68
NEWER VAPORIZERS Presented by: Dr. manoj kumar Moderated by: Dr. Aparna Sharma

NEWER VAPORIZERS

  • Upload
    zilya

  • View
    154

  • Download
    3

Embed Size (px)

DESCRIPTION

NEWER VAPORIZERS. Presented by: Dr. manoj kumar Moderated by: Dr. Aparna Sharma. - PowerPoint PPT Presentation

Citation preview

Page 1: NEWER VAPORIZERS

NEWER VAPORIZERS

Presented by: Dr. manoj kumarModerated by: Dr. Aparna Sharma

Page 2: NEWER VAPORIZERS
Page 3: NEWER VAPORIZERS
Page 4: NEWER VAPORIZERS

• The Datex-Ohmeda Tec 4, Tec 5, and Tec 7, as well as the North American Dräger Vapor 19.n and 20.n vaporizers, are classified as variable-bypass, flow-over, temperature-compensated, agent-specific, out-of-breathing-circuit vaporizers

Page 5: NEWER VAPORIZERS
Page 6: NEWER VAPORIZERS

• The SVP of most inhalation agents is MUCH more that is required to produce anesthesia i.e. 32% vs 0.75 or 243 mm Hg vs 5.7 mm Hg for halothane

• Need to dilute this vapor with the carrier gas and deliver a controlled amount of this vapor to the patient

• How much liquid agent does a vaporizer use per hour?• Ehrenwerth and Eisenkraft (1993) give the formula:• 3 x Fresh gas flow (FGF) (L/min) x volume % = mL liquid

used per hour• Or one can determine the volume (mL) of saturated

vapor needed to provide 1% (ie 4000(flow) x 0.01 = 40 mL) Typically, 1 mL of liquid volatile agent yields about 200 mL vapor.

Page 7: NEWER VAPORIZERS

Ohmeda tec vaporizer

Page 8: NEWER VAPORIZERS

• Safety Features • Newer generations of anesthesia vaporizers are

Agent-specific, keyed filling devices help prevent filling a vaporizer with the wrong agent.

• Overfilling of these vaporizers is minimized because the filler port is located at the maximum safe liquid level.

• Finally, today's vaporizers are firmly secured to a vaporizer manifold on the anesthesia workstation. Thus, problems associated with vaporizer tipping have become much less frequent.

• Interlock systems prevent the administration of more than one inhaled anesthetic

Page 9: NEWER VAPORIZERS

• the wick systems are placed in direct contact with the metal wall of the vaporizer to help replace energy (heat) consumed during vaporization.

• The materials that vaporizers are constructed of are chosen because they have a relatively high specific heat and high thermal conductivity.

• These factors help minimize the effect of cooling during vaporization

Page 10: NEWER VAPORIZERS

TEC VAPORIZERS• CLASIFICATION (TEC I-7)1. Variable bypass2. Flow over with wick3. Out of system4. Temp. compensated by automatic flow

alteration 5. Conc. calibrated.6. Agent specific

Page 11: NEWER VAPORIZERS
Page 12: NEWER VAPORIZERS
Page 13: NEWER VAPORIZERS
Page 14: NEWER VAPORIZERS
Page 15: NEWER VAPORIZERS

• for halothane, enflurane, isoflurane, and sevoflurane

• filling devices: a funnel filler, the Quik-Fil, or the Easy-Fil

• Capacity: 300 mL• Temp: 18 to 35 degree celcius• barometric changes are compensated

automatically. Fluctuating back pressure can affect the vaporizer and increase the delivered concentration

Page 16: NEWER VAPORIZERS
Page 17: NEWER VAPORIZERS

Vaporizing chamber circuit• The fresh gas flows from the flowmeter across the sump cover

where it is diverted through the central cavity of the rotary valve and back through the IPPV compensating assembly.

• Gas now flows from the IPPV assembly down through the tubular wick assembly where it picks up anesthetic vapor and then flows across the base of the vaporizing chamber above the liquid agent.

• From the base of the vaporizing chamber the gas/agent mixture flows through the sump cover to the proportional radial drug control groove of the rotary valve and then back into the sump cover where it combines with the fresh gas from the bypass circuit.

• The combined total flow then flows out from the vaporizer and via the Selectatec circuitry to the anesthesia gas delivery system.

