126
" X-721-66-77 4e NIKE TOMAHAWK PRELIMINARY PERFORMANCE STUDIES I = o I |OD NUOal A.LI'IlOY,I[ GPO PRICE $ CFSTI PRICE(S) $ BY Hard copy (HC) Microfiche (MF) ff853 July65 EDWARD E. MAYO b FEBRUARY 1966 GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND https://ntrs.nasa.gov/search.jsp?R=19660010190 2020-07-19T00:36:05+00:00Z

NIKE TOMAHAWK PRELIMINARY PERFORMANCE STUDIESNIKE TOMAHAWK PRELIMINARY PERFORMANCE STUDIES By Edward E. Mayo February 1966 ABSTRACT In_ouse studies concerning the performance of the

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

" X-721-66-77

4e

NIKE TOMAHAWK

PRELIMINARY PERFORMANCE STUDIES

I

= o

I

|OD NUOal A.LI'IlOY,I[

GPO PRICE $

CFSTI PRICE(S) $

BY

Hard copy (HC)

Microfiche (MF)

ff853 July65

EDWARD E. MAYO

b

FEBRUARY1966

GODDARD SPACE FLIGHT CENTERGREENBELT, MARYLAND

https://ntrs.nasa.gov/search.jsp?R=19660010190 2020-07-19T00:36:05+00:00Z

X-721-66-77

NIKE TOMAHAWK

PRELIMINARY PERFORMANCE STUDIES

by

Edward E. Mayo

Goddard Space Flight Center

Greenbelt, Maryland

NIKE TOMAHAWK

PRELIMINARY PERFORMANCE STUDIES

By

Edward E. Mayo

February 1966

ABSTRACT

In_ouse studies concerning the performance of the Nike Tomahawk

are compiled. The following areas are investigated, i) Nike Tomahawk

particle trajectory characteristics. 2) Effect of payload weight on the

Tomahawk mass, static margin, s_tlc stability, and natural frequency

characteristics. 3) Tomahawk dynamic motions, and 4) Aerodynamic

running load distribution over the Tomahawk body. The predictions

should be updated as the vehicle properties and aerodynamic charac-teristics are refined.

iii

CONTENTS

Page

NIKE TOMAHAWKPARTICLETRAJECTORY.......

EFFECTOFPAYLOADWEIGHTONTHETOMAHAWKMASS,STATICMARGIN,STATICSTABILITY,ANDNATURALFREQUENCYCHARACTERISTICS..... 20

TOMAHAWKDYNAMICMOTIONSTUDY ........ 51

APPROXIMATESECONDORDERSHOCKEXPANSIONMETHOD.................... 104

V

OPTIONAL FORM NO 10 5010-107

MAY 1942 (DITLON

GSA GEt4. REG. NO, 27

UNITH) STATES GOVERNMEN'I

Memoran m

TO : Flight Performance Section Files DATE: 15 March 1965

FROM :

SUBJECT:

Mr. Edward E. Mayo

Flight Performance Section

NIKE-TOMAHAWK PARTICLE TRAJECTORY

REFERENCE: (a)

(b)

Stone i G. W., and Connell i G.M.: Range Safety for the Nike-Tomahawk

Rocket System With a Nine-Inch Diameter Payload, April 1964.

Letter of 21 January 1965 to Mr, John Lane from Sandia Corporation.

Subject: Performance and Aerodynamic Data for the Nike-Tomahawk

Rocket System.

Nike-Tomahawk particle trajectory input values have been generated

for the G.E. MASS Subprogram io The input data has been used to obtain

trajectory data for a specific flight. The purpose of this memorandum

is to document the Nike-Tomahawk thrust 9 vehicle weight and drag coeffi-

cient histories for future reference. The values are given in proper

increments for linear interpolation. Also 9 the trajectory characteristics

for the specific flight are given.

The Nike (M5EI) and Tomahawk (416) sea level thrust-time histories

are given in Tables I and If, respectively s as obtained from reference

(a). The Nike loaded weight (including interstage adapter) and pro-

pellant weight were obtained from Mr. N. Peterson i Vehicles Section, as

1320 and 750 ibs., respectively. The Tomahawk (less gross payload)

loaded weight and propellant weight were obtained from reference (b) as

540 and 397 ibs., respectively. The weight-time histories were obtained

by assuming that the weight of the vehicle is in proportion to the ratio

of the impulse at a given time to the total impulse, that is I

I_ tTdt

W t = Wt= ° - Wpropellant

_max Tdt5

The integrals were evaluated by the use of a planimeter. The resulting

weight-time histories are given in Table III and Table IV° Vehicle drag

coefficients for the nine-inch diameter payload are given in Tables V,

VI I and VII as obtained from reference (a).

Bt O' U.S. Savin_s Bondr Regular/), on the Pad, roll Savings P/an

Flight characteristics for a Wallops Islandj 125 lb. nine-inch

diameter payload i 15 foot length launcher, 80 ° elevation launch, are

given in figure I. The initial conditions for the flight are as

follows:

Run:

Launch Site:

Launcher Length:

L_ngitude:

Latitude:

Launch Altitude:

Launch Attitude:

Launch Azimuth:

Initial Velocity:

Tomahawk Ignition Time:

OJ8

Wallops Island

15 ft.

-75°480 dego

37.830 deg.

12o81 fto

80.0 deg.

-80.44 deg. (Inadvertent value)

1.0 fps

16.0 seeo

The effects of varying gross payload weight and Tomahawk ignition time

on the Nike-Tomahawk system performance are given in figures 2 and 31

respectively.

Ill summary s we now have the capability of simulating the Nike-

Tomahawk flight with a particle trajectory° Efforts are underway to

determine the vehicle inertial and aerodynamic stability characteris-

tics as a function of payload weight°

Enclosures:

(i) Table Io

(2) Table II.

(3) T_ble III.

(4) Table IVo

(5) Table Vo

(6) Table VI.

(7) Table VII.

(_) Figure i.

<s<'/.......... P4' 7.,,<

Edward E. Mayo

(9)

Nike (M5EI) Sea Level Thrust.

Tomahawk (416) Sea Level Thrust°

Nike-Tomahawk Weight-Time History°

Tomahawk Weight-Time History°

Nike-Tomahawk Thrusting Drag Coefficient.

Tomahawk Thrusting Drag Coefficient.

Tomahawk Coasting Drag Coefficient.

Nike-Tomahawk Particle Trajectory° Wallops Island;

Gross Payload Weight : 125 Ibs°; Launch Attitude = 80 deg.;

15 foot Launcher; Tomahawk Ignition Time = 16 seco

Figure 2o The Effects of Gross Payload Weight on the Nike-

Tomahawk Apogee Altitude, Range at Impactl Time to Apogee

and Time to Impact. Wallops Island; Launch Attitude = 80o;

15 foot Launcher; Tomahawk Ignition Time = 16 sec.

(LO) Figure 3. - Effects of Tomahawk Ignition Time on the Nike-

Tomahawk Apogee Altitude, Wallops Island; Gross Payload

Weight = 125 ibs,; Launch Attitude = 800; 15 foot Launcher,

cc: Mr, K. R. Medrow

EI_M:skd

TABLE I. - Nike (M5EI) Sea Level Thrust*

Timej Sec,

0

.01

.04

.05

.09

o15

.84

1.14

1.74

2.04

2.34

Thrust_ ibs,

1860.

25570.

38121.

40259.

410O3°

41189.

41840.

42119.

43235.

44165°

45280.

Time_ Sec,

2.49

2.64

2.79

2.99

3.09

3.21

3.28

3.34

3.40

3°46

3.54

II Thrust_ ibs.

45187. I

44072.

41561.

36727.

32542.

23245.

15806.

10507.

6323.

3161.

0

* Nozzle exit area = 1.4630 sq. fto

TABLEII. - Tomahawk(416) SeaLevel Thrust.*

ITime I Sec. Thrust I ibso

0 0

.I0 13847,

.17 12668.

,22 12766,

.34 11736.

.90 12030.

i.i0 12080.

1.60 11785°

2.20 11588°

3°00 11736o

3.50 11686.

Time I Sec,

I

Thrust _ Ibs.

5,00

5.30

6°00

7 _()()

/ 0MI

8.00

80 50

8°72

9.20

9° 50

11293.

13999,

9968.

8_88o

a'_47.

8004°

8o 53 o

7268°

5892o

442.

O

* Nozzle exit area = 0.4035 Sqo ft.

TABLE III. - Nike-Tomahawk Weight-Time History.*

_Times Sec,

0

.05

.I

.2

1.2

1.8

2.4

2.8

3,0

3o15

3°35

3.45

3o54

JI Weight, ibs.!

1860.00

1851.82

1840.42

1818.22

1589. i0

1448.40

1302.15

1206.30

1165.00

1140.00

1118.00

1112.00

iii0.00

* Less gross payload

TABLEIV, - TomahawkWelght-Time History.*

Time i Seco)

0

.25

.50

4.00

5.00

6.00

7.00

8.00

8.50

8.70

9°0

9.5

999.

Welght a ibso

540.00

529.64

51.7.29

341.82

292,79

248.05

207.99

171.62

155,307

150.00

143.83

143.00

143.00

* Less gross payload

TABLEV. - Nike-TomahawkThrusting Drag Coefficient.*

Math No. CDT

0

.50

.57

.60

.64

.70

.73

.79

.82

.86

.89

.96

.98

Mach No.L

.360 1.00

.365 1.06

.367 1.24

.370 1.45

.380 1.70

.400 1,88

,425 2.06

.475 2.24

.525 2.40

.600 2.53

,702 2.68

.951 2.88

.990 _ 3,08

f

i CDT i

i

.995

.q90

.923

.853

.775

.730

.690

.650

.625

.615

.605

.590

.580

* I. Aerodynamic reference area = 1.474 sq. ft.

2. Nine-inch diameter payload.

TABLEVI. - TomahawkThrusting Drag Coefficient°*

Mach No. CDT Mach No. CDT

1.25 .955

1.95 .800

2.00 .725

2.20 .675

2.45 .625

2.70 .585

2.75 °570

2.90 .550

3.00 .540

3o10 .525

3.35 °500

3.50 .490

3.75 °470

4.10 .450

4.40 .440

4°90 .415

5.85 o385

9.00 °290

!

* I. Aerodynamic reference area = 0.4418 sq. ft.

2. Nine-inch diameter payload°

TABLEVII. - TomahawkCoasting Drag Coefficient.*

MachNo,

1.251.601.902•202.502_903.253,503.75

CDC

1.1651.000.900•800•730.650,600.565.540

Mach No. CDc

4.00

4• 30

4.75

5•25

6.00

7.00

9.00

999 o

.520

.500

.472

•445

.415

.380

.315

.315

* I. Aerodynamic reference area = 0.4418 sq. ft,

2. Nine-inch diameter payload.

i0

11

ii!ttt!*J4_;:_

!if:, !litF.i*;

i J L i ; ;

:;;: ....... ,q

t:il; 1222 2;;_:i,;

i_4;. .....

ii::i }::i :ii!:ttt:! _:_ "*+ ::

..............il....... + ,,_,

-:!ii !!f_ 55f!!f5..i! :!! !ii! !i

t_iff....................... !!":::: rr_Tt_.Jt:

:_ili iili _:::!::i!

