Neuropharmacology of Anesthetic Agent

Embed Size (px)

Citation preview

  • 8/13/2019 Neuropharmacology of Anesthetic Agent

    1/26

    1

    Robert H. Sirait. dr., SpAn

    Dept. Anesthesiology FK UKI

    NEUROPHARMACOLOGY OF

    ANESTHETIC AGENTS

  • 8/13/2019 Neuropharmacology of Anesthetic Agent

    2/26

    2

    NEUROPHARMACOLOGY OF

    ANESTHETIC AGENTS

    I. BASIC UNDERSTANDING :

    NEUROPHYSIOLOGY

    1.CEREBRAL BLOOD FLOW (CBF)2.CEREBRAL METABOLIC RATE (CMR)

    3.CEREBROSPINAL FLUID (CSF)

    4.INTRACRANIAL PRESSURE (ICP)

    5.BLOOD BRAIN BARRIER (BBB)

  • 8/13/2019 Neuropharmacology of Anesthetic Agent

    3/26

  • 8/13/2019 Neuropharmacology of Anesthetic Agent

    4/26

    4

    1. CEREBRAL BLOOD FLOW (CBF)

    Total CBF in adults 750 ml/min (15-20% CO)

    - Gray matter 80 ml/100gr/min

    - White matter 20 ml/100gr/min

    - Averages 50ml/100gr/min

    - < 20-25 ml/100gr/min slowing

    electroencephalogram (EEG)

    - 15-20 ml/100gr/min flat (isoelectric) EEG- < 10 ml/100gr/min irreversible brain damage

  • 8/13/2019 Neuropharmacology of Anesthetic Agent

    5/26

    5

  • 8/13/2019 Neuropharmacology of Anesthetic Agent

    6/26

    6

    Regulation Cerebral Blood Flow

    1.1. Cerebral perfusion pressure (CPP)

    - Normal : 80 - 100 mmHg

    - CPP = MAPICP

    - Normal ICP 5-15 mmHg- CPP < 50 mmHg slowing EEG

    - CPP 25-40 mmHg flat EEG

    - < 25 mmHg : irreversible brain damage- Decreases CPP: Cerebral vasodilatation

    - Increases CPP: Cerebral vasoconstriction

  • 8/13/2019 Neuropharmacology of Anesthetic Agent

    7/26

    7

    1.2. Autoregulation

    - CBF constant between MAPs 60-160 mmHg- MAPs > 160 mmHg disrupt BBB

    - MAPs shift to the right in patient with chronic

    arterial hipertension- Cerebral autoregulation: miogenic and metabolic

    mechanism arterial tone tissue

    metabolitest ( H+, NO, adenosine,

    prostaglandins,and ionic concentration gradients)vasodilatation and increases flow

  • 8/13/2019 Neuropharmacology of Anesthetic Agent

    8/26

    8

    1.3. Extrinsic mechanism

    a. PaCO2 (particularly)- CBF directly proportionate to PaCO220-80

    mmHg- CBF changes 1-2 ml/100g/min per mmHg change

    PaCO2- Hyperventilation (PaCO2 < 20 mmHg ): shift to the

    left the oxygen Hb dissociation curve.- Cerebral blood volume (CBV) 0.05ml/100gr/min

    of brain per 1 mmHg in PaCO2

  • 8/13/2019 Neuropharmacology of Anesthetic Agent

    9/26

  • 8/13/2019 Neuropharmacology of Anesthetic Agent

    10/26

    10

    b. PaO2- Hiperoxia : associated minimal CBF (-10%)

    - Severe hipoxemia PaO2< 50 mmHg : CBF

    c. Temperature

    - CBF changes 5 - 7% per 1C changetemperature

    - Hypothermia CMR and CBF

    - If the temperature the brain falls 10C the CMR

    50%

    - If the temperature the brain increases 10C the

    CMR doubles

  • 8/13/2019 Neuropharmacology of Anesthetic Agent

    11/26

    11

    d. Viscosity

    - The most important determinant blood

    viscosity is hematocrit

    - The optimal cerebral oxygen delivery occur athematocrit 30%

  • 8/13/2019 Neuropharmacology of Anesthetic Agent

    12/26

    12

    e. Autonomic Influences

    - Intracranial vessels are innervated by sympathetic

    (vasoconstrictive) , parasympathetic (vasodilatory),

    and non-cholinergic non adrenergic fiber, serotoninand vasoactiv intestinal peptide

