHCb 38

ANTARES 40

ATLASnearingcompletion 42

TheGridandthePhysicsDataProcessingGroup 44

PerfectingtheZEUSdetector 45

Education&Outreach 47

Education 48

Outreach 50

Theses,Publications&Talks 57

Publications 59

Talks 65

NIKHEFJamboree2006 69

Resources 71

NIKHEFOrganization 72

FundingandExpenses 73

MembershipofCouncilsandCommitteesasof31-12-2006 74

Personnel 76

IntroductionVENI,VIDI,…VICI!Thesearethethree,progressivelymoreprestig-ious,subsidiesawardedbyNWOtomembersoftheDutchATLASteamin2006!InNovember,NWOofficiallygrantedthesubsidyforaDutchgrid-basede-Scienceinfrastructure(BIGGRID),includingtheDutchcomputegridfacilityforCERN’sLargeHadronCollider(LHC)project. InJune,CERNCouncilconfirmedtheforeseenNo-vember2007start-updateoftheLHC,albeitatadisappointinglylowbeamenergyof450GeV.LHCoperationatthefullbeamen-ergyof7000GeVisexpectedtostartinMarch2008.Withsomuchexcellentnews,thepressureontheLHCexperimentstocompletetheirdetectors in time to recordfirstproton-protoncollisions in2007istangible!Throughout2006,manypiecesofLHCinstrumen-tationweretransportedfromtheNIKHEFworkshopstoCERN.Be-yonddoubt,themostdelicatewere:acompletesemi-conductortrackerendcapfortheATLASinnertrackingsystemandthesiliconstripdetectorfortheALICEinnertrackingsystem.BotharrivedatCERNintact.ThetransportofthevacuumtankfortheLHCbvertexlocator, on the contrary, required several NIKHEF engineers tospend their summer vacation at CERN to first locate and subse-quentlyrepairleaksduetotransportdamage.AlargefractionoftwoothermajorNIKHEFdeliverables,theLHCboutertrackerandmanycomponentsoftheATLASmuonspectrometer,wasinstalledand commissioned by the end of 2006 in the underground cav-ernshousingtheseLHCexperiments.FortheATLASexperiment,themagnetic-fieldmonitoringsystemandtheRASNIKalignmentsystemswereputtotestinNovemberwhenthestoredenergyinthehugesuper-conductingbarreltoroidsreacheditsdesignvalueof1,100,000,000Joules.Bothsystemsperformedasexpected. Inaddition,NIKHEFPhDstudentswerethefirsttoreconstructcurvedtrajectoriesofcosmic-raymuonsthroughtheATLASmuoncham-bers connected to the data-acquisition system, another NIKHEFdeliverable already partially installed in the underground elec-tronicarea.Thedown-sideofallthisfantasticprogress?ThefactthattheNIKHEFworkshopsinAmsterdamstarttolookabitemptywiththeLHCdetectorcomponents,designedandconstructedatNIKHEF,nowatCERNandwithmanyofNIKHEF’stechniciansandengineersworkingatCERNontheinstallationandcommissioningoftheLHCdetectors!

In2006theDutchgovernmentinitiatedSmartMix:thechancetowinamulti-millioneurosubsidyforcollaborationsbetweenindus-triesandresearchinstitutesaimedateitherthecommercialisationofknowledgeortheexpansionoftheknowledgefrontier.Perhapssurprisingly,astrongconsortium,ledbyNIKHEF,ofseveral(inter-national)industriesandresearchinstitutesanduniversitiesintheNetherlands entered the competition for the SmartMix subsidywithanastroparticlephysicsproposalwithascentraltheme:Whatis the origin of ultra high energy cosmic rays? Regretfully, theSmartMixofficedecidedtoturndownthisproposal(togetherwithmore than a hundred other proposals …). Nevertheless, severalindustrial partners decided to continue to collaborate; notablyin view of the challenges and potential of the KM3NeT project,thewaterČerenkovneutrinotelescopeintheMediterraneanSeapresentlyapprovedasadesignstudybytheEuropeancommunitywithNIKHEFasaparticipant.In2006ANTARES,thepilotstudyforsuchawaterČerenkovneutrinotelescope,mademajorprogress.InMarch,thefirstofthetwelve450meterlongANTARESstringsof75opticalmoduleseachwasdeployedandsuccessfullyinstalledat the bottom of the Mediterranean Sea off the coast of Toulon

(France). Within days, muon tracks were reconstructed (Fig. 1)thankstotheconcertedeffortofanex-NIKHEFPhDstudentnowworking at Fermilab near Chicago (USA) and the NIKHEF teamin Amsterdam. A second string was deployed in July. All twelveANTARESstringsareexpectedtobedeployedbytheendof2007.Despite the large efforts spent in designing, building, installingand commissioning instrumentation for LHC and astroparticlephysics experiments, NIKHEF is also still involved in running ex-periments. In Germany, NIKHEF participates in the HERMES andZEUS experiments at the HERA electron-proton collider. In theUSA,NIKHEFphysicistsareactiveintheBabar(atPEPII,Stanford),D0 (at Tevatron, Chicago) and the STAR (at RHIC, Brookhaven)experiments.Mostoftheseactivitieswillsooncometoanaturalend either because the accelerator shuts down or because thephysicistsmigratetotheLHCexperimentsinviewofitshigherdis-coverypotentialonceitsstartsoperation!OurR&Dphysicistsare

Figure 1. Muon track reconstructed with the first string of the ANTARESwaterČerenkovneutrinotelescope.

4

alreadylookingbeyondtheinitialLHCrunningbydevelopinganinnovative detection technique for LHC experiment upgradesand/orforthefuturelinearelectron-positroncolliderexperiment.As of December, bubble-chamber quality recordings of radioac-tive sources like 55Fe or 90Sr and occasionally a cosmic ray or analpha-articlecanbeadmired.

Inretrospect,2006willprobablybeconsideredanimportantyearfor(European)particlephysics.InJuly,CERNCouncilunanimouslyapprovedtheEuropeanstrategyforparticlephysics.ThisstrategywastheoutcomeofasequelofnationalandEuropeangatheringswithaskeyevents:anopensymposiuminOrsay(nearParis)inJan-uaryandaclosedmeetingofthestrategygroupinZeuthen(nearBerlin)inMay.Dutchphysicistswerestronglyinvolvedthroughoutthis process.Thestrategyunderlines the importance of theLHCand of a future linear electron-positron collider. Moreover, thestrategy recognizes the potential of the relatively new field ofastroparticlephysics.TheEuropeanStrategyForumonResearchInfrastructures adopted the CERN document ‘The Europeanstrategyforparticlephysics’foritsownroadmapandinadditionexplicitly includedKM3NeTasapromisingfuture large-scaleEu-ropeaninfrastructure.KM3NeTalsoreceivedahighpriorityinthepreliminaryroadmappreparedbythePeerReviewCommitteeofthe grouping of national funding agencies Astroparticle PhysicsEuropeanCoordination.

Alsoin2006,NIKHEFemployeesputa lotofeffort intooutreachactivities. Numerous people visited NIKHEF and CERN, whichresulted, amongst others, in an impressive number of articles inpublicmagazinesandnewspapers.Someof thephotoshootingsessionsledtoremarkablepictureswhichmadeittothefrontcoverofleadingDutchsciencemagazinessuchas‘Natuurwetenschap&Techniek’and‘NederlandsTijdschriftvoorNatuurkunde’aswellasinternationalmagazinessuchasthe‘CERNCourier’(Fig.2).TheaterAdhocstartedshootingfor itsfilmabouttheHiggsodysseyandthe ATLAS group completed its film ‘Massa Mysterie’ aimed athighschoolstudents.NIKHEFengineersputupanexcellentper-formanceduringthecelebrationofFOM’ssixtiethanniversarybywinningnotonlythefirstprizebutalsothesecondprizeinthe‘Towin the future’ contest for the best physics inspired applicationinsociety.Notbadatallforaprimarilyfundamental-scienceori-entedresearch institute likeNIKHEF!TheNIKHEFentrance lobbyreceivedafaceliftwiththeadditionofvariousstandsexplaininginsimpletermsNIKHEF’sscientificendeavours.ApilotversionofNIKHEF’slongawaitednewwebsitewasshownjustbeforeChrist-mas. And NIKHEF’s communication department (and director)startedtothinkaboutanewNIKHEFlogo…Forsure,theseeffortswillcontinuein2007andbeyond!

BothNIKHEFandFOM,NIKHEF’smainfundingagency,investedintrainingprogrammesforourpersonnelin2006.ManyofNIKHEF’stopechelonwenttoaspecialmanagementtrainingcourseorgan-isedbyFOM.Thecoursewasratedexcellent.Nevertheless,Imyselfamthewalkingproofthatnoteveryonewasabletoconverttheof-feredtheoryintoday-to-daypractice…NIKHEFitselforganisedacourse,taughtbyprofessionalactors,onpresentationtechniques.Alsothiscoursewasverywellappreciated,evensomediehardop-ponentshadtoadmitthattheygotusefuladvice.

A sad event took place on December 4th when Aaldert Wapstra,former director of NIKHEF’s nuclear section, passed away at theageof84.Untilrecentlyhecouldstillbeseenatthelabworking

Figure 2. Endcap of the ATLAS semiconductor tracker, assembled atNIKHEF,appearsinthenews.

onhisAtomicMassTables,aseriesthathestartedin1960(!)andofwhichheissuedthemostrecentversionin2003.Theserieshasbecomeadesktopreferenceworkforeverynuclearphysicist,andforthisworkhereceivedin2004theSUNAMCOMedaloftheInter-nationalUnionofPureandAppliedPhysics.

Lookingforwardto2007andbeyond.Nextyearanindustrialas-semblylineforpixeldetectors is likelytoemergeatNIKHEFasajointventurebetweenPANalyticalandNIKHEF.WiththeimminentturnonoftheLHC,NIKHEF’sinvestmentsintheconstructionofLHCdetectorsandgridcomputingwillentertheexploitationphase.InthefieldofastroparticlephysicsboththeANTARESneutrinotel-escopeatthebottomoftheMediterraneanSeaandthePierreAu-gerlargeareacosmicrayObservatoryontheArgentineanPampaAmarillawillbecompletedandmanyyearsofdatatakingwillstart.In2007,NIKHEFwillbeevaluatedbyaninternationalcommitteeofrenownedphysicists.Theoutcomeofthisevaluationandoffund-ingrequestsforanationaltheoreticalphysicsprogrammeandforanationalastroparticlephysicsprogrammewillhaveaprofoundimpactonNIKHEF’sfutureactivities.

Frank Linde, director

5

Reviews

Figure1.HowthePhoneCompanyseesyou… Figure2.Beforefiberopticstherewasthetelegraphwire.

8

TodaywetaketheInternetforgranted.Ithasalwaysbeenthere,anditiseverywhere.WecanhardlyimaginealifewithouttheWeb,withoute-mail,withoutSkype,withoutBitTorrent(especiallyourchildren),withoutwhateveryoucanthinkof.AlsotheInternet iseverywhere;onourcomputersbeitadesktoporalaptop,onourmobile phones, on our fridges, TVs, gas stoves, door bells, younameit–itisthere.

Andwhenyouthinkitisnotthere,itisjustaroundthecorner:yourold fashioned analogue telephone landline terminates at a shortdistance from your home in a magic box around the corner andthensuddenlybecomesadigital,InternetProtocol(IP)basedser-vicehandledbyanopticalfiberinfrastructure.Andno‘connection’existsanymore–yourpacketsaredeliveredonabesteffortbasis.Of course, you still pay for connection setup, call duration, anddistance.ThePhoneCompanyhastomakeabuck,afterall.Thatistheirculture.

So,theInternetiseverywhere,always,anditismostlyfree.Foramodestmonthlyfeeonecanhavealltheservicesthathaveeverbeen invented in theworldof telecommunication.But– twentyyearsagotherewasnoneofthat.Whathappenedbetweenthenand now? Let us go back a few years and look at the history ofmodern electronic telecommunications systems. As always, his-toryexplainsmostoftodaysrealities.

Inourcasemodernhistoryof telecommunicationstarts in1839,whenWilliamCookeandCharlesWheatstone(yes,theoneofthebridge) succeeded in transmitting an encoded message over anelectricalsubsystem(i.e.acopperwire)betweenWashingtonandBaltimore.Anewagewasborn.

Theearlyageofthetelegraphisaninterestingone:everyoneandhisdoginventedhisown,andofcoursethebest,system.Unfor-tunately,thesesystemsdidnotinterwork.Attheboundaryofonetelegraph system there is a man receiving incoming messages,writingthemdown,andtransmittingthemontothenextsystemmanually.Theapplicationgatewaywasborn!

Theearlytelegraphsystemwasmainlyusedbynationalgovern-ments for their normal diplomatic exchanges. And they didn’tlikethesystem:itwasslowandthereweretoomanymiddlemenreadingtheirmessages.In1860ittook17humangatewaystogetamessagefromBerlin,thecapitalofthekingdomofPrussia,tothewesternborderofthecountry.

So,governmentsgottogetheranddecidedthattheywantedabet-tersystem.In1865theInternationalTelegraphUnionwascreatedbyGovernmentsinordertocometoasingle,unifiedInternationalTelegraphsystem.Anditworked.Mostcountriesadoptedthesim-plemodel:onecountry,onetelegraphcompany,andthegovern-mentownsandcontrolsit.Well,thatsoundsfamiliar:itcouldbetheSovietUnionpartysystem,ortheDutchPTTuntilltheearly‘90s.

Thiswasagreatsuccess.Sowhentelephonycameaboutin1876,andwirelesstelegraphyappearedin1896,andpublicradioappearedin1920thesamemodelwasapplied.ThegoodoldInternationalTel-egraphUnionchangednames,itsmandatewasexpandedseveraltimes,anditwasstillthegovernmentsandtheirstatemonopoliesintelecommunicationsthatcalledtheshots.In1947thefinalrecon-structiontookplace.The‘InternationalTelegraphUnion’wasnownamed the ‘International Telecommunications Union’ (ITU), andwasreconstitutedunderthenewlyformedUnitedNationscharter

The Internet: a clash of culturesRob Blokzijl

Figure3.Ablackphone(oragreyone)… Figure4.Plusçachange…

9

asan InternationalTreatyOrganisation,andmadea ‘MemberoftheUNFamily’.ThismeansinpracticethatonlyUNmemberstatescan be ITU members, i.e. national governments. This is fine, aslongasyouasagovernmentownandcontrolyournationalphonecompany.Thiswasnormalin1947,andmanyyearstofollow.IntheNetherlandsithasbeenthe‘MinisterievanVerkeerenWaterstaat’(MinistryofTransport,PublicWorksandWaterManagement)thatuntiltheearly90’sfullycontrolledtheDutchPTT.

Apowerfuldepartmentofcivilservants,the‘HoofddirectieTele-communicatie en Post’ (Head Directorate TelecommunicationsandPost),decidedthatyourphoneathomecameintwocolours:eithergreyorblack.TheyalsodecidedwhowouldsitontheboardofthePTT.

Sofar,sogood.Untilthelate60’swewerealllivinginasimplebuthappyworld.Telecomswashandledbyyourgovernment,viayournational phone company. And they decided what you wanted.Youhadadumbterminalathome:ablack telephone,orgrey ifyouwerebeingdifficult.Andtheservicesyougotwheretheonesprovided by the network, i.e. the PTT, i.e. the Government. Andnobodyeveraskedwhatyoureallywanted.

ThensuddenlyhistorychangedonOctober4,1957,whentheSovietUnionsuccessfullylaunchedSputnikI.TheUnitedStatespresidentofthattime,DwightEisenhower,decidedthattheUShada‘ScienceGap’withtheUSSR,andtoldthemilitarytodosomethingaboutit. And thus ARPA was created: the Advanced Research ProjectsAgency. ARPA endeavoured on many fields of research, most ofthemofafundamentalnature–notmilitaryoriented.Oneoftheseprojectswastoinvestigatehowtobetterusethescarcecomputing

facilitiesinUSuniversities.Theanswerwasinplace20yearslater:aworkingversionoftheARPAnet,aprecursortotheInternet.

ARPAnet was a revolution in telecommunication: no longer wasthecoppercircuitthestableconnectionbetweenAliceandBob,but a service that did a best effort to deliver digital packets be-tween two parties, without any guarantee of delivery – a besteffortservice.

Thiswasthestartofthe‘CulturalDivide’.

The traditional phone companies on the one hand argued thatnodecentservicecouldbedeliveredbasedonanaprioriunde-terminednetworkservice.TheARPAnetworkresearchersarguedthatinthefirstplaceadecentnetwork(i.e.thephonecompanies)shoulddeliveracertainqualityofservice,andsecondlythatanextlayerofsoftwarewouldtakecareofpacketlossanyhow.Inmod-ernterms:youwilllosepacketsontheIP(InternetProtocol)leveloccasionally,butyouwillrecoverontheTCP(TransmissionControlProtocol)level.Hence,wedescribetheInternetasTCP/IP.

Since the early 70’s we have seen these interesting discussionsbetween the phone companies, monopolists, state owned bu-reaucrats, and the free thinking researchers from universities intheUSA.ButnotonlyintheUSA:Europehasplayedanimportantroleaswell.Oneofthefirsttheoreticalstudiesonpacketswitch-ingnetworkshasbeenpublishedinFranceinthe60’s;athoroughstudyonafirstimplementationandoperationofapacketswitchednetworkwasnotpublishedintheUKforreasonsofnationalsecu-rity.Thiswasinthe70’s.

Figure5.SketchoftheARPAnetstructurein1969.

10

So,intheearly80’swehadthissimplesituation.Theresearchandacademic world had developed a network technology that couldnotworkaccordingto the ITUandnationalgovernments.OntheotherhandthesesamenationalPTT’sandgovernmentswerework-ingontheirownwayofdoingnetworking:ISO-OSIwastheacronym,meaningISOReferenceModelforOpenSystemsInterconnection.

In those interesting years in the 80’s two major developmentshappened:1. TheUniversityofCaliforniaatBerkeleyreleasedaversionofthe

UNIX operation system that contained the full set of Internetprotocolsforfree.

2.The European Commission and the US government decidedthatISOOSIwasthewayforward,andtheycommittedacoupleofbillionECUsandUSDstothepromotionandintroduction.

TheEuropeanPTTswereveryhappy.

Theydidnothavetheproductsorservices,butthealternative,i.e.theInternethadnowbeenofficially‘verboten’.So,theycouldsitbackandrelax.

Not.

ThePTTattitudewassimple:weownthenetwork,wedecidewhatyouwantasservices,weinstallthat,andyouhaveonlyourdumbblackphone(orgrey,youhaveachoiceafterall).Andifyouwanttododifferentthings,wedon’tallowthat.

So,whenin1987NIKHEForderedaprivateleasedlinefromNIKHEFtoCERNfromthethenDutchPTT,thiswasrefused. Ittookmore

than9months,andtheinterventionofSURFnetandtheMinistryofEconomicAffairstogetthis linedelivered.Adifferentculture.Youdon’twantthis,sowewillnotsellittoyou.Wehaveequiva-lentservicesthatareathousandtimesmoreexpensive.Youbetterbuythose.Andyoudon’tknowhowtorunanetwork,anyway.

ThiswasthefirsttimeNIKHEFgottoknowthecultureoftheEl-ephantPTTs.Andnotthelasttime.SinceNIKHEFgotinvolvedinbuildingnetworksonaninternationalscale,wehavenotstoppedbeing amazed by the conservative, if not stupid attitude, of thetraditionalcarrierservicecompanies.

Butthisisnotarealsurprise.Today,atypicaltelco,thatgrewoutofatraditionalphonecompany,stilloperatesonafewsimpleprin-ciples.Theprinciplesarewayoutoftodaysrealities,butthatislifeinacompanythatgotusedtohaveasafemonopolyforatleastahundredyears,protectedbyafriendlygovernment.

Theseprinciplesare:1. Weownthenetwork2.Wedecidewhatisgoodforyou3.So,weinventservicesthatwewillselltoyou4.Andyouwillbehappy,andyoupay

Thesearetheprinciplesoftheoldcultureoftheblackphone(orgrey).Todaytheworldisdifferent.Nowtheusers’principlesrule:1. Youownthenetwork,butweuseit2.Wedecidewhatwewanttodowithit(think:skype,web,bittor-

rent,etc.)3.nothanks,wedon’twantyourservices4.andwewillpayonlyfortransport,notservices

Figure6.TheInternetnow.

11

Nowthis issomethingnewforthephonecompany.Userstellingthecompanytogoaway.Wewantyourtransport,notyourservices.OntheInternetwedoourownservicesourselves–thankyou.

Thisisafundamentalculturaldifferencefromthegoodolddays.Thegoodolddayswerethedayswiththetelcoprinciplesabove:weownyou.ThenewdaysoftheInternetare:goaway,wemakeourownservices.

What does it mean: ‘Our own services’? Well, think WWW. ThinkSkype.ThinkBitTorrent, thinkGrid.Services inventedandrunbytheusers,notthetelcos.

So,whatarethetelcosdoingtoday?Simple,reinventingtheiroldwheel. And the wheel today is called: mobile phone. At the ITUWorldExpo2006inHongKongyoucouldnotbeseenattheExpounlessyouhadanewmobilephoneapplication.Reallyimpressive:control your gas stove at home from anywhere in the world byyourmobilephone!Thatiswhatwealwayswantedandhavebeenwaitingforforalongtime.

However, at the Peoples Republic of China pavilion, there wasluckilyafreshwind:thePRCisinvestingumpteenbillionsoftheiryuans in ‘Distributed Grid Computing’. So, what is this – a newculturalrevolution?

Yes–theChinesegovernmentisgoingforGridcomputing.Nobigdeal,becausesoistheEU.Thenicethinginbothcasesisthatthemoneygoestoscience,oratleasttotherequirementsofscienceforcomputing.Theculturemightstillbeabitdifferent,butatleastthistimethegovernmentsoftheworldseemtorealisethattheyshould

provideresources,andnotdemandpoliticallycorrectoutcomes.Thegoodoldtelcosofthisworldhowever,thePhoneCompaniesofthepast,havenotgraspedtheirculturalproblemsatall.Theystill moan about things, no – visions, like ‘Triple Play’ (soooo 2years ago), or ‘convergence’ (sooo last year). And today they arestillthinkingaboutacatchwordfornextyear.

Letushopetheydonotfind‘Grid’astheirnextstockmarketphrase.

Gridisadevelopmentthatisnewandexcitingasafurtherstepfor-wardfortheInternet.WWWlastcentury,GRIDtoday.ItisexcitingthatNIKHEFisattheforefrontofGRIDdevelopments,asNIKHEFwasoneof theoriginaldevelopersof theWorldWideWeb.AndoneoftheoriginalbuildersoftheInternetinEurope.

The Internet grows – in size and in functionality. The growth insizeisamatterofthemarkettoday:commercialcompaniestakecareofthegrowthoftheInternetintermsofusers,bandwidthandgeographicalcoverage.

ButthegrowthoftheInternetinfunctionalitytakesplaceintheold dark corners of the first Internet days: Universities and Re-searchInstituteslikeNIKHEFarestillattheforefrontofdevelopingnew technology on the Internet. NIKHEF has this long traditionof building the Internet. From the first 64kbps international linebetween NIKHEF in Amsterdam and CERN in Geneva (also thefirst Internet connection between the two countries), up to theleadingrolethatNIKHEFhastodayinnewdevelopmentsforGRIDcomputing.AndweshouldnotforgetthatNIKHEFisafoundingpartner,andaprimehostingpartner,ofthesinglelargestInternetExchangeintheworld(AMS-IX).

Figure7.TopologyoftheAMS-IX,thelargestInternetExchangeintheworld.

SARA

psw-sar-01

Customer <= 1 GE

NIKHEF

psw-nik-02

Customer <= 1 GE

Telecity

psw-tel-02

Customer <= 1 GE

Global Switch

Customer <= 1 GE

psw-glo-01

stub-sar-02MG8

stub-nik-05RX16

stub-nik-06RX16

stub-tel-03MG8

stub-sar-01MG8

stub-tel-02MG8

edgeBI15K

edgeBI15K edge

BI15Kedge

BI15Kedge

BI15Kedge

BI15KedgeBI15K

stub-glo-02RX8

stub-glo-01RX8

core-nik-04RX16

core-tel-03RX16

psw-nik-03 psw-sar-02 psw-tel-03

12

InternetandCultures.Aworldofdifference.Today,thereisnotasingleengineerorphysicistontheboardofKPNTelecom.Thereisnotasingleresearchactivityinthesamecompany,theironcefirstclassresearchlaboratorieshavebeensold.Directorshavegainedtheir experience in selling coffee and mars bars. And the sameholdsforthe‘other’majorphonecompaniesintheNetherlands.WhoownsVersateltoday?OrisitVersatelthatownsTele2?Watchthestocktickersofyourchoice.

Googleemploysover7000researcherswhopassedatoughexam.Once employed, they are supposed to spend 20% of their timeonnon-Google,private,researchprojects.Awealthofcomputerscience.Aworldofdifferenceinaculturalsense.Andyes,theydoGRIDcomputingandnetworkingonascalethatgoesfarbeyondLHCefforts.

Akamai,foundedbytwostudents,iscompetingonagrandscalewithGoogleinthefieldofGRIDcomputingandnetworking.TheystartedoutofMITwhenoveracoffeeSirTimBerners-Leemadetheflippantremark:“Icanfindthedata-ifonlysomebodycouldstoreitsomewhere”.Next,thesetwostudentstookhimuponhiswordanddesignedthe largestdatastoreonthe Internet today.Akamaideliversyourdatafromaroundthecorner-andyoudon’tknowit.WheneverBillGatesdecidesthatyouneednewupdatesonyouroldMicrosoftsystems (ifyouarestillusingthatexpiredtechnology)youprobablydon’tknowthatitiscomingfromsomeroominsideNIKHEF.

Nokiawillsellyouamobilephonethatcanmakephonecalls.Thatis rather unique nowadays. A modern phone will drive your car,and your coffee machine, and your dish washer, and make por-

ridge. Itwillalsodoyourbanking, readyourfingerprints forourAmericanparanoiafriends,andparkyourcar.Andofcourse,ithasafantastic3DdisplaywithoutfunnyglassesasintheSARACAVE.AndtheToshibaphonewilltransmityourfavoritefragrances.AndtheMitsubishionewilltransmitemotionsaswell.AndToshibahasphonesthatarebetterthanyourphotocamera(10Mpx)andbet-terthanyourvideostuff.Livestreamingfromyourphoneat100Mb/stoawallmounteddisplayhalfwayacrosstheworld.

Question from an elderly gentleman from a classical EuropeanPhoneCompany:“Howdoyoudoallthis,whataretheprotocols?”AnswerfromtheChinesegentleman:“Weuseonlyoneprotocol:IP”

ThatistheInternetforyou.A whole different culture.

ArackfullofGRIDcomputers.

Introduction

Miniaturization of electronics has caused a digital revolution,providinguswithcheapandpowerfulcomputersandtelephones.Thecontinuousdownscaling insemiconductortechnologieshasenabled the particle-physics community to integrate a signal-processingcircuitwithhundredsoftransistorsintoeverypixelofaCMOSread-outchip.Amatchingsensorchip-madeofverypuresiliconoranothersemi-conductingmaterial- ismountedontopofthisCMOSchip.Inthiswayacompactdetectorassembly,calleda hybrid pixel detector, is obtained consisting of a sensor chipandareadoutelectronicschip,connectedbymanythousandsofmicro-solderbumps.

ThesehybridpixeldetectorswereoriginallydevelopedatCERN,Geneva, and in Stanford/Berkeley for particle-physics experi-ments.ThegoaloftheMedipixCollaborationistotransferthesetechnologiestoapplicationsotherthanjusthigh-energyphysics.

Althoughnotoriginallyintended,hybridpixeldetectorsalsohap-pen to function as high-performance radiation imagers. Nowa-days,digitalquantumcamerasarebeingconstructedthatareabletouseX-rayphotons,neutrons,orchargedhigh-energyparticles,insteadofvisiblelighttoobtainhigh-resolutionimages.

Manynewapplicationsarepossible innon-destructivematerialsresearch,aswellasinlifesciences,suchasproteomics(thestudyof protein structure) and pharmacological research. Ultimately,thistechnologyalsopromiseslow-dosediagnosisandtherapyformedicalpurposes.

SeveralyearsofintensivecollaborationbetweenNIKHEF,CERNandPANalytical B.V. have resulted in the successful market introduc-tionin2006ofthePIXceldetector,thefirstcommerciallyavailableX-raydetectorbasedonMedipixtechnology(seeFig.1).NIKHEF’sexpertiseinthefieldofdetectorsandread-outelectronicshassig-nificantlyfacilitatedtheintegrationoftheMedipix2readoutchipintoPANalytical`sX-rayanalysisequipment.

The PANalytical Company

PANalytical,formerlyPhilipsAnalytical,basedinAlmelo,theNeth-erlands,isnowapartofSPECTRIS,theprecisioninstrumentationandcontrolscompany,locatedintheUK.PANalyticalisaleadingmanufacturerinX-rayequipmentformaterialsanalysissince1947.It is a medium-sized company (750 employees), which developsandmanufacturesanalyticalX-rayinstrumentationintwolinesofbusiness,X-RayDiffraction(XRD)andX-RayFluorescence(XRF).