!i!!i i!i! i':!ii:i

III;: Hi: IH;I" ,t

12

iii!!!i__Eii!!iiii!i_!ii!ii!

!ii:li

7t .+.,

:!,'+

!!ill!!!:i!i! il_i_!il

....... F_

!ii ..... i!i iili

ii!ii!/_ !::i ::!ii!i::::::

.......... iil ili,:i! ii

_+S:t!:!!;:! rl

ii :l:::' ili Ei:;_: 77

_:,i!!i!?ii!i: i! ili!_._,!ii

_:;::_::; :;1 FiT

i!??!i!i: ::; ;-'*:N!!........... H::lil: :_

!!!!iil !!! i_!_i!_: _i

.......... i:!

....... ::'.l _:: H

_!!iii '_!i7 777t_i:7!......... 77!

1i:ii!i!:_ii

tl _t

_iIii

_i :il

:I5!

T=

• r Tv

t_:iH

;* tt:

:!I

T;L

"i _i i

77 )!}_

17,_,i

:! t_.

,::ttii4 _44

13

14

_iii:!:!i!

I:::1

;:;:t

liiiiEiii!!i!!iiii:ii

1S

_F. -

. !._

.i

--,-_N

} :i

F- -4"_

_.--:

::!t_ii!., i!_..:[_,i

_' ill:2:T?:. _

16

++_

!!!! _i _!

-t-H 'H_

t!l

:il

IL

i :t

ru+ +ql

+++ +

+;+; J+;,;

IT?:

I It++_

il

FT 7+-

i:i--iii_,i!:

17

Launch Attitude = 80 deg.;Launcher Length = 15 ft.;Tomahawk Ignition Time = 16 sec.

i .......

..... _J

| .... & .... % i _ .

Gross.. Payload Weight. (ibs.) i

FIGURE 2. - The effects of gross payload weight

on the Nike-Tomahawk apogee altitude,

range at impact, time to apogee and

time to i_m_@ctu__

18

Launch Site = Wallops Island;

Gross Payload Weight = 125 ibs.

Launch Attitude = 80 deg.;

Launcher Length = 15 ft.;

'o,-4

k_

!

OT

t Or,-_

@ OC

G oO

_C

IO

if,!,

" I

Tomahawk Ignition Time (sec)

"FIGURE 3. - Effect of Tomahawk Ignition Time on

the Nike-Tomahawk apogee altitude.

19

F]I_.; :- P_rformance Section Files 29 June 1965

P, EFE!< _I>_CE :

Mr. Edward E. Mayo

Flight Performance Section

EFFI'LT OF PAYLOAD WEIGHT ON THE TOMAHAWK MASS, STATIC MARGIN, STATIC

STABILITY, AND NATURAL FREQUENCY CHARACTERISTICS

(a)

(b

(c

(d

(e

Memo of 3 ,June 1964, Mr. Mayo to Mr. Sorgnit, Subject: Weight,

Center of Gravity, Pitch and Roll Moment of Inertia Determination

Program.

Memo of 9 July 1964, Mr. Mayo to 671.2 Files, Subject: Static

Stability and Natural Frequency Program.

Stone, C. W., and Connell, G. M.: Range Safety for the Nike-

Tomahawk Rocket System With a Nine-lnch Diameter Payload. April1964.

Letter of 21 January 1965 to Mr. John Lane from Sandia Corporation.

Subject: Performance and Aerodynamic Data for the Nike-Tomahawk

Rocket System.

Memo of 15 March 1965, Mr. Mayo to Flight Performance Section Files,

Subject: Nike-Tomahawk Particle Trajectory.

A brief study has been conducted to define the effect of payload

weight on the Tomahawk mass, static margin, static stability, and

natural frequency characteristics. The computer programs developed in

references (a) and (b) were utilized in the study. The program input

characteristics were determined through the use of references (c)

through (e). The study was conducted for the Aurora Nitehawk configu-

ration shown in figures 1 and 2. A uniform density payload, as illus-

trated by the cross hatched region in figure 2, was assumed. The purpose

of this memorandum is to document the results of the study.

Computations were performed for gross payload weights of 50, 75,

i00, 125, 150, 175 and 200 pounds. The vehicle aerodynamic characteris-

tics were determined for launch angles of 75, 80 and 85 ° . The assump-

tions used in determining the mass characteristics were:

1. Propellant center-of-gravity location is constant.

2. Nose weight distribution is conical as illustrated by

the cross hatch in figure 2.

3. Payload is of uniform density.

4. Pitch and roll moments of inertia vary linearly with

burning time.

20

Tomahawk weight and inertia input characteristics are presented in

Table I. The resulting weight, center-of-gravity location, and pitch and

roll moment of inertia characteristics are presented in figures 3 through

6, respectively. Tomahawk aerodynamic input characteristics are presented

in Table II. The resulting static margin, static stability, and natural

frequency characteristics are presented in figures i0 through 12, respec-

tively. The velocity, altitude, Mach number and dynamic pressure histories

for the i00, 150 and 200 pound gross payload weights at launch angles of

75, 80 and 85 degrees are presented in figures 7 through 9 as obtained from

the GE MASS particle subprogram using the vehicle characteristics presented

in reference (e). The 50, 75, 125 and 175 pound gross payload weight tra-

Jectory characteristics are not presented in figures 7 through 9; however,

they are on file within the Flight Performance Section for future reference.

The characteristics are presented herein without discussion; however,

several important points are:

1. The vehicle characteristics are only as valid as the afore-

mentioned assumptions.

, From stability considerations, a gross payload weight of

around 80 pounds is the minimum flyable payload weight.

This weight corresponds to a maximum peak altitude of 224

statute miles or 360 kilometers. (Based on a nominal 80 °

launch angle.) However, based on the recommended minimum

static margin of 2 calibers, the maximum attainable alti-tude is about 200 statute miles.

. The variation of the static margin, static stability and

natural frequency characteristics is insensitive to

launch angle.

Edward E. Mayo

Enclosures: (4)

(i) Symbols

(2) List of Figures

(3) Tables (2)

(4) Figures (12)

ce: Mr. K. R. Medrow

Mr. G. E. MacVeigh

Mr. E. E. Bissell

Miss E. C. Pressly

21

CN_

CM_

Ixx

Iyy

t

W

X

CO

Subscripts

b,o,

c.g.

c.p.

i

M.E.F.

M.L.F.

P.A.

P.L.

SYMBOLS

Normal force curve slope at_ - 0, per radian

Static stability parameter at o_ = 0, per radian

Roll moment of inertia, slugs ft 2

Pitch moment of inertia, slugs ft 2

Time, sec.

Weight, ibs.

Longitudinal location measured from base, ft.

Natural frequency, cps

Burn out

Center-of-gravity

Center-of-pressure

Ignition

Motor empty + fins

Motor loaded + fins

Payload adapter junction

Propellent lost

22

LIST OF FIGURES

Figure

3

4

5

6

7

i0

Nike-Tomahawk sounding rocket system. All dimensions arein inches.

Tomahawk TE-416 sounding rocket. All dimensions are ininches.

Tomahawk weight-time history.

Tomahawk center-of-gravity location.

Tomahawk pitch and yaw moments of inertia.

Tomahawk roll moment of inertia.

Nike-Tomahawk particle trajectory. Wallops Island; 15 ft.

launcher; launch angle = 75° .

(a) Gross payload weight = i00 ibs.

(b) Gross payload weight = 150 ibs.

(c) Gross payload weight = 200 ibs.

Nike-Tomahawk particle trajectory. Wallops Island; 15 ft.

launcher; launch angle = 80 ° .

(a) Gross payload weight = lO0 ibs.

(b) Gross payload weight = 150 ibs.

(c) Gross payload weight = 200 ibs.

Nike-Tomahawk particle trajectory. Wallops Island; 15 ft.

launcher; launch angle = 85 ° .

(a) Gross payload weight = i00 ibs.

(b) Cross payload weight = 150 ibs.

(c) Gross payload weight = 200 ibs.

Tomahawk static margin. Wallops Island; 15 ft. launcher.

(a) Launch angle = 75 °

(b) Launch angle = 80 °

(c) Launch angle = 85 °

23

LIST OF FIGURES (Continued)

Figure

ii

12

Tomahawk static stability. Wallops Island; 15 ft. launcher.

(a) Launch angle = 75 o

(b) Launch angle = 80 °

(c) Launch angle = 85 °

Tomahawk natural frequency. Wallops Island; 15 ft. launcher.

(a) Launch angle - 75°

(b) Launch angle = 80 °

(c) Launch angle = 85 °

24

Table I. - TomahawkWeight and Inertial Input Characteristics

WM.E.F.

WM.L.F.

(Xc.g.)M.E.F.

(Xc.g.)M.L.F .

(Xc.g.)p.L.

Xp.A.

m 143 ibs.

540 ibs.

3.46 ft.

© 5.88 ft.

6.75 ft.

= 11.87 ft.

(Iyy)M.E.F ' = 63.2 slugs ft. 2

(Iyy)M.L.F. = 207 slugs ft. 2

(Ixx)M.E.F. = 1.70 slugs ft. 2

(Ixx)M.L.F ' = 2.59 slugs ft.2

ti = 16 sec.

tb.o. = 25.5 sec.

t. sec. Wp.L., ibs. t. sec. Wp.L., ibs.

16.00

16.25

16.50

16.75

17.00

18.00

19.00

20.00

0

10.36

22.71

35.69

48.36

98.66

148.5

198.2

21.00

22.00

23.00

24.00

24.25

24.50

25.00

25.50

247.2

292.0

332.0

368.4

376.3

384.7

396.2

397.0

25

Table II. - TomahawkAerodynamic Input

M Xc.p.

1.2 1.523

2.30 3.192

2.75 3.718

3.00 4.002

3.50 4.468

4.00 4.865

4.50 5.218

Characteristics*

M Xc.p.

5.00 5.518

5.80 5.930

6.40 6.230

7.00 6.510

8.00 6.905

9.00 7.258

i0.0 7.258

M CN_ M CN_ M CN= _ M CN= /

1.20

1.43

1.60

1.80

2.00

2.25

38.96

28.19

23.66

22.00

19.60

17.88

2.50

3.00

3.40

3.75

4.10

4.45

16.44

14.10

12.95

12.03

11.34

10.77

4.80

5.15

5.60

6.00

6.55

7.00

10.43

10.08

9.74

9.51

9.28

9.11

7.50

8.00

8.50

9.85

i0.00

9.00

8.94

8.82

8.82

8.82

*i. Aerodynamic reference length = 0.75 ft.