Page 18: NEWER VAPORIZERS

1.Rotary valve2.Enriched fresh gas out3.Combined fresh gas and enriched gas out4.Fresh gas bypass5.Fresh gas out6.Thermostat7.Vaporizing chamber8.Wick assembly9.IPPV compensating assembly10.Sump cover11.Vapor control channel12.Shown in ON position

Page 19: NEWER VAPORIZERS

• Earlier versions of the Selectatec Series Mounted Manifold that provide mounting positions for three vaporizers require that if only two vaporizers are fitted, then the center position must be occupied.

• If the center position is not occupied, the interlock that helps ensure that only one vaporizer at a time can be turned ON is ineffective.

• Later versions of the Selectatec Series Mounted Manifold that provide mounting positions for three vaporizers incorporate an additional interlock that helps ensure that only one vaporizer at a time can be turned ON even if the center position is not occupied

Page 20: NEWER VAPORIZERS

• Hazards• If inverted: rule of 5• Overfilling• Fluctuating back pressure may be imposed on

the vaporizer by downstream components and/or assisted or controlled ventilation to the patient.

• Pressures in excess of 400 mmHg may overcome the internal pressure balance and cause a variation in output.

• Mainteinance: drain

Page 21: NEWER VAPORIZERS

TEC 6 • CLASSIFICATION• Conc calibrated• Thermocompensation

by supplied heatOrElectrically heated dual circuit gas-vapor blender

Capacity: 425mlDial: 1-18%Filler port, power cord, battery

Page 22: NEWER VAPORIZERS
Page 23: NEWER VAPORIZERS
Page 24: NEWER VAPORIZERS

TEC 6

• Designed for the delivery of Desflurane • Electronic vaporizer which heats Desflurane to

maintain constant temperature and vapor pressure for consistent output

• It has an LED display which indicates vaporizer status - no output, low agent, warm-up, operational and alarm battery low

• Features several intrinsic vaporizer monitors and alarms that constantly monitor vaporizer status.

Page 25: NEWER VAPORIZERS

Supplied Heat• Maintains a constant temperature by electric heater.

Temperature compensation

•Low boiling point 22.8C causes unpredictable output Supplied Heat (Must be connected to electrical outlet):

• Warms liquid Desflurane to 39C to achieve a pressure of 1,500 mmHg

• Controls gas output by variable resistance via a differential pressure transducer

• 2 heaters in base(sump) and 2 in the upper part of vaporizer.

Page 26: NEWER VAPORIZERS
Page 27: NEWER VAPORIZERS
Page 28: NEWER VAPORIZERS

The Tec 6 vaporizer is an electrically heated, thermostatically controlled, constant-temperature, pressurized, electromechanically coupled dual-circuit, gas-vapor blender. The pressure in the vapor circuit is electronically regulated to equal the pressure in the fresh gas circuit. At a constant fresh gas flow rate, the operator regulates vapor flow with a conventional concentration control dial. When the fresh gas flow rate increases, the working pressure increases proportionally. For a given concentration setting even when varying the fresh gas flow rate, the vaporizer output is constant because the amount of flow through each circuit remains proportional

Page 29: NEWER VAPORIZERS

• EFFECT OF BAROMETRIC PRESSURE• Works at absolute pressure- It maintains a constant output in

terms of vol% but pp varies if atm pr decreases-output in pp is also decreased

• Reqd. dial setting=dial setting x 760/ambient pressure• Effect of carrier gas; addition of N2O – less viscosity – decrease

vapor output • Mounting – for rt - side of machine• Bottle; has a spring valve to prevent escape of agent • Hazards Checkout procedure• Press and hold the mute button until all lights and alarms

activated.• Turn on to at least 1% and unplug the electrical connection. A "No

Output" alarm should ring within seconds. This tests battery power for the alarms.

Page 30: NEWER VAPORIZERS

• Safe T fill• The bottle probe inserts directly into the filler

port.• An "O" ring fitted on the spring-loaded bottle

cap helps engage and seal the opening before liquid can flow, which aids in preventing spillage and operating room contamination.

Page 31: NEWER VAPORIZERS
Page 32: NEWER VAPORIZERS

ALADIN CASSETTE VAPORIZER

Page 33: NEWER VAPORIZERS
Page 34: NEWER VAPORIZERS
Page 35: NEWER VAPORIZERS
Page 36: NEWER VAPORIZERS
Page 37: NEWER VAPORIZERS
Page 38: NEWER VAPORIZERS
Page 39: NEWER VAPORIZERS

• A fixed restrictor is located in the bypass chamber, and it causes flow from the vaporizer inlet to split into two flow streams .

• One stream passes through the bypass chamber, and the other portion enters the inlet of the vaporizing chamber and passes through a one-way check valve.

