18
Net primary production (NPP) = f [biomass, physiology, g (I 0 )] NPP = f [chlorophyll, Z eu , P b opt , g (I 0 )] {0.02 to 30 mg m -3 } {<10 to >120 m} {0 to 30 mg C mgChl -1 h -1 } {0 to 1} {2 to 300 mg m -2 } NPP = f [Carbon, Z eu , , g (I 0 )] {5 to 100 mg m -3 } {0 to 2 div. d -1 }

Net primary production (NPP) = f [biomass, physiology, g (I )] · 2008. 11. 10. · Net primary production (NPP) = f [biomass, physiology, g (I0)] NPP = f [chlorophyll, Zeu, Pb opt,

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Net primary production (NPP) = f [biomass, physiology, g (I0)]

    NPP = f [chlorophyll, Zeu, Pbopt, g (I0)]

    {0.02 to 30 mg m-3}

    {120 m}

    {0 to 30 mg C mgChl-1 h-1}

    {0 to 1}

    {2 to 300 mg m-2}

    NPP = f [Carbon, Zeu, , g (I0)]

    {5 to 100 mg m-3} {0 to 2 div. d-1}

  • Light scattering # particles

    Common measures of scatter: particulate beam attenuation (cp)particulate backscatter coeff. (bbp)

    Open—ocean particle size spectra relatively conserved

    cp is:

    dominated by particles in the phytoplankton size domain

    sensitive to inorganic particles in the 0.5 to 20 m size range

    insensitive to submicron bacteria, ‘pure water’ values are measured when 106 bacteria are present

    (1) (2)

    (3)

    (4)

    10-1

    100

    101

    102

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    s ize [µm]

    beam

    atte

    nuat

    ion

    / pa

    rticl

    e vo

    lum

    e

    Detrital-like (n=1.04+i*0.0001)

    P hytoplankton-like (n=1.05+i*0.005)

    10-1 101 102100

    0.4

    0.3

    0.2

    0.1

    0

    beam

    atte

    nuat

    ion

    / par

    ticle

    vol

    ume

    size (um)

    detrital particles

    planktonic particles

    14 Steps

  • Particle # cp per particle

    cp covaries with POC

    Bishop, J.K.B. 1999. Deep-Sea Res. I. 46:353-369.Bishop, J. K. B., S. E. Calvert and M. Y. S. Soon (1999) Deep-Sea Res. II 46:2699-2733.Claustre, H., A. Morel, M. Babin, C. Cailliau, D. Marie, J-C Marty, D. Tailliez and D. Vaulot (1999) J. Geophys. Res. 104:3401-3422.Gardner, W. D., I. D. Walsh and M. J. Richardson (1993) Deep-Sea Res. II. 40:171-195.Gardner, W. D., S. P. Chung, M. J. Richardson and I. D. Walsh (1995) Deep-Sea Res. II. 42:757-775.Loisel, H. and A. Morel (1998) Limnol. Oceanogr. 43: 847-858.Walsh, I. D., S. P. Chung, M. J. Richardson and W. D. Gardner (1995) Deep-Sea Res. II 42:465-477.

    Therefore – cp should be a better estimate of phytoplankton carbon than POC

    If true – then the ratio of cp:chlorophyll should track phytoplankton C:Chl,which is a common index of physiological variability that sharesenvironmental dependencies with Pbopt and Ek

    (5)

    (6)

    (7)

    (8)

    0.1 1 10 100 1000 m

    Practical POC

    Particulate beam attenuation (cp)

  • cp:chl tracks changes in Pbopt and Ek

    Behrenfeld & Boss (2004) Deep-Sea Res.50:1537-1549

    (9)

    0 10 20 30 40 50

    0

    3

    6

    9

    12

    15

    18

    0.0

    0.3

    0.6

    0.9

    1.2

    1.5

    1.8

    0 10 20 30 40 50 60 70

    0

    3

    6

    9

    12

    15

    18

    0.0

    0.3

    0.6

    0.9

    1.2

    1.5

    1.81992 1993 1994 1995 1996 1997

    * *

    1994199319921991 19961995

    April May June

    0

    2

    4

    6

    8

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    653 4130 2 272523201886 312927 292625

    NABE Time Series

    Sequential Observation

    Mea

    sure

    d Pb

    opt

    Measured c

    p :Chl ratio

    NABE

    BATS

    HOT

    Mea

    sure

    d Pb

    opt

    cp :C

    hl ratio

    0.0 0.2 0.4 0.6 0.8 1.00

    100

    200

    300 OliPac

    cp:Chl ratioM

    easu

    red

    E k

  • Ocean color inversion algorithms give us bbp , not cp

    Mie calculations indicate that bbp is dominated by submicron particles, but in field populations bbp likely has a significant tail in the phytoplankton size domain.