2. Aerodynamic reference area = 0.4418 ft.2

26

m

C_

©

r_

I---

Ac©

L_ _

V

o

i

27

L_

\\\

\

\

\ t_

\

\

\

28

f

• o.

v_

_J

I

£

I

LL_

29

T ;:;:_'-'- !iiiii!iiiliilqL:i !i!!!iiiiiL

.... iiii!iii iiiii_ii ::::

::;;I_ ::_ !H::

"--!_, t/!ih!!_ii!_:-_i! !_+4_ _{_!_ !i_':

!i.i !ili ! :m-:¢._ .....

....... i]i]]]_ ......................... 1..........

............... T........

]!: I::.:i : :: ::::

.... ii ::

ii i]]!l!i]!_.]]::"_.....:::

_ii_! ii [] ]]L IjLL ii:c

: I t ] : _ :

.... _ t:;:t::: ::;]

__ . ii_21t::ilii:iii! iiiii2 _iiiillii._,:

i !i!!

;;: tti:b: .n_

ill !]]:__,]]

m_r. _!ii:: !i!

ttt

!i! _iti! :::

": i!i 1!!

!i) :::::: :;:

ii i,li::il i:,::

iF

;:i :ii!

!ili 22::;22i2_

ili!!!,_:

4_S*

_:I1_

,+

]:,.

._t::ITT...t...

N_

_N

.... !::,!

|;;:i :|:::::

'l:i

I!

:: |

i_q:,i

X:![_i

_:::,ldil

, I

3O

31

g.tt

32

"_ M L" ..,t',l_c,

(_.) C---r+.+,_D_y/oc_<_weijJ+'l"= Iool_.

33

IioOOQ _.0_ lt.O00 Ii,000 _0,000 21,0130 _,000 _,000 mS.O00 _10,000

34

i:!ii!!!i_ii!!!!_:!_iiiili:: I: :|i ¸ '

:_:___,:,::..,:,_,_'i_if!I

'_:'_ +*il :AA !i]i

I::!! _. :

- " :!]i:_11,, H"

.... ill! :_!

...... .... ,-., :;|

,ml

35

(a3 _ross _yload _o_igM-=/ao I_s.

36

37

iii ;4,!.I_:,$&_

:j! H:t++_q;_ti|1::tm_,:l_'h_"bti*l+'+[ii .....................

: : = r--

ili:: l!!l!i!tiltitt_

_i" " ::h 'hr:_::]

i!i iiiti:;iiliiii|!:;!tilH; ; IIFlt I1+1_÷ q_t ff++t+4

,. :_!!!!!_

+.++

I_0,000 _.llO0 9@,000

38

lt,O00 tl,OIlO B.O00 a,O00

(_.) _ross p_ylo_d _ei_h-/-= leo Ibm.

_O.O00 _t,O00 m,O00 'lOgO00

39

_!!i!iii:_Fi!i iili :if!

ii! t_i iili

..... :iI:

_i!i1_!iii!

i].-'.!ii

i[ x,

7! :_ i!;-

,:_ .° :,q

if! i_ _iii!

_iii:

_I fill iiii_

!ifi i!ili_iff;I: :::_ ::[_

tM:H

i:i

:H

i:ii

!L

;ki

tt:_

i

ii!i _!!i!

'-Ti !i!:.i!i: ]ii:

iii iF

I::

:ii :)!;e.f_

!=

H: : :

.... :;L

:ti

_ :_?

*:: ?Y!!:

:H

_LH:

_244?4"

1

I_

::::F :}_ '=L_t•. :.', ::it

:ii[ Jt

il!il !i i::2: -

ii.' i_i _it:;i!i:Hii

"_/W IE:$,z¢.

i: ii

_4

iN

iii iiiii

'[ : :Yr:

i_ii ii:i

iii :_

N :!i_

/:-9,_,e_.-G,,÷i,,,ed.

40

+ _ .......

: =: ;; :; :

=[;,:;L ;; :

__.-_:i;i I _i_i

i_iiiiiii_.iii:i

_T_n:/;!!!!.!!!:_!

[:_ !!!ff! !!fH-,lr ffi.f+_l+H

L_L;::;_-Hi!+!:

41

cJ

,..i

++

o'i

++t_

3++

c_

§

t.-,

+t

_o

i/

"//

I//___ _ Gro_ p,_Ho,3

__._oo

/oo

i --7+-

(,'-J]+.++4 ,+,,_],_: 7J-"

42

i !i if:: i::i

i;i • J :i x!

-qiil i_-

iil ii_; :,_;ii

: :: x ,• : :::

:: !_i iil i

£ i;:! .!]i]!_ !;i ;: :'

,t

:: : : :

_F ::.:

=:: ii::!:

ii_:!!!

..... :4

-:]II:: ]

st

:-t

_5 N} t

_N

#J

43

...... T!L' !t i'2 "

•_,I_!._. 2: ,;_ T_ _-

P:Il;_::Im. ....i::i:::i_:!i:J

• .,, ii_iiii!ii_i;i!:,ii! ;_i;ii<_

i: _ilti "T "

iil, .iT:.i! £ i :

_rI I!;_! !_t: t!:I;_ ;:

:: iFi_i[../_!iii:.

:::2it_:i .....

_: i[:i

44

]t; i ....

-2t._

% t% - :

•._ \

i:'g

: i

....!... L-.ii

....... ii

!!!_:dt !]i

.: | HI

d:i:_m-t_

%1,,

' I I

....,; :4-:1' i J

;.i. _: '' "

I'

t2±:£Ji_

_" I---- _

• a.-_II:q ;; i m,,.!

45

46

_:. i!i

fit H_

_. L.

:r; •2..:-

L_

-:!- N I

. _

£_

i;i:

!:

I:Li

[:i i

i _i :'I

k:!_ :e

i::ii )_i!ili :*

!

i ....

_ Ze/Z.i

_ ;._

#, i:

_ !i -_

:i:, _lii: ;il

-2 ::;.

i!! _L!

!i_2 _

L

!:

ii!-÷ _

47

xJ

'lO(_ q.otI_ 9.(x_ l_.(]oo

/\''/

16.0(_ 20,Q(]O 2q.[]_

'7"i_ e. a,s _,,. '

/i.__ -

ca)_,uneh ,._/e - 7_"°

48

i

49

T

i •

50

TO

OPTIGq_tJ. FORM NO. 10 SOI0-107

MAY I1_1 arD|TI_4

alia GIN. 11116, NO. IT

UNITED STATES GOVERNMENT

Memorandum: Flight Performance Section Files

DATE: 9 February 1966

FROM :

SU BJECT:

Mr. Edward E. Mayo

Flight Performance Section

TOMAHAWK DYNAMIC MOTION STUDY

REFERENCE: (a) Nicolaldes 0 Dr, John D,: Stability of Free Flight Missiles. October

1964,

(b) Memo of 15 March 1965 t Mr. Edward E. Mayo to Flight Performance Section

Files m Subject: Nike-Tomahawk Particle Trajectory

(c) Ston% G. W, s and Connell s G. M.: Range Safety for the Nike-Tomahawk

Rocket System with a Nine-Inch Diameter Payload, April s 1964.

(d) Memo of 29 June 1965 s Mr, Edward Eo Mayo to Flight Performance Section

Files s Subject: Effect of Payload Weight on the Tomahawk Mass s Static

Margin s Static Stability and Natural Frequency Characteristics

(e) Memo of i0 September 1964 s Mr, Edward E. Mayo to Flight Performance

Section Files t Subject: Effects of Payload Weight and Length on the

Cajun Massy Static Margin I Static Stabilitys and Natural Frequency

Characteristics,

(f) Memo of Ii August 1964_ Mr, Edward E. Mayo to Flight Performance Section

Files s Subject: Effects of Payload Weight and Length on the Apache

Mass s Static Margin_ Static Stability 9 and Natural Frequency Character-

istics,

(g) Stoney George W.: The Magnus Instability of a Sounding Rocket, AIAA

Paper No, 66-62, AIAA 3_d Aerospace Science Meeting, January 24-26_

1966,

(h) Price i D. A. s Jr. s and Nelson s Eo O.: Final Report for Aerobee 350

Lock-ln Study, Lockheed Missiles and Space Company. 1965,

INTRODUCTION

The purpose of the six-degree-of-freedom simulation study disclosed

herein is to investigate the Tomahawk vehicle dynamics at (i) booster

separation t (2) resonance s and (3) post burnout conditions. The effects

of fin misalignment s thrust misalignment and eecentricityj roll ratep

static margin s level of pitch damping_ and center-of-gravity offset are

singularly investigated, The vehicle dynamics at booster separation

and resonance are compared with equilibrium solutions of reference (a).

Post burnout coning motions are currently under investigation in a sepa-

rate study,

51

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

CONDITIONS OF STUDY

The six-degree-of-freedom simulation time interval was from Nike booster

burnout (t = 3.5 see.) to approximately atmosphere exit time (t = 50 sec.).

The initial conditions for position and velocity at 3.5 see. were obtained

from the 80-degree sea level launch particle trajectory runs of reference

(b). The initial conditions are:

Payload Weight, ibs.

Part, TraJ, Run No.

t_ see,

Ref. _ Gi deg,

Ref. @G_ deg.

_G, deg.

_G, deg.

h, ft.

VEj fps

r E' deg.

A E s deg.

i00

084

3.5

-75.480

37.830

-75.483

37.83

4569.25

2494.36

780589

9O

125 150 200

078

3.5

-75,480

37.830

-750483

37,83

4503.25

2457 o57

78. 572

9O

O85

3.5

-75.480

37.830

-75.483

37.83

4.%38.7 5

2421.68

78.555

9O

09O

305

-75.480

37.830

-75.483

37.83

4315.25

2352.92;

78.521

90

The initial body orientation and body rates were assumed to be 4-degree

angle-of-attack and 720 deg/sec, roll rate t respectively,

A 0.2 degree angular thrust misalignment and 0.01 foot thrust eccen-

tricity was assumed with the point of application at the base of the vehicle.

A 0.2 degree fin misalignment and a fin center-of-pressure location 7 inches

ahead of the base was assumed. The thrust and fin malalignments are consis-

tent with those used in dispersion studies performed by Sandia Corporation

(reference c). In the study presented herein, the malalignments are always

in the worst possible orientation. The vehicle mass and aerodynamic charac-

teristics are presented in Tables I through XV as obtained via reference (d)

and additional calculations.

The slx-degree-of-freedom simulation cases are summarized in the follow-

ing table,

52

Ruin PayloadWeightt Ibs.

192

187

193190191

195i 188

189194

i00

125

200

125

125

i 125125

125

! 125

Thrust

Malalignment

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

Fin

Misa lignment

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Fin Cant i

Min. t21 see.

16 16

16 16

16 16

18 16

14 16

16 16

16 16

16 I 1616 12

l__L

I

i

I

i

i

0

1

1

1

* Cmq multiplier

DYNAMI CS

Roll-Pitch Rates. - The Tomahawk vehicle has four (4) wedge-slab type fins

which may be canted from 14' to 18' to produce the desirable roll history.