XRD isusedtoanalyzethestructuralcomposition,and its relationwiththeproperties,ofvariousmaterialsinabroadvarietyofindus-triessuchasbuildingmaterials,metals,industrialminerals,semicon-ductors, chemicals and pharmaceuticals, new materials like nano-materials,advancedceramicsandmorerecentlyinlifesciences.

XRF is used to analyse the chemical composition of solids andliquidspredominantlyforqualitycontrol,inabroadvarietyofin-dustrieslikecement,steel,aluminiumandotherbuildingmaterialandmetalindustries,petrochemicals,mining,industrialminerals,waferanalysisforsemiconductorwaferfabsandalsoincreasinglyintheenvironmentalfield.Thecompanygivesassistancetotheseindustries to develop and control their processes and materials

Medipix and RELAXD: successful collaboration between Science and IndustryJan Visschers (NIKHEF) and Klaus Bethke (PANalytical)

Figure1.RecentlyintroducedPIXceldetectorsystem,basedonsingle-chipMedipix2technology,andmountedonaPANalyticalX’PertProXRDanalysisplatform.

14

and thereby introduce significant improvements through costsavings, energy savings, better environmental compatibility ofmaterialsandprocesses,andpollutioncontrol.

The Medipix Collaboration

TheMedipix2Collaborationconsistsof17leadingresearchgroupsacross Europe, centered at CERN, Geneva. It combines expertisefromdifferentfieldsofsciencesuchas:particlephysics,synchrotronphysics,neutronphysics,electronmicroscopyandmedicalscienc-es.DuringtheMedipix1andMedipix2projects,thatstartedin1995and 2000, respectively, significant progress was made towards anewgenerationofquantumradiationimagingdetectors:thesemi-conductorhybridpixeldetector.Aftertwoiterations,acommercial-gradeversionoftheMedipix2chiphasnowbeenachieved.

The CERN Physics Electronic Systems Support group intends tocontinue this successful approach through recently establishedMedipix3 and EUDET (Detector R&D towards the InternationalLinearCollider)collaborations,forwhichalreadyfunctionalproto-typeshavebeendesignedandmanufactured.

The Medipix2 single-photon processing system provides PANa-lyticalwithcutting-edgetechnologyforanewgenerationoftheirX-rayanalysers.AgreementshavebeennegotiatedbetweenthepartiesbytheCERNTechnologyTransferdivision,enablingPANa-lyticaltogainaccesstothiskeytechnologywhilesupportingtheMedipixCollaborationtofinancefurtherdevelopmentofchipsatCERN, data-acquisitionhardwareatNIKHEF anddata-acquisitionsoftware at the University of Naples. This agreement will givePANalyticalastrongposition inthemarket,fitsperfectly into its

long-termstrategy,andprovides itwithaccess toworld-leadinggroupsinX-rayimaging.

The RELAXD project

BasedontheMedipix2chiptechnology,NIKHEFandPANalyticalhave initiated the project RELAXD (high REsolution LargeAreaX-rayDetector),aimedatlargesensitivedetectorareas,without dead spaces, which can be read out at high speed(seeFig.3).TheprojectissupportedbyEUREKA,theEuropeannetworkformarket-orientedR&D.

In order to construct such a large area detector, a numberof separate assemblies should be tiled together, where theCMOSchipsshouldnotphysicallytoucheachother,andsomearea should remain available for readout drivers and otherperipheralfunctionality.Asaconsequence,a2-dimensionalfan-outstructureisneeded(seeFig.4),thatadaptsthepixelpitchoftheread-outchiptoaslightlylargerpixelpitchinthesensor,ensuringuniformpixelsizesoverthewholedetector.

An important second feature is that the resultant touch-ing sides of the quad sensor will be passivated by doping,to replace the conventional space-consuming guard-ringstructure.Theproject involvesthenewestwafer-scalepost-processingtechnologies includingwaferthinning, through-waferviaetching,high-densityinterconnectand3Dpackag-ing(seeFig.5).

This solution replaces the usual wirebond connections be-tween chip and chip carrier board by ball-grid-array (BGA)

Figure3.DesignofaQuad(quadruplemedipix)detectorassemblywithbackside readout. It consists of 4 Medipix chips flip-chipped to one 3 x3 cm2 edgeless sensor, integrated with a commercial circuit allowing 3Gbit/sserialdatatransmission.

15

Figure2.Close-upofaPIXceldetector..

bonding.ItisrealisedbyengineeringelectricalconnectionsthroughtheCMOSread-outchiptothebackside,andresultsin 4-side tilable detector micro-systems. Tiling many chipstogethertoformalargeareadetectorincreasestheamountofdatathatneedstobereadout.Formanyapplicationsthehighest possible speed is needed, resulting in data rates ofseveral Gigabits per second. Since the final detector setupneeds to remaincompact, it isnecessary that thisdata rateishandledthroughstandardhigh-bandwidthserialconnec-tions,e.g.GigabitEthernet.

Software development for data acquisition and for testingof the tiled arrays will be taken care of by PANalytical. Ad-ditionally,co-developmentofread-outelectronicstogetherwith NIKHEF and quantitative testing on the system levelbelongstotheworkpackageofPANalytical.Aroadmaptocommercialization has been introduced, with three phasesthat culminate in a possible product based on an array ofmicro-systems derived from the prototypes. After the firstyearoftheRELAXDproject,feasibilitystudieshavegivenusahighconfidencethatfirstprototypemodulessuchasshowninFigs.3and5willbeworkinginthebeginningof2008.

In this R&D project a consortium of four partners in twocountrieswasestablished,oneresearchinstitutionandoneindustrialpartnerineachcountry.Belgiumcontributesviathe research center for micro- and nanoelectronics IMEC,Leuven, and the detector manufacturing company Can-berra,Olen.TheNetherlandscontributeviaNIKHEF,Amster-dam,amemberoftheMedipixCollaborationandaresearchinstitutionwithakeycompetenceindetectortechnologies,

andviaPANalytical,introducedabove.TheEUREKARELAXDproject is funded by the Dutch and Flemish ministries ofeconomicaffairsrepresentedbytheorganizationsSenter-Novem and IWT, respectively, as well as by the EuropeanUnion(projectE!3624-RELAXD).

Future prospects

RELAXD type of detectors with their unique features willenablemanynewapplicationsandtremendouslybroadenthe scope of existing ones. They will support importantX-ray applications such as protein structure and functionresearch, drug discovery and many applications in X-raymaterials science, non-destructive testing, computed to-mography,andsynchrotronphysics.BeyondX-rayapplica-tions there will be particle physics, neutron radiographyandelectronmicroscopy.

Fig.7showsacomputer-simulateddesignofthecoreofafuture X-ray analyser equipped with RELAXD technologyinanarclikearrangement.Weexpectthat-afterprocessimprovements and careful selection of cost determiningdesignsandprocesses-thepixeldetectortechnologywilleventuallyfindanentranceintothemedicalfield.Achal-lengeforsomeofthefutureapplicationswillbetheneces-saryintroductionofdifferentsensormaterialsuchasGaAs,CdZnTeorspeciallytreatedSisensors.

A future prospect will be a continuing collaborationbetween PANalytical and NIKHEF in detector R&D, for in-stance based on Medipix3 and EUDET platforms, and in

Figure 4. Principle of 2-dimensional pitch adaption between the sensorpixels(bluedots)andtheread-outpixels(reddots).Thisre-routingpatternisappliedonthebacksideofthesensor,andallowsthemedipixreadoutchiptobesmallerinareathan1/4ofthesensor.

Figure5.Principleofthrough-siliconviainterconnect.Thesensor(blue)isconnectedto4Medipixchipsby(red)flip-chipsolderballs.TheMedipixchips(red)areconnectedtotheprintedcircuitboard(green)byetchingholesthroughtheMedipixchips,whileontheirbacksidecontactismadeviaBall-Grid-Arraytechnology(whiteballs).

16

tilingand3Dintegrationofmicrosystems,aswellasinGasElectronMultiplier(GEMandMicromegas)technologies.Itis expected that this cooperation will give rise to mutualbenefits, in commercialisation for the industrial partnerandinfinancialsupportforcapacitiesandinfrastructurefortheresearchpartner.

NIKHEF and PANalytical aim to continue expanding theMedipix2technology.Asanextstepweintendtobuildup

Figure7.Conceptualcomputer-aideddesignofthecoreofafutureX-rayanalyserequippedwithRELAXDtechnologyinanarc likearrangementwithrespecttotheobjectunderstudy.Thelatterisinthiscaseasemiconductorwafer(black,diameterupto300mm)fixedtothemulti-purposesamplestageofthegoniometer..

Figuur6:AnX-raydiffractometerwithontheleftsidetheX-raysource,andontherightsideaPIXceldetector.ThePIXceldetectoroperates‘on-the-fly’,acquiringdataframescontinuously,whilethedetectorisrotatingaroundthesampleholderinthecenter.

intheNIKHEFcleanroomsaproductionactivitytoprocessthefirstindustriallarge-waferbatch,establishingareliablesupplychainforhybridpixeldetectorsystems.Inthelongerrunthismayresultinacommercialstart-up,incubatedintheAmsterdamSciencePark.

Thekeysuccessfactor inallofthishasbeen,andwillcon-tinue to be, the strategic collaboration between all of thepartnersinvolved,bothinScienceandinIndustry.

17

General Relativity is one of the most fundamental and beautifulphysical theories. Yet, it is poorly tested, as compared to otherfundamentalphysicaltheoriesasforinstancequantumelectrody-namics.Oneofthekeyfeaturesofgeneralrelativityisthedynami-calnatureofspace-timeitself: itscurvature isatime-dependentquantity, and ripples of curvature can propagate through spacewith the speed of light. Such propagating curvature ripples arecalledgravitationalwaves,andtheirexistenceisoneofthemostimportant,yetuntested,predictionsofthistheory.

Inouruniverse,gravitationalwavesareproducedbyuniqueastro-nomicalevents,suchasmergersofpairsofblackholesorneutronstars,andsupernovaeexplosions.Gravitationalwavescanbeusedtoprobetheevolutionofsuchcompactobjects.Thedataobtainedby detection of gravitational waves are entirely independent ofanyobservationintheelectromagneticspectrum.Therefore,theyare likely to lead to unique information on the nature of thesecompactobjects.Moreover,gravitationalwavespropagatealmostunperturbedthroughessentiallytheentireuniverse.ThismakesitinprinciplepossibletodetectgravitationalwavessignalsemittedduringtheveryearlystagesoftheBigBang.Measuringtheampli-tudeofthewavesatdifferentfrequenciesshouldgiveinformationonmatteratenergiesaround1018GeV,ascalethatwillneverbereachedbymen-madeexperiments.

The spectrum and amplitude of gravitational waves dependsensitivelyonthedetailsoftheBigBangmodels,i.e.inflationaryfields causing rapid expansion of the size of the universe, rapidcollapseofcosmicstrings,etc.Therefore,measurementsoftheseproperties of gravitational waves will represent the first directtestofBig-Bangmodels.Also,detectionandfurtherobservation

ofgravitationalwaveswouldbothprovideimportanttestsofthetheory of General Relativity and would open a new window forastronomicalobservationsoffascinatingcosmicphenomena.

Since gravitational waves originate from sources many (millionsof) lightyears away, their signal strengths at Earth are expectedtobeextremelyweak.Theycauserelativedisplacementsof freemassesbydistancesthatareatinyfractionofthesizeofanatomicnucleus. Hence, enormous technological challenges have to beovercomeinordertoactuallydetectasignal.Largeresourcesallovertheworldhavebeencommittedtobuildingseveraltypesofgravitational-wave observatories that are capable of detectingthisweakbutfundamentalphenomenon.

NIKHEFisconsideringtojoinVIRGO,aMichelson-typeinterferom-eterwithabaselengthof3km.IthasbeenbuiltbyaFrench-ItaliancollaborationatCascinaclosetoPisa,andispoisedtostartdatatakingbytheendof2006.Fig.1showsanaerialviewofthetwoperpendiculararmsoftheinterferometer.AttheheartofVIRGOisanultrastableND:YAGlaserofthenewestgenerationwith20Wpowerandawavelengthof1064nm;a ‘recyclingmirror’booststheavailablepowertoseveraltensofkWandbringstheshotnoise(in strain-equivalent terms) to about 3 x10-23. The laser pulse issplit and both pulses travel a number of times up and down anarmafterwhichaninterferencepatterniscreatedbyrejoiningthepulsesofbotharms.Each3kmlongarmcontainsaFabry-Perotcavity(finesse50)thatincreasestheeffectiveinterferencelengthtoabout120km.Apassinggravitationalwavewoulddistortspacelocallyandhencechangethepathlengthofeacharmdifferently.Theresultingchangeintheinterferencepatterncanthenbede-tected.Fig.2showsaschematicoutlineoftheinterferometer.

A Search for Gravitational Waves with VIRGOJo van den Brand

Figure1.AerialviewoftheVIRGOinterferometernearPisa,Italy.Itconsistsoftwo3kmlongarms.

18

Sincethegravitationalwavessignal isweak,noise is thebigen-emy of the VIRGO experiment. Seismic vibrations of the groundarebillionsoftimeslargerthanthesubatomicdistancevariationsinducedbygravitationalwaves. InVIRGOtheseismic isolation isachievedthroughachainofsuspendedseismicfiltersmadeoftri-angularcantileverbladesprings.Thespringsprovidetheverticalisolationwhilethecompoundpendulumprovidesisolationagainsthorizontal motions. To further reduce the seismic disturbances,thischainisattachedtoanactivelystabilizedplatformthatcom-pensatesforverylowfrequencyandlargeamplitudeoscillations.Italsoprovidesafirststageofpositioncontroldowntoaboutonemicron.Asecondstageofpositioncontrolisachievedattheendof thesuspensionchainbya ‘marionetta’ fromwhichthemirroranda‘recoilmass’aresuspendedbyextremelyfinewires.Theulti-matemirrorpositioncontrolisobtainedthroughverysmallforcesgeneratedinafeedback loopbetweenthemirrorandtherecoilmassbysetsofelectromagneticactuators.

Notonlynoisereduction,butalsoperfectalignmentisabsolutelycrucial.Itisachievedbytakingoutasmallfractionofthelightatthedifferentmirrorsandsendingittoquadrantdiodes.Theoutputofthesediodescanbeusedtomaintainthealignmentindepend-entofdriftsofthelaseritself.

NIKHEFtookresponsibilitytoimproveoverthepresentalignmentca-pacities.Inafirststep,14newandimprovedelectronicsboardsfortheelectronicread-outofthequadrantdiodesarebeingbuiltthatenhancethepresentcapabilities.NIKHEFalsocontributestotheunderstandingofthermalstabilizationoftheinterferometerbyfinite-elementanalysisstudies.NIKHEFactivelyparticipatesintheanalysisoftheVIRGOdata(seeFig.3).Inaddition,wesearchforsignalsfrom(binary)pulsars.

Gravitational-wave astronomy will be further developed by thesatellite-based interferometer project, LISA. It will have threesatellitespositionedinorbitaroundthesun,trailingtheEarthbysome20degrees.TherangeofsensitivityofLISA isexpectedtoreachdowntogravitationalwavesoffrequency10-4Hz.Thiswillenableforinstancetheobservationofthecoalescenceofmassiveblackholes.

Figure2.SchematicoutlineoftheVIRGOinterferometershowingthemainopticalcomponents.

Figure 3. Progress in frequency sensitivity of the VIRGO interferometerfrom the start of commissioning runs in Nov. 2003 (upper green curve)todatatakingrunsinJan.2007(lowestredcurve).Thesolidblackcurverepresentsthedesignsensitivity.

input mode-cleaner(length = 150m)

L = 3 km

L = 3 km

LASER

Nd: YAG

recyclingmirror

P = 1 kW

beamsplitter

Fabry-Perot(�nesse = 50)

output mode-cleaner

photodetection (InAsGa)

λ = 1.064 µm(P0 = 20 W)

19

Symmetry

Theconceptofsymmetryisfundamentalinthedescriptionofthelawsofnature.Forexample,thesymmetrythatphysicallawsarethesame inall (relativistically)moving frames (so-calledLorentzframes)leadstothetheoryofspecialrelativity.Thepresenceofasymmetryinaphysicalsystemisalsoconnectedtotheexistenceof a conservation law; for instance, the speed of light is alwaysconstant.Alternatively,asymmetrycanberelatedtotheexistenceofanunobservablequantity.Intheaboveexamplewerealisethatitisimpossibletodetermineabsolutevelocity.Theunobservableiszerovelocity.

Anotherwellknownexampleisasystemofparticlesinwhichtheinteractionsaresymmetricundertranslationoftheseparticles.Forsuchasystemconservationofmomentumisfoundtobevalid.Theunobservablequantity inthiscase isthe locationofanabsoluteoriginofspace.

Charge-Parity(CP)symmetryisthetechnicaltermforthesymme-try inwhichthe lawsofphysicsare identical formatterparticlesandforantimatterparticles.IfCPsymmetryispresentwecannotmakeanabsolutedefinitionofwhatismatterandwhatisantimat-ter.Theunobservablequantitythuscanbecalled‘matterness’.

Ageneral theoremstates thatanyfield theory that respects thelawsofrelativitytheoryalwaysobeyssymmetryundersimultane-ousCharge-inversion(C),Parityinversion(P)andTimereversal(T),together known as CPT symmetry. It was long believed that alltheoriesdescribingparticleinteractionsshouldbealsosymmetricunderindividualC,PandTreversal.Thisimpliesthatpositiveand

negativecharge, leftandrighthandedness,andthedirectionoftime,canonlybedefinedrelatively,notinanabsolutesense.

Violation of symmetries

Ithasbeenshownin1964bytheRussianphysicistAndreiSacha-rovthattheexistenceofourmatter-dominateduniversecanonlybeexplainedifthesymmetriesunderbothCandCPinversion,arebroken.Inotherwords,thelawsofnaturemustbeabletoactdif-ferentlyonmatterandonantimatterparticles.Then,theseasym-metric processes must also haveacted in the early hot phase oftheuniverse,insuchawaythatonlymatter-particlessurvived.Thefactthatindeedantimatterdoesnotoccurinsignificantamountsin the universe has been demonstrated by the AMS satellite ex-periment,(seeFig.1).

Oftheknownfundamentalinteractionsbetweenelementarypar-ticlesonlytheweaknuclearforceisobservedtoviolatesymmetryunder Parity inversion. In 1957 the Chinese/American physicistChien-Shiung Wu demonstrated that radioactive decay, whichis mediated by the weak interaction, is not left-right symmetric.A year later Goldhaber and collaborators showed that neutrinosproducedinradioactivedecaysalwayshaveaspinvectorpointinginadirectionoppositetotheirmomentumvector.Inotherwords,the weak interaction operates in a left-handed way, allowing tomake an absolute definition of handedness. The fact that right-handedneutrinosareneverproducedinthesedecaysisreferredtoasmaximalviolationofparity.

In1964thegroupofChristenson,TurlayandthelaterNobel-prizewinners Cronin and Fitch, demonstrated with an experiment

CP Violation and the riddle of antimatterMarcel Merk

Figure1.ObservedspectrumofHenuclei incosmic raysasseenby theAMSsatelliteexperiment.Thefactthattherearenoentriesattheleftsideoftheplotindicatestheabsenceofanti-heliumincosmicrays.

Figure2.Decayrateofkaon(K0)andanti-kaon(K0)particlesintopionpairs,asafunctionofthedecaytime.Acleardifferenceisobservedinthedecayrateforparticlesandanti-particles.

even

ts

10

10 2

10 3

10 4

10 5

-150 -100 -50 0 50 100 150

HeHe2.86x 10 6 events0 events

momentum/charge [GeV]

10

1

0

num

ber o

f eve

nts

10 6

10 7

10 5

10 4

10 3

10 2

10

2 6 10 14 18neutral-kaon decay time [τs]

1

K 0K 0

_

20

involvingneutralstrangemesons,theK0particles,thattheweakinteractionsbetweenthequarksviolatenotonlysymmetryunderChargeandParityreversal,butalso,foratinyfraction,violatesym-metryundertheircombinedoperation:CP.Thisisillustratedbytheobservationthatthedecayrateofkaonparticlestoapositiveandanegativepionisnotthesameasthatofananti-kaontoapositiveandanegativepion.Thisso-calledasymmetry,asobservedbytheCPLEARcollaboration,isillustratedinFig.2.

Althoughithasbeenknownsince1964thattheweakinteractionviolates CP symmetry, the underlying mechanism remained un-clear.New,hithertounknown,forcesactingbetweenthequarks,the building blocks of the mesons discussed above, have beenconsideredasapossibleoriginoftheobservedasymmetries.

B-mesons

In1999theexperimentsBaBar(atSLAC,Stanford,USA)andBelle(atKEK,Tsukuba,Japan)observedviolationsofCPsymmetryinneu-tralB-mesondecays.NeutralB-mesonsconsistofabeautyquarktogetherwithadownquark.Inthiscasedecayswereconsideredin which the produced particles in the final state are their ownanti-particles. This allows to do a beautiful interference experi-ment:aB-mesoncaneitherdirectlydecay,oritcanfirstoscillateintoanantiB-mesonanddecayconsecutivelyintothefinalstate.ComparisonoftheprocessoftheinitiallyproducedB-particlestothemirrorprocessoftheanti-Bparticlesshowsacleardifference,asillustratedinFig.3.ThisdifferenceisthemanifestationofCPvio-lation:matterparticlesdecaydifferentlythanantimatterparticles.

The interference experiment shows more: the observed asym-metry is consistent with the hypothesis that the quantum me-chanicalamplitudeoftheweakinteractionforanti-particlesisthecomplexconjugateofthatofmatterparticles.Inotherwords,theweakforceismodeledwithacomplexcouplingstrength!Thisisaquantummechanicalphenomenonforwhichthereisnoclassicalequivalent.

Thequestionriseswhetherthisnewlydiscoveredbehaviouroftheweakinteractioncanalsoexplainthebaryonasymmetryintheuni-verse.Thisistheobservationthatmatterdominatespracticallycom-pletelyantimatterintheuniverse,whereasonecanassumethattheuniversestartedofwithequalamountsofmatterandantimatter.

Asymmetries in the universe

Consider that in the early, hot universe, matter and antimatterparticles-e.g.quarksandanti-quarks-were inequilibriumwithlight according to interaction: qq⇄γγ. As soon as the universecooleddowntheannihilationofmatterwithantimatterintolightoccurred at a higher speed than the reverse reaction. Finally allparticle-antiparticlepairsannihilatedintophotons.

Thepresenceofasurplusofmatterintheuniversetodayindicatesasurplusofmatteratthetimeof‘freeze-out’.Theamountofsur-plusofmatterparticlescanbeobtainedfromthepresent-dayratiooflightparticles(photons)intheuniversetotheamountofmatter(stars,galaxy’s,etc.).Observationswithsatelliteexperimentshaveshownthatthisratiois109.Thisimpliesthatintheinitialphaseoftheuniversethelawsofnaturemusthaveproducedoneadditionalmatterparticlefor109pairsofmatterandantimatterparticles.Can

Figure3.DecayrateoftaggedB-mesons(B0)andanti-Bmesons(B0)intoaJ/ψKsfinalstate(upperpanel).Thedifferencebetweenthecurves,illus-tratedbytheasymmetryinthelowerpanel,indicatesalargeviolationofCPsymmetryinthisdecaymode.

Figure4.SimulateddecayrateofBsmesonstoJ/ψφparticlesassumingthepresenceofanewsourceofCPviolationthatcausestheoscillationsinthedecaydistribution.Theopensymbolsillustratetheexpectedstatisti-calaccuracyoftheLHCbexperimentafteroneyearofdatataking.

Even

ts /

(0.4

ps)

200

400

tags0B

tags0BBABAR

preliminary

t [ps]Δ

Raw

asy

mm

etry

-5

-0.5

0

0.5

0 5 0 0.5 1 1.5 20

100

200

300

400

decay time t (ps)

even

ts

CP-even

CP-odd

21

such an asymmetry be produced by the weak interaction thattakesplacebetweenquarks?Currenttheoreticalmodelsfallshortbymanyordersofmagnitudetoexplainsuchanasymmetry.

ThisleadstothequestionwhethertherearemoresourcesofCPviolation in the electroweak interaction. The research containstwo general directions. The first direction looks for CP violationbetweenleptonsinsteadofquarks,thesecondonelooksfornewinteractionsbetweenquarks.

New searches

TheinvestigationofCPviolationoccurringinleptoninteractionsleads to experiments with neutrinos. The recent observation ofneutrinooscillationsimpliesthatneutrinoparticlesarenotmass-less.Theexistenceofneutrinoswithnon-zeromassinturnleadstothepossibilitythatCP-violatinginteractionscanoccurbetweenleptons in a similar way as between quarks. These experiments,however,aredifficultandhavenotyetbeenrealised.

The search for new interactions, affecting CP asymmetries be-tweenthequarks,willstartintheexperimentsattheLargeHadronCollider(LHC)atCERN,Geneva.Inthecasethatnewparticlesarediscovered at LHC, the corresponding interactions are generallyalso expected to affect the complex coupling constants presentinseveralB-mesondecaymodes.Oneofthestudieddecaysisthedecay ofa Bs (b-quarkands-quarkand vice-versa) particle intoaJ/ψ (cc-quarks) particle and a φ (ss-quarks) particle. This decay isequivalenttothedecayinwhichtheBaBarandBelleexperimentsobservedCPviolationintheweakinteractionasdescribedintheStandardModel.However, in thecaseof the Bsmesondecay the

predicted CP violation in the Standard Model is approximatelyzero. Hence, a positive observation of CP-violation in this decaywouldindicatethatphysicsbeyondthedescriptionoftheStandardModelisatwork.

Simulations (see Fig. 4) have demonstrated that experiments atthe LHC collider should be able to observe possible deviationsfromtheStandardModel ifnewinteractionsarepresent. Inpar-ticulartheLHCbexperiment,inwhichNIKHEFplaysaleadingrole,is specially designed to hunt for new phenomena in the decaysof B-particles. A picture of the detector under construction inshown in Fig. 5. The Monte-Carlo simulation presented in Fig. 4showsthat,iftheseCP-violatinginteractionsarepresent,theLHCbexperimentisinthepositiontomeasurethemandmakeabigsteponthewaytosolvetheriddleoftheantimattermystery.

Figure5.TheLHCbspectrometerduringinstallationatoneofthecollisionpointsoftheLargeHadronCollider.Theexperimentissituated100meterunderground.

22

Introduction

Inmodernelectronicproductsandequipment integratedcircuits(ICs)constituteamajorpartof theemployedcomponents. In theracetobuildsmall,low-power,light-weightproductswithincreasingfunctionalityinaneconomicallyaffordablemanner,theintegrationofmanyfunctionsinonesmallcomponentisextremelyimportant.Therefore,industryispushingthistechnologyfurtherandfurther.

Inbuildinglargeparticledetectorsforsubatomicphysicsexperi-mentswecanbenefitfromtheprogressinthistechnology,inpar-ticularatlocationswhereweneedhighspatialaccuracyforparti-cle-trackmeasurements.Here,manydetectorchannelsareplacedinasmallvolume, for instanceclose to thepointwhereparticlebeamscollideandthetrackdensityisconsequentlyverylarge.

As an illustration of the dimensions involved, consider a trackingdetectorbasedonamatrixofsiliconpixelchipswith256x256pixelseach.Ifthepixelsizeis60x60µm2,thischipwillhave65536pixelsonanareaofabout2.5cm2.Insuchacaseeachpixel,whichisasensi-tivedetectorchannel,requiresasignalamplifier,signalprocessing,storageofthedetectedsignalandconfigurationfunctionstotuneandoptimisethedetectioncapabilities.Inaddition,acompletechipcanrequirecircuitsfordatacompressionanddatatransmission.

Requirements

The front-end electronics (the chips) of the sensors reside ofteninside the detector volume and therefore their mass must bekepttoaminimumsincethepresenceofmaterialwilldisturbtheparticletracksthatneedtobemeasured.Asaconsequence,many

particleswillhitorpassthroughtheelectronicsandcandamageorinfluenceitsbehaviour.Thismakesitnecessarytodesignradia-tion-tolerantorradiation-hardelectronicsthatisabletofunctionundertheseharshconditions.

Duetothementionedrequirements,manydetectorsforLHCex-periments (seeFig.1 forarecentexample)couldnothavebeenbuiltifthedesignerswouldnothavebeenabletouseICtechnol-ogy in the electronics that reads out the sensors. For the nextgenerationofelectronicsinparticledetectors,forinstanceinLHCupgradesandnewexperiments,onerequiresfurtherintegration,lesspowerdissipationandbetterradiationtolerance.

Working principle

AnICisaphysicalcomponentthathousesmorethanonedifferentfunctionalcircuit,which inturnusestransistorsasprimarycom-ponents.LetusfocusontheComplementaryMetalOnSemicon-ductor(CMOS)technologyforICs,whereinfactthemetalisnowreplacedbypoly-crystallinesilicon.