  • 8/13/2019 Neuropharmacology of Anesthetic Agent

    13/26

    13

    2. CEREBRAL METABOLIC RATE (CMR)

    - 20% of total body oxygen- 60% cerebral oxygen used to generating ATP to

    support neuronal electrical activity

    - CMR for oxygen consumption (CMR 02) 3 - 3,8

    ml/100gr/min- CMR for glucoseconsumption is 5 mg/100gr/min,

    > 90% is metabolized aerobically

    - During starvation : ketone bodies become majorenergy substrates

    - Acute hypoglicemia hypoxia

    - Hyperglycemia global and focal hypoxic

    cerebral acidosis & cellular injury

  • 8/13/2019 Neuropharmacology of Anesthetic Agent

    14/26

    14

    3. CEREBROSPINAL FLUID (CSF)

    - Production 21 ml/h (500 ml/d), total volume

    150ml, formed :

    a. >> choroid plexuses of the cerebral lateral

    ventricles active secretion of Na+

    b. smaller by the ventricle ependymal cell linings- isotonic fluid, lower : K+, HCO3-, glucose

    concentration

    - Decreases production: acetazolamide,

    corticosteroids, spironolactone, furosemide,

    isoflurane, and vasoconstrictors

    - Absorption: translocation fluid from arachnoid

    granulations cerebral venous sinuses

  • 8/13/2019 Neuropharmacology of Anesthetic Agent

    15/26

    15

    4. INTRACRANIAL PRESSURE (ICP)

    The cranial : rigid structure. fixed total volume : brain 80%, blood 12%,

    and CSF 8% Normal pressure 10 mmHg

    Major compensatory mechanism to rises ICP :a.Displacement CSF from cranial to the spinal

    compartmentb. CSF absorpstion

    c. CSF productiond. Cerebral blood volume (CBV)

  • 8/13/2019 Neuropharmacology of Anesthetic Agent

    16/26

    16

    4. INTRACRANIAL PRESSURE (ICP)

    Elevation ICP can lead to catastrophic herniation:

    a.Gyrus falx cerebrib.Tentorium cerebelli

    c.Foramen magnum

    d.Defect in the skull (transcarvarial)

    The initial management increases ICP.

    Maintaining cerebral O2delivery with :

    a. Supplemental O2

    b. Elevation of headc. Intubation

    d. Hyperventilation

    e. Limitation excees free water and vol resusc.

  • 8/13/2019 Neuropharmacology of Anesthetic Agent

    17/26

  • 8/13/2019 Neuropharmacology of Anesthetic Agent

    18/26

    18

    5. BLOOD BRAIN BARRIER (BBB)

    Tight junctions vascular endhotelial cells

    Freely enter : CO2, O2 and Lipid soluble

    substances (such as most anesthetics)

    Penetrates poorly: most ions, proteins, andlarge substances such as mannitol

    Disrupted by : severe-hypertension, tumors,

    trauma, strokes, infections, marked

    hypercapnia, hypoxia, and sustained seizureactivity

  • 8/13/2019 Neuropharmacology of Anesthetic Agent

    19/26

    19

    II. EFFECT OF ANESTHETIC AGENTS

    Effect on CNS reducing electrical activity :- Decreases carbohydrate metabolism

    - Increases energy stores (ATP, ADP, and

    Phosphocreatine)

    A.VOLATILE/INHALATION AGENTS

    - Decreases CMR

    - Dilate cerebral vessels dose dependent

    - Impaired autoregulation

  • 8/13/2019 Neuropharmacology of Anesthetic Agent

    20/26

  • 8/13/2019 Neuropharmacology of Anesthetic Agent

    21/26

    21

    Agent CMR CBFCSF

    ProductionCSF

    AbsorptionCBV ICP

    Halothane

    Isoflurane

    Desflurane

    Sevoflurane ? ?

    Nitrous oxide

    Barbiturates

    Etomidate

    Proprofol ? ?

    Benzodiazepines

    Ketamine

    Opioids

    Lidocaine ? ?

    Comparative effects of anaesthetic agents on cerebral physiology

  • 8/13/2019 Neuropharmacology of Anesthetic Agent

    22/26

  • 8/13/2019 Neuropharmacology of Anesthetic Agent

    23/26

    23

    b. Propofol- Similar to barbiturates : CBF and CMR

    c. Benzodiazepin

    - CBF and CMR but lesser extent thanbarbiturates and propofol

    d. Ketamine- Dilates the cerebral vasculature and CBF

  • 8/13/2019 Neuropharmacology of Anesthetic Agent

    24/26

    e. Neuromuscular blocking agents (NMBAs)- Lack direct action secondary effect(histamin released cerebral vasodilatation

    ICP)

    f. Opioids- Minimal effect on CBF, CMR and ICP, unless

    PCO2(respiratory depression)

    24

  • 8/13/2019 Neuropharmacology of Anesthetic Agent

    25/26

    C. ANESTHETIC ADJUNCTS

    - Lidocaine ( CMR, CBF and ICP )

    - Vasopressors ( CBF : normal autoregulation and

    intact BBB)

    - Vasodilators ( Cerebral vasodilatation and CBF)- Mannitol (osmotic diuretic)

  • 8/13/2019 Neuropharmacology of Anesthetic Agent

    26/26

    26