The estimated roll forcing and roll damping coefficients are given in tables

13 and 14_ respectively. For canted fins s the roll rate is proportional to

the vehicle velocity. An examination of the Tomahawk velocity-time history

will reveal that canted fins are desirable as roll producing devices. This

stems from Cl) allowing the roll rate to remain safely below the pitch fre-

quency during coast t (2) a rapid increase in roll rate through resonance

during which the roll forcing moment is much greater than the damping moment_

and (3) the large velocity increase during burning forces the roll rate to a

safe distance above the pitch frequency°

The effects of gross payload weight_ Tomahawk ignition time and fin cant

on the pitch-roll histories are given in figures i and 2. From figures I and

2_ the undamped pitch frequency prior to resonance is insensitive to payload

weight. This was also observed in references (e) and (f) for the Capache

vehicle. The primary effect of payload weight is the change in space roll

rate which results from the change in burnout velocity. For the range of

payload weights investigated (i00 to 200 Ibs.), the space roll rates are

within 5.5 _ 0.5 CpSo From figures l(b)(1) and l(b)(2) t there is essentially

no effect of Tomahawk ignition time on final roll rate.

53

The effect of fin cant on the roll rate history is given in figure 2

for a nominal payload weight of 125 ibs. and a Tomahawk ignition time of

16 seconds. Also shown on figure 2 are equilibrium roll rates computed by

Pss =(1)

Initially_ at t = 3e5 sec._ the actual roll rate value is the assumed 2 cps

initial condition. The roll rate reaches the steady state value within

about 0.2 see. and remains nearly equal to the steady state value until

Tomahawk ignition. There is considerable lag during thrusting which is

attributed to vehicle longitudinal acceleration coupled with roll inertia

effects. After burnout t the actual roll rate overshoots the equilibrium

value by approximately 0.5 cps at t = 50 seco The space roll rate is pro-

portional to the fin cant and the roll rate for all fin cants investigated

is within 5.6 + 0.75 cps.

Booster Separation. - The initial disturbance at booster separation damps

from 4° to i° in approximately I.i second. See figures 3 and 4. This is

in agreement with the 0.57 second Nutation and Precession Arm half life

time computed from the equilibrium solutions given in reference (a). Hence_

the disturbances of the Tomahawk at booster separation are heavily damped

and should not impose any serious flight abnormality.

Resonance. - The effects of gross payload weight and fin cant on the com-

bined angle-of-attack build-up at resonance are given in figures 3 and 4_

respectively; and the maximum combined angle-of-attack is compared with

equilibrium solutions of reference (a) in figures 5 and 6. The maximum

combined angle-of-attack is approximately 4 degrees and is within i degree

of the equilibrium value. From figure 5, the effect of varying payload

weight (and, thus s minimum static margin) has a relatively small effect on

the maximum combined angle-of-attack. This can be explained by referring

to the static margin histories given in reference (d)o The resonance time

for the Tomahawk is approximately 20 seconds; whereas_ minimum static mar-

gin occurs at burnout (25.5 sec.). In going from a gross payload weight of

200 Ibso to iO0 ibso, the minimum static margin decreases from 4 calibers

to 1 caliber; whereas t at resonance time s the static margin decreases from

5.25 to approximately 3o25 calibers. Similarly 0 for the case of zero mini-

mum static marginp a static margin of over 2 calibers exists at the resonance

time. The small change in _ max with varying fin cant exhibited in figure 6

is expected since_ referring to figure 2_ the resonance time spread for ex-

treme fin cants is only 1.25 seconds.

54

_e effects of the various trim producing malallgnments and aerodynamic

parameters on the vehicle dynamics were singularly investigated. The effects

of thrust malalignment_ fin misalignment and level of pitch damping are given

in figure 7 and the vehicular constraints, together with level of pitch damp-

ing and axial force contributions to the equilibrium resonance build-up are

presented in the following table.

P

= 16's Wp = 125 ibs., t2 = 16 sec.

Motion

P

rad/sec

P & Y 14.89

P, Y, H

& Sw 14,89

P, Y, H,

Sw & Su

P, Y_ Hs

s_, Su, 1

& Cmq=O I 14.89

P, Y, Hi iS ISw, u, i

& Cx = 01 14.89

14.89

&)1

rad/sec

14.43

14.43

14.43

14.43

14.43

AJ2

rad/sec

-14.33

-14.33

-14.33

-14.33

i/see

Where P & Y

P, Y, H, Sw

-°37

-.60

-.82

1/see sec

-.37 '_1.86

-.60 '_io 15

-,82 ,85

-.53 -.53 11.32

-14.33 -.83 i-083

I

Pitching and Yawing

.83

K.,

I_2 : °O

sec ideg

1.87 .60

1.15 .60

.85 .60

1.32 .50

.83 .60

Pitching, Yawing, Heaving and Swerving

K 3 K 3

K30 degi

18.95 11.37

11.75 7.05

8.67 5.2O

13.47 8.08

8.49 5.09

P, Ym H, Sw, Su Pitching, Yawing, Heaving, Swerving and Surglng

From figures 7(a) and 7(b) i the fin misalignment accounts for approximately

40 percent of _ max0 while the thrust malalignment accounts for the remaining

60 percent. The effect of level of pitch damping on the motion is given in

figure 7(c). From figure 7(c) and 6, a 15 percent increase in _ max occurs

if Cmq is assumed zero° This is considerably less than the 55 percent increase

55

predicted from equilibrium solutions, See above table, The level of

pitch damping had a pronounced effect on the post burnout coning motion.

As seen from figure 8 s the Nutatlon and Precession Arm damping rates

after burnout decrease exponentially with time. (Figure 8 is for full

estimated Cm .) Hences the degradation in damping due to decreasing

density_ aerodynamic coefficient degradation and post resonance residual

motions can result in large post burnout coning mot_ons. It _hnuld be

noted that the poet burnout conln_ buiLd-up exhibited _n t1_.r, 7(c)

mary., only ae an indicator that the dampin_ rate o[ tl_u Nut,_t_on _m, ltur

_rocee,lon Arm te sour, In the ,tudy herein o the Ma&nus _urm (wl_lcl, _p-

pears with Cm_ in determining the Nutatlon and Precession Arm dampln_

rates) was neglected. In reference (g)_ the Magnus moment coefficients

were extracted from divergent flight characteristics of the Tomahawk w_hi-

cle and were shown to be large, highly non-llnear and to vary rapidly with

Reynolds number. The post burnout coning motion of sounding rockets is

currently under investigation in a separate study by Mr. James McGarvey.a Fairchild-Hiller employee.

Lateral Center-of-Gravity Limit. - As noted previously, the Nutation and

Precession Arms are heavily damped prior to resonance, and _max at reso-

nance is in agreement with equilibrium values predicted by resonance

instability theory. Thus, _ max can be estimated by procedures such as

described in the Appendix, The resulting _ max versus time is given in

figure 9 (p = &2 ). Figure 9 illustrates that if "lock-in" occurs, "_maxwill grow exponentially until flight failure. The allowable center-of-

gravity offset (or induced rolling moment) to insure a break-out of

"lock-in" was estimated according to the procedures of reference (h)°

Considering _C.G. = 0 i then the induced rolling moment required

to maintain "lock-in" may be approximated by

= +C- /&_d" C1 i _CI_ lp_ W ) (2)

The resulting C1 values are given in figure I0 as a function of time

and fin cant angle. Figure I0 is interpreted as follows. If an induced

rolling moment of -0.015 exists, then for _ = 16' roll "lock-in" will

be maintained until 20 sec. (_ max _6 ° from figure 9) at which time

break-out occurs. If for the same cant angle, an induced rolling moment

coefficient of -0.030 exists, then roll "lock-in" will be maintained

until 30.5 seconds (_max = 20o from figure 9) at which time break-out

occurs. From equation 2 and as seen in figure i0, the allowable induced

moment is a direct function of the fin cant angle.

56

Conalderlng Cli = 0 and the worst center-of-gravlty orlentatlon t the

a11owable center-of=gravity offset may be approximated by

12dA C.G. = ( _ + Clp) (3)

CN,c _ max Cl$

The reeultin 8 _C.G. valuee are given in llgura II aa a function of tlme end

_In =ant angle, F_sure ii le interpreted llmilar to figure LO, For S • 16'i

& eentar=of=Bravlty effect greater than 0,165 inchee can prevent break=out

from "lock-in"; whereas i for _ C.G. _O.11 Inches s break-out occurs at

t = 20 sec. (_ max = 6o from figure 9). From equation (3) and as seen in

figure II t the allowable center-of-gravity offset is a direct function of

the fin cant angle,

CONCLUDING REMARKS

The significant conclusions of the enclosed study may be summarized

as follows:

. From consideration of the vehicle's inherent velocity-time his-

tory, the canted fin roll control design appears attractive.

28 The undanped pitch frequency prior to resonance is insensitive

to payload weighto

o The space roll rates for all payload weights and fin cants in-

vestigated are within 5.6 Z 0.75 cps.

e The disturbances at booster separation are heavily damped and

should not impose any serious flight abnormality.

5o The maximum combined angle-of-attack at resonance is approximately

4 degrees and is within 1° of the equilibrium value. The build-up

at resonance is insensitive to payload weight and fin cant.

0 Fin misalignments account for approximately 40 percent of the com-

bined angle-of-attack build-up at resonance while thrust malalign-

ments account for the remaining 60 percent. (Only fin and thrust

malalignments were considered.) The build-up is insensitive to

the level of pitch damping.

57

e

8.

The degradation in damping due to decreasing density i aerodynamic

coefficient degradation and post resonance residual motions can

result in large post burnout coning motions,

Conslderln 8 6 = 16' m _ C,@. = 0p an induced rolling moment

coefflclent I Cll I of -0,030 is sufficient to sustain roll "Iock-iu" until t = 30.5 seconds ( _ max = 20°), C°nslderlng _ = 16'B

Cli = 0 t a center-of-gravity offset i _ C.G._ greater than 0.165inches can prevent break-out from roll "lock-in" andj thus, flight

failure,

cc: Mr, Ko R. Medrow

Mr, G. E. MacVeigh

Mr. E. E. Bissell

Miss E. C. Pressly

Mr. N. E. Peterson

Mr. J. S. Barrowman

Mr. J. F. McGarvey

Mr. C. G. Thomas

EEM: skd

Edward E. Mayo

58

AI_PENDIX

RESONANCEINSTABILITYTHEORY

As evidenced by the six-degree-of-freedom runs and substantiated from

librium solutions_ the Nutatlon and Precession Arms ar_ heavily damped0o6 sec,) and reach extremely small magnitude,_i>r_c,r to resonance.HenceI the purpose of the equillhrium solutions herein wa,_to establishhowwell the combinedangle-of-attack at resonance could b_ predict_,d byresonance instability theory.