Atransistor(seeFig.2)hasfourterminals:Source,Drain,GateandSub-strate,thelatterbeingbasicallythewaferorchip.Onecansaythatthegateisusedtocontrolthecurrentthatcanflowfromdraintosource,andthatitrequireslesscurrentforchangingthegatevoltagethantheresultingchangeindrain-sourcecurrent.Whennogatevoltageisap-pliedtheNMOStransistordoesnotconduct,whereasthePMOStran-sistordoes,andwithgatevoltagetheNMOSis'off'andthePMOSis'on'.WiththesecomponentsonecanbuildlogiccellslikeNANDandNORgatesandinverters,andwiththesecellsonecansubsequentlydesignmicroprocessordandmemorycircuits,andalsosignalamplifiers.

Integrated CircuitsRuud Kluit

Figure1.Silicondetectorwithfront-endelectronicsfortheLHCbVertexLocator. Figure2.CMOSN-andP-channeltransistor.

23

Technology progress

TheminimumGate lengthL(seeFig.2) isusedasameasureforthetechnologysize.In1996wedesignedcircuitsusinga0.8µmCMOS technology. Due to innovations in the chip industry theminimum feature size happens to reduce by about a factor 0.7everytwoyears.InthepastthePCmarketwasadrivingforce,butpresentlythetelecommunication(mobilephones)andconsumerelectronics(mobileequipment,games)alsorequirestate-of-the-artICs.Thetechnologyscaling(thenumberoftransistorsperchipdoublesevery24months,seeFig.3)waspredictedalreadyin1965by Gordon Moore, cofounder of Intel. It is expected to be validuntilaround2020whenthe3-5nmsizeisreached.Then,otherap-proachesthanthepresentlyemployedonesarerequiredtoshrinkthedevicesortoaddmorecomponentsonachip.Alreadyalotofeffortisputinthewayinterconnectsbetweencircuitsarehandled:moreICsinonepackage,stackingofchipsandtheintegrationofmoretechnologies inonechip (e.g.opticalandelectrical,CMOSandbipolar)tobuildthree-dimensionalstructures.

Fig.2showsawafer(substrate)cross-sectionofatypicalCMOStran-sistorwiththesourceanddrainarea’sconnectedtoametallayer,andpoly-crystalline silicon for the transistor gate. Modern technologiesavailofupto10 layersofmetal todesignacircuitonachip,whichmakesmoreefficientuseofthesiliconfortransistorspossible(Fig.4).

Presently, in2006, the130nmCMOStechnology iswell 'character-ized'.Thismeansthatthedesignerhasenoughreliabletechnologyinformationtocalculatethebehaviourofthecircuitandthatgoodsimulationmodelsareavailableforverificationofthedesignbeforeproduction.Sincetheproductioncostsarerisingforeachtechnology

generation(in2006about270k€forasmallprototypeproductionof130nmCMOSwithfivemetallayers),verificationbecomesamajorpart of the design time. Hence, we try to benefit as much as pos-sible from educational programmes, which reduce the costs of ICprototypingandproduction,andwecombineasmanyprojectsaspossibleonawaferinoneproduction,forprototypesandmasspro-duction.Theproductionquantitiesareingeneralnotmorethan10-50thousand,whereasthechipindustrydealswithmillionsofchips.ThismeansweareanegligiblysmallparticipantintheICworld,butwedowanttofollowtheindustry'sstateoftheart.

ICs at NIKHEF

AtNIKHEFwefollowthe industry inusingavailable ICtechnolo-gies that are used for commercial purposes, are easy to access,andarewellcharacterized.Aspecificrequirementforourdetectorelectronicsisthatitmustberadiationtolerant.Thiswecanrealiseby using design techniques that have been proven to increaseresistanceagainst radiationdamage.Thepicture inFig.5showsaspecificD-flip-flopdesignedwiththeuseofenclosedtransistorsinsteadofthelinearlayoutshowninFig.2.Thislayoutavoidsra-diation-inducedleakagecurrentbetweensourceanddrainofthetransistor.Anadvantageoftheshrinkingsizeoftransistorsisthattheybecomelesssensitivetoradiationdamage,butontheotherhand more sensitive to single event set-ups, like bit-flips. Suchevents even happen due to cosmic radiation at ground level inPC’s,albeitveryrarely.Thisphenomenonisalsotakenintoaccountwhendesigningcircuitsforparticledetectors.

Once a chip has been produced, it must be characterized prop-erlybeforeitcanbeusedonmanysensorsinanexperiment.This

Figure3.Moore’slaw,predictingthedoublingofthenumberoftransistorsperchipeverytwoyears.

Figure 4. Example of a cross-section of a chip with 10 metal layers Thesmallestlinewidthis0.12µm.

0.01

0.10

1.00

10.00

100.00M

illio

ns

oft

ran

sist

ors

per

chip

1975 1980 1985 1990 1995 2000

24

requiresspecialtestequipmentandmethodslikeawafer-prober(Fig.6)andautomatedtestenvironmentsforwhatwecall‘larger’productionquantities(thousands).Insideourinternationalphysicscommunitywesharethiskindofequipmenttoreducecosts.

Collaborations

ForeverynewgenerationofICtechnologythespecificcharacter-istics need to be examined. Therefore, close collaboration withother IC-design groups in the subatomic physics community isnecessary, also for exchanging design experience, sharing com-moncircuits indifferent ICsandsupport fordesigntools,whichareincreasinginnumberandcomplexity.

TheNIKHEFelectronicsdepartmentworkedtogetherinICprojectswith the Heidelberg ASIC labor and LEPSI/IN2P3 Strasbourg, inprojectsforCERNandDESY.Fornewexperimentsnewcollabora-tionsarebeingformed,buttheCERNmicro-electronicsgroupisalwaysacentralpointfornewtechnologies,sharingofexperience,andtheorganizationof(prototype)productions. Inaddition,weshareexperienceinthisfieldwithotherDutchresearchinstitutesliketheNetherlandsInstituteforSpaceResearchSRON,theMESA+InstituteforNanotechnologyattheUniversityofTwente,andtheUniversityofEindhoven.Naturally,weregularlypresentourworkinconferencesandtherelevantliterature.

For the design software NIKHEF is member of the Euro Practice organisa-tionthatdeliverscompletecommercial ICdesigntoolsforeducationalandresearchprograms.ThecombinationoftheICtechnologiesandthesoftwareenablesustodevelopstate-of-the-artdetectorsforsub-atomicphysicsthatprovidethebestpossibleresearchopportunitiesforphysicistsandstudents.

Prospects

ForICdesignersexcitingfutureprojectsarenewparticledetectors,forwhichprototypesofreadoutelectronicsneedtobedevelopedwithpropertiesthatneverhavebeendemonstratedbefore.Thisis not only interesting for the engineers and physicists, but alsofortheICfoundry.ANIKHEFdesignwentintoproductionin2006(Fig.7).Itspurposeistomeasurethetrackofaparticlethroughathin(1mm)gaslayerabovethechipbymeasuringthedrifttimeoftheinducedchargeinthegasthatisdriftingtosensitivepixels.Thechiphasanarrayof16x16pixelcellsandisdesignedin130nmCMOStechnologywitheightmetallayers.Thegoalofthisdesignistodemonstratethedetectorprinciplebybuildingasmalldetec-torwiththischip.ThiswouldbeastartingpointforanupgradeofdetectorsofthepresentLHCexperimentsandalsofordetectorsforfutureexperiments.

Figure5.Layoutofradiation-tolerantD-flip-flopin130nmCMOStechnology. Figure 6. Probe needles make contact to a chip under test on a multi-projectproductionwafer.

Figure 7. NIKHEF prototype chip(2x3mm2) for a 16x16 pixel particledetector using a gas layer, designedin130nmCMOStechnology.

enclosed layout oftransistor drains

25

Research

AtechnicianworkingontheALICESiliconStripDetectorintheUtrechtcleanroom.

29

Collidingultra-relativisticheavynucleiinparticleacceleratorsdoesenable us to create and study a novel state of matter called theQuark-GluonPlasma(QGP).ItisbelievedthatthisprimordialstateofmatterfilledtheUniverseinthefirstfewmicrosecondsaftertheBigBang,beforethephasetransitiontothepresenthadronicstateofmattertookplace.

Thehighestheavy-ioncollisionenergiesavailabletodatearepro-videdbytheRelativisticHeavyIonCollider(RHIC)atBrookhaven.Theexperimentscarriedoutatthiscolliderhaveshownthatanex-tremelydenseandhotmediumwithuniquepropertiesisindeedcreatedingoldongoldcollisionsatacollisionenergyof200GeVpernucleon.InthecomingyearstheLargeHadronCollider(LHC)atCERNwillprovideleadonleadcollisionsatanunprecedentedenergyof5500GeVpernucleon.

TheNIKHEFheavy-iongroupparticipatesintheSTARexperimentatRHICandintheALICEexperimentattheLHC.In2006,theactivitiesofthegroupwerefocusedontheassemblyandtestingofthetwoouterlayersofsiliconstripdetectors(SSD)oftheALICEinnertrackersystem(ITS).Inadditiontothishardwareeffort,theNIKHEFgroupcontinuedwiththeanalysisofcurrentSTARdataandwiththedevel-opmentofsoftwaretoanalyzethefutureLHCdatafromALICE.

Bytheendof2006, the fullassemblyofSSD layerswasshippedfromUtrechttoCERNwheretheywillbeintegratedintheALICEdetectorbeforethesummerof2007.Thetimelyachievementofthismilestoneconcludesaphaseofdesign,testingandassembly,spanning almost ten years of effort in close collaboration withinstitutes inFinland,France, Italy,RussiaandtheUkraine.Thefi-nalassemblyofthetwoSSDlayershaspartlybeencarriedoutat

NIKHEF,bothinAmsterdamandUtrecht,andpartlyatSUBATECH(IN2P3)inNantes.AmoredetailedaccountoftheNIKHEFcontribu-tiontotheSSDassemblyisgivenbelow.

Intotal,64outof80ladderswith25SSDdetectormoduleseachwereassembledatNIKHEF.ThisladderassemblycontinueduntilNovember 2006, with peak production rates of four ladders perweek.The16laddersfromNanteswereshippedtoNIKHEFwheretheyweremeasuredmechanicallyandhadtheirfinalcheck.About50%ofallproducedladdersshoweddefectswhichcouldbesolvedbyavarietyofpost-treatments,rangingindifficultyfromrelativelysimpleinterventionsuptothereplacementofanentiredetectormodule.Inthecourseoftheyearitbecameclearthataconsider-ablenumberofdetectormodulessufferedfromexcessivenoise.Thecausewasquicklyfoundinacrashresearchprogramcarriedout in cooperation with INFN in Trieste. The remedy requires anadditionalvoltagetobeappliedbetweenthesensorbiasandthegroundofthefront-endchips.Toachievethis,amodificationofhundredsofSupplyCardswasnecessary.Becauseofthedifferentmodeofoperationtheaffectedmoduleshadtobegroupedto-getherontoladderswhichareservicedbythemodifiedelectron-ics.TheseladderswillbeoperatedwiththecompensationvoltageonlyafterinstallationinALICE.However,extensivetestsonasetofselectedladdersshowedthatthenoiseisindeedmuchreducedwithoutunwantedside-effects.

Fig. 1 shows the completed SSD. On December 12, 2006 the SSDwasshippedtoCERNwhereitarrivedonDecember14.Afterfurthertests,thedetectorwillberotatedtothehorizontalpositionandbeintegratedwiththeITSdriftdetectorbeforeinstallationinALICE.

ALICE

Figure1.CompletedassemblyoftheALICESiliconStripDetector.Visiblearetheladdersoftheouterbarrelwiththeyellowreadoutcablesthatcollectthesignalsofthe2.5millionindividualstrips.Attheleftandrightsideofthebarrelaretworingsofend-capelectronics,whichweredesignedandbuiltatNIKHEF.

30

The physics focus of the NIKHEF group is oriented toward themeasurement of collective phenomena in particle productionfromthedensemediumproduced inheavy-ioncollisionsat theLHC.Suchphenomenaareaprominentfeatureofheavy-ioncol-lisionsandarethereforerelativelyeasytodetect.ThetheoreticalinterpretationofresultsfromRHICindicatethatbythesemeasure-mentsprofoundinsightcanbegainedinthebehaviorofmatteratextremelylargedensitiesandtemperatures.

Of particular interest are azimuthal correlations, which originatefromthepressuregradientsintheazimuthallyasymmetricinter-actionregionofnon-centralheavy-ioncollisions.Thisanisotropiccollective behavior is called elliptic flow. The measurement ofelliptic flow gives, under certain model assumptions, access totheequationofstateandtransportpropertiesofthemediumpro-duced in the collision. For instance, the discovery of the perfectfluidityofthemediumcreatedingoldongoldcollisionsatRHICislargelybasedondetailedmeasurementsofellipticflowandtheirinterpretationintermsofrelativistichydrodynamics.

Detailed simulations were performed to investigate the feasibil-ity of an elliptic flow measurement in ALICE. One of the largestexperimental uncertainties in the flow measurement is due toazimuthalcorrelationsfromsourcesotherthancollectiveflowlikemomentumconservation,resonancedecays,jetsandmini-jets.Inparticularthecontributionfromjetsisexpectedtobeadominantsourceofnon-floweffectsattheLHC.

Fig.2showstheresultofafeasibilitystudybasedonasimulationof the ALICE experiment. The simulated lead on lead collisionsusedforthisstudyarebasicallyasuperpositionofmanynucleon-

nucleon collisions and contain a large amount of randomly dis-tributed jets. Since collective flow is absent in these events, theellipticflowstrengthsobtainedfromananalysisofthesampleareentirelyduetocorrelations inducedbythepresenceof jets.Thestrengthsofthesenon-floweffectsareshownbythedatapointsandbythedashed-dottedcurveinthefigure.ThedashedcurvesshowmodelpredictionsofthestrengthofgenuineellipticflowinleadonleadcollisionsattheLHC.

From this result it is concluded that jet contributions to the azi-muthalcorrelationsaresmallcomparedtothosefromellipticflow,providedthattheeventisnotveryperipheralorverycentral.FlowmeasurementslikethoseperformedatRHICarethereforenotob-scuredbytheabundantjet-structuresthatarepresentattheLHC.

Figure2.Ellipticflowcoefficientv2versustheeventcentralityclass,definedsuchthatlargervaluescorrespondtomorecentralevents.ThedashedcurvesrepresentthreemodelpredictionsfortheellipticflowexpectedatLHC.Thedatapointsshownon-flowcontributionsestimatedfromasimulationoftheALICEexperiment.Thedashed-dottedcurvecorrespondstoaparameterizationofthenon-floweffects.

centrality class1086420

v2

0

2

4

6

8

10

12

14

16

18

20v2 prediction & non-�ow @ LHC

31

ThegroupwasactiveinthreemainR&Dareas:• Thedevelopmentofgaseousdetectorsreadoutbyspeciallydevel-

opedmultipixelCMOSchipswithfullyintegratedgas-gaingrid;• ThedevelopmentofhybridCMOSpixeldetectorsforX-rayimag-

ingapplications(seethefeaturearticle“MedipixandRELAXD”intheReviewssectionofthisAnnualReport);

• ThedevelopmentofvariousalignmentsystemsbasedonRAS-NIK(seealsothe2005AnnualReport).

Progress on Ingrids/GridPix detectors and discharge protection.

The concept of pixel readout of gas-filled detectors was vali-dated in 2004 by combining a Micromegas amplification gridwithaMedipix2CMOSchipasapixelsegmentedanode.Thefinegranularityofferedbythepixelmatrixresultsinimprovedspatialresolutionand2-trackseparationcomparedtoa‘traditional’padreadout. Furthermore, the good single (primary) electron effi-ciency(>90%)canimprovetheenergy-lossmeasurementthroughacluster-countingtechnique.

AsapossiblesolutionforthefabricationoflargerpixelisedMicroPattern Gas Detector (MPGD) elements, the group proposed theintegrationoftheMicromegasamplificationgridandtheCMOSre-adoutchip(Ingrid)bymeansofwaferpostprocessingtechnology:thestructureofathin(1μm)aluminiumgridisfabricatedontopofanarrayofinsulating(SU8)pillarsoftypically50μmheight,whichstandontheCMOSchip.Thisstructure thus formsa ‘monolithic’detectionandreadoutdevice.Thisworkisdoneinclosecollabora-tionwiththeMESA+instituteoftheUniversityofTwente.ResultsfromaafirstworkingIngridwerepublishedin2006.SeveralIngridsofdifferentgeometry,shapeandpitchofthegridholes,andmul-

tiplicationgapthickness(pillarheight),seeFig.1,wereproducedand tested with various gas mixtures. Energy resolution and gasgain were measured as a function of the grid geometry param-eters.Asanexample,amaximuminthegasgainisreachedforagapthicknessaround50μm(atfixedgridvoltage), inagreementwithexpectationsfrommodelcalculations(seeFig.2).

IntheframeworkoftheEUDETproject(detectorR&Dprogramto-wardsaLinearColliderdetector)theTimePixchipwasdevelopedasamodificationoftheearlierusedMedipix2chip.TheTimePixnotonlyprovidesahigh-granularityx-ycoordinatereadout,buteach55x55μm2pixelalsomeasuresthearrivaltimeofthechargeonthepixel, thusprovidingathirdcoordinate(z)measurement.The new chip design (by the CERN Microelectronics group) wassubmittedtothefoundryearlyJulyand12wafersarrivedinSep-tember. Initialelectroniccharacterizationtestsofthechipshowthat itbehavesaccordingtospecs.Theyieldofgoodchipsonawaferisverysatisfactory(typically70-80%).

Unlikesetupswhere a (triple-)GEMstructure is usedasgasmul-tiplier,theelectricfieldjustabovetheCMOSreadoutchipinoursetupwithaMicromegas(orIngrid)multiplicationstageisaboutan order of magnitude higher. This increases the probability ofdischarges, damaging irreversibly the CMOS chip. Two possiblesolutionsarebeinginvestigated.

In the first method we investigated the use of a highly resis-tive layer of 4 μm of amorphous silicon (aSi) with a resistivity of~1011Ω.cmcoveringthechip.Theexpectedeffectisalimitationofthecurrentoflargeavalanches(e.g.discharges).Firsttestswithandwithoutsuchaprotectionlayerdepositedonanon-pixelated

Detector Research & Development

Figure1.SomeofthevariousIngridpatternsusedforthemeasurements.Notethattheinsulatingpillarsdonotcreatelocallosses.

Figure2.Measurementofthegasgainasfunctionofthegapheight,com-paredwithmodelexpectations.

Vg = 450V P = 1 atmRose & Korf �t

104

103Gap size (µm)

Gai

n

10 100

32

anodeshowedthatina80/20Ar/Isobutanegasmixturethe‘un-protected’detectorgaincouldnotberaisedaboveabout20,000beforetheoccurrenceofdischarges,whilea‘protected’detectorcouldreachgainsofhalfamillion.Justbeforetheendof2006,afirst‘protected’TimePixchipwithaMicromegasasgasgaingridbecame operational in a small drift chamber (15 mm drift gap)filled with a 80/20 He/Isobutane gas mixture. First examples ofobservedchargedparticletracksareshowninFig.3.

A second possibility to protect the readout chip is to fabricate a2-stageIngridstructureusingthesamewaferpostprocessingtech-nique.Twolayersofmetallicgridsandinsulatingpillarsaresuper-posed.The‘top’gapcanthenbeusedasmainamplificationgrid,whilethe ‘lower’gap justabovetheCMOSchipcanbeoperatedatamuchlowerfieldstrength,sufficienttoextracttheavalanchechargecreatedinthe‘top’gapontotheanode.Afirstfabricationattemptofsuchadouble-gridstructurewassuccessful(seeFig.4).

GOSSIP

Witha1mmthinlayerofgas,theGridPixdetectorcanbeappliedasvertexdetector,asanalternativeforthewidelyappliedsilicondetectors. Inasmalltestchamber,thepulse-heightspectrumofFig.5hasbeenmeasured,confirmingthatagoodefficiencycanbecombinedwithafastdetectorresponse.

For a future upgrade of the ATLAS experiment, anticipating onthe extreme radiation levels at the Super-LHC, concept studieswerecarriedoutintheapplicationofGasOnSlimmedSiliconPixel(GOSSIP) concerning cooling, mechanical suspension and dataprocessingarchitecture.

Gossipo chip design

The Gossipo-1 ‘Multi Project Wafer’ chip was made in 130 nmtechnology.Thechipincludedseveralpreamp-shaper-discrimina-torchannels,optimizedfortheextremesmallsourcecapacityofthe future GridPix detectors. The chips performed as hoped for.Apowerdissipationofonly2μWperpixelappearedpossible.Byusing the ‘triple well’ technology, a better separation betweenanalog and digital signals was possible. The minimal setting ofthresholds was indeed determined by the preamp noise only:digitalinterferencewasnegligible.

WiththeGossipo-2chip,thearrivaltimeofindividualprimaryelec-trons can be measured (see the article ‘Integrated Circuits’ in theReviewsSection).Eachpixelcontainsa700MHzclockwhichisonlyactive,forashort(interpolating)period,afterbeingactivatedbyanavalanche.Thischipwillcontain16x16pixels,anditwillbetestedasarealGridPixdetector.

RASNIK alignment systems

USB-RASNIK

TheinstallationofRASNIKsystemsinATLASprogresseswell(see‘AT-LASnearingcompletion’inthissection).Anewapplicationhasbeenproposedthatmonitorsthesagofroofconstructions.SuchaRasIcesystemcouldgenerateanalarmincaseofanoverloadofsnow.Thisproposalhaswonthe3rdpriceinthe‘NieuweIdeeën’contest,initi-atedbytheUniversityofAmsterdam,andhasresultedincommercialinterest:prototypesoflow-costRASNIKcomponents,basedonweb-camsensors,suitableformassproduction,havebeenmade.

Figure3.ExamplesoftracksrecordedwiththenewlydevelopedTimePixchip;left:‘random’trackduringratherlong‘acquisition’of1sec.Thecolorcodeindicatestheamountofchargecollectedoneachpixel;middle:samefroma(heavilyionising)αparticle;left:tracksfromcosmicmuonsin‘triggered’mode,wherenowthecolorcodeindicatesthetimeofarrivalofthesignalsonthepixels.Thepictureisintegratedover700seconds,buttheactual‘active’timeofthedetectorduringeachtriggerwasonly150μs.

33

RasClic

ForthealignmentofthefutureCompactLinearCollider(CLIC)atCERN,aspeciallong-distanceRASNIKsystemhasbeendeveloped.It consists of a laser of which its (divergent) beam illuminates aplatewitha50mmØhole.Animagepixelsensor,placed50mbe-hindtheplaterecordsthetypicaldiffractionpattern.Thepositionofthispatternonthesensorisadirectmeasureforthealignmentofthelaser,thecentralholeandtheimagesensor.

Sinceaprecisionoforder1μm(intermsofimagepositiononsen-sor)isexpected,thelightbeamshouldtravelthroughvacuuminordertopreventlightbeamdeflectionduetovariationsintheairdensity.The‘RasClic’setupatCERNisshowninFig.6;theprecisionismuchbetterthanrequiredforCLIC,andtheinstrumentcouldbeappliedasseismometerifimagescouldbeprocessedwithaspeedof25Hzormore.Withthisidea,MarcKeaandHenkGroenstegewonthe1stpriceofthecontest‘WindeToekomst’,organizedintheframeworkofFOM’s60thanniversary.

Figure4.Photographofafirsttrialtofabricateadouble-gridstructure(TwinGrid). Figure5.Measuredpulse-heightspectrumofaMicromegasdetectorwithadriftgapof1.2mm,irradiatedwithelectronsfroma90Srsource.FromthismeasurementtheefficiencyofthefutureGossipdetectorscanbederived.

Fig.6.The‘RasClic’setupatCERN.

MIP response for Gossip 21500

400

300

200

100

00 20 40 60 80

# of

eve

nts

charge signal (ke–)

GossipSilicon signal (ref )

Vmesh = – 600 VVcath = – 1000 VDrift gap 1.2 mm=> Edrift = 3.3 kV/cmpad pattern on glassBrass Micromegasgas: Kr/DME 74/26Exitation by mips from 90Sr source2.55% pedestal events

silicon

34

ThePierreAugerObservatorywillconsistofanorthernandsouth-ernsite.ThenorthernsitewillbeconstructednearLamar,Colo-rado,USA.Thenearlycompletedsouthernsite is locatedonthepampa near Malargüe, Argentina (35°27’S, 69°35’W, 1400 metresaltitude).Whenfinished,itwillconsistof4fluorescencedetectorsand 1600 watertanks (see Fig. 1) on a surface area of 3000 km2.

ThepurposeofthePierreAugerobservatoryistomeasuretheflux,natureandoriginofthehighestenergeticparticleseverobserved:Cosmicraysofenergiesabove1018eV(UHECR).Firstresultshavealreadybeenpublished.Theenergy-spectrumisshowninFig.2.Theenergycalibrationofalleventsoriginatesfromtheso-calledhybrid events, from which the correlation between the particledensityat1000metres fromtheshowercoreandtheenergy,asreconstructed from the fluorescence information, is measured.

Afirstresultonthenatureofcosmicraysisgiveninourpublica-tionofa95%upperlimitofa16%contributionofphotonsabove10 EeV. The photon fraction at high energies will be crucial inexamining proposed top-down models on the origin of UHECR.OthersearchesontheoriginofUHECRareperformed.TheAGASAcollaboration published a 4.5σ excess near the galactic centre.Oursearchwithfourtimesasmuchdatashowsnoexcessinthisregion,severely limitingapossibleflux fromthegalacticcentre.

The initialDutchcontributionconsistedofbuildingtank-microT-PCB’s(tankpowercontrolboard),whichhaveallbeendeliveredtothecollaboration.ThemainR&DinterestoftheparticipatingDutchgroupsliesinthedevelopmentofRadiodetectionofshowersin-ducedbyUHECR.TheNIKHEFcontributiontothisR&Disfocusedtowardcreatingahigh-speed,low-powerdata-acquisitionunit,a

prototypeofwhichoriginatesfromtheelectronicsdevelopmentfortheHiSPARCproject.Theothernationalpartners,KVIandAS-TRON,areresponsibleforwirelessdatatransmissionandantennadesign,respectively.Thisdivisionoftasksallowsanoptimaluseofthestrengthofeachpartner.

In mid-October a working radio antenna with readout was as-sembledinNijmegenandmovedtoDwingelooforfirstmeasure-ments.Thissetup,aswellastwoothers,wasmovedtoArgentinaformeasurementsonsiteusingthreeradioantennas,whichareread-out by the HiSPARC-prototype scopes, using long cables.Our program included not only using the ASTRON-built LOFARantennas,butalsoreadingoutthelog-periodic-dipoleantenna’sfrom Karlsruhe/Aachen in order to have an independent checkofourdataacquisitionaswellasameasurementontherelativeantennaperformances.

Thedataarestoredonlaptopswhichallowtoeasilytransportandanalyzethem.Theanalysisofthesedatawilltakesometime,andthefirstresultsonbackgroundandpossiblecoincidenceswiththeAugerwatertanksarenotexpectedbeforeearly2007.

The Pierre Auger Observatory

Figure 2. Intensity of ultra-high energetic cosmic rays as a function ofenergy,measuredatthePierreAugerObservatory.

Figure1.ThePiereAugerObservatoryinArgentinausesahybridcombinationofparticledetection(foreground)andairfluorescencedetection(background).

Log(E)19 20

-1 s

r yr]

2dI

/d(ln

E) [k

m

10-3

10-2

10-1

1

10

ΔE/E~30% ΔE/E~50%

35

In2006HERMEStook theopportunity tochange itsexperimentforthelasttime.HERMESwillfocusitseffortsuntilthefinalshut-down of HERA, mid 2007, on the measurement of GeneralizedPartonDistributionfunctions(GPDs).Tothisendarecoildetectorwasaddedtotheexperiment.Atthesametimetheanalysisofthedatatakeninthepreviousyears,wasforgedahead.

Nucleon Spin

Since the EMC-experiment made us aware of the fact that onlyabout30%ofthenucleonspincanbeattributedtothespinofthequarkswhichmakeupthenucleon,muchresearchwasdevotedtothequestionhowthespinisdistributedbetweenthedifferentpartons.ThepolarizationofΛparticlescreatedinthecollisionofpolarizedleptonsandprotons,canbecorrelatedtothepolarizationofthes-quarkswithrespecttothatoftheu-quarksintheproton,whentheΛisproducedinthetargetfragmentationregion.Ontheotherhand,whentheΛisproducedinthecurrentfragmentationregion,itspolarizationisduetothespinofthestruck(u-)quark.

