17
Newtonian tides Relativistic tides References Newtonian and relativistic Love numbers Eric Poisson Department of Physics, University of Guelph Atlantic GR Workshop, St. John’s, May 29–31, 2017 Eric Poisson Newtonian and relativistic Love numbers

Newtonian and relativistic Love numbers › dsgwsm › contents › data › 2018 › 06 › love.pdf · Newtonian tides Relativistic tides References Newtonian and relativistic Love

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Newtonian and relativistic Love numbers › dsgwsm › contents › data › 2018 › 06 › love.pdf · Newtonian tides Relativistic tides References Newtonian and relativistic Love

Newtonian tides Relativistic tides References

Newtonian and relativistic Love numbers

Eric Poisson

Department of Physics, University of Guelph

Atlantic GR Workshop, St. John’s, May 29–31, 2017

Eric Poisson Newtonian and relativistic Love numbers

Page 2: Newtonian and relativistic Love numbers › dsgwsm › contents › data › 2018 › 06 › love.pdf · Newtonian tides Relativistic tides References Newtonian and relativistic Love

Newtonian tides Relativistic tides References

Setting and assumptions

We consider a self-gravitating body of mass M and radius R; the body isspherical when unperturbed.

The body is placed in a tidal potential created by remote bodies; thelength scale of variation is assumed to be long compared with R.

The tidal potential is expressed as a Taylor expansion in powers of xa,the position relative to the body’s centre of mass,

Utidal = −∞∑`=2

1

`!Ea1a2···a`(t)xa1xa2 · · ·xa`

Ea1a2···a`(t) = −∂a1a2···a`Uremote(t, 0)

The tidal potential varies on an external time scale text ∼√r′3/GM ,

where r′ is the inter-body separation, and the time scale forhydrodynamical processes inside the body is tint ∼

√R3/GM .

We assume that text � tint, and that the tidal field is weak.

We wish to calculate the tidal deformation of the body.Eric Poisson Newtonian and relativistic Love numbers

Page 3: Newtonian and relativistic Love numbers › dsgwsm › contents › data › 2018 › 06 › love.pdf · Newtonian tides Relativistic tides References Newtonian and relativistic Love

Newtonian tides Relativistic tides References

Governing equations

Poisson’s equation: ∇2U = −4πGρ

Euler’s equation: ρdvadt

= −∂ap+ ρ ∂aU

Continuity equation: ∂tρ+ ∂a(ρva) = 0

Equation of state: p = p(ρ)

Unperturbed body (hydrostatic equilibrium)

∇2U = −4πGρ, ∂ap = ρ ∂aU

Perturbed body (hydrostatic equilibrium)

U → U + δU + Utidal, ρ→ ρ+ δρ, p→ p+ δp

∇2δU = −4πGδρ, ∂aδp = δρ ∂aU + ρ ∂a(δU + Utidal)

Eric Poisson Newtonian and relativistic Love numbers

Page 4: Newtonian and relativistic Love numbers › dsgwsm › contents › data › 2018 › 06 › love.pdf · Newtonian tides Relativistic tides References Newtonian and relativistic Love

Newtonian tides Relativistic tides References

Expansion in spherical harmonics

Because Ea1a2···a` is a symmetric, tracefree tensor, each term in the tidalpotential is a solid harmonic,

Ea1a2···a` xa1xa2 · · ·xa` =∑m

Em` r`Y m` (θ, φ)

So expand all other variables in spherical harmonics,

δU =∑`m

Um` (r)Y m` (θ, φ)

δρ =∑`m

ρm` (r)Y m` (θ, φ)

δp =∑`m

pm` (r)Y m` (θ, φ)

Eric Poisson Newtonian and relativistic Love numbers

Page 5: Newtonian and relativistic Love numbers › dsgwsm › contents › data › 2018 › 06 › love.pdf · Newtonian tides Relativistic tides References Newtonian and relativistic Love

Newtonian tides Relativistic tides References

Reduced equations

The perturbed Poisson equation becomes

r2d2Um`dr2

+ 2rdUm`dr− `(`+ 1)Um` = −4πGr2ρm`

The equation of perturbed hydrostatic equilibrium yields

pm` = ρ(Um` + r`Em` )

The equation of state implies that δp = (dp/dρ)δρ, or

ρm` =dρ

dppm`

The end result is a decoupled ODE for Um` .