From reference (a) 3 the rolling trim arm9 K3_ at resonance is givenby

N3K3 = _i _2 - i _I (p " _2 ) (A1)

and the non-rolling trim arm_ K30 _ is given by

N3

K30 - N2(A2)

Dividing (AI) by (A2) and rationalizing_ the magnification factor K3/K30may be expressed as

K3/K30 = 'AI(_2 )2 + _l (p - _2 )Z _2)2 + (p " g'_2)2 7(A3)

Neglecting Magnus effects_

N2 = . _M_cI

Where Mac : Cm_qsd

Neglecting Magnus and apparent mass_ the damping rates_ _i and_2_ for

the Nutation and Precession Arms are given by

59

APPENDIX

-_ Cxqs + T I Cz_qsi "_" k" mV + 2Vm

M_C1 -_) + "'_ (1 +'r )

2I

Cxqs + T) CB_qs M__2--_'" mV" + _ (I +'_ ) + (i -'_)21

Where Mq = MqAer ° + Mqjet

c_.d +_(XcgXe)2 {= Cmq ~_, - .

i"C---

. i "i _f

ix ) 2_s--- I--P

The rotation rates_ _i and

given by

21 for the Nutation and Precession Arms are

iV ira= P Ix (i - --_-)

2I

P Ix_2 _= 2I (i + ____i)

The non-rolling trim arm K30 is given by

K30 =T(xcg - Xe)(Sin _ +) t)

Mg_: Cm o,=

60

APPENDIX

and the magnitude of the rolling trim at resonance m_y be determined from

= ( K-/-3K30 ) (K30)K3

The Nutatlon and Precession half lives are given by

I in(i/2)

1

_2 = _2 In(I/2)

The foregoing equations were progra_ed by C. Hutton to yield the

equilibrium solutions enclosed herein.

61

S_IBOL S

CD

CI i

CN_

Cm_

Cmq

d

h

I

Ix

K 1

K3

K30

m

L.#

M

P

Drag coefficient

Induced rolling moment coefficient 0 Liqsd

Normal force coefficient curve slope at ,c= 0

Pitching moment curve slope at "_ = 0

Damping coefficient,Cm

Aerodynamic reference length, °75 ft.

Nutation arm half life

Precession arm half life

Altitude

Pitch moment of inertia

Roll moment of inertia

Cmq multiplier

Rolling trim

Non-rolling trim

Vehicle mass

Induced rolling moment

Mach number

Roll rate

q Pitch rate 62

SYMBOLS

S

T

t

t 2

V

W

x

F

CoG.

_2

IG

Aerodynamic reference area, 0.4418 ft. 2

Gyroscopic stability factor

lhrust

Time

Second stage ignition time_ sec.

Velocity

Weight

Longitudinal distance measured forward of base

Lateral distance measured from x-axis

Angle-of-attack

Flight path angle

Center-of-gravity lateral offset

Fin cant angle

Fin misalignment angle in X-Z plane

Thrust misalignment angle

Combined angle-of-attack

Nutation damping rate

Precession damping rate

Geodetic longitude

Azimuth

/

i! I - Es

63

SYMBOLS

I

2

Nutation arm rotation rate

Precession arm rotation rate

SUBSCRIPTS:

C

Cogo

cop,

e

E

f

i

max

P

t

T

Coasting

Center-of-gravity

Center-of-pressure

Nozzle exit

Relative to the Earth

Fin

Induced

Maximum

Payload

P3int of application of thrust

Thrusting

64

LIST OF TABLES

Tabi e

I

2

3

4

5

6

7

8

9

iO

II

12

13

14

15

TomahawkCoasting Drag Coefficient

TomahawkThrusting Drag Coefficient

TomahawkNormal Force Coefficient Curve Slope

TomahawkPitch DampingCoefficient

TomahawkPitching MomentCurve Slope

TomahawkSea-Level Thrust

TomahawkCenter-of-Gravity Location

TomahawkGross Weight

TomahawkRoll Momentof Inertia

TomahawkPitch and YawMomentsof Inertia

TomahawkCenter-of-Pressure Location

TomahawkFin Lift Coefficient

TomahawkRoll Forcing Coefficient

TomahawkRoll DampingCoefficient

TomahawkJet Damping

65

LIST OFFIGURES

Figure

I

4

Effects of gross payload weight on the Tomahawk undamped pitch

rate and roll rate histories.

(_) Gross payload weight = I00 Ibs., t2 = 16 sec.

(b) Gross payload weight = 125 Ibs.

(I) t2 = 16 sec.

(2) t2 = 12 sec.

(c) Gross payload weight = 200 Ibs., t2 = 16 sec.

Effect of fin cant on the Tomahawk roll rate history. Gross

payload weight = 125 ibs., t2 = 16 sec.

Effect of gross payload weight on the Tomahawk combined angle-

of-attack history. _ = 16' 6 = 0.2°p ) t, = .01 ft.jf = -O.2 deg.

(a) Gross payload weight = I00 Ibs., t2 = 16 sec.

(b) Gross payload weight = 125 ibs.

(l) t2 = 16 sec.

(2) t2 = 12 sec.

(c) Gross payload weight = 200 Ibs., t2 = 16 sec.

Effect of fin cant on the Tomahawk combined angle-of-attack

history, _ = 0.2 deg., _ t = .01 ft., _f = -0.2 deg.

(a) _ = 14'

(b) _ = 16'

Cc) _ = 18'

66

LIST OF FIGURES

Figure

Effect of gross payload weight on the Tomahawk maximum combined

angle-of-attack at resonance, 6 = 16', 6 = 0"2o' 2 t = .01,

f = -0.2 deg.

Effect of fin cant on the Tomahawk maximum combined angle-of-

attack at resonance, _ = 0"2°, 2 t = .01 ft., _f = -0.2 deg.

Effect of thrust malalignment, fin misalignment, and level of

pitch damping on the Tomahawk combined angle-of-attack history.

= 16' _ = 0"2o 5t = 01 ft _f -0.2 ° , K 1 = i 0* D e "' = "

t2 = 16 sec. except as noted.

(a) _ = 0 deg., 2t = 0 ft.

(b) _f = 0 deg.

(c) K I = 0 _Cmq = 0

Equilibrium Nutation and Precession Arm half life history.

Equilibrium combined angle-of-attack history for "locked-in"

condition. E = 002 deg._ 2 t = .01 fto_ _f = -0.2 °.

i0 Magnitude of induced rolling moment coefficient required to sus-

tain "locked-in" condition. _ = 0"20* _t = .O1 ft.,Sf = -0°2 ° , _ C. Go = O.

ii Magnitude of center-of-gravity offset required to sustain

"locked-in" condition. _ = 0.2 ° , 2t = .01 ft., _f = -0.2°_Cli = O.

67

IABLE I

TOMAHAWKCOASTINGDRAGCOEFFICIENT*

!

M

1.25

1.6

1.9

2.2

2.5

2.9

3.25

3,5

3.75

4.

4°3

4.75

5,25

6.

7.

9.

9990

1.165

I,

.9

o8

.73

.65

.6

o565

.54

.52

.5

.472

.445

.415

.38

.315

.315

*Aerodynamic reference area = 0.4418 ft 2

68

TABLEII

TOMAHAWKTHRUSTINGDRAGCOEFFICIENT*

M CDT

1,25 °955

io95 .8

20 .725

2.2 0675

2.45 .625

2.7 .585

2.75 .57

2,9 .55

3. .54

3,I °525

3.35 .5

3.5 .49

3.75 .47

4. I .45

4.4 .44

4.9 .415

5.85 .385

9.0 .29

*Aerodynamic reference area = 0.4418 ft 2

69

TABLEIII

TOMAHAWKNORMALFORCECOEFFICIENTCURVESLOPE*

M CN

1.2

1.43

1.6

]o8

?,,0

2.25

2,5

3.0

3.4

3°75

4.]

4,45

38°96

2_Io19

23.66

22.0

19.6

17o88

16.44

14, 1

12.95

12,03

11.34

10.77

M CN_

4.8 10.43

5.15 10.O8

5,6 9.74

6.0 9.51

6.55 9.28

7.0 9ol]

7°5 9.0

8,0 8°94

8°5 8.82

8.85 8.82

I0o0 8,82

* 1. per radian

2. Aerodynamic reference area = 0.4418 ft 2

70

J

fl

•-I o0 _ _ _ o_, t'_ o_

CO oO0 u_ CO _ 0 oO r_. _D _C, I'_ _ I_.

I I ! I I I i i I I I I I

o _

I-.4

i-I

0.,-i

oO

l-I

OJ

.IJcO

oJ

v

_O

II

0.PI4.J.pl

OD

aD

_4

II ,._

U U

_J _J

0 '_0 _ oo _ CO ,,@ _D ,._0 _ oo ,-n I_ _ oO _ "_D _ 00

I I l I I I I l I I

0 • 0 i"_0 _ •

',.0 O0 '_00 o4e _ _ 0 0 _ • •_ _ _ J " _ _ _ _ o

I I I I I I I I I I I I

u_ u'%

U"l

"El

II I-I

ID" I-I

e_

.1<

E.,.4

IJr-

L_

71

u'_

!

m/

/// :

eooooooeooeooooe$oooooooooeeo

llllJllll|l|lll|lllll|l||lll|

J I ! I t ! ! I ! ! ! ! ! ! I I ! ! ! ! ! I I I ! I ! ! ! I !

,--I

0

I-4

0(_)

Z

Z

M

1

©

r%l

i ¢ I II I I I I ! t I l I 1 8 I I i I ! I I I I ! 1 I I i I

0

,,--I

0

0

0

-M

¸¸

.: ......I I I I I I I I I I I I I I I I I 1 I I I I I I

0

II

C_

F-,n

0_0_00_0000_00_00_0000

ll|l|llllllilJllliilllll

oh 0h ¢_ on o'1 c-_ I_l 4._0

I I ! J I ! J_

....... 1-10.) _)

_ 0 _

o° __o,_o-__''"'_"• • • _ ___%_.• • __o _o"! I I | I I I 1 I I I I I I I I I ii I | I I I I I IL I I I I

• Q.)m _ ._

_.o o o o o _._ o _ _0_ _ _. _% _ _._ o_. _. _ _ _. _ _.

0

72

TABLE V_

TOMAHAWK SEA-LEVEL THRUST

t u sec*

0

.i

.17

.22

.34

o9

i°I

1.6

2.2

3.

3.5

Thrust, ibs, _it, sec*

0 5°

13847 5o3

12668 6o

12766 7o

11736 7.81

12030 8o

12080 8o 15

11785 8o 5

11588 8°72

11736 9°2

11686 9.5

I

Thrust, ibs.

11293

10999

9968

8888

8347

8004

8053

7268

5892

442

0

* Phase time

73

%

O

00

H

_DB.,,4

O

0,D

_Da0

0

!