Informationontheprocessoffragmentationofquarksandgluonsinto observable hadrons can be obtained by measuring baryonproduction inhighenergyexperiments.Hyperonsareespeciallyinterestingas theycontainastrangevalencequarkwhich isnotpresentinthetargetnucleon.Atpresentnocalculabletheoreticaldescriptionofthisprocessexists,andit isassumedthatbaryonsand mesons are produced by a similar mechanism during thefragmentationprocess.Therefore,the(phenomenological)LUNDmodeloffragmentationisusedinaMonteCarlosimulationtode-terminethefractionofhyperonsthatareproduceddirectlyinthefragmentationandfromdecaysofheavierhyperons.Theproduc-

tion ratesofhyperonsofdifferentstrangenesscontentandspinhavebeenmeasured(seefigure)andarecomparedtotheresultsoftheMonteCarlosimulation.

The transverse target spin asymmetry in exclusive ρ0

production

Inadditionto theavailable informationabout thequarkhelicitycontributiontothenucleonspinΣq,measurementsofJq,thequarktotal angular momentum, will provide a way to determine theunknowncontributionofthequarkorbitalmomentumLq.Calcu-lationsbasedonGeneralizedPartonDistributionsshowthatthetransversetargetspinasymmetryAUTinexclusiveρ0 productionissensitivetoJq.

Preliminaryresultsforthisasymmetry,basedonthedatatakendur-ingthe2002-2004period(seefigure),havealreadybeencomparedwithGPDbasedcalculationsfordifferentvaluesofJq.Althoughthemeasurementsareconsistentwiththesecalculations,thestatisticaluncertaintiesareyettoolargetomakeasharpdistinctionbetweendifferentvaluesofJq.Thedatatakenintheyear2005atleastdou-bletheamountofstatisticsavailableforthisanalysis.

The HERMES Experiment

1

10

10 2

10 3

10 4

10 5

10 6

1. 1 1.2 1. 3 1.4 1. 5 1.6 1. 7

particle 0/+/-anti-particle 0/+/-

Λ0 Σ0 Ξ 0 Σ*-Σ*+ Ξ *0Λ*0

m [GeV/c 2]

σ 4π /

(2J+

1)

[pb]

Ω-

Figure1.ProductioncrosssectionofhyperonsmeasuredinHERMES,ex-trapolatedtofull(4π)acceptance.

Figure 2. Measured values of the asymmetry AUT -integrated over kin-ematicalvariables-versustherelevantangleφ-φs.Hereφandφsaretheazimuthalanglesof,respectively,theρ0productionplaneandthetargetspinwithrespecttotheleptonscatteringplane.Thecurverepresentstheextractedsin(φ-φs)componentoftheasymmetry,whichissensitivetothevalueofJq.

e p→e' ρ0p

Asin(ϕ-ϕs) = 0.046±0.037

<x>=0.09 <Q2>=2.0GeV2 <-t'>=0.13GeV2

HERMES PRELIMINARY

ϕ-ϕs (rad)0 1 2 3 4 5 6

0

0.1

-0.1

0.2

-0.2

0.3

AU

T(ϕ

,ϕs)

-0.3

36

ResearchintheNIKHEFtheorygroupin2006continuedtocoveradiversesetofareasintheoreticalparticlephysics.Belowwereviewsomehighlights,beginningwithphenomenology.

Thes-andt-channelsingletop-quarkproductionprocesseswereincludedintheMC@NLOMonteCarlosimulationframework.Thisprocess,ofwhichevidencewasreportedbytheD0collaboration,allowsdirectmeasurementoftheCKMelementVtb,andissensi-tivetovariousformsofnewphysics.Theinclusionisanimportantsteptowardthisgoal.

Aglobalfittomostlydeep-inelasticscatteringdatawasperformedusinganext-to-leading-order(NLO)calculationenhancedbynext-to-leadinglogarithmicBFKLresummation.AmarkedimprovementoverthepurelyNLOfixed-orderapproachwasfound.

Developmentof theFORMprogram,used formanyof themostchallenging calculations in perturbative quantum field theory,continuedapacethisyear.Amulti-threadedversion,whichexploitsthe opportunities of computers with multiple computing cores,isnearcompletion,andperformswellonaspeciallyacquired4-processormachine(seeFig.1).

Astudyofthematrixelementoftheelectromagneticcurrentbe-tweenpionstateswasdoneinlatticeQCDatfinitetemperature(T=0.93Tc),allowingextractionoftheelectromagneticvertexfunc-tionunderconditionsrelevanttoheavy-ioncollisions.

A very promising approach to describe particle behaviour andcollectiveeffects inahotordensemediumisthe2-particle irre-ducible(2PI)actionmethod(seeFig.2). Inthepastyearpossibly

serious problems regarding renormalization were resolved forrelevantfieldtheories.

Intheareaofstringtheory,muchprogresswasmadebymembersofourgrouponunderstandingthelinkofstringtheorytolower-scale physics. A quite exhaustive and systematic study allowingforagreatvarietyofD-braneconfigurationsledtonumerousex-amplesofstringvacuathatresembletheStandardModel,aswellas several kinds of unification models that contain the StandardModel.

Thecharacteristicsofprotonaccelerationinastrophysicalsourceswerestudied,inparticulartheenergyandrapiditydistributionsofsecondarypionsandkaonsproducedinthesecircumstances.

In cosmology, progress was made towards embedding inflationinrealisticparticlephysicsmodelssuchasgrandunifiedtheoriesandstringtheory.Itwasshownthatthe(gravitational)couplingsbetweentheinflatonfieldsandotherfields,forexampletheStand-ard Model fields, constrain these models severely. In particular,so-called VSI solutions to higher-dimensional Einstein equationswerefoundandstudied.Thesesolutionsarealsonovel,exactsolu-tionsofsupergravityandstringtheory.

Understandingsystemsofparticlesincurvedspacetimesinvolvesfindingconstantsofmotion,whichisingeneralanon-trivialtask.Methodstofindthesewereextendedtosituationswithexternalabelianandnon-abeliangaugefields.

Theory

Figure1.The4-Opteroncomputeronwhichamulti-threadedversionofFORMisbeingtested.

37

Other news

Anumberofothernoteworthyissuesdeservemention.

AprestigiousHumboldtPrizewasawardedbytheAlexandervonHumboldtFoundationtoJosVermaserenforhisworkonprecisionQCD.TheprizewillenablehimtospendayeardoingresearchatDESYZeuthenandtheUniversityofKarlsruhe.

In2006staffmembersofthegrouphavebeenactiveinteachingintheNIKHEFtopicallectures,the2006AIO/OIOschoolfortheo-retical PhD students (van Holten, Schellekens), and organizinga workshop ‘Beyond the Standard Model’ at Bad Honnef (vanHolten).Outreachactivitiesconsistedoforganizingasymposiumfor highschool students (van Holten), and contributing to a stu-dentsymposiumatDelftUniversity(Laenen).

Staff members have also been teaching university courses inNijmegen (Beenakker, Kleiss, Schellekens), Leiden and Delft (vanHolten),Utrecht(Laenen)andAmsterdam(Koch).

Twonewinitiativeswerestartedin2006bytheorygroupmembers.The first are the twice-a-year NIKHEF Academic Lectures. Lecturesetsconsistoffour45-minutelectures,gearedtowardsNIKHEFsci-entistsfromPhDstudentstostaff,ontopicsrelevanttotheresearchprogramoftheinstitute.Thisyear'stopicsweretheStandardModel(Laenen),andSupersymmetryandGUTS(Schellekens).ThesecondnewinitiativearethemonthlyTheoryMeetings,inwhichtheoristsfromallDutchgroupsgathertodiscuss,work,collaborate,generateideasetc.TheNationalSeminaronTheoreticalHigh-EnergyPhysicsalsocontinuestobeheldatNIKHEF,andattractsgoodattendance.

Figure2.Quasiparticlepropertiesinascalartheorycanbecapturedbythespectralfunction.Thecenterandwidthofthepeaktellusaboutthemassandstabilityofthequasiparticle.Thesechangewithincreasingtemperature,asaresultoftheinteractionswiththemedium.

Width

( λ = 1 , φ /m = 1 , T /m = 1)simulation parameters

Quasiparticle peak Multiparticle peak

38

The proton-proton collisions in the Large Hadron Collider willproduceBandB-particleswitharateof100kHz,thusprovidingafactoryofB-hadrons.InparticulartheB-mesons,particlesconsist-ingofab-quarkandalightu,dors-quark,areapossiblesourcefor manifestations of new physics laws. To search for deviationsfrom the Standard Model, specific rare B-decay processes mustbeselectedandreconstructedwiththeexperiment.ThephysicsprograminLHCb,oneofthefourexperimentsattheLHCcollider,aimstostudythedecaysoftheseB-mesons.AsimulationofaB-decayeventinsidetheLHCbexperimentisshowninFig.1.

NIKHEFfocusesonasubsetofB-decayeventsinwhichthedecayproducts only include charged particles. The detection of thesechargedparticles,generally referred toas tracking, isdonewithdetectorsystemsconstructedatNIKHEF: theVertexLocatorandtheOuterTracker.

WiththeOuterTrackerdetectorthetrajectoriesofchargedparti-clesinthe0.5TeslamagneticdipolefieldofLHCbarereconstruct-ed.Bycomparingtheobservedcurvatureintheknownmagneticfield, the Outer Tracker provides a measurement of the particlemomentawitharelativeprecisionof0.5%whichinturnleadstoa precise reconstruction of the invariant mass of B-decay eventcandidates. In this way the Outer Tracker provides an importantingredient to distinguish signal events from background eventsand allows to select rare B-decays produced in the collider. Fig.2showsasanillustrationasimulationofthereconstructedmasspeakforthesignaldecaysBs→K–π+ascomparedtospecificback-grounddecaysBd→ K–π+.

TheOuterTrackerdetectorconsistsof56,000gaseousstrawtubedetectorscovering12layerswithadetectionsurfaceof30m2perlayer. It measures ionizations of gas atoms produced by chargedparticlestraversingthedetector.Testbeamexperimentshavedem-onstratedthattheparticletrajectoriescanbemeasuredwithapre-cisionof200µm.Thecompletedetectorisconstructedinamodularway,allowingforeasy installationandmaintenance.ThedetectormoduleshavebeenconstructedandtestedatNIKHEFandarecur-rentlybeinginstalledintheexperiment.Acrucialaspectinthein-stallationisthepositioningandalignmentoftheselargedetectors.Opticalsurveyinspectionshaveshownthatthefirstoftheselargedetectorplaneshasbeenpositionedintheexperimentalsetupwithaprecisionof1mm.Softwaresimulationshaveshownthatsuchanalignmentissufficientforpatternrecognitionprogramstocorrectlyfindthetracks.Afurtheralignmentwillbeobtainedfromthedatausingadedicatedalignmentfittingprogramcalled‘Millipede’.

TheVertexLocatorexploitsthefactthattheaverageB-mesonlife-timeis1.5ps,suchthatB-decayverticesaregenerallydisplacedbyseveralmmfromthefromtheprimaryeventvertex.Thissignatureallowsfirstly,topreselectB-eventsinanonlinetriggerprocedure,secondly to suppress further backgrounds by requiring that allB-decayproductsmustoriginatefromthisseperatedvertex,andthirdlytomeasuretheindividuallifetimeofeachB-decayevent.

TheVertexLocatorcontains21silicon-stripdetectorstationswithstrips measuring the r and φ coordinates of traversing particles.Inordertoobtainhighestprecision,theVertexLocatordetectorsarepositionedat8mmdistancetothebeamline.Theyareplacedinavacuumcontainer,onlyseparatedfromthebeamvacuumbya0.3mmthickaluminiumwindow.SincetheapertureoftheLHC

Tracking in LHCb

Figure1.SimulatedB-decayeventintheLHCbdetector.Thebluelinesindicatedthechargedparticletrajectoriesthataredetectedwiththetrackingdetectors.

39

beamduringinjectionismorethen8mmthisvacuumcontainerwith the detectors must be retracted during beam injection. Astepping motor system has been constructed that positions thedetectorplanesineachfillwithareproducibilityof10µm.Duetotheirpositioningclosetothecollidingbeamsthedetectorssufferfrom a large irradiation dose. To avoid damage to the detectorstheyarecooledtoatemperatureof-5°C.AprototypeoftheCO2basedbinary-phasecoolingsystemhasbeensuccessfullytestedinatestbeamexperimentatCERN.

The Vertex Locator testbeam experiment is the last validation testbeforeinstallationintheexperiment.Theexperimentincludes6sta-tionswithfinaldetectorsaswellasthefinalelectronics(seeFig.3).Thetraversingparticletrajectoriesarereconstructedwithaprototypeversionofthesoftwarethatwillbeusedinthefinalexperiment.

Thesoftwarerequiredtoreconstructparticletrajectoriesfromthedetector hits has been improved to adapt for possible detectormisalignments. The tracks are fitted with a 3-dimensional Ka-lman-filterfitmethodandextrapolationsinthemagneticfieldareperformedwithafifth-orderRungeKuttaextrapolationmethod.Thefitaccommodatesnon-ideallypositioneddetectorelementsas trajectories in space. In the fitting procedure these detectiontrajectories are compared to the particle trajectories, whichresults in an unbiased estimator for the particle trajectory. Thefitting method incorporates multiple-scattering kinks along thetrajectory andyieldsanaverage impact parameter resolutionof40 µm. Together with the reconstructed momentum of the par-ticles B-decay lifetimes can be reconstructed with aprecision ofapproximately40fs.

Figure2.MassseparationbetweenthesignaldecayBs→K–π+andthebackgrounddecayBd→K–π+.ThemassresolutionofthesignalBdecayisexpectedtobe13MeV.

Figure3.Silicondetectionstationsbeing installed in theVertexLocatorsupportframe.

40

Theyear2006representsanimportantmilestonefortheANTARESneutrinodetectorproject.Inthisyearthefirstthreedetectorlinesweredeployed,andthefirstmuontrackshavebeenreconstructed.Infact, itcanbestatedthattheoperationofANTARESasahighenergyneutrinotelescopehasbegun.

Scientifically, the observation of high-energy neutrinos on theNorthernhemisphereiseagerlyawaited,asitenablesthesearchforneutrinosoriginating fromthegalacticcentre.Followingthefirst observations of high-energy gamma rays from the galacticcenterafewyearsago(bytheHESStelescope),ithasbeenspecu-latedthatthefirstneutrinopointsourcesarelikelytobediscov-ered in this part of the sky. The observation of neutrino pointsourceswouldrepresentascientificbreak-throughasitcouldbeusedtoaddressseveralkey issuesatthe interfaceofastronomy,cosmology and physics. These issues include the origin of ultra-high energy cosmic rays, the mechanism of cosmic accelerationprocessesandthenatureofdarkmatter.

ThedetectionprincipleofANTARES isbasedontheobservationofČerenkovlightemittedbyamuonproducedwhenaneutrinointeracts with an atomic nucleus in the earth. As the directionoftheproducedmuonisalmostthesameasthatoftheoriginalneutrino,theorientationofthemuontrackcanbeusedtoidentifythedirectionoftheneutrino.InordertoobserveandmeasurethetimingoftheČerenkovphotonsthedetectorneedstobebuiltinatransparentmedium.Atthesametimethephoto-sensitivedetec-torsneedtobeshieldedfromotherlightsources.Theserequire-mentscanbemetbybuildinganeutrinotelescopeonthebottomof the sea at adepth of severalkilometers, wheredaylightdoesnotpenetrate.

Unfortunately,muonsarealsocopiouslyproducedintheatmos-pherewhenahigh-energyprotonfromspacehitstheouterlayersoftheatmosphere.Someofthesemuonspropagatethroughtheseawaterandthuscauseabackgroundinthedetector.However,atmosphericmuonscanbedistinguishedfromthoseproducedinneutrinointeractionsbytheirdirection.Asonlyneutrinosareableto penetrate the entire earth, any muon track originating frombelowthehorizonmustbeattributedtoanincidentneutrino.Atthesametimethedowngoing(atmospheric)neutrinotrackscanbeusedtocommissionandtestthedetector.

The detector lines of ANTARES have a total length of 450 meterandcarry75light-sensitivedetectorseach.Bymeasuringthetim-ing of the Čerenkov photons, the angle of the muon track withrespecttothedetectorcablecanbecalculated.Inthiswaythefullmuon track can be reconstructed. Once complete, the detectorwillconsistof12detectorlines,ofwhichthefirst3weredeployedin2006.Thedetectorisexpectedtobefullyoperationalneartheendof2007orearly2008.

After deployment each detector line is connected to the shorestation by means of a submarine operation. A few hours later,thedetector line ispoweredupandthereadoutprocesscanbeinitiated.Inthisway,thefirstmuontrackscouldbereconstructedwithin24hoursaftertheconnectionofthefirstline.Thesedevel-opments demonstrated the successful operation of the readoutsystem,whichwasdevelopedbytheNIKHEFteamintheANTAREScollaboration.Despiterelativelyhighbackgroundratescausedbydeep-sealifeforms(knownasbioluminescence)ithasbeenpos-sible to transport all data from the photo-sensitive detectors totheshorestation.

ANTARES

Figure 1. The first detector line of ANTARES shortly before it is beingloadedontothedeploymentvessel.Onthelefttheyellowbuoyisvisiblethatkeepsthelineverticallyintheseawater.

Figure2.TheanchorofthefirstdetectorlineofANTARESafteritsdeploy-mentonthebottomoftheMediterraneanSeaatadepthof2480m.Themechanicalarmsofthe‘RemotelyOperatedVehicle’(ROV)areclearlyvis-ibleonthepictureinfrontoftheanchor.

41

Usingthedatacollectedbythefirstdetectorlinesalargenumberof muon tracks has been reconstructed. Obviously, most trackswere down going and could be associated with atmosphericmuons, but at the same time a fair number of up going muontracks has been identified that can be associated with neutrinoevents.Hence,theoperationofANTARESasaneutrinotelescopehassuccessfullystarted.

In2006preparationsforthenextgenerationofdeep-seaneutrinotelescopes have also been initiated. A European collaboration hasbeenformed,knownunderthenameKM3NeT,whichreceivessup-portfromthe6thEUframeworkprogramtocarryoutadesignstudy.Thegoalofthisstudyistoarriveatacost-efficientdesignofadeep-sea neutrino telescope in the Mediterranean Sea that surpassesANTARESbyafactorof20ormoreineffectivevolume.Thedesignstudy, in which NIKHEF is strongly involved, has been officiallystartedinthespringof2006.TheDutchcontributiontoKM3NeTisfocusedonanewdesignoftheopticalmoduleandtheinformationtechnology.Thedesignstudywillbeconcludedin2009.

Figure 3. Detection principle of the ANTARES neutrino telescope as ex-plainedinthetext.

Figure4.OneofthefirstreconstructedeventsinthefivecurrentANTARESdetectorlines.

La Seyne-sur-Mer, France

2.4 km

500 m

60 m

14.5 m

40 km

µνµ

Emp

ire S

tate

Bui

ldin

g

42° 50' N 6° 10' E

42

TheinstallationoftheATLASdetector,whichwillobserveproton-protoncollisionsatacentre-of-massenergyof14TeVattheLargeHadronCollideratCERN,Geneva,progressedwell through2006and is now nearly completed. NIKHEF is responsible for severalmajordetectorprojects:asemiconductortrackerendcap,forpre-cisionmeasurementsofchargedtracksneartheinteractionpoint,largeprecisiondriftchambersthatareusedtoreconstructmuontracks,andvariouselectroniccomponentsoftheread-outsystem.Inaddition,NIKHEFhasplayedaleadingroleinthedevelopmentoftrackingsoftwareandinthepreparationoftheanalysisofthefirstdata.Ourgoal is tofindtheelusiveHiggsbosonandsigna-turesofnewphenomenalikesupersymmetry.

InJanuary2006,notasingledetectorcomponentmadebyNIKHEFhadbeeninstalledintheATLASexperimentyet,although96largemuonchambersproducedatNIKHEFhadbeenshippedtoCERN.Thesechambers,measuringabouttwobyfivemeterseach,countintotalsome40,000drifttubes.Theyareabletoreconstructthetrack of a muon with a precision of about 20 micrometers. Thisyear,ateamofNIKHEFscientistsandtechnicianshasinstalledandconnectedallchambersinATLAS.Testshaveshownonlyfewprob-lems,andthechambershavetakenfirstdatafromcosmicrays.

On November 9th of 2006, a current of 20,000 Ampere was sentthroughtheATLASbarreltoroidcoilsforthefirsttime,thusbring-ing into operation the world’s largest superconducting magnetsystem.Themagneticfieldof thissystemcurvesmuontrajecto-ries, which makes it possible to measure the muon momentumwith the muon chambers. During the toroid power-up tests, wehaveobserveddeformationsofthechambersoftheorderof100micrometers,justaspredicted,withourRasNikalignmentsystem.

This system, developed at NIKHEF (see Annual Report 2005), isbeingusedthroughouttheATLASmuonsystemandiscurrentlybeinginstalledinthedetector.

AnothermajorNIKHEFresponsibilityisthatoftheMuonRead-OutDrivers(MROD).Theseareelectronicsboardscontainingroughly3500electronic components.Weneedover200boards to readoutthemuonsystem.In2006weperformedextensivetestingofthe prototype boards at NIKHEF and at CERN. Only minor prob-lems,whichcouldberemediedinthefirmware,werefound.ItwasshownthattheMRODoutputlinksareabletorunat50MHzratherthan at 40 MHz, which leads to an increase in bandwidth of thefullsystemby25%.InOctober2006apre-seriesof15productionmodules was received. After correcting some small errors, a fullMRODcratehasbeenmadeoperationalatNIKHEF.TwelveMRODboardswillbeinstalledattheATLASpitandusedinthecommis-sioningofthemuondetector.

NIKHEFhasassembledonecompleteendcapofthesemiconductortracker(SCT)forATLAS,whichconsistsofsome1000modules(1.5millionelectronicchannels)withsiliconstripsensorsforchargedparticledetection,mountedonninecarbon-fiberdiscs.

Early2006,thelastdiscswereequippedwithsensorsandalldiscsweremountedinsidetheendcapcylinder.Inparallel,thecylinderwasequippedwithservices,suchascoolingcircuits,powercables,andopticalfibersfordatacommunication.Allsensorswerethenextensively tested in ATLAS-like conditions. For this purpose, alargetestboxandaC3F8evaporativecoolingmachinewerebuilt.Thenumberofdefectivechannelsisbelow0.5%,andthedetectornoiseisasexpected.OnApril19thand20th,theendcap,mounted

ATLAS nearing completion

Figure1.InstallationofoneoftheNIKHEFmuonchambersintheATLASexperiment.

43

in a transport frame, was transported to CERN, and located in acleanroominthesurfaceareaoftheATLASpit.Varioustestswereperformed upon reception to check for transportation damage,butnodamagewasfound.Thecylinderwassubsequentlyfurtherprepared for mounting inside an endcap of the Transition Ra-diationTracker(TRT),andforinstallationinthepitearly2007.Theotherendcapisinasimilarstate,whereasthebarrelSCTandTRTwerealreadyintegrated,testedwithcosmicrays,andmountedinATLASinthesummerof2006.NIKHEFhasalsore-joinedthegroupbuilding the silicon pixel detector, in order to help getting thatdetectorreadyforinstallationinsidetheSCTinspring2007.

TherelevanceoftheATLASresearchwaswellrecognizedbyourfundingagencies. In2006wewelcomedtheawardofoneNWOVICI grant (Bentvelsen), one VIDI grant (van Vulpen), one VENIgrant (Klous) and 2 FOM projectruimte proposals (Bentvelsen &KleissanddeGroot).

Physics Highlights from the D0 experiment

InpreparationfortheLHC,andtodophysicsatthehigh-energyfrontierbeforeLHCstarts,NIKHEFphysicistsparticipateintheD0experimentattheTevatron(Fermilab,Chicago)whereproton-anti-protoncollisionstakeplaceat2TeV.ThetotaldeliveredluminositytoD0inrun2nowexceeds2fb–1,andsome50papershavebeenpublishedorhavebeenacceptedforpublication.InMarch2006,D0wasthefirstexperimenttosetanupperlimitonthefrequencyofoscillationsbetweenBSmesonsandtheiranti-particlesBSmes-ons;theoscillationfrequencyisconstrainedtobebetween17and21ps–1at90%confidencelevel.TheNIKHEFgroupisworkingonmuonandtaureconstructionandb-quarktagging.Asignificant

increaseinb-taggingperformancehasbeenachievedwithneuralnetworks.ThisbooststhesearchforHiggsbosons.ApartfromtheHiggsbosonsearchinthechannelswheretheHiggsisproducedin association with a W or a Z boson, NIKHEF analyses focus onthe top quark mass, the jet energy scale, extra dimensions, andb-quarkproductionmechanisms.

Figure2.Installationofasemiconductortracker(SCT)discintheendcapcylinder.

44

Inthepastyear,investmentsinvariousareasmadebyourgrouphavebeguntoseriouslypayoff.

ThemostimportantofthesewasthefinalgovernmentapprovaloftheBIGGRIDinfrastructureproposalthatNIKHEF,togetherwiththe Dutch Computing Foundation NCF and the Dutch Bioinfor-matics consortium NBIC, had submitted last year. This proposalwas fundedforessentially the fullamount. Theresulting29M€providesfour-yearfullfundingforanLHCTier-1computingcenterfortheATLAS,ALICE,andLHCbexperiments,astorageandcom-putinginfrastructurefortheLOFARradioastronomyexperiment,andfurtherfacilitiesforthelifesciencesandsocialsciences.

InanticipationoftheLHCturn-onnextyear,theresourcecapaci-tiesatNIKHEFandSARAarebeingrapidlyexpanded,ontheorderofafactor3forcomputingandafactor10forstorage.

Severalgroupmembershavereceivedprestigiousprofessionalap-pointmentsduring2006.SanderKlousreceivedaVENIfellowshiptosupporthisproposalofdoingATLASremotetriggeringviagridtechnology;DavidGroepwasappointedareadirectorforSecurityin the Open Grid Forum, an international grid standards organi-zation;andJeffTemplonwasappointedtotheEGEE(flagship6th

frameworkEUgridproject)TechnicalCoordinationGroup.

The Dutch national e-Science project, 'VL-e' continues to makeprogress; NIKHEF staff associated with VL-e released the firstversion of the project middleware during 2006. Our colleaguesat DANS (Data Archival and Networked Storage), responsible forarchiving of social-science results, stored their first data on thegridduring2006.

Somenumbersindicatingthescaleoftheoperationshereduring2006:

• number of D0 Monte-Carlo events our group generated:32,437,271;

• yearsofcomputertimeprovidedtotheLHCexperiments:226

• numberofgridjobsrun:320,000;

• amountofLHCdatapermanentlystored:40terabytes(togetherwithSARA).

During the coming year, effort will be focussed on the large in-creaseincomputingandstorageresourcesintheTier-1,inprepa-rationforLHCturn-oninlate2007.

The Grid and the Physics Data Processing Group

Figure1.InstallingnewhardwareintooneoftheGridnodes.

45

IntheZEUSexperiment,2006hasbeenspentinoptimizingthemi-crovertexdetector,whilethedatahavesteadilybeenstreamingin.Inordertoobtainasignificantimprovementinthemeasurementofthecharm-andpossiblythebottom-quarkstructurefunctionsitisnecessarytocollectalargeamountofdataandcombinethiswiththebestpossiblereconstructionoftheevents.

Theacceleratorhasperformedverywellonthefirstscorehavingprovided an integrated luminosity of some 250 pb–1. The mainemphasisoftheanalysisgrouphasbeenproducingthebestpos-siblereconstruction.Mostnotably,aprogrammeofalignmentofthesiliconmicrovertexdetectorhasbeencarriedout.Uptonowthealignmenthadonlybeenperformedwithcosmic-rayparticles.Although this provides very clean data, it has its disadvantages:cosmicrayscomepredominantlyverticallyfromaboveandsotendnottoprovideanyinformationforthealignmentofthedetectormodulesthatcoverthesidesoftheinteractionregion.

Nowthattheacceleratorhasstartedproducinglargequantitiesofdatawithlittlebackground(incontrasttothefirstyearsofrunningwith the microvertex detector) it has become possible to selecteventsofrelativelylowmultiplicityandusethemtoalignthefulldetector.Thishasbeenamajoreffortandhastakenthebestpartof the year to come to the final alignment. This has produced apronounced improvement in the accuracy with which trackscan be reconstructed. As is shown in Fig. 1 the accuracy for thereconstruction of the impact parameter of a track with respecttoavertexhasimprovedfrom200microntoaround100micron.Especiallyfortracksinthehorizontaldirectiontheimprovementisverysignificant.

In the 2005 Annual Report we already showed that the use ofthe microvertex detector gave pronounced improvement in thereconstruction of events containing charm particles. Now, wehaveindicationsthattheresultingcharmsignalswillbecomeevenmoresignificant.Tofurtherimprovethereconstructionofcharmparticles several new algorithms have been developed. One ofthese,where thedecayproductsof thecharmparticlearecom-binedintoasingle‘track’thatisthenfittedtotheprimaryvertex,whereaselectioncanbemadeonthegoodnessoffit,hasalready(withtheoldalignment)ledtoanincreaseinsignal-to-noiseratioofalmostafactortwowithoutlossofevents.AresultisshowninFig.2wherethenewalgorithmwasusedtoextracttheD±signal.Theamountofdatausedforthisfigureisaboutonetenthofthefinalsample.