Eric Poisson Newtonian and relativistic Love numbers

Page 6: Newtonian and relativistic Love numbers › dsgwsm › contents › data › 2018 › 06 › love.pdf · Newtonian tides Relativistic tides References Newtonian and relativistic Love

Newtonian tides Relativistic tides References

Love numbers

The internal solution for Um` is matched to the external solution

Um` =4πG

2`+ 1

Im`r`+1

, Im` =

∫(ρ+ δρ) r` Y m` (θ, φ) dV

This determines the relationship between the multipole moments Im` andthe tidal moments Em` ,

GIm` =2`+ 1

2π`!k`R

2`+1 Em`

where k` are the gravitational Love numbers.

Tensorial relation between multipole and tidal moments

GIa1a2···a` = −2

(2`− 1)!!k`R

2`+1 Ea1a2···a`

Ia1a2···a` =

∫(ρ+ δρ)x〈a1xa2 · · ·xa`〉 dV

Eric Poisson Newtonian and relativistic Love numbers

Page 7: Newtonian and relativistic Love numbers › dsgwsm › contents › data › 2018 › 06 › love.pdf · Newtonian tides Relativistic tides References Newtonian and relativistic Love

Newtonian tides Relativistic tides References

Quadrupole deformation

For ` = 2,

GIab = −2

3k2R

5 Eab

Iab =

∫(ρ+ δρ)

(xaxb − 1

3r2δab

)dV

Eab = −∂abUremote

External gravitational potential

U =GM

r− 1

2

[1 + 2k2(R/r)

5]Eabxaxb + · · ·

Eric Poisson Newtonian and relativistic Love numbers

Page 8: Newtonian and relativistic Love numbers › dsgwsm › contents › data › 2018 › 06 › love.pdf · Newtonian tides Relativistic tides References Newtonian and relativistic Love

Newtonian tides Relativistic tides References

Polytropes: p = Kρ1+1/n

Quadrupole Love number

n 1/2 1 3/2 2 3k2 0.449 0.260 0.143 0.0739 0.0144

The Love number is larger for stiffer equations of state.

ρ/ρc

r/REric Poisson Newtonian and relativistic Love numbers

Page 9: Newtonian and relativistic Love numbers › dsgwsm › contents › data › 2018 › 06 › love.pdf · Newtonian tides Relativistic tides References Newtonian and relativistic Love

Newtonian tides Relativistic tides References

Tides in general relativity

The relativistic setting is the same as in the Newtonian discussion.

We continue to consider a self-gravitating body of mass M and radius Rimmersed in a tidal environment created by remote bodies.

We continue to assume that the tidal field is weak, and varies on longspatial and time scales.

The tidally deformed star continues to be in hydrostatic equilibrium.

But there are now two types of tidal fields: gravitoelectric andgravitomagnetic.

Eαβ = uµuνCαµβν =⇒ Ea1a2···a` =⇒ Em`

Bαβ =1

2uµuνεµαγδC

γδβν =⇒ Ba1a2···a` =⇒ Bm`

Eric Poisson Newtonian and relativistic Love numbers

Page 10: Newtonian and relativistic Love numbers › dsgwsm › contents › data › 2018 › 06 › love.pdf · Newtonian tides Relativistic tides References Newtonian and relativistic Love

Newtonian tides Relativistic tides References

Governing equations

Einstein’s equation: Gαβ = 8πTαβ

Euler’s equation: (µ+ p)uβ∇βuα = −(gαβ + uαuβ

)∇βp

Continuity equation: ∇α(ρuα) = 0

Equations of state: p = p(ρ), µ = µ(ρ)

Unperturbed body

The body’s structure is determined by the TOV equations.

Perturbed body

gαβ → gαβ + δgαβ , ρ→ ρ+ δρ, uα → uα + δuα

A gauge condition is imposed on the metric perturbation.

All variables are expanded in (tensorial) spherical harmonics.

Eric Poisson Newtonian and relativistic Love numbers

Page 11: Newtonian and relativistic Love numbers › dsgwsm › contents › data › 2018 › 06 › love.pdf · Newtonian tides Relativistic tides References Newtonian and relativistic Love

Newtonian tides Relativistic tides References

Gravitoelectric tides

The field and fluid equations can be manipulated into a decoupled ODEfor hm` (r), defined by δgtt =

∑`m h

m` (r)Y m` (θ, φ).