• The presence of this check valve is unique to the Aladin system. This one-way valve prevents retrograde flow of the anesthetic vapor back into the bypass chamber, and its presence is crucial when delivering desflurane if room temperature is higher than the boiling point of desflurane (22.8°C).

• A precise amount of vapor-saturated carrier gas passes through the flow control valve, which is regulated by the CPU. This flow then joins the bypass flow and is directed to the outlet of the vaporizer

Page 40: NEWER VAPORIZERS

• controlled vaporization of desflurane presents a unique challenge, particularly when room temperature is greater than the boiling point of desflurane.

• At higher temperatures, the pressure inside the vaporizer sump increases, and the sump becomes pressurized. When sump pressure exceeds pressure in the bypass chamber, the one-way check valve located in the vaporizing chamber inlet closes to prevent carrier gas from entering the vaporizing chamber.

• At this point the carrier gas passes straight through the bypass chamber and its flow sensor.

• Under these conditions, the electronically regulated flow control valve simply meters in the appropriate flow of pure desflurane vapor needed to achieve the desired final concentration selected by the user.

• ADU users should be cautious of this potential problem, especially when desflurane is used.

Page 41: NEWER VAPORIZERS

• To offset cooling effect, the S/5 ADU is equipped with a fan that forces warmed air from an “agent heating resistor” across the cassette (vaporizer sump) to raise its temperature when necessary(<18 C)

• The fan is activated during two common clinical scenarios: (1) desflurane induction and maintenance and (2) sevoflurane induction

• Liq. Level indicated on screen. if 10% - alarm message• If the cassette pressure is higher than the pressure distal to

the cassette outflow, the vaporizer starts to work as an injector

• If the temperature falls below 20°C or the fresh gas flow is over 8 L/minute, the vaporizer may be unable to produce high concentrations and the messages insufficient agent and decreased flow will appear on the machine.

Page 42: NEWER VAPORIZERS
Page 43: NEWER VAPORIZERS

• Hazards• The cassette is fitted with an overfill protection

mechanism. If air is allowed into the agent bottle, this mechanism is deactivated. This may result in overfilling and anesthetic overdose.

• Turning the vaporizer ON while filling may pressurize the cassette and cause liquid to leak at the filling port

• When the fresh gas flow is lowered, the one-way valve that prevents backflow of saturated vapor from the cassette toward the bypass channel may fail to close, resulting in high delivered concentrations.

• This problem may be more significant when desflurane is used.

Page 44: NEWER VAPORIZERS
Page 45: NEWER VAPORIZERS
Page 46: NEWER VAPORIZERS

Funnel fill

Page 47: NEWER VAPORIZERS

When control dial is set at »0« or above »0«, do not useVapor at an angle of more than 30°.Risk of incorrect output concentration or anaestheticagent escaping otherwise.

At »T« setting Vapor may be moved in any position.If not at »T« setting, risk of incorrect output concentration,or of anaesthetic agent escaping otherwise

Page 48: NEWER VAPORIZERS
Page 49: NEWER VAPORIZERS
Page 50: NEWER VAPORIZERS
Page 51: NEWER VAPORIZERS

Off position vs T position

Page 52: NEWER VAPORIZERS

On position

Page 53: NEWER VAPORIZERS

• Hazards• Cellular phones should not be used within 10 m of the

vaporizer.• The D-Vapor is not designed to be used at an angle of

more than 10 degrees. At greater angles, an uncontrolled concentration of vapor may result

• The output is not defined in the area between 0% and 0.2%. The handwheel should not be set in this area.

• The Vapor is not suitable for use with a breathing system due to high pneumatic resistance.

Page 54: NEWER VAPORIZERS

Penlon vaporizers

Page 55: NEWER VAPORIZERS
Page 56: NEWER VAPORIZERS

• gas passes through a spiral tube into the vaporizing chamber, which contains a stainless-steel wick

• Temperature compensation is provided by a liquid-filled expansion bellows controlling a variable resistance valve in the bypass.