TheZEUScollaboration isnowbusy reanalyzingall itsdatawiththerenewedalignmentofthemicrovertexdetectorandisprepar-ingforthebestcharmstructurefunctionmeasurementeverinthecomingyear.

Perfecting the ZEUS detector

Figure1.Theimpactparameterresolutionasafunctionofazimuthfordataafteralignmentwithcosmicrayparticlesandafteralignmentusingepdata.

Figure2.ChargedcharmmesonreconstructionfromitsdecayintoKππ.

0

20

40

60

80

100

120

140

160

180

200

1.7 1.75 1.8 1.85 1.9 1.95 2 2.05 2.1K ππ mass (GeV )

num

ber/

10 M

eV

D+

S>5

N(D +)=592σm=18 MeV

0

1000

2000

3000

4000

5000

6000

1.7 1.8 1.9 2K ππ mass (GeV )

no vertexrequirement

azimuth (degrees)

50

100

150

200

250

180 0

190

10

200

20

210

30

220

40

230

50

240

60

250

70

260

80

270

90

280

100

290

110

300

120

310

130

320

140

330

150

340

160

350

170

cosmic alignmentep alignment

Education & Outreach

48

Students & schools

Particle physics is a complex but interesting subject for highschoolstudents.In2006sevenschoolsvisitedNIKHEF,sometimesrequested by teachers; sometimes students brought their classandteacherwiththem.OnmostlyFridayafternoons,visitingstu-dents attend lectures, watch a documentary on particle physicsand get a tour at NIKHEF, meanwhile having the opportunity toaskalltheirquestions.

The8thofJune2006thesecondeditionofthe‘TechniekToernooi’wasorganised.Thisisamatchforprimaryschoolkidsonseveralsub-jectsandstartedintheWorldYearofPhysics2005.Morethan400childrenofsixtyprimaryschoolstravelledtothe‘LandvanOoit’inDrunen,withmorethanahundredideas,installationsandpreparedworks. Five NIKHEF professors participated in the jury, making allkidshappywithacertificateandsomewithaprizeaswell.

Forhighschoolstudentswehadthefollowingactivities:

• Anewpossibilityforthegeneralpublicaswellasforhighschoolsistohaveaphysicistlecturinge.g.atschool.Onourwebsitewepublishedatoolthatteachersorstudentscanusetoapplyforalectureonaparticlephysicstopic.Ourgoalistoencouragetheinteractions between scientists and high-school students. Wehopethatthelecturesareanadditionaltoolthathighschoolswillembrace.Notethat this initiative isnotonlyopentohighschools,buttootherorganisationsaswell.

• Teachersregularlyborrowourcloudandsparkchambers.Cur-rently,ourmuonlifetimedeviceisbeingmodifiedfortransporttoschoolsaswell.

• The ‘profielwerkstuk’ is a research project that students havetoperformintheirfinalyearatDutchhighschool.In2006tenstudentsperformedaprojecton(astro)particlephysics,eitheratNIKHEForatschoolwithhelpfromNIKHEF.

• InMarchthesecondEuropeanMasterclassonParticlePhysicsforhighschoolstudentswasorganised.Sixtystudentstriedtofigureoutwhethertherealeventsdisplayedweremuons, tauparticles or something else. The final video conference con-nectionwithquiz,withtheothergroupsofstudentsfollowingsimultaneouslyasimilarmasterclasselsewhereinEurope,wasabitlong.However,moststudentsstayedtodiscusstheresultsandhearwhattheircolleaguesthoughtabouttheeventstheyanalysed.

• DuringtheOpenDayinOctoberwetriedtoattractmoreyoungvisitors than in previous years by publishing a Quantum Quizespeciallyforstudentsofage12–18.AnextraincentiveforthemtowalkaroundwastheiPodtheycouldwin.

Anewinitiativeisourparticipationinthecurriculumdevelopmentof physics taught at high schools. NiNa (Nieuwe Natuurkunde) isthenameofthenewphysicscurriculum,andNLT(Natuur,LevenenTechniek)isanewsubjectstudentsandschoolscanchoosetoofferandtofollow.Allcoursesareunderconstruction.Workinggroupsofteachersandinstitutesaredevelopingreadersandothermaterial.NIKHEFparticipatesinthreemodules:QuantumandRelativity,andCosmicrays,bothforNiNa,andamoduleonastroparticlephysicsforNLT.Throughthese initiativeswedevelopagoodconnectionwithDutchphysicseducationandsolidgroundformorephysicsstudentsandmorephysicsinterestandknowledgeinsociety.

Education

Figure1.Properlydressedmembersofthejuryofthe‘TechniekToernooi‘taketheirjobsveryseriously,andhavefun!

Figure 2. Students figuring out which particles they observe during thesecondEuropeanMasterclassatNIKHEFinMarch2006.

49

HiSPARC

The HiSPARC project, where universities and scientific institutessuch as NIKHEF work together with high schools to unravel themysteriesofcosmicrays,e.g.theirorigin,iscontinuouslyexpand-ing.Sixnewdetectorshavebeenconstructedin2006.Toaccom-modate the growing numbers of participants new hard- andsoftwarehasbeendeveloped.Thenewdata-acquisitionsystemiscapableofsamplingthedetectoroutputataconsiderablyhigherresolutionforconsiderablylowercosts.

Withmorethan40detectorstations,andcounting,theamountofdatastoredincreasesrapidly.Sincealldataareaccessiblethroughtheinternet,efficientandeasy-to-usetoolsareneededtosearchthedatabaseandstudytheresults.Abasicanalysistooltoestimatethepositionanddirectionofthecosmic-rayshowerdisplayedonGoogle-maps isused to inspire thestudents.This toolhasbeensuccessfully introduced at the third high-school symposium forstudentsheldinAmsterdam.TosupporttheteachersandstudentsnewmaterialhasbeenmadeavailablethroughaVirtualLearningEnvironment.

CosmicraysdonotstopattheborderandinSeptemberthesec-ondinternationalCosmicRaySchoolProjectmeetingtookplaceinLisbon.Thiswasafollowupofthemeetingof2005organizedinAmsterdam.Underthenameof‘Eurocosmics’projectsfromalloverEuropeworktogethertosetupacollaborationtouseeachother’s expertise. In the coming year this collaboration will beextendedandintensified.

Master of Science in Particle and Astroparticle Physics

Thirty master students of four different Dutch universities andthree foreign universities are currently enrolled in the masterprogramme Particle and Astroparticle Physics. Ten of them arefemale,aremarkablylargefractionforDutchstandards.Togethertheyrepresentanewgenerationof(astro)particlephysicists.

Fifteen of them are second-year students, of which seven spentseveral weeks at CERN, working on projects in various researchgroups. The inspiring, international environment of CERN madethem enthusiastic for a career in particle physics research. InSeptemberthisyear,theyfeltwellpreparedtostarttheirone-yearmasterthesisresearchworkinthevariousgroupsatNIKHEF.

The first-year students followed the programme of physics courses,amongwhichcoursesinparticlephysics,particledetectionandsta-tisticaldataanalysis,allgivenbylecturersworkingasseniorphysicistsatNIKHEF.InthetraditionalNIKHEFproject,theypracticeonasmallscaleworkinginatypicalresearchenvironmentofaparticlephysicsexperiment.Thisyear,theirtaskistoupgradetheHiSPARCdetectors.

Research School Subatomic Physics

The research school for subatomic physics organizes each yearacademic training courses (‘Topical Lectures’) and, in collabora-tionwithBelgianandGermanresearchgroups,asummerschool(BNDSummerschool)forPhDstudents.

Figure4.OneofourPhDstudentsworkingintheheartoftheATLASdetector.Figure3.Ahighlevelofconcentrationisneededwhenyouaresoldering…

50

Throughouttheyear,themembersoftheresearchschool’sboardorganizeoneor two interviews (‘C3gesprekken’)witheachPhDstudent and his/her promotor and thesis advisor to monitor theprogress of his/her research project and his/her participation intheTopicalLecturesandtheBNDsummerschool.

The2006BNDsummerschoolwasheldinBadHonnefnearBonn.The main focus was on the strong interactions. The school waswidelyappreciatedbythe43(14Belgian,18Dutchand11German)registeredparticpants.Itwasorganizedbyprof.AchimStahlandAachenUniversity.

Asusual,alsoin2006threeTopicalLectureswereorganized:onedealingwithstatisticalmethods,oneonastroparticlephysicsandoneonprecisiontestsoftheStandardModelatlowenergies.ThetypicalattendanceoftheTopicalLectureswas20–25PhDstudentsduring the morning sessions (lectures) and 15–20 PhD studentsduringtheafternoonsessions(exercises).

Regardingadministrativematters:69PhDstudentswereenrolledin the Research School in December 2006 and 9 PhD studentsgraduatedin2006.Alsoin2006theschoolwasre-approvedbytheRoyalDutchAcademyofSciences(KNAW)foraperiodof5years.

Since December 2004 prof. Nicolo de Groot from the RadboudUniversiteit Nijmegen is secretary and the coordination of theschoolisinthehandsoftheRadboudUniversiteit.

Figure5.Studentsatthe2006SummerschoolinBadHonnef.

Science Communication

Tostructureouroutreacheffortswearedevelopingacommunica-tionplan.Furthermore,weareworkingoncommunicationstrate-giesforthestart-upoftheLHCandastroparticleresearchactivitiesoccurringintheNetherlands.Someoftheprojectsthatthescienceinformationofficehasworkedonin2006willbediscussedbelowinsomemoredetail.

The design and implementation of a novel NIKHEF website is alargeproject,whichhassofarremainedratherinvisibletoNIKHEFemployeesbecauseitslaunchisplannedfor2007.Thenewdesignincludesaseparationbetween local informationonthe intranetandasiteforthegeneralpublic.

WeupdatedthedesignoftheNIKHEFcentralentrance.Informa-tion on each of the current NIKHEF projects has been visualisedonnewinformationpanelsintheNIKHEFentrancehall.Althoughthepanelscontainsomewritteninformationontheprojects,theprimarygoalistodrawtheattentionandcuriosityofvisitorswithattractivegraphics.Thepanelscanbecarriedtoschoolsorconfer-encesaswell,andfreecardsofthesepanelsareavailableinbothDutchandEnglish.ThisisthefirststepincreatingaNIKHEFstyleinourbuilding,publications,andsoforth.AllthesechangestoasingleNIKHEFbrandwillcontinuein2007.

Outreach

Students do not always believe what professors tell them duringhighschoolmasterclasses…

52

Media

Ongoingbusinessconsistsofpreparingnewsitemsfortheweb-siteandforourfundingagencyFOMandouruniversitypartners,press releases, talking to reporters and photographers visitingNIKHEFandCERN,editingpapersofthosereporters,andofcoursetalkingtoNIKHEFemployeestohearwhat isgoingon!Wekeepreportersandphotographersinformedonourscientificprogress,andtheycontactusthemselvesaswell.Thepublicationsresultingfromcontactswiththemediaappearonourwebsiteaswellasonpaperinthelibrary.

AgroupoftenDutchsciencereportersvisitedCERNearlyJunetoseeforthemselveshowinterestingandextraordinarythisplaceis.Theaimwastoshowthemaround,sothattheyhaveabetterim-pressiononwhattheywillbewritingaboutwhentheLHCwillbeturnedon.Thedaywasverysuccessfulwithaverybusyprogrammeinwhichwemanagedtosee,amongstothers,ATLAS,LHCb,thebendingmagnets.Somereportercomments:“Youknowitisbig,butnowthatyouseeityouthink,yes,itisreallybig…”And:“Whenyoureadanarticlethereisalwaysapointwherereadersthink:no,youhaven’treallybeenthere.Wecannowwritewithoutreadersthinkingthat”.ThevisitwasaninitiativeofCERN,FOMandNIKHEF,andhasresultedinalotofpublicity.

Specialties

ThelongawaitedmovieabouttheHiggssearchwasfinishedafteronedayofextrashootingatNIKHEFinMay2006:‘HetMassaMysterie’.TheDVDconsistsofeighteenminutesabouttheHiggssearch,theoryandconstructionofthedetectors,andfeaturesmanyNIKHEFemployees.

Figure6.NIKHEFhasisssuedsomefreepostcards,high-lightingthedifferentexperimentsandgroups;the‘general’postcardisshownabove.

TheatregroupAdhocisplanningtomakeadocumentaryontheHiggsparticle,featuringPeterHiggsandco-workers.NIKHEFcontributestothemakingofthismovie,whichisduetobeonairby2008.

In2006FOMcelebrated its60thbirthday.NIKHEFparticipated inthe birthday manifestation on the 20th of November in the Kur-haus (Scheveningen). Two out of of three NIKHEF PhD studentsmanagedtoreachthefinalmatch‘Windetoekomst’onthisday.OnNovember25thFOMpersonnelcelebratedtheanniversary inanear-shatteringeveninginDeFabriqueinMaarssen.

CERN visits

Besides the mentioned media visit in June, other groups visitedCERNthisyear.InMarch2006,partoftheNIKHEFstaffvisitedCERNfor two days. After being impressed by the ATLAS detector andthebendingmagnets,theywentskiingaswell.Itwasagoodop-portunitytoseewhatourcolleaguesareworkingonwhentheyarenotatNIKHEF.Asusual, studentsof theUvA,HOVO(elderly)andHonoursstudentsvisitedCERNaswell.

Open Day

TheopendaywasheldonSaturdaythe21stofOctober2006,intheNationalScienceWeek,andtogetherwithallotherinstitutesattheSciencePark.Weestimatethatbetweenoneandtwothousandpeo-plevisitedNIKHEF.Earlybirdswerekeptoutsideuntilnoon,wherethey were entertained by a musical family with their instrumentsandsongs.Duringthedaythemusiciansdirectedvisitorstoactivi-tieswhichwerenotsobusy.Anewandquitesuccessfulinitiative.

53

Atfouro’clock,themusicianstookcareofthewinneroftheQuan-tumQuizforhighschoolstudents:JurjenBoog,studentattheOSGDe Meergronden in Almere, 17 years old. Approximately fifteenstudentsseriouslyfilledinthequiz.

13:00–13:15 PietMulders,Energie,massaendeeltjes13:45–14:00 JanWillem,vanHolten,Rimpelsinderuimte14:30–14:45 FrankLinde,HetBerniniMysterie:tussenfantasieenwerkelijkheidProgrammeofthemini-lecturesontheOpenDay2006

Severalshortlectureswereheldinthelectureroomonthethirdfloor.Thiswasquitesuccessful,astheroomwasfilledforallthreetalks. The lecture by Frank Linde, on the book ‘Angels and De-mons’byDanBrown,hadbeenannouncedbeforehandinaDutchnewspaper(NRC)andwasgiventwicebecauseoftheenormouspublicinterest.

IntheSpectrum,physicsexperimentswereshownbyenthusiasticemployees. At first, the Van de Graaff generator was consideredabitfrightening,butafterafewdemonstrations,thekidsforgotabouttheirfearandenjoyedtheirhairbeingpulledupbysomestrangeforce.Dutchtelevision(Talpa)usedthisasapreviewoftheNationalScienceWeek2006.

AlthoughalotofourproductsweretransportedtoCERNduring2006,wemanagedtoexhibitmanyinterestingdisplaysanddemonstrationsonourresearchprojects.Nextyearwewillfigureoutawaytoletpeo-plewalkaroundinNIKHEF,sothattheyseealltheinterestingparts.Onepossibilityistoofferaguide.Thismaybehelpfulforpeoplethatwant to know more about our research, but do not dare to ask toomuch.Theremarksontheopendayweregenerallyverypositive.

Outreach collaborations

We communicate with other science communicators in theNetherlandsaswellasattheScienceParkAmsterdamtocoordi-nateactivitiesandrequests.Furthermore,weattendinternationaloutreachmeetingswiththesamepurpose.

LHC communication

NIKHEFparticipatesintheLargeHadronColliderexperiments,andthereforealsointheiroutreachactivities.ATLAShasanoutreachgroupmeetingtwiceayearintheATLASweek.Outreachmaterialis developed at these meetings, for example the ATLAS puzzle,whichwasfinishedandforsalethisyear.

We regularly have contacts with other outreach officers of theexperimentsthatNIKHEFparticipatesin(LHCbandALICE),aswellas with the CERN communication office. Press releases are com-municatedbeforehand,andifsuitablewepreparelocalversionsofthemtobelaunchedatthesametime.

InterAction Collaboration

The 22 members of the InterAction collaboration meet twice ayearatmemberlaboratoriesorataparticlephysicsconference.Atthesemeetingsthepresentmembersreportontheirinstitute,dis-cussthecommunicationchallengestheyarefacingandstrategiccommunicationandpracticaltoolsarediscussed.In2006theInterActionCollaborationmetatKEK(Japan)andDESY(Germany). The KEK meeting dealt exclusively with the Interna-tionalLinearCollider(ILC)communication.AtDESY,LHC,ILCpress

Figure7.NIKHEFsupportstaffvisitedCERNinMarch.HeretheyposeafteravisittotheLHCmagnetfacility.

54

releaseworkshop,andcommunicatingwithlab’sneighborswereimportantitemsontheagenda.

The website www.interactions.org is going strong, featuringa news wire, image bank, daily news articles and many moreresources for communicators of particle physics. Other exam-ples are a website for the communication about the LHC atCERN(www.interactions.org/LHC),jointpressreleasesandreach-ingouttothephysicscommunityandsciencewritersthroughtheInteractions.orgnewswire.

EPPOG

The European Particle Physics Outreach Group (EPPOG) concen-tratesonthedevelopmentofhands-onphysicstoolsforstudentsandthegeneralpublic.

Thisyeartwomeetingswereheld,oneinLondonandoneatCERN.Oneofthemaintopicswastryingtofindawaytorealizeexhibi-tionsinsciencemuseumstogetherwiththeEuropeanNetworkofScienceCentresandMuseums(ECSITE)andnationalinitiatives.WearediscussingwiththeDutchScienceCentreNEMOaboutstartinganexhibitionon(astro)particlephysics.EPPOGalsocoordinatesthe European Master classes each year in March, and communi-catesaboutstudentmaterialandlocalprojects,suchastheuseofsparkandcloudchambersandmuondetectiondevices.

Figure9.ReportersatCERNare impressed:“Youknowit isbig,butnowthatyouseeityouthink,yes,itisreallybig…”

Medipix

Miniaturization of electronics has caused the digital revolution, providing us with cheap and powerful computers and telephones. The goal of the Medipix Collaboration is to transfer these technologies to other applications.

Continuous downscaling in semiconduc-tor technologies enables us to integrate a signal processing circuit with hundreds of transistors in every pixel of a CMOS read-out chip. A separate sensor chip - of either silicon or some other semicon-ducting material - is mounted on top of the CMOS chip with thousands of micro-solderbumps. These so-called hybrid pixel detectors were originally developed at CERN and in Stanford/Berkeley for particle-physics experiments.

Although unintended, hybrid pixel detec-tors also function as high-performance X-ray imagers, and many new applications are possible in non-destructive material research, as well as in life-sciences, such as proteomics and pharmacological research.

ALICE

The ALICE experiment studies a new state of matter, the quark-gluon plasma. The Standard Model of particle physics predicts the existence of the state, in which the qualities of one of the funda-mental forces (the strong interaction) will change dramatically.

The experiment uses collisions of heavy nuclei at high energies that are produced in the Large Hadron Collider at CERN, Geneva. These collisions reconstruct a minute version of the Big Bang: compressed clods of matter, consisting of several thousands of elementary particles at temperatures beyond a billion (1012) degrees Kelvin, similar to the condition of the universe ten microseconds after the Big Bang. This system, called a quark-gluon plasma, disintegrates after a short time through emission of elementary particles. The study of the reactions provides a unique opportunity to obtain a better understanding of the strong interaction.

Figure8.NIKHEFfreepostcards,high-lightingthedifferentexperimentsandgroups.

primaire kosmische deeltjes

Alpen4800 m

Concorde15 Km

Ballon30 Km

Hadroncascade

p

p

n

n

e+

e+

e+e-

e-

ν

γ

ν

ν

ν

π-

π-

π0π+

π+

π+

μ+

μ+

μ+

μ-

NN

N

N

Electromagnetischedouche

HiSPARC

In HiSPARC high schools and

sensor network to detect extremely high-energetic cosmic rays.

The project gives high school students the opportunity of participating in a real

these mysterious and rare cosmic parti-cles. Where do they come from and how do they achieve their energy?

55

Theses, Publications & Talks

VrijeUniversiteitAmsterdam,10January2006 VrijeUniversiteitAmsterdam,28February2006 UniversiteitUtrecht,24April2006

RijksuniversiteitGroningen,19May2006 UniversiteitTwente,31May2006 VrijeUniversiteitAmsterdam,16June2006

UniversiteitvanAmsterdam,7July2006 UniversiteitvanAmsterdam,18October2006 UniversiteitvanAmsterdam,12December2006

59

PublicationsANTARES

Aguilar,J.A.(etal.);Bouwhuis,M.C.;Bruijn,R.;Colnard,C.;Dantzig,R.van;Heijboer,A.;Jaspers,M.;Jong,M.de;Kok,H.;Kooijman,P.;Kruijer,A.;Lim,G.;Peek,H.;Randwijk,J.van;Rens,B.van;Rewiersma,P.;Steenhoven,G.vander;Venekamp,G.;Verlaat,B.;Vries,G.de;Wijk,R.van;WittHuberts,P.de;Wolf,E.deFirstresultsoftheInstrumentationLineforthedeep–seaANTARESneutrinotelescopeAstropart.Phys.26(2006)314

Bouwhuis,M.NTvN–prijsvraag:NeutrinoflitsenuithetheelalNed.T.v.Nat.72(2006)74

Giacomelli,G.;Kooijman,P.ANTAREScollaborationdetectsitsfirstmuonsCERNCourier46(2006)#7,24

Kooijman,P.Multi–PMTopticalmoduleNucl.Instr.Meth.A 567(2006)508

ATLAS

Abdesselam,A.(etal.):Colijn,A.P.;Cornelissen,T.;Hartjes,F.G.;Hessey,N.P.;Jong,P.de;Koffeman,E.;Kraaij,E.vander;Limper,M.;Magrath,C.A.Muijs,A.J.M.;Peeters,S.J.M.;Vulpen,I.vanThebarrelmodulesoftheATLASsemiconductortrackerNucl.Instr.Meth.A 568(2006)642

Boterenbrood,H.;Jansweijer,P.;Kieft,G.;König,A.;Vermeulen,J.;Wijnen,T.TheRead–OutDriverfortheATLASMDTMuonPrecisionChambersIEEETrans.Nucl.Sci.53(2006)741

Vermeulen,J.(etal.);Kieft,G.ATLASDataFlow:TheRead–OutSubsystem,ResultsFromTriggerandData–AcquisitionSystemTestbedStudiesandFromModelingIEEETrans.Nucl.Sci.53(2006)912

Woudstra,M.;Bobbink,G.J.;Eldik,N.van;Graaf,H.vander;Kluit,P.;Koutsman,A.;Limper,M.;Linde,F.;Massaro,G.;Snuverink,J.;Vreeswijk,M.;Groenstege,H.;Koopstra,J.;Mos,S.;Rewiersma,P.;Timmermans,C.;Dijkema,J.Twin–tubes:3DtrackingbasedontheATLASmuondrifttubesNucl.Instr.Meth.A 560(2006)264

D0

Collaboration:Abazov,V.M.(etal.);Anastasoaie,M.;Balm,P.W.;Berg,P.J.vanden;Bos,K.;Caron,S.;Filthaut,F.;Galea,C.F.;Hegeman,J.G.;Houben,P.;Jong,P.de;Jong,S.J.de;Kirby,M.H.;Leeuwen,W.M.van;Naumann,N.A.;Vreeswijk,M.;Wijngaarden,D.A.

TheupgradedD0detectorNucl.Instr.Meth.A 565(2006)463

Searchforsquarksandgluinosineventswithjetsandmissingtransverseenergyinppcollisionsat√s=1.96TeVPhys.Lett.B 638(2006)119

Searchforpairproductionofsecondgenerationscalarleptoquarksinppcollisionsat√s=1.96TeVPhys.Lett.B 636(2006)183

SearchforR–parityviolatingsupersymmetryviatheLLE–couplingsλ121,λ122orλ133inppcollisionsat√s=1.96TeVPhys.Lett.B 638(2006)441

Measurementoftheisolatedphotoncrosssectioninppcollisionsat√s=1.96TeVPhys.Lett.B 639(2006)151

MeasurementofB(t→Wb)/B(t→Wq)at√s=1.96TeVPhys.Lett.B 639(2006)616

Searchforscalarleptoquarksintheacoplanarjettopologyinppcolli-sionsat√s=1.96TeVPhys.Lett.B 640(2006)230

SearchforparticlesdecayingintoaZbosonandaphotoninpp–colli-sionsat√s=1.96TeVPhys.Lett.B 641(2006)415

SearchforW’→tbbosonproductioninthetopquarkdecaychannelPhys.Lett.B 641(2006)423

SearchforaheavyresonancedecayingintoaZ+jetfinalstateinppcolli-sionsat√s=1.96TeVusingtheD0detectorPhys.Rev.D 74(2006)011104

SearchfortheraredecayBs0→φµ+µ–withtheD0detector

Phys.Rev.D 74(2006)031107

LimitsonanomaloustrilineargaugecouplingsfromWW→e+e–,WW→e±µ∓,andWW→µ+µ–eventsfromppcollisionsat√s=1.96TeVPhys.Rev.D 74(2006)057101,erratumD 74(2006)059904

MeasurementoftheCP–violationparameterofB0mixinganddecaywithpp→µµXdataPhys.Rev.D 74(2006)092001

Measurementofthetopquarkmassinthelepton+jetsfinalstatewiththematrixelementmethodPhys.Rev.D 74(2006)092005

Searchforexcitedmuonsinppcollisionsat√s=1.96TeVPhys.Rev.D 73(2006)111102

SearchfortheHiggsBosoninH→WW*DecaysinppCollisionsat√s=1.96TeVPhys.Rev.Lett.96(2006)011801

DirectlimitsontheBs0oscillationfrequency

Phys.Rev.Lett.97(2006)021802

SearchforresonantsecondgenerationsleptonproductionattheFermi-labTevatronPhys.Rev.Lett.97(2006)111801

SearchforneutralHiggsbosonsdecayingtoτpairsinppcollisionsat√s=1.96TeVPhys.Rev.Lett.97(2006)121802

SearchforassociatedHiggsBosonproductionWH→WWW*→l±νl’±ν’+Xinppcollisionsat√s=1.96TeVPhys.Rev.Lett.97(2006)151804

Searchforneutral,long–livedparticlesdecayingintotwomuonsinppCollisionsat√s=1.96TeVPhys.Rev.Lett.97(2006)161802

SearchfortheStandardModelHiggsBosoninthepp→ZH→ννbbchannelPhys.Rev.Lett.97(2006)161803

Searchforpairproductionofscalarbottomquarksinppcollisionsat√s=1.96TeVPhys.Rev.Lett.97(2006)171806

MeasurementoftheBs0lifetimeusingsemileptonicdecays

Phys.Rev.Lett.97(2006)241801

Caron,S.B–identificationforLevel2:TheSiliconTrackTriggeratD0Nucl.Phys.B (Proc. Suppl.) 156(2006)143

LHCb (B Physics)

Barbosa,A.F.(etal.);Souvorov,V.ProductionandqualitycontrolofMWPCfortheLHCbmuonsystematCERNIEEETrans.Nucl.Sci.53(2006)336

60

Bates,A.G.(etal.);Jans,E.;Ketel,T.;Tuning,N.TheLHCbVELO:StatusandupgradedevelopmentsIEEETrans.Nucl.Sci.53(2006)1689

LHCbVELOgroup:Papadelis,A.Observationsofsensorbiasdependentclustercentroidshiftsinaproto-typesensorfortheLHCbvertexlocatordetectorNucl.Instr.Meth.A 569(2006)88

BaBar (B Physics)

Collaboration:Aubert,B.(etal.);Baak,M.A.;Bulten,H.;Raven,G.;Snoek,H.L.;Wilden,L.Searchforleptonflavorviolationinthedecayτ±→e±γPhys.Rev.Lett.96(2006)041801

MeasurementsoftheabsolutebranchingfractionsofB±→K±XccPhys.Rev.Lett.96(2006)052002

MeasurementofbranchingfractionsandresonancecontributionsforB0→D0K+π–andsearchforB0→D0K+π–decaysPhys.Rev.Lett.96(2006)011803

Determinationsof|Vub|frominclusivesemileptonicBdecayswithre-ducedmodeldependencePhys.Rev.Lett.96(2006)221801

ObservationofΥ(4S)Decaystoπ+π–Υ(1S)andπ+π–Υ(2S)Phys.Rev.Lett.96(2006)232001

SearchfortheraredecayB0→τ+τ–atBABARPhys.Rev.Lett.96(2006)241802

SearchforT,CP,andCPTviolationinB0–B0MixingwithinclusivedileptoneventsPhys.Rev.Lett.96(2006)251802