M

O

_o

_P

_DE.,-I

O

r_

.._, /

o_ _ _ _ I_ • o_, O _ o"1 _'_

o_

_D

O ._

,,_

74

5

5

U

_9

Jl

0

.rlr_aOH

aO

j+

o_

+

0

o

_0 Oq O0 I_. 0 _ MD _ 0 O0 0 0• • • o

_D _D MID _0 _ 0"I I_ Oq O_ O_ _N IN 04

0IZ_ 0 0.I IZ_ 0 0 0 0 0 IZ_ I_. 0 I_I

• • •

• " " _ _ o _o o o_ _ _ _ _ _-_- _ o_ _._ _ o_ _ 0 l_ _ u-_ _

u_cq

J• --

_o

II I 00

•! . //

_ _ o_ _ _ _ _ o _ o o• _ _ _ _ _ = _

MD MO u_ _a_ _D I'_

_ 0 0_ __ _ _ _ g _ o _ o o

• W.

00 o..I _ 0 0 0 0 0 _ _ 0 Lr_ 0

_ _ ,_ - • _ ,_ ._ _ ._ _ ,_ •

0

.I.I

,i-I

I-i

:::1

75

H

0

aO

aO

.#

Z

oZ

o_

0

H

r"0

c_

00

0

...I" -4r u_ uho_ o_ 0 0

o_ o'_ 0 000 00 0 0

00 GO c_.

0 _ _ 0 00 I_ r_ _ _'_

r_

76

_D

Ir

_DE

O

a0

_D

,-._p

_D

O

Z

1

M _

I ®

II

0.r4

t-t

I1)

ff'l

O O

O

77

TABLE XI

TOMAHAWK CENTER-OF-PRESSURE LOCATION*

M

1.2

2.3

2.75

3.0

3.5

4.0

4.5

5,0

5.8

6.4

7.0

8.0

9.0

i0.0

Xcp I ft.

1.523

3.192

3.718

4,002

4,468

4.865

5.218

5.518

5.93

6,23

6.51

6.905

7.258

7.258

* Measured forward from base

78

TOMAHAWK

M CL_F

0 15,563

.2 15.659

.4 15.958

.6 16,51

,8 17.42

1.0 18o946

io2 20,555

1.4 18.899

1.6 17.266

1.8 15.369

2.0 13.814

2°25 12.144

TABLEXII

FIN LIFT COEFFICIENT*

M

2,5

2o75

3.0

3.5

4.0

4.5

5,0

6.0

7,O

8.0

i0,0

15.0

!

CL_F

i0o815

9.748

8.924

7. 583

6. 567

5.842

5.252

4.382

3.742

3=266

2,606

I,732

* i. per radian

2, Aerodynamic reference area = 0.4418 ft 2

79

TABLE XIll

TOMAHAWK ROLL FORCING COEFFICIENT*

M

0

.2

.4

.6

.8

1.0

1.2

1.4

1.6

1.8

2.0

2.25

ci_ M ell

31,977 2,5

32.174 2,75

32.789 3.0

33.922 3.5

35.792 4.0

38.926 4°5

42,233 5.0

38.831 6.O

35.476 7,0

31.5V8 8.0

28.382 lO,O

24,952 15.0

22,221

20.028

18.335

15.58

13.492

12.004

10.79

9.003

7.689

6.711

5,354

3. 558

i. per radian

2. Aerodynamic reference area = 0.4418 ft 2

3. Aerodynamic reference length = 0.75 ft.

80

TABLEXIV

TOMAHAWKROLL DAMPING COEFFICIENT*

M

0

,2

.4

.6

.8

I.O

1.2

1.4

I.6

lo8

2.0

2.25

MC1,F

"84,805 2,5

"85,327 2.75

-86.959 3.0

-89°963 3°5

-94.924 4.0

-103.236 4.5

-112.004 5.0

-102.982 6.0

- 94.085 7o0

- 83.748 8.0

-75.272 i0.0

- 66. 175 15.0

-58,931

- 53, ]I_,

-48.626

-41.318

-35.782

-31o835

-28.617

-23.877

-20.391

-17.798

-14o198

- 90437

w . :I Clt _ _ _ _v)

2° per radian

3. Aerodynamic reference area = 0°4418 ft 2

4° Aerodynamic reference length = .75 ft

81

II

_°_

Z

H

"0

v

o,J

II

.,.4

r"0

.,-I

a-I

"0

II

.,-I

0

.,-I

O_

I-I

aO

,.-0 !

/ Z

8

I_, .,I" _ _ _ I_

o o _ _ _ _ _ _ _" _ _ o oi ! I ! I ! ! I I

o _ _ _ ._ _ _ _o o_ " "

o o _ J _ ,_ _ _ - " _ o o_ _ _ oO oo _ 0 0

! I ! I I 1 ! I I

o o _ _ oo _ _ " _ '_ _ o o| I I | I I I I I

o o _ ,_ _ _ _ _ _ _ _ o oI I ! I I I ! I I

e_ r_

o o _ o_ _ 2 _ _ _ _. o0I I I I I I I I "I

o o _ _¢ _ g _ o . g g o oI I I I I I I I |

o = _ _ _ o_ _ _ _ _ 4 4

E

82

NIKE T_MRHRWK RUN 192

6m 10,

TIME FRBM LRUNCH, 8EC._0o

83

NIKE TOMAHRWK BUN 18_

_m I0o 15, _, _o _.

TIME FROM LAUNCH, 8EC,

_s _t

84

iiiF

I:H:

,444_

"3" :;1:1

o--i_

- l;il

2111

ii:II

I:R

i!!i!;:I

I÷:,+

H_b

HI:

"t:t Itt_• _4. 4*H

i'H

ii!{ !i_{X:[ H::

:I:: ;:;1:it: _T

.... U,I

;:'J, it:!

F.:I :li:

;.t¢&

i:il 'd:!

r'_: ill:

i:Ji !_!_i'!!ii!_:iiii!,_i:H! !!i!

',!ii_;u:il: !i!l_ Ld;:;; H::

!! ....Hft

_+ _-÷,

_ +.+÷

N, ifil

,Hi ;.;;

rHl Nit

ii_i!ii':

i:il I!ii

!!q hU

4;a::!; I:H

:!! iiH

i_il....

t!N ,

?:i:

11:1

ihl

_fH

UI;

k!!

.u;

;:t;

ii!i

ti;!

ill:

ItH

i:t!I:H

Hft

!tH

ttt.

lrr,

_JIF!

!q-

H:,!!d

!!H1111

,H::r;-ttt

!:d_:.

H:

i;i

iii_;_:t#

_U

T:

i !

i:;i u

UI

!!i

tff.

i;it:Itfitq

If!

UII

Hi:

_tt

J;H

85

NIKE TOMAHAWKBUN 198

:i.i

rT"

iii!!!!

:1.

i:

) L:z

ii: _4ii[ '_'+

.,i __!!! _:

i:,i

86

87

_4

¢1.....

!!iF¢!il

2: .! :

,,,n 1. -

[ ;:Jl:

? i :/i.<

::i_<!'t

'][i:i! !'|!:

i!_i#:[!i__-2 ii!-I!2

_]1iWI&TIT

.....i!_ E-

._H"

i}l: :! m

; :X ]

---I

i] i

!ii :

/ !i/i ,7,2 _ < ' i

T: :: i: :T

i{i ,i _ ::ii

]i[ [ L£

:: h: 2X {h:

$0,

88

15,

NIKE TOMRHRWK RUN' 18 9

TIHE FROM LFIUNCH,8EC.

89

90

J.......

F-Tk_T-.

b"P i i

NIKE TgMRHAWK RUN 193

20, 25, 80.TIME FRITH LQUNCH. 8EC,,

r

I •

:r _

I:

i:

!:

li il

gN:f_ :ffi

._* i21:i [!:!

:: Zt"

_2_J

i!i .....

91

92

NIKE TI_RHFINK RUN 1B?

6m ZO. IS,

TIHE FROM LRUNCH. 8EC.

!=_,= _0o _t

93

IO.

NIKE TOMAHAWK RUN 190

TIME FROM LgUNCH, 8EC.

t_.J.

::: _7_T

_- :}_ii" ii

i: i)

ii :'i: .i: !i

if! :i

NI.

94

,. i4 ,

i!it_i!!t

t::iit!!iit

:: ...... :[i:"

z_i!.

i

;:i:m

i!iiiii ::':::,,:

: ::'I:'

:'!!i::i: :':i:-

!iitiiii i!i!!!ii!Iiill iilii!

........ :::t::

!iii'iill_ii!771!!

:::!:::

::::1:::

i!:ili!::T:_tT

,I,:.H

!!ti_1 :::

_s

t:

I!:

at

!ii:!i Ii-...... !!i:HH:

":TTt: ? :::

::iii

i: ti

:i::[

i! iil!i_i !iI

:: !it

:_1 ::!:._i ::_

ii"

i: i!it:_

:t I:IIH: !:-

N -"" !:ii

Iii. !:::

i_ ,i!!t_..!i_. !ii!!':! _::

:il

:!i . 111

•. _+÷2:

i: :::

Ti:!Ft

?i _...L_I [[

2& 22;; ;2: ._-

i 2kk_, 41:'" Jii!i_: ::i

' i!TtTTT

i:..lli ii.

ft.,

ii!i

i!• :2._

if:ii

ii ii__i::

' ilit! i! ii_

i!i[: :i ::[

:i :: :::

i;: ii:

!1:I _Ii!;

i!

i1

i :il _

!i: iti_

Ttl :,+tI ;'.

...... : Ii;:q4t: ti_

...... ::i ::[

iiiti: :i _

ii!t!il ._t_

...... !* "i!:ii:dl; _

!!!!:: ill!II: i!l

....... t!!i!!

!i!ti:i !?iili...... : !!:

!!i:I11

i:_:iii ii?ilii'*,!:: It :ii;

, ., r!

!I t_ :;HI:: _::

I, I! :i

,: iil!tii !i

ii ,i it }!! T;IdU .

ht_tt ;,i;k +.

i tHH;

i! !i _i::' ::i:

::: :: :.r:ii !i31 ::I

:_i' _'it! iit! : i_

tiiiii _i:,Z! u:

ii

::!!I:

"! "'I11_

:: ',:: IzH:t li

ii ' i:_,fi,, !i:',ttl

!! !i:,_t_t',tt

:: ?i i!l ::I

ii ; 5-ii ':i

i:! !ii:l:i

iil:!

::H ::[;÷t "r,:!i

_:1.ii

::_i

i!!::!:rm[;

!iii!ii_iiiitlIrlttt'

..... i!r,tt_

::t_" 22

ti:_ }i

:i

H

i! l!ii i::

!iij iiiii:i_!tI::!T

i::: :1

::Ii ii

÷+fi _:

i!ii ::::[ t;

_i!:1:I

!i_!ltt

ti_!i:: iiTT ,

u iit¢

2_ -s

_k ;a

+.

_i i:i

:,I m

!k "t

" IT

u __t

i

7:5

22

:i ;r:: i!