The equation is of the same general form as the Newtonian equation,

r2d2hm`dr2

+ 2rVdhm`dr

+Whm` = 0

The internal solution is matched to the external solution

hm` =2

(`− 1)

[A(r)r` + 2kel` R

2`+1 B(r)

r`+1

]Em`

A(r) = regular at r = 2M , tends to 1 at r =∞B(r) = singular at r = 2M , tends to 1 at r =∞

This determines the gravitoelectric Love numbers kel` .

Eric Poisson Newtonian and relativistic Love numbers

Page 12: Newtonian and relativistic Love numbers › dsgwsm › contents › data › 2018 › 06 › love.pdf · Newtonian tides Relativistic tides References Newtonian and relativistic Love

Newtonian tides Relativistic tides References

Gravitomagnetic tides

The field and fluid equations can be manipulated into a decoupled ODEfor jm` (r), defined by δgtθ =

∑`m j

m` (r) ∂φY

m` (θ, φ)/ sin(θ).

The equation is again of the same general form as the Newtonianequation.

The internal solution is matched to the external solution

jm` =2

3(`− 1)`

[C(r)r` − 4

`+ 1

`kmag` MR2` D(r)

r`+1

]Bm`

C(r) = regular at r = 2M , tends to 1 at r =∞D(r) = singular at r = 2M , tends to 1 at r =∞

This determines the gravitomagnetic Love numbers kmag` .

Eric Poisson Newtonian and relativistic Love numbers

Page 13: Newtonian and relativistic Love numbers › dsgwsm › contents › data › 2018 › 06 › love.pdf · Newtonian tides Relativistic tides References Newtonian and relativistic Love

Newtonian tides Relativistic tides References

Gravitoelectric Love number: Polytropes

��

�����

����

�����

����

�����

����

�����

����

�����

�� ���� ���� ���� ���� ���� ���� ����

��������������������������

������������������

�������������������������

Eric Poisson Newtonian and relativistic Love numbers

Page 14: Newtonian and relativistic Love numbers › dsgwsm › contents › data › 2018 › 06 › love.pdf · Newtonian tides Relativistic tides References Newtonian and relativistic Love

Newtonian tides Relativistic tides References

Gravitoelectric Love number: Realistic equations of state[Hinderer, Lackey, Lang, Read (2010)]

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.350.00

0.05

0.10

0.15

M�R

k 2

n=2.0

n=

1.5

n=

1.0

n=

0.5

n=

0.0

Normal

SQ

M1

-3

Eric Poisson Newtonian and relativistic Love numbers

Page 15: Newtonian and relativistic Love numbers › dsgwsm › contents › data › 2018 › 06 › love.pdf · Newtonian tides Relativistic tides References Newtonian and relativistic Love

Newtonian tides Relativistic tides References

Gravitomagnetic Love number: Polytopes

k̃mag

2M/R

� = 2

Eric Poisson Newtonian and relativistic Love numbers

Page 16: Newtonian and relativistic Love numbers › dsgwsm › contents › data › 2018 › 06 › love.pdf · Newtonian tides Relativistic tides References Newtonian and relativistic Love

Newtonian tides Relativistic tides References

Black hole

For a black hole, the metric perturbation must be regular at the horizon.

This requires the elimination of the decaying solutions in hm` and jm` .

Love numbers of a black hole

kel` = 0, kmag` = 0

Eric Poisson Newtonian and relativistic Love numbers

Page 17: Newtonian and relativistic Love numbers › dsgwsm › contents › data › 2018 › 06 › love.pdf · Newtonian tides Relativistic tides References Newtonian and relativistic Love

Newtonian tides Relativistic tides References

References

1 E. Poisson and C.M. Will, Gravity: Newtonian, post-Newtonian,Relativistic (Cambridge University Press, 2014)

2 T. Binnington and E. Poisson, Relativistic theory of tidal Lovenumbers, Phys. Rev. D 80, 084018 (2009)

3 P. Landry and E. Poisson, Relativistic theory of surficial Lovenumbers, Phys. Rev. D 89, 12411 (2014)

4 P. Landry and E. Poisson, Gravitomagnetric response of anirrotational body to an applied tidal field, Phys. Rev. D 91, 104026(2015)

Eric Poisson Newtonian and relativistic Love numbers