ObservationofB0mesondecaytoa1±(1260)π∓

Phys.Rev.Lett.97(2006)051802

MeasurementoftheSpinoftheΩ–HyperonPhys.Rev.Lett.97(2006)112001

Observationofe+e–annihilationintotheC=+1hadronicfinalstatesρ0ρ0andφρ0

Phys.Rev.Lett.97(2006)112002

MeasurementofthebranchingfractionandphotonenergymomentsofB→XsγandACP(B→Xstdγ)Phys.Rev.Lett.97(2006)171803

ObservationofB+→K0K+andB0→K0K0

Phys.Rev.Lett.97(2006)171805

Measurementsofbranchingfractions,polarizations,anddirectCP–Viola-tionasymmetriesinB→ρK*andB→f0(980)K*decaysPhys.Rev.Lett.97(2006)201801

MeasurementofbranchingfractionsandchargeasymmetriesinBdecaystoanηmesonandaK*mesonPhys.Rev.Lett.97(2006)201802

MeasurementoftheB→πlνbranchingfractionanddeterminationof|Vub|withtaggedBmesonsPhys.Rev.Lett. 97 (2006)211801

ObservationofanewDsmesondecayingtoDKatamassof2.86GeV/c2

Phys.Rev.Lett.97(2006)222001

SearchforD0D0mixingandbranching–ratiomeasurementinthedecayD0→K+π–π0

Phys.Rev.Lett.97(2006)221803

ObservationofanexcitedcharmBaryonΩc*decayingtoΩc0γ

Phys.Rev.Lett.97(2006)232001

StudyoftheX(3872)andY(4260)inB0→J/ψπ+π–K0andB–→J/ψπ+π–K–decaysPhys.Rev.D 73(2006)011101

Searchforrarequark–annihilationdecays,B–→Ds(*)–φ

Phys.Rev.D 73(2006)011103

MeasurementoftheBlifetimeandtheB0B0oscillationfrequencyusingpartiallyreconstructedB0→D*+ℓ–vℓdecaysPhys.Rev.D 73(2006)012004

Studyofe+e–→ppusinginitialstateradiationwithBABARPhys.Rev.D 73(2006)012005

MeasurementsofneutralBdecaybranchingfractionstoKS0π+π–final

statesandthechargeasymmetryofB0→K*+π–

Phys.Rev.D 73(2006)031101

Thee+e→3(π+π–),2(π+π–π0)andK+K–2(π+π–)crosssectionsatcenter–of–massenergiesfromproductionthresholdto4.5GeVmeasuredwithinitial–stateradiationPhys.Rev.D 73(2006)052003

SearchforthedecayB+→τ+ντPhys.Rev.D 73(2006)057101

MeasurementofCPobservablesforthedecaysB±→DCP0K±

Phys.Rev.D 73(2006)051105

BranchingfractionlimitsforB0decaystoη’η,η’π0andηπ0

Phys.Rev.D 73(2006)071102

SearchfortheraredecaysB0→Ds(*)+a0

–(2)

Phys.Rev.D 73(2006)071103

SearchforthecharmedpentaquarkcandidateΘc(3100)0ine+e–annihila-tionsat√s=10.58GeVPhys.Rev.D 73(2006)091101

Measurementsofbranchingfractions,rateasymmetries,andangulardistributionsintheraredecaysB→Kℓ+ℓ–andB→K*ℓ+ℓ–

Phys.Rev.D 73(2006)092001

Measurementoftime–dependentCPasymmetriesinB0→D(*)±π∓andB0→D±ρ∓decaysPhys.Rev.D 73(2006)111101

MeasurementoftheB→D0K*–branchingfractionPhys.Rev.D 73(2006)111104

Searchforthedecayτ→3π–2π+2π0ντPhys.Rev.D 73(2006)112003

MeasurementofbranchingfractionsandCP–violatingchargeasym-metriesforB–mesondecaystoD*D*,andimplicationsfortheCabibbo–Kobayashi–MaskawaangleγPhys.Rev.D 73(2006)112004

Measurementsofthebranchingfractionandtime–dependentCPasym-metriesofB0→J/ψπ0decaysPhys.Rev.D 74(2006)011101

SearchforB+→φπ+andB0→φπ0decaysPhys.Rev.D 74(2006)011102

SearchfordoublycharmedbaryonsΞcc+andΞcc

++inBABARPhys.Rev.D 74(2006)011103

MeasurementsofCP–violatingasymmetriesandbranchingfractionsinBdecaystoωKandωπPhys.Rev.D 74(2006)011106

MeasurementoftheD+→π+π0andD+→K+π0branchingfractionsPhys.Rev.D 74(2006)011107

StudyofthedecayB0→D*+ωπ–

Phys.Rev.D 74(2006)012001

Measurementoftheηandη’transitionformfactorsatq2=112GeV2

Phys.Rev.D 74(2006)012002

61

MeasurementofB0→D*0K*0branchingfractionsPhys.Rev.D 74(2006)031101

MeasurementofbranchingfractionsinradiativeBdecaystoηKγandsearchforBdecaystoη’KγPhys.Rev.D 74(2006)031102

StudyofB→D(*)D(*)s(J)decaysandmeasurementofDs–andDsJ(2460)–

branchingfractionsPhys.Rev.D 74(2006)031103

SearchforthedecayB0→a1±ρ∓

Phys.Rev.D 74(2006)031104

SearchforBmesondecaystoη’η’KPhys.Rev.D 74(2006)031105

DalitzplotanalysisofthedecayB±→K±K±K∓

Phys.Rev.D 74(2006)032003

SearchforthedecayB0→KS0KS

0KL0

Phys.Rev.D 74(2006)032005

StudyoftheDsJ*(2317)+andDsJ(2460)+mesonsininclusiveccproduction

near√s=10.6GeVPhys.Rev.D 74(2006)032007

MeasurementsofthedecaysB0→D0pp,B0→D*0pp,B0→D–ppπ+,andB0→D*–ppπ+

Phys.Rev.D 74(2006)051101

BmesondecaystoωK*,ωρ,ωω,ωφ,andωf0Phys.Rev.D 74(2006)051102

BranchingfractionmeasurementsofchargedBdecaystoK*+K+K–,K*+π+K–,K*+K+π–andK*+π+π–finalstatesPhys.Rev.D 74(2006)051104

SearchesforB0decaystoηK0,ηη,η’η’,ηφ,andη’φPhys.Rev.D 74(2006)051106

SearchforB+→Ξ(3872)K+,Ξ(3872)→J/ψγPhys.Rev.D 74(2006)071101

SearchforthedecayofaB0orB0mesontoK*0K0orK*0K0

Phys.Rev.D 74(2006)072008

Measurementofthebranchingfractionandtime–dependentCPasym-metryinthedecayB0→D*+D*–Ks

0

Phys.Rev.D 74(2006)091101

PrecisebranchingratiomeasurementsofthedecaysD0→π–π+π0andD0→K–K+π0relativetotheD0→K–π+π0decayPhys.Rev.D 74(2006)091102

Structureat2175MeVine+e–→φf0(980)observedviainitial–stateradiationPhys.Rev.D 74(2006)091103

MeasurementsoftheB→D*formfactorsusingthedecayB0→D*+e–νePhys.Rev.D 74(2006)092004

MeasurementoftheratioB(B+→Xeν)/B(B0→Xeν)Phys.Rev.D 74(2006)091105

Re,V.(etal.);Snoek,H.L.StatusandprospectsoftheBaBarSVTNucl.Instr.Meth.A 560(2006)5

BaBarsiliconvertextracker:StatusandprospectsNucl.Instr.Meth.A 569(2006)1

NeweffectsobservedintheBaBarsiliconvertextracker:InterpretationandestimateoftheirimpactonthefutureperformanceofthedetectorIEEENucl.Sci.Symp.Conf.Rec.1(2006)73

HERA–B (B Physics)

Collaboration:Abt,I.(etal.);Bauer,T.S.;Bruinsma,M.;Hulsbergen,W.;Ouchrif,M.;Sbrizzi,A.;Wahlberg,H.MeasurementoftheΥproductioncrosssectionin920GeVfixed–targetproton–nucleuscollisionsPhys.Lett.B 638(2006)13

MeasurementoftheJ/ψproductioncrosssectionin920GeV/cfixed–tar-getproton–nucleusinteractionsPhys.Lett.B 638(2006)407

PolarizationofΛandΛ–in920GeVfixed–targetproton–nucleuscollisionsPhys.Lett.B 638(2006)415

Improvedmeasurementofthebbproductioncrosssectionin920GeVfixed–targetproton–nucleuscollisionsPhys.Rev.D 73(2006)052005

Wahlberg,H.Openandhiddenbeautyproductionin920GeVproton–nucleuscollisionsAIPConf.Proc.814(2006)426

Delphi

Collaboration:Abdallah,J.(etal.);Blom,H.M.;Dam,P.van;Kluit,P.;Mon-tenegro,J.;Mulders,M.;Reid,D.;Timmermans,J.Determinationofheavyquarknon–perturbativeparametersfromspec-tralmomentsinsemileptonicBdecaysEur.Phys.J.C 45(2006)35

Singleintermediatevectorbosonproductionine+e–collisionsat√s=183–209GeVEur.Phys.J.C 45(2006)173

Measurementandinterpretationoffermion–pairproductionatLEPener-giesabovetheZresonanceEur.Phys.J.C 45(2006)589

AmeasurementoftheτhadronicbranchingratiosEur.Phys.J.C 46(2006)1

Searchforexcitedleptonsine+e–collisionsat√s=189–209GeVEur.Phys.J.C 46(2006)277

Adeterminationofthecentre–of–massenergyatLEP2usingradiativetwo–fermioneventsEur.Phys.J.C 46(2006)295

Studyofdouble–taggedγ–γeventsatLEPIIEur.Phys.J.C 46(2006)559

DeterminationofthebquarkmassattheMZscalewiththeDELPHIdetec-toratLEPEur.Phys.J.C 46(2006)569

EvidenceforanexcessofsoftphotonsinhadronicdecaysofZ0

Eur.Phys.J.C 47(2006)273

Searchforηbintwo–photoncollisionsatLEPIIwiththeDELPHIdetectorPhys.Lett.B 634(2006)340

Masses,lifetimesandproductionratesofΧ–andΧ+atLEP1Phys.Lett.B 639(2006)179

StudyofleadinghadronsingluonandquarkfragmentationPhys.Lett.B 643(2006)147

Schael,S.(etal.)(ALEPH,DELPHI,L3andOPALCollaborations;LEPWork-ingGroupforHiggsBosonSearches)

ALEPH,DELPHI,L3,OPALandSLDCollaborations;LEPElectroweakWork-ingGroup;SLDElectroweakandHeavyFlavourGroupsSearchforneutralMSSMHiggsbosonsatLEPEur.Phys.J.C 47(2006)547

62

PrecisionelectroweakmeasurementsontheZresonancePhys.Rep.427(2006)257

ALICE (Heavy Ion Physics)

Agnese,F.(etal.);Benedosso,F.;Brink,A.vanden;Haas,A.P.de;Kluit,R.;Kuijer,P.G.;Nooren,G.J.L.;Oskamp,C.J.;Schippers,J.D.;Timmer,P.In–beamperformanceoftheALICEsiliconstripdetectorsNucl.Instr.Meth.A 562(2006)110

Alessandro,B.(etal.);Botje,M.;Kuijer,P.;Snellings,R.ALICE:PhysicsPerformanceReport,VolumeIIJ.Phys.G 32(2006)1295

Bregant,M.(etal.);Kluit,R.;Kuijer,P.G.;Nooren,G.J.L.AssemblyandvalidationoftheSSDsiliconmicrostripdetectorofALICENucl.Instr.Meth.A 566(2006)18

TheALICEvertexdetector:Focusonthemicro–striplayersNucl.Instr.Meth.A 569(2006)29

Mischke,A.etal.TheElectromagneticCalorimeter,AddendumtotheTechnicalProposalCERN/LHCC–2006–014(ISBN92–9083–270–3),14April2006.

Alessandro,B.(etal.);Snellings,R.Physicsperformancereport,volumeII.J.Phys.G 32(2006)1295

Schuster,T.(etal.);Botje,M.HighpTspectraofidentifiedparticlesproducedinPb+Pbcollisionsat158–A–GeVbeamenergyJ.Phys.G 32(2006)S479

NA49 (Heavy Ion Physics)

Collaboration:Alt,C.(etal.);Botje,M.;Leeuwen,M.A.van;Mischke,A.UpperlimitofD0productionincentralPb–Pbcollisionsat158AGeVPhys.Rev.C 73(2006)034910

EnergyandcentralitydependenceofpandpproductionandtheΛ/pratioinPb+Pbcollisionsbetween20AGeVand158AGeVPhys.Rev.C 73(2006)044910

Inclusiveproductionofchargedpionsinp+pcollisionsat158GeV/cbeammomentumEur.Phys.J.C 45(2006)343

Kniege,S.(etal.);Botje,M;Leeuwen,M.A.vanRapiditydependenceofBose–EinsteincorrelationsatSPSenergiesAIPConf.Proc.828(2006)473

Mitrovski,M.K.(etal.);Botje,M;Leeuwen,M.A.vanStrangenessproductionatSPSenergiesJ.Phys.G 32(2006)S43

NA57 (Heavy Ion Physics)

Collaboration:Antinori,F.(etal.);Kamermans,R.;Kuijer,P.;Schillings,R.;Ven,P.vandeEnhancementofhyperonproductionatcentralrapidityin158AGeV/cPb–PbcollisionsJ.Phys.G 32(2006)427

NA57resultsAIPConf.Proc.828(2006)333TransversedynamicsofPb–Pbcollisionsat40AGeV/cviewedbystrangehadronsJ.Phys.G 32(2006)2065

PHENIX (Heavy Ion Physics)

Adams,J.(etal.);Peitzmann,T.Identifiedhadronspectraatlargetransversemomentuminp+pandd+Aucollisionsat√sNN=200GeVPhys.Lett.B 637(2006)161

Adler,S.S.(etal.);Peitzmann,T.Singleelectronsfromheavyflavordecaysinp+pcollisionsat√sNN=200GeVPhys.Rev.Lett.96(2006)032001

NuclearmodificationofelectronspectraandimplicationsforheavyquarkenergylossinAu+Aucollisionsat√sNN=200GeVPhys.Rev.Lett.96(2006)032301

Measurementofidentifiedπ0andinclusivephotonv(2)andimplicationtothedirectphotonproductionin√sNN=200GeVAu+AucollisionsPhys.Rev.Lett.96(2006)032302

Commonsuppressionpatternofηandπ0mesonsathightransversemomentuminAu+Aucollisionsat√sNN=200GeVPhys.Rev.Lett.96(2006)202301

STAR (Heavy Ion Physics)

Collaboration:Abelev,B.I.(etal.);Bai,Y.;Benedosso,F.;Botje,M.;Braidot,E.;Castillo,J.;Grebenyuk,O.;Kolk,N.vander;Mischke,A.;Peitzmann,T.;Russcher,M.J.;Snellings,R.;Yuting,B.IdentifiedbaryonandmesondistributionsatlargetransversemomentafromAu+Aucollisionsat√sNN=200GeVPhys.Rev.Lett.97(2006)152301.

LongitudinalDouble–SpinAsymmetryandCrossSectionforInclusiveJetProductioninPolarizedCollisionsat√sNN=200GeVPhys.Rev.Lett.97(2006)252001

Minijetdeformationandcharge–independentangularcorrelationsonmomentumsubspace(η,φ)inAu–Aucollisionsat√sNN=130GeVPhys.Rev.C 73(2006)064907

DirectedflowinAu+Aucollisionsat√sNN=62.4GeVPhys.Rev.C 73(2006)034903

MultiplicityandpseudorapiditydistributionsofchargedparticlesandphotonsatforwardpseudorapidityinAu+Aucollisonsat√sNN=62.4GeVPhys.Rev.C 73(2006)034906

Proton–ΛcorrelationsincentralAu+Aucollisionsat√sNN=200GeVPhys.Rev.C 74(2006)064906

NeutralkaoninterferometryinAu+Aucollisionsat√sNN=200GeVPhys.Rev.C 74(2006)054902

Themultiplicitydependenceofinclusiveptspectrafromp–pcollisionsat√s=200GeVPhys.Rev.D 74(2006)032006.

Collaboration:Adams,J.(etal.);Bai,Y.;Benedosso,F.;Botje,M.;Braidot,E.;Castillo,J.;Grebenyuk,O.;Kolk,N.vander;Mischke,A.;Peitzmann,T.;Russcher,M.J.;Snellings,R.;Tang,A.H.;Yuting,B.Hadronizationgeometryfromnet–chargeangularcorrelationsonmo-mentumsubspace(η,φ)inAu–Aucollisionsat√sNN=130GeVPhys.Lett.B 634(2006)347

Identifiedhadronspectraatlargetransversemomentuminp+pandd+Aucollisionsat√sNN=200GeVPhys.Lett.B 637(2006)161

Transverse–momentumptcorrelationson(η,φ)frommean–ptfluctua-tionsinAu–Aucollisionsat√sNN=200GeVJ.Phys.G 32(2006)37

Distributionsofchargedhadronsassociatedwithhightransversemo-mentumparticlesinppandAu+Aucollisionsat√sNN=200GeVPhys.Rev.Lett.95(2006)152301

Strangebaryonresonanceproductionin√sNN=200GeVp+pandAu+AucollisionsPhys.Rev.Lett.97(2006)132301

Forwardneutralpionproductioninp+pandd+Aucollisionsat√sNN=200GeVPhys.Rev.Lett.97(2006)152302

63

IdentifiedbaryonandmesondistributionsatlargetransversemomentafromAu+Aucollisionsat√sNN=200GeVPhys.Rev.Lett.97(2006)152301

DirectobservationofdijetsincentralAu+Aucollisionsat√sNN=200GeVPhys.Rev.Lett.97(2006)162301

Longitudinaldouble–spinasymmetryandcrosssectionforinclusivejetproductioninpolarizedprotoncollisionsat√s=200GeVPhys.Rev.Lett.97(2006)252001

Recenthigh–pTmeasurementsinSTARJ.Phys.Conf.Ser.50(2006)127

Hightransversemomentuminclusiveneutralpionproductionind+AucollisionsatRHICRoman.Rep.Phys.58(2006)19

Grebenyuk,O.;Mischke,A.Hightransversemomentuminclusiveneutralpionproductionind+AucollisionsatRHICRom.Rep.Phys.58(2006)25

HERMES

Collaboration:Airapetian,A.(etal.);Blok,H.P.;Demey,M.;Dreschler,J.;Fabbri,R.;Griffioen,K.;Hesselink,W.H.A.;Lapikás,L.;Laziev,A.;Mexner,V.;Nat,P.vander;Reischl,A.;Steenhoven,G.vander;Steijger,J.J.M.LongitudinalspintransfertotheΛhyperoninsemiinclusivedeep–inelas-ticscatteringPhys.Rev.D 74(2006)072004

Double–HadronleptoproductioninthenuclearmediumPhys.Rev.Lett.96(2006)162301

Firstmeasurementofinterferencefragmentationonatransverselypolar-izedhydrogentarget.AIPConf.Proc.792(2006)953

Blok,H.P.;Lapikás,L.A–dependenceofhadronizationinnucleiPhys.Rev.C 73(2006)038201

Dreschler,J.ExclusivemesonproductionatHERMESAIPConf.Proc.842(2006)375

Dreschler,J.ExclusivevectormesonproductionatHERMESCzech.J.Physics56(2006)C299

L3

Collaboration:Achard,P.(etal.);Akker,M.vanden;Baldew,S.V.;Bobbink,G.J.;Dalen,J.A.van;Dierckxsens,M.;Dierendonck,D.van;Filthaut,F.;Groenstege,H.;Kittel,W.;Koenig,A.C.;Kok,E.;Kuijpers,J.;Linde,F.L.;Metzger,W.J.;Mil,A.van;Muijs,A.J.M.;Novak,T.;Petersen,B.;Rewiersma,P.;Rojkov,A.;Schotanus,D.J.;Timmermans,C.;Verkooijen,H.;Walle,R.T.vande;Wang,Q.;Wijk,R.van;Wijnen,T.A.M.;Zwart,A.N.M.Analysisoftheπ+π–π+π–andπ+π0π–π0finalstatesinquasi–realtwo–pho-toncollisionsatLEPPhys.Lett.B 638(2006)128

MeasurementofthemassandthewidthoftheWbosonatLEPEur.Phys.J.C 45(2006)569

Measurementofhadronandlepton–pairproductionine+e–collisionsat√s=192GeVto208GeVatLEP.Eur.Phys.J.C 47(2006)1

Asearchforflaringvery–high–energycosmicγ–raysourceswiththeL3+CmuonspectrometerAstropart.Phys.25(2006)298

Thesolarflareofthe14thofJuly2000(L3+Cdetectorresults)Astronomy&Astrophysics456(2006)351

Novak,T.ResultsonLevystableparametrizationsofBose–EinsteincorrelationsAIPConf.Proc.828(2006)539

Wang,Q.Inter–stringBose–EinsteincorrelationsinhadronicZdecaysusingtheL3detectoratLEPAIPConf.Proc.828(2006)553

Theory

Anastasopoulos,P.(etal.);Dijkstra,T.P.T.;Schellekens,A.N.Orientifolds,hyperchargeembeddingsandtheStandardModelNucl.Phys.B 759(2006)83

Andersen,J.O.;Boer,D.;Warringa,H.J.TheeffectsofquantuminstantonsonthethermodynamicsoftheℂPN-1modelPhys.Rev.D 74(2006)045028

Badalian,A.M.;Bakker,B.L.G.ThegluoniccondensatefromthehyperfinesplittingMcog(χcJ)–M(hc)incharmoniumPhys.Atom.Nucl.69(2006)734

Bakker,B.L.G.;Veselov,A.I.;Zubkov,M.A.Z(6)symmetry,electroweaktransition,andmagneticmonopolesathightemperaturePhys.Lett.B 642(2006)147

Boer,D.;Vogelsang,W.Drell-YanleptonangulardistributionatsmalltransversemomentumPhys.Rev.D 74(2006)014004

Boer,D.;Dumitru,A.;Hayashigaki,A.Singletransverse-spinasymmetriesinforwardpionproductionathighenergy:incorporatingsmall-xeffectsinthetargetPhys.Rev.D 74(2006)074018

Bomhof,C.J.;Mulders,P.J.;Pijlman,F.Theconstructionofgauge-linksinarbitraryhardprocessesEur.Phys.J.C 47(2006)147

Brandenburg,A.;Ringwald,A.;Utermann,A.InstantonsinleptonpairproductionNucl.Phys.B 754(2006)107

Coley,A.(etal.);Fuster,A.HigherdimensionalVSIspacetimesClass.QuantumGrav.23(2006)7431

Frixione,S.(etal.);Laenen,E.;Motylinski,P.Single–topproductioninMC@NLOJHEP03(2006)092

Fujimoto,J.(etal.);Vermaseren,J.A.M.GRACEwithFORMNucl.Phys.B (Proc. Suppl.) 160(2006)150

Fuster,A.Non–abelianYang–MillsinKundtspacetimesAIPConf.Proc.841(2006)429

Laenen,E.;Magnea,L.ThresholdresummationforelectroweakannihilationfromDISdataPhys.Lett.B 632(2006)270

RefiningthresholdresummationsNucl.Phys.B (Proc. Suppl.) 160(2006)240

Gato–Rivera,B.;Schellekens,A.N.RemarksonglobalanomaliesinRCFTorientifoldsPhys.Lett.B 632(2006)728

64

Jeannerot,R.;Postma,M.EnlargingtheparameterspaceofstandardhybridinflationJ.Cosmol.Astropart.Phys.07(2006)012

Moch,S.;Vogt,A.;Vermaseren,J.A.M.SudakovresummationsathigherordersNucl.Phys.B (Proc. Suppl.) 157(2006)179

NachtmannO.;Nagel,F.;Pospischil,M.;Utermann,A.Effective-Lagrangianapproachtoγγ→WW;I:CouplingsandamplitudesEur.Phys.J.C 45(2006)679

Effective-Lagrangianapproachtoγγ→WW;II:Resultsandcomparisonwithe+e–→WWEur.Phys.J.C 46(2006)93

Tentyukov,M.(etal.);Vermaseren,J.A.M.ParFORM:RecentdevelopmentNucl.Instr.Meth.A 559(2006)224

Vermaseren,J.A.M.ProspectsofFORMNucl.Instr.Meth.A 559(2006)1

Vermaseren,J.A.M.;Tentyukov,M.WhatisnewinFORMNucl.Phys.B (Proc. Suppl.) 160(2006)38

Vogt,A.;Moch,S.;Vermaseren,J.A.M.Thethree–loopsplittingfunctionsinQCDNucl.Phys.B (Proc. Suppl.) 152(2006)110

Vogt,A.;Moch,S.;Vermaseren,J.A.M.Third–orderQCDresultsonformfactorsandcoefficientfunctionsNucl.Phys.B (Proc. Suppl.) 160(2006)44

ZEUS

Collaboration:Chekanov,S.V.(etal.);Coppola,N.;Grigorescu,G.;Grijpink,S.;Keramidas,A.;Koffeman,E.;Kooijman,P.;Maddox,E.;Pellegrino,A.;Schagen,S.;Tiecke,H.;Vazquez,M.;Wiggers,L.Forwardjetproductionindeepinelasticepscatteringandlow–xpartondynamicsatHERAPhys.Lett.B 632(2006)13

Measurementofhigh–Q2deepinelasticscatteringcrosssectionswithalongitudinallypolarisedpositronbeamatHERAPhys.Lett.B 637(2006)210

Detector R&D

Aarts,A.A.A.;Graaf,H.vander;Putten,S.vanderNewresultsonagaseousdetectorusingMedipix2andMicromegasNucl.Instr.Meth.A 563(2006)205

Adam,W.(etal);Eijk,B,van;Hartjes,F.;Noomen,J.RadiationharddiamondsensorsforfuturetrackingapplicationsNucl.Instr.Meth. A 565(2006)278

Beuzekom,M.G.vanHadronicparticleidentificationwithsilicondetectorsbymeansofdE/dxsamplingNucl.Instr.Meth.A 568(2006)359

Campbell,M.(etal.);Colijn,A.P.;Fornaini,A.;Graaf,H.vander;Kluit,P.;Timmermans,J.;Visschers,J.L.Anintegratedreadoutsystemfordriftchambers:theapplicationofmonolithicCMOSpixelsensorsassegmenteddirectanodeNucl.Phys.B (Proc. Suppl.) 150(2006)200

Campbell,M.(etal.);M.Chefdeville,M.;Colijn,A.P.;Fornaini,A.;Graaf,H.vander;Kluit,P.;Timmermans,J.;Visschers,J.L.GOSSIP:AvertexdetectorcombiningathingaslayerassignalgeneratorwithaCMOSreadoutpixelarrayNucl.Instr.Meth.A 560(2006)131

Chefdeville,M.;Colas,P.;Giomataris,Y.;Graaf,H.vander;Heijne,E.H.M.;Putten,S.vander;Salm,C.;Schmitz,J.;Smits,S.;Timmermans,J.;Viss-chers,J.L.Anelectron–multiplying‘Micromegas’gridmadeinsiliconwaferpost–processingtechnologyNucl.Instr.Meth.A 556(2006)490

Graaf,H.vander;Aarts,A.A.A.;Chefdeville,M.;Putten,S.vanderRecentGridPixresults:AnintegratedMicromegasgridandanageingtestofaMicromegaschamberNucl.Instr.Meth.A 566(2006)62

Giomataris,I.(etal.);Graaf,H.vanderNOSTOSexperimentandnewtrendsinrareeventdetectionNucl.Phys.B (Proc. Suppl.) 150(2006)208

Schrader,J.R.(etal.);Visschers,J.L.Pulse–Widthmodulationpre–emphasisappliedinawirelinetransmitter,achieving33dBlosscompensationat5Gb/sin0.13µmCMOSIEEEJ.SolidStateCircuits41(2006)990

Grid

Groep,D.;Templon,J.;Loomis,C.CrunchingrealdataontheGrid:practiceandexperiencewiththeEuro-peanDataGridConcurrencyComputat.:Pract.Exper.18(2006)925

Klous,S.(etal.);Brand,J.vandenTransparentaccesstoGridresourcesforusersoftwareConcurrencyComputat.:Pract.Exper.18(2006)787

Li,H.(etal.);Groep,D.ImprovingaLocalLearningTechniqueforQueueWaitTimePredictionsProc.SixthIEEEInt.SymposiumonClusterComputingandtheGridCCGRID06,Singapore(2006)p335

Miscellaneous

AMANDACollaboration:Achterberg,A.(etal.);Eijndhoven,N.J.A.M.vanLimitsonthemuonfluxfromneutralinoannihilationsatthecenteroftheEarthwithAMANDA.Astropart.Phys.26(2006)129