" !i:i

_i J2

ii :If

!:

ii : ti:HH

:tl :.*:

i?_ ii

:_. ![

i!: ]]

ti: tiII !t

tt

i!' ,

q: H

• _I:: iJ

t- !!!T!iilil_T

M ii !]![:i:ii! it! 'i :u,:::,11 !1: [* :11''tt

,,. i !!if!iii ii '"

i _+t_: H:ttttt

.... ::tT:;:_

" NTi', ii.!:I!:

_1¢ ]_::]: ..... "1,

:" :: !i ii

'' :" !:t

:: _:.'_i! i :

tt 11

ti :ii i_::i:i_H :_ }i

:t! i:!t' _.i* I,, 44 f_¢

r:T t ::;ill!:I:::H;:[:-! !] t;::bq:t:+ :] T3 _!_i;j

_TT _: il F:t_T:',

F! :? ,_,:I[[i

tti_ "' .....

li:. :! ......_ttt t'

t-.t -*t _1.,-.t ......

i::i.,.til i!iitt!i_11_ !_ ......

t:: :::: :: iiii'.ill

_+ _

_--, l:t_ +

i!:_iiiii

7T-- _-- I I

,. -i:i: ¸

!i ......

i! __ _'_

ili _ i.:._!_=_

:il :IN :iil!:.!!:! ....

:i*k11!1:;_

:_ .... .

:!!i i!!:}ii!

i 12:.2_-2 t::_2;;!!!;;!!!:!!

!i.............2ii ;;!il::_iti;i:::,

!!i$!i!lii!iii_

!i!:_!iiit:!i

::::I .... !i[i::i_i1_]i!....

!i..............i ii!!li_"t_

i! .........:i:!!?ii! ....

ii!:![[ :I :II

ttT _ttt ,ttt!_r

_t -ttt bt_'T?

i!!-,: i_!!

.............iit!, .tit ,ttl

J:i !!:i !!!!

i,_ii!i! ![_i ":',,,-

...........iii!tl

._:7 :Lt: t!;; :L;

...........)ii?_. _,tlIiiii_ii ....... ii[i', !:[[ ...."::!!

:_ itt' '!" t_

i:_!ii}: '.i:!

:T

!:!i !!:: i:!:

t

............;2

............ii:x- ::c ::': !:.

' ' ......... i

:![ ii', :i[ :i

,++.

:;U

i222

;!!i

i:;]!

;;t!i

:_!!:

:_tr

2!z:

_i!?!1:;i

[r;i

v:U

4zz

1:7[

[]::

I:::

_2

!_;))

!_ii!

!:iil

li_!i

ii!.:

L_Ii i:lI ,_

dI:J:!U:

_'.L.....

:1:1

-_:: : ;

::!_|itIiiii

IHIH_It!:f

!i!.........

:l!I_!l!I41

T_._r!TI ;I

5_

NIKE TOMFIHRIJK RUN 188

TIHE FFI_ LFIUNCH, 8EC.

97

NIKE TOMRHAWK RUN 189

TIME FRSM LRUNCH, 8EC.

98

NIKE TOMRHRWK BUN 195

51 I0° 2I), 2K, BO,

TIME FFII3MLFIUNCH, SECo

51],

99

: ...*'_I_!LIL_

:_ ::: FV _-

:,: !:; l'.7!F=i

!I':!!!:,_

:: :: ! :.:!!:*

.._._']iiii]illh

i

..... !i_i ii: !!!!l!i!:

:1

_ i i':: :::: ::_:liiii i!!!i!ili! I i i!: _ !i!! ii:! i_!!l!i!! fill ii!!li!i! !iii....... !!_! i'I_ ...... i!!i i!!i ;;::_.

ii_ _ iii:' :_ii__ iii! iiii_:::: !iiil:::; i ::::;i:: :_;: ....i!i! _' ......... :_ .... _"l:!:i!ili i:,_ l!il !i!;::!i:::i

: : ::: : iii :iii ::11 i::;iiii: iiii ii:i;iill :ili "_i_Iii;: T_:I _ill !iii_: ili! :_:::i_ ................................... ::_ ......... _: !!if i: :

............................. I::ii :::: :::: _ .......... _"_'' :::_ --.; _,., _i_-

:_ :::: -o:_ :_/,:,:_,.L:;::-::_-:iiii '::::

!!iii! .... ii!i"...... ii ¸¸: .... '.... !iii ......... ::::....

_!_i -'"....::':.... i:_ :::_ iiii .... i::i Fii iii! f_:_!i!ii ;;_-,-*"::iT:,,,'........ ::.... w:.... _:::: .... !id .... :ill .... i_ii_ "' ,,i: i"':i i:i! iii: 'd!!

iiii ....:::::_::::: . .:'_iiii :::::i!!iiii:!ii!!iii!iiii "'_:::x_i:'.*:':- .... X::

' :::i

................. i!i_ ill! v''! ;u" .;_--;

::::1111 :::: i_,i i171 • l_li: TTI_? _ ........

.... ii:i:i!!i !i??:fl_:.... i!_! :if! ,,,. liili!iii i:_! .... " u::

!iii :J !i;: :',,,i..... iii' " !ii: ::_ :I!;: _I: i:.i!

:::: :::: '.',::: ............. il;: +,!I: ::!', i::: ',::i

4112!-_ ':"_:+'_ :::T '::_li'!_::i_ liii! .... Ir:+:::1_._-_iiii iLi._ :lit

!iii i(_ i_ ;_:: iiii_i!i ii:¢:_T;-iiil lili ,,,_ .,,_ .+_ ::_,.,,,,t!', ii!i i_'iiii !iii !'.!i !!!! i!!i iii! i_::11',',: :'._; :_;!i :::'I .... _::_ _i:: ....

.... ..................... :.: i::: -.f

...... ' :'_f 1_:: HN !11_ !fit

....... i?ii ...........

i :_._:!m ::_t ii_:[ ii!! ',::I !!ii? !E!i::::: ;:_t:,_;_:,m+_.+: _ii_t!11]l]i :_:, ' "'+'..... :iii ;;'I ii;_ t111 ilil tllJ ;ttll]T![ ÷_t_ ',,,_ ...........

]'_]:[111'.i::_,.::_::_1i!t ........ ',:_ i:lti::i!

ili i!!! i?ii iF! iiil ,t; !iti !i}t ,,:::_tu:._,..tu_:._i!tt::_: ,.*tti!_*rq....!it tttt [!]:!ttt" f11! tftl :_t_ ''l'.t! ¢

l!i_lil:!i!i::!iiii

:.GJ

i: ::!;

"]]:

":111_:::;'_

H

iiil

.....ii

iiiii_l

2!!II

::111!iiiiM

!!g!!u..... tl

;+Lt:H _*

liIIu

.....ii

.....ti

tttC!

i_F+!t'::

t_t?tt ttH.,

b:_i!::

ii!i :i!!

!::t it:'

ili! _!:;÷_+..,.+

Htt :':T

=:_:::t_:" !!TI

!,

! ii.1

_-_

::'t ;:::

T;:: H::

o.++ ....

"_ fiX:

i!!i ::_!!!:i i:!!

:::_ i!iliiF _._: !!!!F÷+, ..++

H!! T:T!

i;:: H::

]]][ tt tt

CtTT iT+T

iii!....

....iiH

_Ni i;;

i;i1 iL;

TT!T TT!!

++.+ ++,i

t_1# *++*::11

+*+*

:TT ..TTT: _ ::R" "'_ .....

17" Tit* "Tit "'t: ::_:L_::.

,.. ++.. + .... _ .... +_ ......... t .... t ........ ' .....,*- ++, ............ * .....

' .... t ..... :::: .... :it:

!iii!!ii!iiii:!ii!!'iiiii:::

'.:: "*: !i_i!E!i_iiiili_!; ::T?:t_ T"_ t!:" ,,,

_:: +qz .... ::t_, "

ii:: :ili i!_i .... '::_,.. ,.;, ......... ÷H ***, _ ......

....... ;-.'_ ili[; _!t: ..._ :::_ i,._,l,.;'.:'.,

_:_ :::: I::: _:: :,-

!I;T t'.i: :_t_ ....

!:i u" F!

iii .....................!11::' :::: _ !::i u.i:

• *+ ttl-t_tt t_"N_ "!f!

.. ii!*_;;T7::iT_m:

i;I .................... ::,; ;::t

11i;-: !I....:HI ::tl ....

........ i!_'t' ::;!

_:;]iT.."!i._i]]]!HIi!7!!

17 ttt! _ !!:" _.T71 TTT! _tt!

• ++ t1!_ tttt +_4' tttt tttl

_*++_ *+++ tt!f "'_+ '**+

:::t ::'_ ;TI

:::: t::: +,T_

..LI 1ii; !H

,! ..... ÷ I,,

''" .... N;:::i II:T !:_

::_i 22

i2.tH: H;:

;Tf;-;F:iTT+_::T t..+tttt t:t: ,

-,_, :HT ::: t

Jill iiF."ii'i

'tl _tt_;t

_[t;l t_bt ....

!i:_i!!ii!i

:!i! :t:: II:

:.u :;i; !_ii_!ii!i ;:;_"t '.:r4 ""

;_:t H:: _::

"-_iTTl:t:,1:: +.+÷ +"I

flit :_t ,,

"'I _:tl--+_ :;if "+

_::T T..'+.!_::

::¢_ilt_ +"

::II .......

LH; 1111 _

ili4 iiii i1i

+÷++ 11H tit

_+*+ :t_ft lt!

I

TO

S010-;07OPTIONAL. FORM NO 10

MAY Âl_ I[DITION

GSLA GE_N. RIZG. NO. 27

UNITED STATES GOVERNMENT

Memorandum

: Flight Performance Section Files DATE: 25 August 1965

FROM :

SUBJECT :

Mr. Edward E. Mayo

Flight Performance Section

APPROXIMATE SECOND ORDER SHOCK EXPANSION METHOD

REFERENCE: (a) Memorandum of 23 March 19651 Mr. E. E. Mayo to Flight Performance

Section Files I Subject: Capache Running Load Distribution

(b) Syverston s Clarence A. and Dennist David Ho: A Second-Order

Shock-Expanslon Method Applicable to Bodies of Revolution Near

Zero Lift. NACA Report 1328 s 1957.

(c) Memorandum of 7 July 19659 Mr. E. E. Mayo to Flight Performance

Section Files, Subject: Tangent Oglve Geometric and MASS Char-

acteristic Equations

(d) Ames Research Staff: Equations s Tables and Charts for Compressible

Flow. NASA Report 1135

INTRODUCTION

In reference (a) I a method is given whereby the running 13ad distri-

bution for a cone-cylinder configuration may be calculated. For ogive-

cylinder configurations s the second-order shock expansion method of

reference (b) is the best practicle theory for determining the running

load distribution. At present i a computer program is being developed

for the second-order shock expansion method in which the program input

will consist of the Mach number, body coordinates and tangency points.

To satisfy current needs until the program is developed, the pro-

cedures for application of the approximate second-order expansion theory

have been established. The purpose of this memorandum is to outline

the procedures for determining the running load distribution for both

the cone-cylinder and ogive-cylinder configuration via the approximate

second-order shock expansion method given in reference (b). As an ex-

ample of application of the procedures, the running load for a cone-

cylinder and ogive-cylinder configuration are presented in the appendixes.