• The vaporizer should be calibrated every 3 to 6 months

Page 57: NEWER VAPORIZERS

Penlon sigma alpha

• For desflurane• Filling capacity- 330 ml• Temp- 15 to 30 • Flow range : 0.5-12 L/min• Hazards: Electromagnetic interference

Page 58: NEWER VAPORIZERS

Penlon sigma delta

Mounting: Selectatec, Drager Plug-In, Cagemount • Specifications: • Weight: 5 kg approx. • Cagemount Dimensions: (mm) 133 wide x 158 deep x 219 high • Selectatec Compatible: with Interlock Dimensions (mm) 120 wide x 190

deep x 242 high • Drager Plug-In Compatible: Dimensions (mm) 100 wide x 190 deep x 242

high • Capacity Volume: at MAX mark 250 mL nominal Volume at MIN mark: 35

±10 mL -- After draining, approximately 60 ±10 mL of liquid is retained by the wick

• Flow Range: Operating flow range 0.2 to 15 litres/min • Temperature Range: Operating temperature range 15° to 35°C

Page 59: NEWER VAPORIZERS
Page 60: NEWER VAPORIZERS
Page 61: NEWER VAPORIZERS

• temperature decreases with altitude;• this is known as the ‘lapse rate’ and varies according to the moisture

content of the air and has an international standard of 6.498C per 1000 m from sea level to 11 000 m.

• Safety features• Important safety features include:• Keyed fillers• Low filling port• Secured vaporizers (less ability to move them about minimizes tipping)• Interlocks• Concentration dial increases output in all when rotated

counterclockwise

Page 62: NEWER VAPORIZERS

Disadvantages

• heavy, expensive and require regular servicing if their accuracy is to be maintained.

• built for use with a specific agent and can be lethal if the wrong agent is used

• Their high internal resistance prevents them from being used in the breathing circuit.

• Future ; closed sys where vaporizer control may be linked directly to patient parameter via feedback mech.

Page 63: NEWER VAPORIZERS

• Fillers• Vaporizers may be filled by a conventional funnel-fill

mechanism, in which the liquid anesthetic is simply poured into a funnel in the vaporizer.

• The problem with this method is that, if more than one anesthetic is used in a facility, there is nothing to prevent the vaporizer being filled with the wrong agent. This may be prevented with the use of a key-filler system

• an agent-specific filler tube is used, one end of which slots into a fitting on the vaporizer, and the other end slots into a collar on the bottle of anesthetic.

• The fitting on the vaporizer and the collar on the bottle are specific to each agent, making it impossible (or, at least, extremely difficult) to fill the vaporizer with the wrong agent.

Page 64: NEWER VAPORIZERS

ASTM Standards• Vaporizers suitable for use in the breathing system must have

standard 22-mm fittings or screw-threaded, weight-bearing fittings with the inlet female and the outlet male. The direction of gas flow must be indicated

• The output of the vaporizer shall be less than 0.05% in the “OFF” or “zero

• The average delivered concentration from the vaporizer shall not deviate from the set value by more than ±20% or ±5% of the maximum setting, whichever is greater, without back pressure

• The effects of variations in ambient temperature and pressure, tilting, back pressure, and input flow rate and gas mixture composition on vaporizer performance must be stated

Page 65: NEWER VAPORIZERS

MEASURED FLOW VAPORIZERS

• The vaporizer heats the anesthetic agent to a temperature above its boiling point (so it behaves as gas) and this is then metered into the fresh gas flow.

• A measured flow is sent by a separate oxygen flow meter to pass to the vaporizer with the output being at SVP for the anesthetic agent.

• In order to dilute this otherwise lethal concentration, outpur from that flowmeter is combined with gas passing form the main flowmeter

Page 66: NEWER VAPORIZERS

• Operator has to set the flow to the vaporizer and bypass with separate flowmeters

• This means that respective flows have to be calculated for each agent for a given temp and vapour output

• To calculate the vaporizer output, one must know the -Vapor pressure of the agent

- The atmospheric pressure- The total flow of gases - The flow of the vaporizer

MEASURED FLOW VAPORIZERS

Page 67: NEWER VAPORIZERS

CALCULATIONS FOR OUTPUT IN MEASURED FOW VAPORISERS

• Set 100 ml/min flow of carrier gas (oxygen) from dedicated flowmeter

• SVP of hal in vap. Chamber is 243 mmHg• Hal forms 243/760 x 100 = 32% of gas mixture• Carrier gas will occupy the rest of the vol. i.e.

100-32=68%• This 68% is occupied by 100ml/min carrier gas• And 32% hal will be = 100/68x32=47 ml

Page 68: NEWER VAPORIZERS

• Gas exiting is 147 ml with 47 ml hal vapor• To get a mixture containing 1% hal this 47 ml

should be diluted in 4700 ml • Required carrier gas is 4700-147=4553 ml • If set 100 ml measured flow to vaporiser usually

set 5 l/min flow of carrier gas to get 1% halothane• Ratio of gas through vaporiser: main gas flow is

100:4600=1:46• % concentration of agent = 100 x vaporizer

output of anaesthetic/total flow

CALCULATIONS FOR OUTPUT IN MEASURED FOW VAPORISERS