CHORUSCollaboration:Oenenguet,G.(etal.);Dantzig,R.van;Jong,M.de;Oldeman,R.G.C.MeasurementofnucleonstructurefunctionsinneutrinoscatteringPhys.Lett.B 632(2006)65

IceCubeCollaboration:Achterberg,A.(etal.);Eijndhoven,N.J.A.M.vanFirstYearPerformanceofTheIceCubeNeutrinoTelescopeAstropart.Phys26(2006)155

OntheselectionofAGNneutrinosourcecandidatesforasourcestackinganalysiswithneutrinotelescopesAstropart.Phys26(2006)282

Limitsonthehigh–energygammaandneutrinofluxesfromtheSGR1806–20giantflareofDecember27th,2004withtheAMANDA–IIdetectorPhys.Rev.Lett.97(2006)221101

Csorgo,T.,Hegyi,S.;Novak,T.;Zajc,W.A.Bose–EinsteinorHBTcorrelationsignatureofasecondorderQCDphasetransitionAIPConf.Proc.828(2006)525

Elsner,D.(etal.);Barneo,P.MeasurementoftheLT–asymmetryinπ0electroproductionattheenergyofthedelta(1232)–resonanceEur.Phys.J.A 27(2006)91

JeffersonLabFπCollaboration:Horn,T.(etal.);Blok,H.P.;Tvaskis,V.DeterminationofthepionchargeformfactoratQ2=1.60and2.45(GeV/c)2

Phys.Rev.Lett.97(2006)192001

Jong,S.deTestsoftheelectroweaksectorofthestandardmodelPoSHEP2005(2006)397

65

Krasznahorkay,A.(etal.);Boer,F.W.N.de;Ketel,T.J.;Klinken,J.vanLeptonpairsfromaforbiddenM0transition:Signalinganelusivelightneutralboson?ActaPhys.Pol.B 37(2006)239

Middleton,D.(etal.);Blok,H.J.;Hesselink,W.H.A.;Jans,E.;Lapikás,L.;Vries,H.de;Zihlmann,B.Firstmeasurementsofthe16O(e,e’pn)14NreactionEur.Phys.J.A 29(2006)261erratumEur.Phys.J.A 30(2006)469

EHS–NA22Collaboration:Kittel,W.;Zhiming,l.;Metzger,W.J.Rapidity,azimuthal,andmultiplicitydependenceofmeantransversemomentumandtransversemomentumcorrelationsinπ+pandK+pcolli-sionsin√s=22GeVPhys.Rev.D 73(2006)072004

Boostinvarianceandmultiplicitydependenceofthechargebalancefunctioninπ+pandK+pcollisionsat√s=22GeVPhys.Lett.B 637(2006)39

Entropyanalysisinπ+pandK+pcollisionsat√s=22GeVAIPConf.Proc.828(2006)124

Kittel,W.BeyondtheGaussianapproximation(experimentalreview)AIPConf.Proc.828(2006)519

Metzger,W.J.Bose–Einsteincorrelationsine+e–annihilationande+e–→W+W–

AIPConf.Proc.828(2006)547

Mulders,P.J.Hoeleegishetheelal?Vakidioot05-06(2006)#6p3

Peeters,S.;Filthaut,F.Hetmysterievandeverdwenenzonneneutrino’sNed.T.v.Nat.72(2006)248

Nayak,G.C.;Smith,J.J/ψandψ’polarizationsinpolarizedproton–protoncollisionsattheBNLRHICPhys.Rev.D 73(2006)014007

Zegers,G.E.OntdekkingsreisnaarelementairedeeltjesNVOXVolume31(2006)353

TalksALICE

Bai, Y.,Energydependenceofanisotropicflow,QuarkConfinementandtheHadronSpectrumVII,PontaDelgada,Portugal,3September2006

v2andv4centrality–ptandparticle–typedependenceinAu+Aucolli-sionsatRHIC,QuarkMatter2006,Shanghai,China,18November2006

v2andv4centrality–ptandparticle–typedependenceinAu+Aucolli-sionsatRHIC,CERN,Geneva,Switzerland,13December2006

Peitzmann, T.,HighpTphysicsinSTAR,HardProbes2006Conference,Asilomar,USA,10June2006

Simili, E.S.,Anisotropicflow:statusatRHICandfutureinALICE,Univer-sityofCatania,Catania,Italy,28September2006

Snellings, R.J.M.,Anisotropicflow;fromthesQGPatRHICtowardstheQGPattheLHC,VariableEnergyCyclotronCentre,Kolkata,India,5January2006

TheEoSatRHICandtheLHC,Workshoponfutureofheavyionphysics,BoulderCO,USA,4May2006Collectivemotionat5.5TeV,HotQuarks,Sardinia,Italy,15May2006

Energydependenceofanisotropicflow,Criticalpointandtheonsetofdeconfinement,Florence,Italy,5July2006

PhysicswithALICEattheLargeHadronCollider,SLACsummerinsitute,PaloAltoCA,USA,17July2006

HeavyIonPhysics,JointBelgian–Dutch–GermanGraduateschool,BadHonnef,Germany,1September2006

Energydependenceofanisotropicflow,Hadronphysicsandpropertiesofhighbaryondensitymatter,Xi’an,China,23November2006

QM2006:afewselectedtopics,Heavy–ionforum,Geneva,Switzerland,13December2006

Nooren, G–J.,TheInnerTrackerofALICE,AlgemeenFysischColloquium,Utrecht,TheNetherlands,31March2006

Astroparticle Physics

Bouwhuis, M.,TheANTARESNeutrinoTelescope,LPHEseminar,Lausanne,Switzerland,27March2006

ResultsfromANTARES,TeVParticleAstrophysicsII,Madison,USA,29August2006

Jong, M. de,Neutrinotelescopes,UniversityofLeiden,Leiden,TheNeth-erlands,17February2006

Neutrinotelescopes,UniversityofPisa,Pisa,Italy,25July2006

Rens, B.A.P. van,DetectionofmagneticmonopoleswiththeANTARESneutrinotelescope,DepartmentofAstrophysics–RadboudUniversity,Nijmegen,TheNetherlands,2June2006

DetectionofmagneticmonopolesbelowtheČerenkovlimit,Instituut–Lorentz–LeidenUniversity,Leiden,TheNetherlands,30June2006

Steenhoven, G. van der,NewsfromtheCommitteeforAstroparticlePhysics,6thAstroparticlePhysicsSymposium–VrijeUniversiteit,Amster-dam,TheNetherlands,3February2006

FundingperspectiveintheNetherlandsforjointR&Dprojects,NIKHEF,Amsterdam,TheNetherlands,7February2006

NeutrinoAstroparticlePhysics:theANTARESNeutrinoTelescope,VrijeUniversiteit,Amsterdam,TheNetherlands,3March2006

AstroparticlePhysicsinamulti–messengerapproach,AnnualConferenceoftheDutchPhysicalSociety(FYSICA‘06,Leiden,TheNetherlands,28April2006

TopicalLecturesoftheOnderzoekschoolSubatomaireFysica,NIKHEF,Amsterdam,TheNetherlands,14June2006

PhysicsColloquium,DepartmentofPhysics–VrijeUniversiteit,Amster-dam,TheNetherlands,1November2006

Wolf, E. de,ANTARES,aneutrinotelescope,UniversiteitTwente,Ensch-ede,TheNetherlands,5April2006

Vissennaarneutrino’s,RotaryAmsterdam–Oost,Amsterdam,TheNeth-erlands,30May2006

ATLAS

Bentvelsen, S.,TopphysicsattheLHC,RingbergPhenomenologyWork-shop,München,Germany,1October2006

Speurtochtnaarhetkleinste,Rotaryclub–WapenvanDiemen,Diemen,TheNetherlands,24October2006

Colijn, A.P.,IntegrationoftheATLASsemiconductortracker,NSS–MIC,SanDiego,USA,1November2006

Cornelissen, T.G.,ATLASInnerDetectorResultsfromthe2004Com-binedTestBeamData,10thTopicalSeminaronInnovativeParticleandRadiationDetectors,Siena,Italy,4October2006Galea, C.,TauidentificationatD0,PhysicsatLHC,Cracow,Poland,9April2006

66

Graaf, H. van der,Gossip:anewvertexdetectorforATLAS,UniversityofBonn:colloquium,Bonn,Germany,23November2006

Gossip:anewandpotentiallybettervertexdetectorforATLAS,ATLASHighLuminosityTrackerWorkshop/Upgrade,Liverpool,UnitedKingdom,7December2006

Groot, N. de,HetStandaardModel,eensamenzweringvanattoformaat,Oratie,Nijmegen,TheNetherlands,29November2006

Hartjes, F.G.,TheChargeSignalDistributionoftheGaseousMicropat-ternDetectorGossip,6thInternationalConferenceonRadiationEffectsonSemiconductorMaterialsDetectorsandDevices,Florence,Italy,11October2006

Hegeman, J.,JetproductionintheD0experiment:measurementsanddata–to–MonteCarlocomparison,QCD06–13thInternationalQCDCon-ference,Montpellier,France,3July2006

Hessey, N.P.,ATLASDetectorConstructionStatusandUpgradePlans,10thPisameetingonAdvancedDetectors,Elba,Italy,22May2006

Koffeman, E.N.,GaseousPixelDetectors,VertexWorkshop2006,Peru-gia,Italy,25September2006

ATLASUpgrade,Seminar,Bonn,Germany,23November2006

Higgsdeeltjespoorloos?,VivaFysica,Amsterdam,TheNetherlands,1August2006

Koutsman, A.J.,MuonSoftwareforTwinTubes,ATLASOverviewWeekCERN,Geneva,TheNetherlands,2October2006

Liebig, W.,PreparationoftheATLASinnerdetectortrackreconstruc-tionsoftware,10thTopicalSeminaronInnovativeParticleandRadiationDetectors,Siena,Italy,4October2006

Vulpen, I.B. van,PreparingforfirstphysicsattheLHC,UniversityofFreiburg,Freiburg,Germany,24June2006

TopphysicsduringthefirstLHCruns,ConferenceonPhysicsattheLHC2006,Krakow,Poland,6July2006

Grid

Groep, D.L.,TheDutchGridCertificationAuthority–presentandfuture,6thEUGridPMAPlenarymeeting,Vienna,Austria,15January2006

EGEESecurityOverview,GGF16AuthorizationHereandNowWorkshop,Athens,Greece,15February2006

WebServicesandSOA,VL–eWebServicesInductionEvent,Amsterdam,TheNetherlands,21February2006

GridDeploymentandtheNDPF–gastcollege,LargeSystemsAdministra-tion–SNEMaster,Amsterdam,TheNetherlands,6March2006

glExecontheWorkerNode–deploymentmodels,EGEE–LCGandOSGJointSecurityPolicyGroup,Geneva,Switzerland,9March2006

FromZerotoIGTFin1800seconds,1stTAGPMAFace–to–Facemeeting,RiodeJaneiro,Brazil,27March2006

VleITandtheProof–of–ConceptEnvironment,VL–eWorkshop2006,Amsterdam,TheNetherlands,7April2006

TheEUGridPMAandchangestotheClassicAP,GlobalGridForum17,Tokyo,Japan,12May2006

TheEUGridPMAandtheClassicAuthenticationProfilev4.1,2ndTAGPMAF2F,Ottawa,Canada,18July2006

TheGridCertificateProfile,2ndTAGPMAF2F,Ottawa,Canada,19July2006

TheEUGridPMA:astatusoverview,OpenGridForum18,WashingtonDC,USA,13September2006

GridSecurity–anintroduction,GridUserInductionandTutorial,Gronin-gen,TheNetherlands,18September2006

TheEuropeanAAIRoadmap,8thEUGridPMAPlenarymeeting,Karlsruhe,Germany,5October2006

TheGrid:VirtualOrganisationsandtheirsupportviafederations,TERENAAdvancedEuroCAMPmeeting,Malaga,Spain,19October2006

SecurityAuditLogginginMiddleware,9thEuropeanMiddlewareSecurityGroup,Gevena,Switzerland,15November2006

EUGridPMAStatus:UpdatesfromtheEuropeanSideofthePond,3rdTAG-PMAPlenaryMeeting,AustinTX,USA,29November2006

Koeroo, O.A., Glexec+GUMSinteractionandtheVOnamingconcept,ConferenceEGEE‘06,Geneva,Switzerland,27September2006

OSGSecurity:GUMSvs.LCMAPSmapping,9thEuropeanMiddlewareSecurityGroup,Geneva,Switzerland,15November2006

Templon, J.A.,NIKHEFenGridComputing,NIKHEFsitevisitbyDutchMinistryofFinance,Amsterdam,TheNetherlands,9May2006

DeploymentRealities,GastcollegeUniversityofAmsterdam,Amsterdam,TheNetherlands,29June2006

NIKHEFandGridComputing,KodakResearchsitevisittoAmsterdamSci-encePark,Amsterdam,TheNetherlands,31October2006

LHCb

Baak, M.A.,SU3breakingeffectsintheSU3determinationoftheampli-tuderatior[D(*)h],CKMWorkshop2006–UniversityofNagoya,Nagoya,Japan,12December2006

Beuzekom, M.G. van,TheLHCbvertexlocator:presentandfuture,theSixthInternational“Hiroshima”Symposium(STD6),Carmel(California),USA,14September2006

Nardulli, J.N.,LHCbTrackingsystemanditsperformance,LakeLouiseWinterInstitute,LakeLouise,Canada,22February2006

B→hh’atLHCb,CKM2006,Nagoya,Japan,15December2006

Raven, G.,b→stransitions:LHCbprospects,FirstWorkshoponTheory–PhenomenologyandExperimentsinHeavyFlavourPhysics,Capri,Italy,31May2006

RareBdecays(attheLHC)asaprobeofb→stransitions,WorkshoponTheFutureofFlavourPhysics,Moscow,Russia,25July2006

Tuning, N.,BerniniMaterie,NWOBessensap–NEMO,Amsterdam,TheNetherlands,23May2006

TrackingwiththeLHCbSpectrometer–DetectorPerformanceandTrackReconstruction,IMAGING2006,Stockholm,Sweden,26June2006

Miscellaneous

König, A.,ElementaireDeeltjes,5en6VWO,Raaylandcollege,Venray,TheNetherlands,8March2006

ElementaireDeeltjes,6Gymnasium,StedelijkGymnasium,Nijmegen,TheNetherlands,3July2006

Botje, M.,IntroductiontoBayesianInference,TopicallecturesNIKHEF,Amsterdam,TheNetherlands,3June2006

Jong, S.J. de,Stralingengezondheid,DominicusCollege,Nijmegen,TheNetherlands,3April2006

FOMengezondheid,VerenigingbiofysicaenbiotechnologiebijeenkomstaandeVU,Amsterdam,TheNetherlands,8September2006

67

FOMengezondheid,FOMRaadvanBestuurvergadering,Utrecht,TheNetherlands,12September2006

Linde, F.L.,Particle&astroparticlephysicsintheNetherlands,TelAvivuniversity,TelAviv,Israel,8January2006

Hoge–EnergieFysica,HetBakenParkLyceum,Almere,TheNetherlands,14February2006

Uitdagendefysischevragen&Nederlandsekeuzes,BezoekalgemeenbestuurNWOaanCERN,Geneva,Switzerland,2March2006

Hoge–EnergieFysica,NIKHEF–CERNmasterclass,Amsterdam,TheNeth-erlands,14March2006

Hoge–EnergieFysica,ChristelijkLyceumVeenendaal,Veenendaal,TheNetherlands,20April2006

Elementaryparticles,TheaterAdhoc,Arnhem,TheNetherlands,21May2006Waarbestaanweuit?,LanceringNWOstrategie,DenHaag,TheNether-lands,22May2006

CosmicraysintheclassroomGIREPconference2006,Amsterdam,TheNetherlands,21August2006(Astro)deeltjesfysica,Maagdenhuislezing,Amsterdam,TheNetherlands,11September2006

HetBerninimysterie,NIKHEFopendag,Amsterdam,TheNetherlands,21October2006

Metzger, W.J.,Bose–EinsteinCorrelationsine+e–Annihilation:Introduc-tionandRecentL3ResultsonparametrizationandReconstructionoftheSourceFunction,XXXVIInternationalSymposiumonMultiparticleDynamics,Paraty,Brazil,3September2006

RecentL3ResultsonParametrizationofBECine+e–AnnihilationandRe-constructionoftheSourceFunction,IIWorkshoponParticleCorrelationsandFemtoscopy,SaoPaulo,Brazil,10September2006

RecentL3ResultsonParametrizationofBECine+e–AnnihilationandReconstructionoftheSourceFunction,XIInternationalWorkshoponCorrelationandFluctuationinMultiparticleProduction,Hangzhou,China,22November2006

SomeAspectsofStatisticalandDataAnalysis,HuazhongNormalUniver-sity,Wuhan,China,29November2006

SomeAspectsofParticlePhysics,PhysicsDepartment,UniversityofGeosciences,Wuhan,China,30November2006

Ordonez, G.,MuonIDwithCalorimetry,BNDGraduateSchool,BadHon-nef,Germany,10September2006

Tanczós, I.C.,HiSPARC,VivaFysica!2006UvA,Amsterdam,TheNether-lands,19January2006

HiSPARC–CRSP’062ndWorkshoponCosmicRaysinSchoolProjects,Lisbon,Portugal,9September2006

Vreeswijk, M.,PracticumineenStudio–Classroomcollege,Practicumd-agUniversiteitAntwerpen,Antwerpen,Belgium,10February2006

A‘studio–classroom’courseelectromagnetism,Fysica2006,Leiden,TheNetherlands,28April2006

A‘studio–classroom’courseelectromagnetism,GIREPconference2006,Amsterdam,TheNetherlands,21August2006

Wolf, E. de,Beta–wetenschapindepraktijk,UniversiteitvanAmsterdamPZ–dag,Amsterdam,TheNetherlands,30May2006

Theory

Arrizabalaga, A.,Finitetemperaturebrokenφ4theoryfromthe2πEffec-tiveAction,QNP06,Madrid,Spain,7June2006

Bakker, B.L.G.,Light–FrontDynamics:OpportunitiesandChallenges,UniversityofBratislava,Bratislava,Slovakia,1February2006

TheBoxdiagraminYukawatheory.,TNTSeminar–NCStateUniversity,Raleigh,USA,23May2006

Boer, D.,QCDspinphysics–atheoreticaloverview,WorkshoponRHICPhysicsintheContextofStandardModel,BrookhavenNationalLabora-tory,USA,23June2006

Gluonsaturationeffectsonsinglespinasymmetries,Internationalwork-shoponRHICSpinPhysics,RIKEN,Japan,30September2006

Gluonsaturationeffectsonsinglespinasymmetries,17thInternationalSpinPhysicsSymposiumSPIN2006,Kyoto,Japan,6October2006

Bomhof, C.J.,UniversalityofSingleSpinAsymmetriesinHardProcesses,2ndWorkshopontheQCDStructureoftheNucleon,Frascati,Italy,15June2006

SiversEffectAsymmetriesinHadron–HadronCollisions,InternationalWorkshoponRHICSpinPhysics,WakoSaitama,Japan,29September2006

SiversEffectAsymmetriesinHadron–HadronCollisions,17thInternationalSpinPhysicsSymposium(SPIN2006),Kyoto,Japan,3October2006

Fuster, A.,Supergravityandstringtheory,DalhousieUniversity,Halifax,Canada,7March2006

HigherdimensionalVSIspacetimesandsupergravity,EleventhMarcelGrossmannMeetingonGeneralRelativity,Berlin,Germany,28July2006

Gmeiner, F.,CalibratedcyclesandT–duality,RTNnetworkconference2006,Naples,Italy,13October2006

GxG–structuresandcalibratedcycles,UniversityofAmsterdam,Amster-dam,TheNetherlands,31October2006

PhysicalbackgroundofSeiberg–Wittentheory,FreieUniversität,Berlin,Germany,2December2006

Introductiontogeneralisedgeometryandsomeapplicationsinstringtheory,NIKHEF,Amsterdam,TheNetherlands,6December2006

Holten, J.W. van,KosmischeStraling,HiSPARCscholierensymposium,Amsterdam,TheNetherlands,20March2006

GravitationalWaves,Nijmegen‘06SchoolofAstro-ParticlePhysics,Nijmegen,TheNetherlands,29August2006

Laenen, E.,ParticlesintheSkyandUnderground,IcelandicPhysicalSociety,Reykjavik,Iceland,6January2006

ResummationandHighEnergyScattering,InstituteforMathematicalSciences,Chennai,India,21February2006

Theoryofheavyflavorproduction,RingbergworkshoponPerspectivesinHeavyFlavorPhysics,Ringberg,Germany,3October2006

ResummationinQCD,RingbergworkshoponPerspectivesinHeavyFlavorPhysics,Ringberg,Germany,4October2006

QCDResummationandHadronColliders,UniversityofTexas,AustinTX,USA,10October2006

QCDResummationandHadronColliders,UniversityofRochester,Ro-chesterNY,USA,7November2006

Topquarkphysics,UniversityofTorino,Turin,Italy,5December2006

Motylinski, P.M.,MC@NLOAndSingleTopProduction,ATLASTopMeet-ing,CERN,Geneva,Switzerland,23March2006

Mulders, P.J.,Hoevindenelementairedeeltjeshunweg,OpdeHoogte,TheHague,TheNetherlands,5April2006and12October2006

Universalityofsinglespinasymmetriesinhardprocesses,DIS2006,Tsu-kuba,Japan,22April2006

68

Singlespinasymmetriesinppscattering,WorkshoponObservablesinppInteractionsandtheirRelevancetoQCD,Trento,Italy,4July2006

TheNobelprizeinPhysics2006,ColloquiumVrijeUniversiteit,Amster-dam,TheNetherlands,4October2006

TimereversaloddphenomenainQuantumChromodynamics,UniversityofOldenburg,Oldenburg,Germany,9November2006

GeneralremarksonAngularMomentum,INFN,Trieste,Italy,23Novem-ber2006

TheoreticalandExperimentalChallengesofSemi–InclusiveDeepInelas-ticScattering,WorkshoponInclusiveandSemi–InclusiveSpinPhysicswithHighLuminosityandLargeAcceptance–TJNAF,NewportNews,USA,14December2006

Postma, M.,Dovortonsform?,RencontresdeMoriond:Contentsandstructureoftheuniverse,LaThuile,Italy,20March2006

CombiningD–terminflationandmodulistabilization,BenasqueWork-shoponModernCosmology,Benasque,Italy,9August2006

Dovortonsform?30yearsofcosmicstrings,LorentzCenter,Leiden,TheNetherlands,6September2006

DensityperturbationsinSUSYhybridinflationwithcosmicstrings,Gali-leoGalileiInstitute,Florence,Italy,25October2006

Schellekens, A.N.,BeyondtheStandardModel,AIO–SchoolTHEF(10lectures),Zeist,TheNetherlands,23January2006

SightseeingintheLandscape,WorkshopBeyondtheStandardModel,BadHonnef,Germany,13March2006

SightseeingintheLandscape,EcolePolytechnique,Paris,France,26April2006SightseeingintheLandscape,LandelijkSeminariumTHEF,Amsterdam,TheNetherlands,19May2006

SightseeingintheLandscape,WorkshoponStringVacuaandtheLand-scape,Trieste,Italy,31May2006

SightseeingintheLandscape,Strings2006ShanghaiWorkshop,Shang-hai,China,14June2006

RCFTOrientifoldsandStandardModelRealizations,StringPhenomenol-ogy2006,SantaBarbara,USA,29August2006

SightseeingintheLandscape,ChalmersUniversity,Goteborg,Sweden,3October2006

SightseeingintheLandscape,MaxPlanckInstituteforGravitationalPhys-ics,Golm,Germany,26October2006

BeyondtheStandardModel(4lectures),NIKHEF,Amsterdam,TheNeth-erlands,16November2006

SightseeingintheLandscape,LondonTriangleSeminar,London,UnitedKingdom,13December2006

Vermaseren, J.A.M.,RecentDevelopmentsinFORM,LoopsandLegs2006,Eisenach,Germany,24April2006

PerturbativeFieldTheoryandFORM,NIKHEF,Amsterdam,TheNether-lands,22September2006

ThewhyandhowofthreeloopQCD,DESY,Zeuthen,Germany,30No-vember2006

ThemathematicsofFeynmandiagrams,UniversityofEindhoven,Eind-hoven,TheNetherlands,13December2006

Detector R&D

Chefdeville, M.A.,Thepixelreadoutofgaseousdetector,Thirdsympo-siumonlargeTPCforlowenergyrareeventdetection,Paris,France,12December2006AnintegratedMicromegasdetectorandaprototypeCMOSpixelreadoutchip,IEEE–NSSConference,SanDiego,USA,29October2006

Graaf, H. van der,NewdevelopmentsinintegratedMGPDs,ageingandprotection,Workshop‘Micro–patternGasDetectors:statusandperspec-tives’,CERN,Geneva,Switzerland,20January2006

GridPix:anIntegratedReadoutSystemforGaseousDetectorswithaPixelchipasAnode,Imaging2006,Stockholm,Sweden,30June2006

DischargeProtectionandAgeingofMicromegasPixelDetectors,IEEE–NSSConference,SanDiego,USA,29October2006

Gromov, V.V.,PrototypeoftheFront–endCircuitfortheGOSSIP(GasOnSlimmedSiliconPixel)Chipinthe0.13µmCMOSTechnology.,Inst.deFisicaCorpuscularandUniversityofValencia,Valencia,Spain,28Septem-ber2006

Schrader, J.H.R.,Wirelineequalizationusingpulse–widthmodulation,IEEECustomIntegratedCircuitsConf.,SanJose,USA,10September2006

Timmermans, J.,SiliconpixelreadoutforaTPC,VancouverLinearCol-liderWorkshop,Vancouver,Canada,20July2006

DirectreadoutofgaseousdetectorswithtiledCMOSpixelcircuits,10thTopicalSeminaronInnovativeParticleandRadiationDetectors,Siena,Italy,2October2006

RecentdevelopmentsfordigitalTPCreadout,InternationalLinearCol-lider(ILC–ECFA)Workshop,Valencia,Spain,8November2006

ZEUS

Grigorescu, G.,HeavyFlavourProductioninepCollisions,13thInterna-tionalQCDConference,Montpellier,France,3July2006

Keramidas, A.,Heavyflavourproductioninepcollisions,XXXVIInter-nationalSymposiumonMultiparticleDynamics,RiodeJaneiro,Brazil,2September2006

Koffeman, E.N.,ExperiencewiththeZEUSvertexdetector,VertexWork-shop2006,Perugia,Italy,25September2006

Figure1.HarryvanderGraaf,givinganoverviewofdetectorR&DattheNIKHEFJamboree.

69

NIKHEF Jamboree 2006Monday 18 December 2006

09:30 Welcome(FrankLinde)09:35 LHCstatus(JosEngelen,CERN)10:00 ATLAS(StanBentvelsen) •ATLASoverview(WouterVerkerke) •TrackerandTrackingforATLAS(WolfgangLiebig) •StatusoftheATLASmuonspectrometer (ZdenkovanKesteren)11:30D0(StanBentvelsen) •D0(SijbranddeJong) •TopmassmeasurementinD0(PieterHouben)12:00 Theory(EricLaenen) •Atooltostudymatterinextremeconditions: The2PIeffectiveaction(AlejandroArrizabalaga) •MC@NLOandsingletopproduction(PatrickMotylinski)14:15 DarkMatter:ShapingCosmicStructure(invited) (RienvandeWeygaert,RUG)15:30 AstroParticlePhysics(GerardvanderSteenhoven) •Introduction(GerardvanderSteenhoven) •FirstmuontracksinAntares(RonaldBruijn) •KM3NeT(ElsdeWolf) •PierreAugerObservatory(CharlesTimmermans) •StatusofVirgo(ThomasBauer)

Tuesday 19 December 2006

09:30 LHCb&Babar(MarcelMerk) •Overview(MarcelMerk) •TheAdventoftheVertexLocator(EddyJans) •FirstverticesintheVertexLocator(ArasPapadelis) •Trackingwitharealisticdetectorgeometry(EdwinBos)11:15 Grid(JeffTemplon)11:35 ALICESTAR(PaulKuijer) •Introduction(RaimondSnellings) •NeutralmesonsanddirectphotonsinSTAR (MartijnRusscher) •ALICEoverview(IngridKraus) •ALICESSDstatus(StephanePlumeri)14:00 HERMES •TransverseTargetSpinAsymmetryinExlusiveρ0Production (JeroenDreschler)14:20 ZEUS(GabrielGrigorescu)14:40 MasterProject-HiSparc(LuciedeNooij)14:55 NWOvisitatie(LeoWiggers)15:45 R&D(HarryvanderGraaf)16:05 LHCupgrade(NigelHessey)16:35 Summarytalk(FrankLinde)

Figure2.IngridKraus,givinganoverviewoftheALICEexperimentattheNIKHEFJamboree.