    Satellite bbp covaries with POC

    Loisel, H., E. Bosc, D. Stramski, K. Oubelkheir, and P.-Y. Deschamps (2001) Geophys. Res. Lett., 28:4203-4206.Stramski, D., R. A. Reynolds, M. Kahru, and B. G. Mitchell (1999)

    Science, 285:239-242.

    Therefore – bbp should be a better estimate of phytoplankton carbon than POC

    If true – then the ratio of chlorophyll:bbp should track phytoplankton Chl:C

    and thus phytoplankton growth rates ( )

    {once a correction of the background bacterial population is accounted for}

    (10)

    (11)

    (12)

    (13)

    (14)

    0.1 1 10 100 1000 m

    Practical POC

    Particulate beam attenuation (cp)

    Particulate backscatter (bbp)

  • 0 5 10 15 20 25 300.01

    0.04

    0.07

    0.10

    0.13

    0.16

    0.19

    0 1 2 3

    0.005

    0.020

    0.035

    0.050

    0.065

    0.080

    0.20.40.60.81.00.001

    0.006

    0.011

    0.016

    Chl

    :C (m

    g m

    g-1 )

    Light (moles m-2 h-1)

    Temperature (oC)

    Chl

    :Cm

    ax

    Growth rate (div. d-1)

    Chl

    :Cm

    in

    Low Nutrient stress High

    3 primary factors

    Light

    Temperature

    Nutrients

    Chl:C physiologyLa

    bora

    tory

    Chl:Cmax

    Chl:Cmin

    Dunaliella tertiolecta20 oCReplete nutrientsExponential growth phase

    Geider (1987) New Phytol. 106: 1-34

    16 species = Diatoms

    = all other species

    Laws & Bannister (1980) Limnol. Oceanogr. 25: 457-473

    Thalassiosira fluviatilis = NO3 limited cultures

    = NH4 limited cultures

    = PO4 limited cultures

  • 0.0 0.2 0.4 0.6 0.80.000

    0.001

    0.002

    0.003

    0.004

    0.005

    75o

    0o

    15o

    30o

    90o

    60o 45o

    60o

    75o90o

    15o

    30o

    45o

    75o

    0o

    15o

    30o

    90o

    60o 45o

    60o

    75o90o

    15o

    30o

    45o NP

    SP SA

    NANP

    SP

    CP

    SA

    NA

    SI

    NI CA

    SO

    L0L1L2L3L4

    SO-all

    Chlorophyll

    Variance L

    evel

    excluded

    28 Regional Bins

    b bp (

    m-1

    )

    Chlorophyll (mg m-3)

    ‘physiology domain’

    ‘biomass domain’

    Intercept = bbp from stable component of the bacterial population

    C = scalar (bbp – intercept) = 13,000 (bbp – 0.00035)

    Intercept = 0.00017 m-1 Stramski & Kiefer (1991) Prog. Oceanogr. 28, 343-383 Cho & Azam (1990) Mar. Ecol. Prog. Ser., 63, 253-259

    Phytoplankton Carbon = 25 – 35% POC Eppley et al. (1992) J. Geophys. Res., 97, 655-661 DuRand et al. (2001) Deep-Sea Res. II, 48, 1983-2003 Gundersen et al. (2001) Deep-Sea Res. II 48, 1697-1718

  • 0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0 0.2 0.4 0.6 0.8

    0.0 0.2 0.4 0.6 0.80.000

    0.001

    0.002

    0.003

    0.004

    0.005b b

    p (m

    -1)

    Satellite bbp vs field cp

    Same bilinear pattern

    Anticipated intercept bbp > 0 cp = 0

    Ratio of slopes = 0.0008

    {phytoplankton = 0.0005 – 0.0009}c p (m

    -1)

    Chlorophyll (mg m-3)

    South Atlantic

  • 0 5 10 15 20 25 300.01

    0.04

    0.07

    0.10

    0.13

    0.16

    0.19

    0 5 10 15 20 25 300.01

    0.02

    0.03

    0.04

    0.05

    0 1 2 3

    0.005

    0.020

    0.035

    0.050

    0.065

    0.080

    0 1 2 3

    0.005

    0.007

    0.009

    0.011

    0.013

    0 5 10 15 20 25 300.001

    0.006

    0.011

    0.016

    0.20.40.60.81.00.001

    0.006

    0.011

    0.016

    Chl

    :C (m

    g m

    g-1 )

    Light (moles photons m-2 h-1)

    Temperature (oC)

    Chl

    :Cm

    ax

    Growth rate (div. d-1)

    Chl

    :Cm

    in

    Low Nutrient stress High

    Labo

    rato

    ry

    Temperature (oC)

    Low Nutrient stress High

    Chl:C

    (mg m

    g-1)

