34
2/28/06 LaBean COMPSCI 296.5 Nanoparticles, nanorods, nanowires Nanoparticles, nanocrystals, nanospheres, quantum dots, etc. Drugs, proteins, etc. Nanorods, nanowires. Optical and electronic properties. Organization using biomolecules. Future possibilities.

Nanoparticles, nanorods, nanowires

  • Upload
    others

  • View
    15

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

Nanoparticles, nanorods, nanowires

Nanoparticles, nanocrystals,nanospheres, quantum dots, etc. Drugs, proteins, etc.

Nanorods, nanowires. Optical and electronic properties. Organization using biomolecules. Future possibilities.

Page 2: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

Nanoparticles Materials: QDs, magnets, noble metals Synthesis

Reduction of metal salt Production of insoluble salt Micelle confinement Microbial production Biomolecular nucleation

Control of: composition, size, shape, crystalstructure, and surface chemistry.

Properties: Optical, electrical, physical,chemical

Page 3: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

Nanoparticles, gold Synthesis

Reduction of metal salt

Page 4: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

Nanoparticles, silver Light dependent synthesis

Page 5: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

Nanoparticles, organization

Page 6: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

QD Rainbow

Page 7: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

Nanowires

ECD (dc, ac, pulsed) Polycrystalline wires (some single-crystal)

Pressure injection into template pores. Single-crystal wires

Co/Cu layers from one solution byswitching cathodic potential.

Page 8: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

Nanowires

Templates anodic alumina (Al2O3), nano-channel glass,

ion track-etched polymers, and mica films. 10-200 nm diameter pores. CNT in templates and as templates.

a) Anodic alumina from acid anodized Al film to givehexagonal array of cylindrical holes. b) particle track-etched polycarbonate membrane.

Page 9: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

Protein templates

(also CNT synth, catalyst)

Page 10: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

Nanowires

VLS - vapor, liquid, solid Mechanism first proposed for single-crystal Si whisker

synthesis (molten Au catalyst). Anisotropic crystal growth.

Page 11: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

Nanowire networks Alignment by flow in channels. Alignment on surface patterns.

Amine terminated lines.

Page 12: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

Nanowire devices Doped wires, logic gates.

Page 13: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

Nanowires More complex structures by growth. Organization of fully formed rods. Ordered growth.

Page 14: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

Nanowires

Page 15: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

Nanowires Annealing

Page 16: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

NanoParticles andBiomolecular Address Labels

Nanoparticles, nanocrystals,nanospheres, quantum dots, etc.

DNA (protein) conjugation. Self-assembly using DNA (proteins). Optical and electronic properties. Future possibilities.

Page 17: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

Conjugation strategies

Page 18: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

Chemistry:Cyclic disulfides

Functional Group

Lipoic acid

Silanes

Maleimido

Page 19: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

NP-NP

Page 20: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

Simple NP-DNA Conjugates

Multiple DNA labels per NP. Remarkable spectroscopic

changes upon DNAhybridization.

Sharper dissociation curve.

Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. Nature 1996,382, 607.Mucic, R. C.; Storhoff, J. J.; Mirkin, C. A.; Letsinger, R. L. "DNA-DirectedSynthesis of Binary Nanopartic le Network Materials," J. Am. Chem. Soc.1998, 120, 12674-12675.

Linked

Unlinked

Page 21: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

Simple NP-DNA Conjugates

Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. Nature 1996,382, 607.

Page 22: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

NP Size variety

Mucic, Storhoff, Mirkin, Letsinger (1998) JACS 120, 12674-12675

Page 23: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

Alivisatos

1:1 DNA:nanoparticleconjugates purified by PAGE.

Au NP stablized withdipotassium bis(p-sulfonatophenyl)phenylphosphane dihydrate.

Binary and ternarycomplexes made.

Page 24: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

Undecagold

• 11 gold atoms• < 1 nm diameter• monofunctional

Page 25: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

NP networks

Page 26: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

NP protein

2909-2912

Page 27: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

DX tile + 1.4 nm gold

Page 28: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

TAE linear organizer

500x500 nm

500x500 nm

Organization ofStreptavidin andGold with TAE LinearAssembly

H. Li, S- H. Park, J. H. Reif, T. H. LaBean, and Hao Yan,(2004) DNA Templated Self-Assembly of Protein andNanoparticle Linear Arrays, J. Am. Chem. Soc. 126, 418-419.

Page 29: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

DNA Lattice Patterned 2D Nanoparticle Arrays Nanoparticle/oligonucleotide conjugate (1:1) 4x4 Tile array. Research challenge: compatible conditions

for solubility and assembly.

H. Li, S- H. Park, J. H. Reif, T. H. LaBean, and Hao Yan, (2004) DNATemplated Self-Assembly of Protein and Nanoparticle Linear Arrays, J.Am. Chem. Soc. 126, 418-419.

Page 30: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

Remote control of H-bonding152-155

Here we demonstrate remote electronic control over the hybridization behavior of DNA molecules, byinductive coupling of a radio-frequency magnetic field to a metal nanocrystal covalently linked to DNA15.Inductive coupling to the nanocrystal increases the local temperature of the bound DNA, thereby inducingdenaturation while leaving surrounding molecules relatively unaffected. Moreover, because dissolvedbiomolecules dissipate heat in less than 50 picoseconds, the switching is fully reversible.

49 GHz = optimal1 GHz used

Page 31: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

Nanorod building blocks 1

4354-4363

Metallic nanowires offer more control of surface chemistry, length, diameter, andtransport properties compared to CNT or semiconductor nanowires.

Page 32: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

Nanorod building blocks 2

4354-4363

Page 33: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

Nanorod building blocks 3

4354-4363

Page 34: Nanoparticles, nanorods, nanowires

2/28/06 LaBean COMPSCI 296.5

NP biosensor