Resources

72

NIKHEF OrganizationN

IKH

EF B

oard

FOM

Uni

vers

ities

(UvA

, VU

A, U

U, R

U)

Scie

nti�

c Ad

viso

ryCo

mm

ittee

(SAC

)

Dire

ctor

ate

F. Li

nde

Scie

nti�

c Co

unci

l (W

AR)

Empl

oyee

s Co

unci

l (N

OR)

Prog

ram

mes

/Pro

ject

sTe

chni

cal D

epar

tmen

tsPe

rson

nel D

epar

tmen

tT.

van

Egd

omM

anag

emen

tA

. van

Rijn

Com

mun

icat

ions

G. Z

eger

s

Secr

etar

iat/

Rece

ptio

nE.

Sch

ram

– P

ost

Fina

ncia

l Dep

artm

ent

F. Bu

lten

Safe

ty D

epar

tmen

tM

. Ver

voor

t

Tech

nica

l Fac

ilitie

sA

. Witl

ox

Libr

ary

E. v

an K

erkh

o�

Mec

hani

cal E

ngin

eerin

gR.

Klö

ppin

g

Mec

hani

cal W

orks

hop

E. B

erbe

e

Elec

tron

ics T

echn

olog

yE.

Hei

ne

Com

pute

r Tec

hnol

ogy

W. H

eube

rs

ZEU

SP.

Kooi

jman

HER

MES

J. St

eijg

er

B-Ph

ysic

sM

. Mer

k

ATLA

S/D

ØS.

Ben

tvel

sen

ALI

CET.

Pei

tzm

ann

Theo

ryE.

Lae

nen

Ast

ropa

rtic

le P

hysi

csG

. van

der

Ste

enho

ven

Det

ecto

r R&

DJ.

Tim

mer

man

s

Grid

Com

putin

gJ.

Tem

plon

73

In2006thefundingofNIKHEFhasincreasedwithabouthalfamil-lioneuro,particularlythroughtheuniversities:per2006twotheorygroups(attheVrijeUniversiteitandattheRadboudUniversiteit)havejoinedtheNIKHEFcollaboration.Theinstitute’sfundingfromFOMisnowatthelevelof11,8M€,includingpartialcompensationfor ‘SoestVI’ (FOM’sstrategydocumentfortheyears2005–2010,whichencompassesafurtherreductionofNIKHEF’sbasebudget).AsinthepreviousyearNIKHEFhassucceededin2006inbalancingthisdownwardtrendwithexternal (mostlynon-structural) fund-ingforatotalof4,2M€.Theseexternalsourcesconsistoffeesfromcustomers of the Internet Exchange housing facility (1.45 M€),rentalincome(0.5M€)andprojectfundingfromvarioussources(FOM, NWO, SENTER, EU, etc.). This funding will continue to beneeded in order for NIKHEF to at least maintain its current levelofactivities.

The number of employees within the NIKHEF collaboration hasdecreasedin2006from255ftetoabout248fte,largelyduetore-tirementofpersonnelandendingcontractsoftemporary(mainlytechnical)staff.Weobserveaslowincreaseoftemporaryscientificstaff(PhDstudentsandpostdocs)topreparefortheanalysisphaseoftheLHCexperiments.

Fromtheexpensesin200627%wasconsumedbytheATLASpro-gram, 22% by LHCb and 11% by ALICE, in total 60% for the LHCexperiments.TheHERAexperimentsarenowcomingtoanend,representingonly3%oftheexpenses.Astroparticlephysicsactivi-tieshaveincreasedto8%,duetoNIKHEF’sparticipationintheEUfunded‘KM3NeT’-project.

Funding

0

5,000

10,000

15,000

20,000

25,000

2000 2001 2002 2003 2004 2005 2006

Year

k€

Additional funding (projects, third parties)UniversitiesFOM support university groupsFOM-institute SAF/NIKHEF

Employees

0

50

100

150

200

250

300

2000 2001 2002 2003 2004 2005 2006

Year

fte

temporary technical and support sta�permanent technical and support sta�PhD studentspostdocspermanent scienti�c sta�

Funding 2006: 20.5 M€

57%

6%

17%

20%

FOM-institute SAF/NIKHEFFOM-support university groupsUniversitiesProjects/third parties

Direct expenses 2006: 16.6 M€(indirect expenses: 3.9 M€)

1%

27%

11%

22%

5%

8%

18%

6% 2%

ZEUS

HERMES

ATLAS

ALICE

LHCb

Theory

Astroparticle physics

R&D & technology

AMS-IX and lease activities*

* This includes a reservation for the planned upgrade of the AMS-IX facility

Funding and Expenses

74

Membership of Councils and Committees as of 31-12-2006

NIKHEF BoardS.WendelaarBonga(RU)K.Chang(FOM)K.vanderToorn(UvA)T.Sminia(VU)R.vanKooten(UU)J.deKleuver(secretary,FOM)R.Griessen(chair,FOM,VU)

Scientific Advisory Committee NIKHEFR.Cashmore(Oxford,BrasenoseCollege)J.Dainton(chair,Liverpool,LiverpoolUniversity)M.Spiro(Paris,IN2P3)S.Bethke(München,Max-Planck-InstitutfürPhysik)T.Hebbeker(Aachen,RWTHAachen)C.deClercq(Brussel,VrijeUniversiteitBrussel)Y.Karyotakis(AnnecyleVieux,LAPP)

Wetenschappelijke Advies Raad NIKHEFS.BentvelsenJ.vandenBrandH.vanderGraafN.deGrootM.deJongP.deJongS.deJongE.KoffemanE.LaenenF.LindeM.Merk(chair)T.PeitzmannA.vanRijn(secretary)G.vanderSteenhovenJ.TemplonR.Timmermans(Groningen,KVI)

NIKHEF Works CouncilH.BoerRookhuizen(chair)L.Wiggers(vicechair)G.Venekamp(secretary)M.Limper(vicesecretary)J.DokterR.KluitJ.KokM.RietC.RijksenI.vanVulpen

FOM BoardJ.EngelenS.deJong

Contactcommissie in CERN aangelegenhedenS.BentvelsenJ.vandenBrandS.deJong(secretary)R.Kamermans

R.KleissF.LindeT.Peitzmann

Stichting Hoge-Energie FysicaF.Linde(chair)A.vanRijn(treasurer)J.vandenBrandR.KleissT.Peitzmann

Stichting PhysicaG.vanderSteenhoven

Stichting Conferenties en Zomerscholen over de KernfysicaP.MuldersG.vanderSteenhoven

Onderwijscommissie van de Onderzoekschool Sub-atomaire FysicaT.BauerS.BentvelsenJ.vandenBrandT.vanEgdom(personnel)B.vanEijkN.deGroot(chair)J.vanHoltenS.deJongM.Kesgin(secretary)J.KochE.LaenenF.LindeM.MerkP.MuldersT.PeitzmanneitzmannG.vanderSteenhoven

The European Committee for Future Accelerators (ECFA)F.Linde(restrictedECFA)S.deJongR.KamermansT.Peitzmann

Program Review Committee DESY, HamburgJ.Timmermans

CERN Large Hadron Collider CommitteeS.deJong

CERN SPS CommitteeP.Kooijman

Nuclear Physics European CollaborationT.Peitzmann

75

Laboratori Nazionali del Gran Sasso Scientific Com-mittee, L’AquilaF.Linde

Laboratori Nazionali di Frascati Scientific Committee, FrascatiF.Linde

European Physical Society High Energy Physics BoardF.Linde

Steering Committee Institute for Particle Physics Phenomenology, DurhamN.deGroot

Scientific Advisory Committee Deutsche Physikalische Gesellschaft Gravitational Wave PhysicsJ.vanHolten

European Science FoundationR.Kamermans

CERN Council Strategy GroupS.deJongF.Linde

European Science Foundation Physical and Engineer-ing Sciences UnitR.Kamermans

Development and Commissioning of LOFAR for As-tronomy Review CommitteeG.vanderSteenhoven

International Grid Trust FederationD.Groep

European Policy Management Authority for Grid AuthenticationD.Groep(chair)

GridKa Overview Board, KarlsruheK.Bos

Open Grid ForumD.Groep(areadirectorsecurity)

Vereniging Gridforum NederlandA.vanRijn(treasurer)

Scientific Advisory Committee Deutsche Physikalische Gesellschaft Hadronen PhysikJ.Koch

Astroparticle Physics European CoordinationF.Linde(steeringcommittee)G.vanderSteenhoven

Committee for Astroparticle Physics in the NetherlandsS.deJongF.LindeP.MuldersG.vanderSteenhoven(chair)

Board of Computer Algebra NederlandJ.Vermaseren

Wetenschappelijke Adviescommissie KVI, GroningenG.vanderSteenhoven

NWO Bestuur Exacte WetenschappenR.Kamermans

Adviescommissie FOM/v programmaE.deWolf(chair)

NNV BoardG.vanderSteenhoven(treasurer)P.Mulders(secretary)E.deWolf

NNV Sectie HE.KoffemanP.Kluit

NNV Sectie Onderwijs en CommunicatieS.deJong(vicechair)

Redactie Nederlands Tijdschrift voor NatuurkundeS.deJongP.Mulders

Program Advisory Committee Gesellschaft fur Schwe-rionenforschung, DarmstadtT.Peitzmann

KNAW Raad voor Natuur- en SterrenkundeF.LindeT.Peitzmann

Worldwide LHC Computing Grid Management BoardJ.Templon

European Particle Physics Outreach GroupG.Zegers

InterActionsA.vandenBergen

Stichting Quality Assurance Netherlands Universities Evaluation Committee Liberal Arts and SciencesN.deGroot

76

PersonnelExperimental physicists

Amoraal,drs.J.M FOM B-PhysicsAnastasoaie,mevr.drs.C.M. FOM-RU ATLAS/D0Ancu,drs.L.S. RU ATLAS/D0Baak,drs.M.A. FOM B-PhysicsBai,mevr.drs.Y. FOM ALICEBauer,dr.T.S. FOM B-PhysicsBenedosso,mevr.drs.F. UU ALICEBentvelsen,prof.dr.S.C.M. UvA ATLAS/D0Berg,drs.P.J.vanden FOM ATLAS/D0Blok,dr.H.P. GST HERMESBobbink,dr.G.J. FOM ATLAS/D0Boer,dr.F.W.N. GST OtherProjectsBos,drs.E. FOM B-PhysicsBos,dr.K. FOM OtherProjectsBotje,dr.M.A.J. FOM ALICEBouwhuis,mevr.dr.M.C. FOM AstroparticlePhysicsBraidot,drs.E. FOM-UU ALICEBrand,prof.dr.ing.J.F.J.vanden VU B-PhysicsBruijn,drs.R. UvA AstroparticlePhysicsBruinsma,ir.P.J.T. GST OtherProjectsBulten,dr.H.J. VU B-PhysicsChefdeville,drs.M.A. FOM OtherProjectsColijn,dr.A.P. UvA ATLAS/D0Colle,dr.J.J.H.C. GST HiSPARCColnard,mevr.drs.C.M.M. FOM AstroparticlePhysicsCoppens,mevr.drs.J.M.S. FOM AstroparticlePhysicsCornelissen,drs.T.G. FOM ATLAS/D0Dantzig,dr.R.van GST OtherProjectsDecowski,dr.M.P. FOM AstroparticlePhysicsDemey,drs.M. GST HERMESDjordjevic,drs.M. GST ATLAS/D0Doxiadis,drs.A.D. FOM ATLAS/D0Dreschler,drs.J. FOM HERMESDuinker,prof.dr.P. GST OtherProjectsEijk,prof.dr.ing.B.van FOM ATLAS/D0Eijndhoven,dr.N.van UU ALICEEldik,dipl.phys.N.van FOM ATLAS/D0Engelen,prof.dr.J.J. UvA OtherProjectsEnnes,drs.P. FOM ATLAS/D0FerreiraMontenegro,mevr.drs.J. GST OtherProjectsFilthaut,dr.F. RU ATLAS/D0Galea,mevr.drs.C.F. FOM ATLAS/D0Gosselink,ir.M. FOM ATLAS/D0Graaf,dr.ir.H.vander FOM ATLAS/D0Grebenyuk,drs.O. FOM ALICEGrigorescu,drs.G.T. FOM ZEUSGroep,dr.D.L. FOM OtherProjectsGroot,prof.dr.N.de RU ATLAS/D0Harmsma,ir.S. FOM AstroparticlePhysicsHartjes,dr.F.G. FOM ATLAS/D0Hegeman,ir.J.G. UT ATLAS/D0Heijne,dr.ir.E.H.M. GST OtherProjectsHerzberger,prof.dr.L.O. GST OtherProjectsHesselink,dr.W.H.A. GST HERMESHessey,dr.N.P. FOM ATLAS/D0Hoogland,prof.dr.W. GST OtherProjectsHouben,drs.P.W.H. FOM ATLAS/D0

Hulsbergen,dr.W. GST B-PhysicsIgonkina,mevr.dr.O.B. GST ATLAS/D0Ivan,ir.C.G. FOM-UU ALICEJans,dr.E. FOM B-PhysicsJansen,drs.E. FOM ATLAS/D0Jansen,ir.F.M. FOM B-PhysicsJong,prof.dr.S.J.de RU ATLAS/D0Jong,prof.dr.M.de FOM AstroparticlePhysicsJong,dr.ir.P.J.de FOM ATLAS/D0Kamermans,prof.dr.R. FOM-UU ALICEKeramidas,drs.A.A. FOM ZEUSKesteren,drs.Z.van UvA ATLAS/D0Ketel,dr.T.J. FOM-VU B-PhysicsKirby,dr.M.H. FOM-RU ATLAS/D0Klok,drs.P.F. FOM-RU OtherProjectsKlous,dr.S. FOM ATLAS/D0Kluit,dr.drs.P.M. FOM ATLAS/D0Koetsveld,drs.F. FOM-RU ATLAS/D0Koffeman,mevr.prof.dr.ir.E.N. FOM ATLAS/D0Kolk,mevr.drs.ing.N.vander FOM ALICEKoenig,dr.A.C. RU ATLAS/D0Konijn,dr.J. GST OtherProjectsKooijman,prof.dr.P.M. UvA AstroparticlePhysicsKoutsman,drs.A.J. FOM ATLAS/D0Kraaij,drs.E.E.vander FOM ATLAS/D0Kraus,mevr.dr.I.C. FOM ALICEKuijer,dr.P.G. FOM ALICELaan,dr.J.B.vander FOM OtherProjectsLapikás,dr.L. FOM HERMESLi,drs.Z. RU OtherProjectsLiebig,dr.W. FOM ATLAS/D0Liempt,drs.F.J.P.van FOM HiSPARCLim,ir.G.M.A. UvA AstroparticlePhysicsLimper,mevr.drs.M. UvA ATLAS/D0Linde,prof.dr.F.L. FOM DirectorateLingeman,dr.E.W.A. GST OtherProjectsLysebetten,mevr.dr.A.Van FOM B-PhysicsMagrath,mevr.MScC.A. UvA ATLAS/D0Mangano,dr.S. FOM AstroparticlePhysicsMassaro,dr.G.G.G. FOM ATLAS/D0M'charek,mevr.drs.B. VU B-PhysicsMerk,prof.dr.M.H.M. FOM B-PhysicsMetzger,dr.W. GST OtherProjectsMiddelkoop,prof.dr.G. GST OtherProjectsNardulli,drs.J. FOM-VU B-PhysicsNat,drs.P.B.vander FOM HERMESNooren,dr.ir.G.J.L. FOM-UU ALICEOrdonezSanz,drs.G. RU ATLAS/D0Papadelis,drs.E.A. FOM B-PhysicsPeitzmann,prof.dr.T. UU ALICEPellegrino,dr.A. FOM B-PhysicsPetrovic,mevr.dr.J. FOM AstroparticlePhysicsPlumeri,dr.S. FOM-UU ALICEPree,drs.T.A.du FOM B-PhysicsPresani,mevr.drs.E. FOM AstroparticlePhysicsPutten,drs.S.vander FOM AstroparticlePhysicsRaven,dr.H.G. VU B-PhysicsRens,ir.B.A.P.van GST AstroparticlePhysicsReischl,drs.A.J. GST HERMESRijpstra,mevr.drs.M. FOM ATLAS/D0Rodrigues,dr.E.M. FOM B-PhysicsRusscher,drs.M.J. FOM-UU ALICE

77

Schrader,ir.J.H.R. GST OtherProjectsSimili,drs.E.L. FOM-UU ALICESimioni,drs.E. FOM-VU B-PhysicsSnellings,dr.R.J.M. FOM ALICESnippe,ir.Q.H.C. FOM OtherProjectsSnoek,mevr.drs.H.L. FOM B-PhysicsSnuverink,ir.J. FOM ATLAS/D0Steenhoven,prof.dr.G.vander FOM AstroparticlePhysicsSteijger,dr.J.J.M. FOM HERMESTanczos,mevr.dr.I.C. FOM HiSPARCTemplon,dr.J.A. FOM OtherProjectsTimmermans,dr.C.W.J.P. FOM ATLAS/D0Timmermans,dr.J.J.M. FOM OtherProjectsToet,dr.D.Z. GST OtherProjectsTomasek,ing.L. GST OtherProjectsTuning,dr.N. FOM-VU B-PhysicsVankov,drs.P.H. FOM B-PhysicsVerkerke,dr.W. FOM ATLAS/D0Vermeulen,dr.ir.J.C. UvA ATLAS/D0Visschers,dr.J.L. FOM OtherProjectsVreeswijk,dr.M. UvA ATLAS/D0Vries,dr.H.de FOM B-PhysicsVulpen,dr.I.B.van FOM ATLAS/D0Vykydal,drs.Z. GST OtherProjectsWang,drs.Q. RU OtherProjectsWiggers,dr.L.W. FOM B-PhysicsWijnker,drs.G.P.J.C. FOM AstroparticlePhysicsWittHuberts,prof.dr.P.K.A.de GST AstroparticlePhysicsWolf,mevr.dr.E.de UvA AstroparticlePhysicsYbelesSmit,drs.G.V. FOM B-PhysicsZupan,drs.M. FOM B-Physics

Theoretical physicists

Arrizabalaga,dr.A. FOMBeenakker,dr.W.J.P. RUBoer,dr.D. VUBomhof,drs.C. FOM-VUBoomsma,MSc.J.K. VUDijkstra,drs.T.P.T. GSTFuster,mevr.drs.A. FOMGaemers,prof.dr.K.J.F. UvAGato-Rivera,mevr.dr.B. GSTGmeiner,dr.F.K. FOMHolten,prof.dr.J.W.van FOMKleiss,prof.dr.R.H.P. RUKoch,prof.dr.J.H. FOMKoekoek,drs.G. VUKoers,drs.H.B.J. UvALaenen,prof.dr.E.L.M.P. FOMMotylinski,MSc.P. FOMMulders,prof.dr.P.J.G. VUPostma,mevr.dr.M.E.J. FOMRijken,dr.T.A. RUSchellekens,prof.dr.A.N.J.J. FOMVeltman,prof.dr.M.J.G. GSTVermaseren,dr.J.A.M. FOMWessels,drs.E. FOM-VUWhite,dr.C.D. FOMWit,prof.dr.B.Q.P.J.de UU

Computer Technology Group

Akker,T.G.M.vanden FOMBlokzijl,dr.R. GSTBoterenbrood,ir.H. FOMDamen,ing.A.C.M. FOMDeurzen,dr.P.A.J.van GSTDok,drs.D.H.van FOMGeerts,M.L. FOMHarapan,drs.D. FOMHart,ing.R.G.K. FOMHeubers,ing.W.P.J. FOMHuyser,K. FOMKan,A.C.van FOM/RijnhuizenKeijser,drs.J.J. FOMKoeroo,ing.O.A. FOMKuipers,drs.P. FOMLeeuwen,drs.W.M.van GSTMichielse,dr.ir.P.H. GSTOudolf,J.D. QUADOSchimmel,ing.A. FOMStarink,dr.R. FOMTierie,mevr.J.J.E. FOMVenekamp,drs.G.M. FOMWijk,R.F.van FOM

Electronics Technology Group

Berkien,A.W.M. FOMBeuzekom,dr.ing.M.G.van FOMFransen,J.P.A.M. FOMGotink,G.W. FOMGroen,P.J.M.de FOMGroenstege,ing.H.L. FOMGromov,drs.V. FOM

Figure1.Nobelprizelaureateprof.TiniVeltman(left)handsoverthefirstprizeoftheFOMcompetition‘Winthefuture’toMarcKea(right).Techni-cianHenkGroenstegeandTUDelftstudentMarcKea-whobothworkatNIKHEF-wonwiththeirproject‘RasClic:anewseismograph’.

78

Haas,ing.A.P.J.de FOMHeine,ing.E. FOMHogenbirk,ing.J.J. FOMJansen,L.W.A. FOMJansweijer,ing.P.P.M. FOMKieft,ing.G.N.M. FOMKluit,ing.R. FOMKoopstra,J. UvAKruijer,A.H. FOMKuijt,ing.J.J. FOMMos,ing.S. FOMPeek,ing.H.Z. FOMReen,A.T.H.van FOMSchipper,ing.J.D. FOMSluijk,ing.T.G.B.W. FOMStolte,J. FOMTimmer,P.F. FOMTona,Y. FOMVerkooijen,ing.J.C. FOMVink,ing.W.E.W. FOMZwart,ing.A.N.M. FOMZwart,F.de FOM

Mechanical Engineering Group

Arink,R.P.J. GSTBand,ing.H.A. FOMBoerRookhuizen,ing.H. FOMBuskop,ir.J.J.F. FOMDoets,M. FOMKlöpping,ir.R. FOMKorporaal,A. FOMKraan,ing.M.J. FOMMunneke,ing.B. FOMSchuijlenburg,ing.H.W.A. FOMThobe,P.H. FOMVerlaat,ing.B.A. FOM

Mechanical Workshop

Berbee,ing.E.M. FOMBoer,R.P.de FOMBrouwer,G.R. FOMBuis,R. FOMCeelie,L. UvAHomma,J. FOMJaspers,M.J.F. UvAJohn,D. FOMKok,J.W. FOMKuilman,W.C. FOMLeguyt,R. FOMMul,F.A. FOM-VUOverbeek,M.G.van FOMPetten,O.R.van FOMRietmeijer,A.A. FOMRoeland,E. FOMRoevekamp,J.C.D.F. UvA

Management and Administration

Barneveld,mevr.K.M.van FOMBerg,A.vanden FOM

Bergen,mevr.A.M.vanden FOMBulten,F. FOMDekker,mevr.C.E. FOMDokter,J.H.G. FOMEchtelt,ing.H.J.B.van FOMEgdom,T.van FOMFaassen,mevr.N.F. FOMGreven-VanBeusekom,mevr.E.C.L. FOMHeuvel,mevr.G.A.vanden FOMKerkhoff,mevr.E.H.M.van FOMKesgin-Boonstra,mevr.drs.M.J. FOMKleinsmiede-vanDongen,mevr.T.W.J.zur FOMLangenhorst,A. FOMLemaire-Vonk,mevr.M.C. FOMMors,A.G.S. FOMPancar,M. FOMRem,drs.ing.N. FOMRijksen,C. FOMRijn,drs.A.J.van FOMSchram-Post,mevr.E.C. FOMSpelt,ing.J.B. FOMVervoort,ing.M.B.H.J. FOMVreeken,D. QUADOWerneke,ing.P.J.M. FOMWilligen,E.van FOMWitlox,ing.A.M FOMWoortmann,E.P. FOMYilmaz,E. QUADOZegers,mevr.drs.G.E. FOM

Apprentices in 2006

Aaij,R.J.M. ATLAS/D0AdelhartToorop,R.de TheoryBlankers,T. AstroparticlePhysicsBlom,M.R. AstroparticlePhysicsBos,mevr.E.M. OtherProjectsBosma,M.J. OtherProjectsCohen,S. B-PhysicsCottini,N. AstroparticlePhysicsDerkx,X.C.B.L. TheoryDernier,M.J.L. ElectronicsTechnologyEbeling,R.P. AstroparticlePhysicsEgmond,E.van MechanicalEngineeringElbers,M.C. ZEUSEvangelatou,D. OtherProjectsFransen,M. ATLAS/D0Geer,R.vander ATLAS/D0Grange,Y.G. AstroparticlePhysicsHartman,J. OtherProjectsHeijden,B.W.vander ElectronicsTechnologyHervy,W. PersonnelDepartmentHessels,C. ElectronicsTechnologyHessey,M.S. ATLAS/D0Holten,E.F.van HiSPARCJong,R.A.de ComputerTechnologyKappel,M.F.J.van TheoryKea,M.J. ATLAS/D0Keune,A. B-PhysicsKhafaji,SalarAl ATLAS/D0Klerks,E.P. ATLAS/D0Klomp,M. ElectronicsTechnology

79

Kok,mevr.M. ATLAS/D0Kok,M.O.de TheoryKoot,M.R. ComputerTechnologyKuijken,mevr.I. OtherProjectsLascaris,E. TheoryLeerdam,J.van ATLAS/D0Meeroeksom,mevr.Sudatip TechnicalFacilitiesMeester,S. AstroparticlePhysicsMous,I.V.N. OtherProjectsMussche,I. OtherProjectsNederveen,M.B. ATLAS/D0Nooij,mevr.L.de B-PhysicsOsei,B. ElectronicsTechnologyPlas,B.A.vander ZEUSPoel,E.F.vander ATLAS/D0Pottelberghe,M.J.M.Lvan ATLAS/D0Ruckstuhl,mevr.N.M. ATLAS/D0Scholten,S. B-PhysicsSchuurmans,D. MechanicalEngineeringSpaargaren,B. ComputerTechnologyTil,S.van OtherProjectsTorresCelis,mevr.P.C. ATLAS/D0Tsiakiris,M. OtherProjectsVersloot,T.W. B-PhysicsWatson,E.R.R. TechnicalFacilitiesWitteveen,mevr.M.L.M. OtherProjectsZebeda,G. TechnicalFacilities

They left us

Apeldoorn,dr.G.W.van B-PhysicsArink,R.P.J. MechanicalEngineeringAtehortuaEscobar,mevr.B.E. MechanicalWorkshopBeek,R.M.van MechanicalWorkshopBeumer,H. MechanicalWorkshopBlokzijl,dr.R. ComputerTechnologyBrantjes,R.N. OtherProjects

Bron,M. MechanicalWorkshopCaron,dr.S. ATLAS/D0Chen,M. B-PhysicsCornelissen,drs.T.G. ATLAS/D0Dijkstra,drs.T.P.T. TheoryDjordjevic,drs.M. OtherProjectsDuisters,ing.C.H. MechanicalEngineeringGeer,R.vander ATLAS/D0GrootNibbelink,dr.S. TheoryHeijden,B.W.vander ElectronicsTechnologyHenze,E. MechanicalWorkshopHeutenik,B. ElectronicsTechnologyHorvathy,dr.P. TheoryJansen,F.M. MechanicalWorkshopKaan,ir.A.P. B-PhysicsKop,A. MechanicalWorkshopLascaris,E. HiSPARCLavrentyev,V. ElectronicsTechnologyLosekoot,mevr.G. ATLAS/D0Michalowski,dr.J.J. B-PhysicsMischke,dr.A. ALICEMuijs,mevr.dr.A.J.M. ATLAS/D0Nawrot,dr.A. B-PhysicsNovak,drs.T. OtherProjectsOtto,J. ElectronicsTechnologyPeters-Muellenberg,mevr.A.G.H. MechanicalWorkshopReischl,dipl.phys.A.J. HERMESRens,dr.ir.B.A.P.van AstroparticlePhysicsReus,D.P. ElectronicsTechnologySbrizzi,dr.A. B-PhysicsSchrader,ir.J.H.R. OtherProjectsSilva-Marcos,dr.J. TheorySluijk-Bark,mevr.M.H. ElectronicsTechnologyStoffelen,N. MechanicalWorkshopSuerink,T.C.H. OtherProjectsThomasson,P.B. MechanicalWorkshopTiecke,dr.H.G.J.M. ZEUSTorresCelis,mevr.P.C. MechanicalWorkshopVisser,J. StaffVries,drs.G.de AstroparticlePhysicsWapstra,prof.dr.A.H. GST✝4-12-2006Willemse,M.A. MechanicalWorkshopZajac,R. B-PhysicsZeng,M. B-Physics

Award Winners

WimBeenakker Teacheroftheyear,RadboudUniv.NijmegenMiekeBouwhuis NederlandsTijdschriftvoorNatuurkunde-1stprizeHarryvanderGraafScienceParkCompetition‘NieuweIdeëen’-3rdprizeHenkGroenstege FOM60competition‘Winthefuture’-1stprizeHenkGroenstege ScienceParkCompetition‘NieuweIdeëen’-3rdprizeMarcKea FOM60competition‘Winthefuture’-1stprizeJustusKoch TeacherAward2006,Natuurw.Studiever.AmsterdamJustusKoch TeacherAward2006,Fac.ofSciences,Univ.vanAmsterdamAntonelloSbrizzi VanCoeverdenAdrianistichtingResearchAwardBartVerlaat FOM60competition‘Winthefuture’-2ndprizeJosVermaseren HumboldtResearchAwardJanVisschers ScienceParkCompetition‘NieuweIdeëen’-3rdprize

Figure2.WimBeenakkerproudlyshowshis‘TeacheroftheYear’award.