    Chl:C

    max

    Chl:C

    min

    Space

    {median r2 = 0.85}

  • 75o

    0o

    15o

    30o

    60o 45o

    60o

    75o90o

    15o

    30o 45o

    75o

    0o

    15o

    30o

    60o 45o

    60o

    75o90o

    15o

    30o 45o NP

    SP SA

    NANP

    SP

    CP

    SA

    NA

    SI

    NI CA

    SO90o90o

    0.02

    0.03

    0.04

    0.05

    0.06

    0.003

    0.005

    0.007

    0.08

    0.10

    0.12

    0.14

    0.007

    0.010

    0.013

    0.016

    0.04

    0.07

    0.10

    0.13

    0.005

    0.008

    0.011

    0.014

    0.0

    0.1

    0.2

    0.3

    0.4

    0.01

    0.02

    0.03

    1998 1999 2000 2001 2002

    0.10

    0.15

    0.20

    0.25

    0.30

    0.008

    0.012

    0.016

    0.020

    Year

    Phyt

    opla

    nkto

    n C

    hlor

    ophy

    ll (

    ) a

    nd sc

    aled

    Car

    bon

    (

    )

    Satellite Chl:C

    Ratio ( )

    The 5 basic patterns

  • Growth rate ( ) = max f (nuts, temp) g (light)

    2 divisions d-1

    Banse (1991)

    Chl:Csat

    ( Chl:CN,T-max ) Light

    range = 0 to 1 range = 0 to 1

    0 1 2 30.00

    0.01

    0.02

    0.03

    0.04

    0.05

    Light (moles photons m-2 h-1)

    Chl

    :C (m

    g m

    g-1 )

    1 – exp -3light

  • 0 0.5 1.0 1.5 2.0

    Growth rate (division d-1)

    Boreal Summer

    Boreal Winter

    Growth rate (divisions d-1)0.0 0.5 1.0 1.5 2.0

    Rel

    ativ

    e Fr

    eque

    ncy

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Rel

    ativ

    e fr

    eque

    ncy

  • Bor

    eal W

    inte

    r

    Chlorophyll basedCarbon based

    Bor

    eal S

    umm

    er

    Net Primary Production (mg m-2)0 1200800400 1500

  • Backup Slides

  • 0 5 10 15 20 250

    5

    10

    15

    20

    25

    0

    5

    10

    15

    20

    25

    0 5 10 15 20 25

    Balch et al. 1992 Antoine et al. 1996

    Megard 1972 Behrenfeld & Falkowski 1997

    Net primary production (NPP) = f [biomass, physiology, g (I0)]

    NPP = f [chlorophyll, Zeu, Pbopt, g (I0)]

    {0.02 to 30 mg m-3}

    {120 m}

    {0 to 30 mg C mgChl-1 h-1}

    {0 to 1}

    {2 to 300 mg m-2}

    NPP = f [Carbon, Zeu, , g (I0)]

    {5 to 100 mg m-3} {0 to 2 div. d-1}

    Measured Pbopt

    Mod

    eled

    Pb o

    pt40% 40-50%

    Model #1

    Model #4Model #3

    Model #2

  • Growth Irradiance0 1 2 3

    Phot

    osyn

    thes

    is

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    Ligh

    t-sat

    urat

    ed P

    hoto

    synt

    hesi

    s (P

    * max

    )

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    0.01 0.03 0.05 0.070.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    Light-limited Photosynthesis (Nmax)0.01 0.03 0.05 0.07 0.01 0.03 0.05 0.07

    Ek = 146r2 = 0.63

    n = 17o.d. = 0.2 - 0.5

    Ek = 138r2 = 0.73

    n = 14o.d. = 0.7 - 1.0

    Ek = 118r2 = 0.95

    n = 16o.d. = 1.4 - 1.9

    Ek = 95r2 = 0.91

    n = 16o.d. = 2.1 - 2.6

    Ek = 59r2 = 0.79

    n = 20o.d. = 2.7 - 3.3

    Ek = 42r2 = 0.80

    n = 19o.d. = 3.6 - 4.3

    Ek = 27r2 = 0.75n = 17o.d. = 4.5 - 5.0

    Ek = 21r2 = 0.50n = 14o.d. = 5.3 - 5.8

    Ek = 12r2 = 0.77n = 25o.d. = 6.2 - 10.6

    Optical Depth0 1 2 3 4 5 6 7

    E k

    0

    40

    80

    120

    160

    Observed

    Calculated

    CBA

    D

    IHG

    FE

    J K

  • Sequential hours of Experiment0 20 40 60 80

    Car

    bon

    Fixa

    tion

    & Ac

    cum

    ulat

    ion

    Rat

    e

    -6

    -4

    -2

    0

    2

    4

    6

    Time of Day0 4 8 12 16 20 24

    FLS

    0.10

    0.12

    0.14

    0.16

    0.18

    0.20

    N:C

    0.15

    0.17

    0.19

    0.21

    Time of Day0 4 8 12 16 20

    rbcL

    0

    5

    10

    15

    Sequential hours of Experiment0 20 40 60 80

    Pbm

    ax

    0

    2

    4

    6

    8

    10

    12

    "b

    0.00

    0.01

    0.02

    0.03A

    D

    CB