104

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

ANALYSIS

Gone-cyllnder confi_uratlon. - The nondimensional running load distribution

for the cone portion may be determined by equation (5) of reference (a)_ ie,

_n-_I c -_) tan_- CN_ c(1)

The running load distribution over the cylindrical portion may be via

equation (CI) of reference (b). From equation (CI)

-G 2 fn -G2fa

I = GI e (i - e )CN_ a

Differentiating with respect to x/d yields

_(_/_/ a = G1G2 exp _--G 2 (fn + _/d

The relationship between nlQrqd] a and d CN_ ]

d(_| a

n/_:qdl - _" dCN_ I

a 4 d--_Tx/d)I a

is given by

Hence, the running load distribution over the cylindrical afterbody is

given by

n I - _-GIG2 exp,- G2 (fn + x/d)_ (2)_-_d a 4

The use of equations (i) and (2) will yield the running load distribution

over the cone-cylinder configuration.

Ogive-cylinder configuration. - The running load distribution for the ogive

is given by equations (C6). (C7) and (C8) of reference (b) as

+ G4 tan _ + C(I - G_) CN_!tcv - G_ tan 2--_- = G3 tan ;v CNoc_tcv tan _ v (3)

105

where

Psa sin 2,_ v

G3 = Pv sin 2,_S a

G4 = 2(I - e"_a)

e

_-a is given by eq. (C5) of reference (b) as

(Psa/Pw) Msa 2 _v

_a = 2(1 - Ps /P.=)_Sa2 - i)J_sa

(4)

(5)

(6)

Where _,% is the one-dimenslonal area ratio given by

--; _ +I

'" 1 1 + 2 M

[ 2

From eqo 14, reference (b)

2fril- __ r d x

CN _ AB o

Which, upon nondimensionallzing s yields

(lid

CN_r = 8)0 _2_ (_) d(xld)

From reference (a)

i/d_ 4 ( n

-- ) (__-yr-c_.)d(x/d)CN _ _ o

n Tr(_)Hence t _ = 2

(7)

(8)

106

Thus_ from eq, (8) and eqo (3)

¢_: qd - 2 + G 4 tan

<_

+ L (I-G 3) CN_ I tcv " G4J tan2_ '.

tan _ v O

(9)

r/d and b are given in reference (c) as

F. . f)2 . (f2 . 1/4)

r/d = _/(f2 + 1/4)2 (x/d(LO)

-i f - x/d : (ii)

= tan j jr/d + f2 . 1/4 i

Hence, the running load over the tangent ogive may be evaluated by eqL_tion

(9) utilizing the supplementary equations (4), (5)9 (6), (i0), (ii) and

appropriate charts and tables from references (b) and (d).

The running load distribution over the cylindrical portion may be

obtained via equation (2) and charts for the G I and G 2 functions from

reference (b). Thusj the running load distribution for the ogive-cylinder

is given by equations (9) and (2).

CONCLUDI NG REMARKS

In conclusion, the procedures and examples of application of the

approximate second order shock expansion theory are presented herein to

enable the user to predict the running load over a body of revolution

at supersonic speeds, The process is quite simple and requires only a

few hours of hand computations to establish the running load distribution

and corresponding static stability characteristics.

Enclosures

EI_4: skd

J_

Edward E. Mayo

107

Distribution List:

Mr. K. R. Medrow

Mr. G. E. MacVeighMr. E. E. Bissell

Miss E. C. Pressly

108

AB

CN

Cm N

d

dc

f

Glo G2s G3s G 4

I

M

n

P

Pt

q

r

x

1/

SiM B0L S

body base area

normal force coefficient curve slopej per radlanl

at; _" -- 0

p_tah:In8 moment coefficient curvo s_ope0 p_r ra(hl_nl

at "_: ,, 0

body base diameter

cone diametert d c (x/d)

fineness ratio

constants i reference (b)

body length

Mach number

running load i n (x/d)

static pressure

total pressure

free-stream dynamic pressure

body radlus e r(x/d)

longitudinal distance measured from nose

longitudinal distance measured [rom nose-cylJ**dc'r

Jsncture

angle-of-attack s radlan s

ratio of specific heats

surface slope e _ (x/d)

loading i ._- (x/d)

Mach angle

Prandtl-Meyer expansion angle

109

_a

SYMBOLS (Continued)

cone half anRle

function defined by eq, 6

ratio of cross-sectional area of streamtube to

that at M = 1

a

c

cp

n

s

v

tcv

SUBSCRIPT S

free-stream conditions

afterbody

quantities evaluated for cone tangent to body

center of pressure

nose

quantities evaluated by generalized shock

expansion method

quantities evaluated at vertex of body

quantities evaluated for cones tangent to body

vertex

ii0

APPENDIXA

RUNNINGLOADFORA CONE-CYLINDERCONFIGURATIONATM = 6

Consider the case of a 7.5 ° half angle cone configuration as shown

in figure i. From equation (I) 0 the running load value at the cone-

cylinder Junctuce is

n_ /r tan C_,

•,,e' C] [1 .l_ "v."

c

For M = 6 t = 7.5°t from figure 4, reference (b)

CN_ _ = 1o875c

Hence,

_" qd- (3.14)(.1317)(1.875) = .774

From equation (2), the running load along the afterbody is given by

fF

_qd a - 4 GIG2 exp L " G2(fn + -_)dJ

where fn - 1 i 12tan ....- 2tan 7.5 ° - 2(.1317) - 3.8

and from figure 12, reference (b), (M = 6, _ v = 7"5o)

G 2 = 0.22, G I = _ - .52 - 3.97sin _ v .1305

Hence D

qd a 4 (3.97)(.27) expL 0022(3.8 + x/d)

= .686 exp_ - .836 - 0.22 _Id j"

Thus i the afterbody running load values are

Iii

APPENDIX A

"_/d

0

.5

1.0

1.5

2

3

I x/d

3.8

4.3

4.8

503

5.8

6.8

n

_qd

.297

.266

.239

.214

.191

.154

xld

4

5

6

7

8

x/d

7.8

8.8

9.8

10.8

11.8

.123

.099

.080

.064

.O51

The running load distribution is plotted in figure i. The normal force

curve slope t CN <; pitching moment, Cm _ and center-of-pressure location,

Xcp/d; are determined from the running load distribution as follows:

CN 4 I/d_ ) (___q_n) d(x/d) (AI)I_ _ qd

0

lid

Cm _ 4 (-n)(x/d) d(x/d) (A2)1)" ) _qd

0

d - CN (.%3)

Integration of the load distribution in figure 1 for i/d = 11.8 (fa = 8)

according to equations (AI)D (A2) and (A3) yields

CN = 3.28 per radlan

C_,:< = 14.22 per radian

Xcp/d = 4033

112

APPENDIXB

RUNNINGLOADFORANOGIVE-CYLINDERCONFIGURATION AT M = 6

Gonslder the case of a 3 to i fineness ratio nose oglve-cyllnder

configuration ao shown in figure 2. The load distribution for the oglve

is given by eq, (9) as

_qd " 217"d}G3 tan_v C_ tcv

+ /_(I - G3) CN_ ] tcv

From eq. II b v

+ G4 tan

- G43 tan2

tan _ v ._2

= tan'I/ f2 _ f 4j = tan'l (.3'+3) =18"93°II

From figures 3 and 41 reference (b), Mv Pv- .649; - 6.8

M_ P_

= 1o774CN _ tcv

Hence, Mv = 6(.649) = 3.894 and from reference (d)

ev

pq m .OO7635, "_/V = 64.302, z4tv: 14.90,

= 9.7bv

S a _ V + _/v = 18.93 + 64.3 = 83.23

Msa = 5,76 i Psa/Pt = .000813_ ._Sa = 9.9980

c sa 44.7

Ps a Psa Pt .000813

Pv - (_)(_v) - .007635-.1065

113

APPENDIX B

P _ PvPsa Sa = (.1065)(6,8) = ,724

G 3 is given by equation (4)

sin 2Ps a v _a

G 3 = - -- _s a ePv sin 2

where _a is given by equation (6) as

¢ (Psa/P _ ) Ms a2

_a = _ v

Psa sa

2(1 - _--_)(Msa2 - i) ....

(1.4)(.724)(5.76) 2 9.7

_a = 2(1 - .724)(5.76) 2 - I 44,7- 0.413

Hence m

= (.497)(.662) = .1024G 3 (. 1065)

G 4 is given by equation (5) o_

G& = 2(1 - e "_a)

= 2(1 - .662) = .676

Thus_ substitution into eq. (9) yields

r

n - 2_ .0623 + 676 tan (_ + 2.67 tan2_ (BI)qd " I& i_

r

where _ and _ are given by equations (i0) and (ii) as functions of the

fineness ratio and x/d°

114

APPENDIX B

The solution of (BI) yields

xld rld tan ¢ nl_qd

0

.5

.7

1.0

1.2

1.5

2.0

2.5

3.0

0

,16

,21

,28

,32

,38

.45

.49

.50

.343

o280

.257

.221

.198

.164

.109

.054

0

0

.462

•544

.602

.605

,585

.474

.327

.196

The above table gives the running load values over the ogive nose portion.

The running load values along the afterbody are given by equation (2) as

n j it" ,_qd_a = -4--GIG2 exp [-G 2 (fn + x)d j

where fm_= 3 and from figure 12o reference (b) (M = 6, _ = 18.93 ° )v

G2 = .28; G1 =.66

= 2,034

Hence s

nj_qd a = -_(2.034)(.28) exPL (-.28)(3 + _/d)__

= ,447 exp L-.84- .28 _/d

Thus o the afterbody running load values are

115

_ld x/d n_qd

0.5

I•01.52.02.53.03°54.04.5

33.544•555,566.577.5

.193

.168• 146.127.II0.096.083.072.063.055

_/d

APPENDIX B

ITxl d n/_qd ] _l d

J

5.0

5,5

6,0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

8

8,5

9

9,5

I0

10.5

ii

11.5

12

12.5

.048

.041

.036

,031

.028

.024

.021

.018

.016

.014

i0.0

I0o 5

II.0

11.5

12.0

12.5

13.0

14

15

16

!

[ x/dI

13

13.5

14

14,5

15

15.5

16

17

18

19

n_qd

.012

•010

,0089

,0077

.0068

.0059

.0049

.OO37

.0028

.0022

_/d x/d n/_cqd

17

18

19

2O

21

22

23

24

25

20

21

22

23

24

25

26

27

28

.OOl7

.oo13

°0009

°0007

•0005

.0004

.0003

.o002

=0002

The running load distribution is plotted in figure 2. Integration

of the load distribution in figure 2 for I/d = 13 (fa = I0) according

to equations (AI), (A2) and (A3) yields

CN_ = 2,48 per radlan

Cm _ 7.22 per radlan

x /d = 2.91cp

116

117

z_8