230
1 ABSTRACTS IS-MPMI 2012 XV International Congress July 29 (Sun.) –August 2 (Thu.), 2012 Kyoto, Japan

n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

1

ABS

TRA

CTS

IS-M

PMI 2

012

XV In

tern

atio

nal C

ongr

ess

July

29

(Sun

.) –A

ugus

t 2 (T

hu.),

201

2 ・

Kyo

to, J

apan

Page 2: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan
Page 3: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ABSTRACTS

1

Page 4: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

2

OL-1InnateimmunityinmammalsShizuoAkira11LaboratoryofHostDefense,WPIImmunologyFrontierResearchCenter,OsakaUniversity,[email protected] innate immune system is an evolutionally conserved hostdefensemechanism against pathogens. Innate immune responsesare initiated by pattern recognition receptors (PRRs), whichrecognize specific structures of microorganisms. Among them,Toll-likereceptors(TLRs)arecapableofsensingorganismsrangingfrombacteriatofungi,protozoaandviruses,andplayamajorroleininnateimmunity.IndividualTLRsrecognizedifferentmicrobialcomponents,andgiverisetodifferentpatternsingeneexpression.We are now focusing on the role of genes induced in responseto TLR stimulation, particularly the genes that are rapidlyinduced in a MyD88-dependent manner within 30 min afterLPS stimulation. Among them, we have recently identified anovel gene namedZc3h12awhich has aCCCH-type zincfingerdomain.Theknockoutmicedeveloped spontaneous autoimmunediseases accompanied by splenomegaly and lymphadenopathy.Subsequent studies showed that Zc3h12a is a nuclease involvedin destabilization of IL-6 and IL-12mRNA. We renamedit Regulatory RNase-1 (Regnase-1) based on the function.WerecentlyfoundthattheIKKcomplexcontrolsIL-6mstabilitybyphosphorylatingRegnase-1inresponsetoIL-1R/TLRstimulation.Phosphorylated Regnase-1 underwent ubiquitination anddegradation.Takentogether,Regnase-1isinvolvednotonlyinthelate phase suppression ofTLR-mediated IL-6mRNAexpressionbutalsointhegbrakehontheinitialIL-6mRNAinduction.

AL-1InnateimmunityeffectorsandvirulencefactorsinsymbiosisEvaKondorosi1,2,AdamKondorosi11Institut des Sciences du Vegetal, CNRS, 91198 Gif surYvette,France,2BiologicalResearchCentreoftheHungarianAcademyofSciences,[email protected] symbiosis, host cells coexistwith amultitude of bacteria andusuallysharemetabolites,thusprovidingeachotherwithmissingvital components. Rhizobium-legume symbiosis results in theformation of root nodules where intracellular bacteria reduceatmospheric nitrogen and supply ammonia for plant growth inexchangeforenergyandCsourcesfromtheplant.Thisbacterium-plant interaction used to be consideredmutually beneficial.Thisview has, however, changed drastically upon the discovery thatcertain plants exploit their bacterium partners by directing themintoanirreversible,terminaldifferentiationwithnochancetoreturnto the free-living state. The mechanism of plant dominance hasbeenelucidatedinMedicago truncatulawhere>600antimicrobialpeptides,relatedtotheeffectorsofinnateimmunity,haveadaptedand evolved for symbiosis. These peptides are produced in thesymbioticcellsandaretargetedtothebacteriaprovokinggenomeamplification, extreme cell elongation, increased membranepermeability and loss of cell division capacity. The combinedactionofthepeptideskeepsthebacteriaviablebutuncultivableandnecessitatesthefunctionofthebacterialBacAprotein,whichisalsoessentialfortheestablishmentofchronicintracellularinfectionbyintracellularmammalianpathogens.Rhizobium-legumesymbiosisalsoappearstobeaparadigmforotherhost-bacteriuminteractionsandmayhelptounderstandthepersistenceofintracellularbacteriaineukaryoticcells.

Abstract of Opening Lecture Abstract of Award Lecture

Table of Contents

AbstractofOpeningLecture...............................................................................................................................2

AbstractofAwardLecture...................................................................................................................................2

AbstractsofPlenaryLectures..............................................................................................................................3

AbstractsofConcurrentSessionPresentations.................................................................................................13

AbstractsofPosterSessionPresentations..........................................................................................................57

Author Index............................................................................................................................................................213

Page 5: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ABSTRACTS

Plenary Lectures

3

Page 6: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PlenaryLecture1-Pathogen

4

Plen

ary

1

PL1-1RegulationofsurfaceimmunereceptorcomplexactivityCyrilZipfel11TheSainsburyLaboratorycyril.zipfel@tsl.ac.ukThefirst layerofplant innate immunity relieson the recognitionof microbes via the perception of pathogen-/microbe-associatedmolecular patterns (PAMPs/MAMPs) by surface localizedreceptors called pattern recognition receptors (PRRs). In theplant model Arabidopsis thaliana, the leucine-rich repeat RKs(LRR-RKs) FLS2 and EFR are the PRRs for bacterial flagellin(orflg22)andelongationfactorTu(orelf18),respectively.WithinsecondsofPAMPbinding,FLS2andEFRformaligand-inducedcomplex with the regulatory LRR-RK SERK3/BAK1 leadingto phosphorylation of both proteins.Additional SERKs, such asSERK4/BKK1, are recruited in a ligand-dependent manner intoEFR and FLS2 protein complexes with different preferences.FLS2 (and potentially EFR) also forms a constitutive complexwith themembrane-associated cytoplasmic kinaseBIK1 that getphosphorylatedinaBAK1-dependentmanneruponPAMPbinding.BIK1 is a positive regulator of most FLS2- and EFR-mediatedresponses.Downstreamof FLS2 andEFR complexes, activationleads to several rapid responses, including bursts of Ca2+ andreactive oxygen species (ROS), activation of mitogen-activatedproteinkinases (MAPKs)andcalcium-dependentproteinkinases(CDPKs), and transcriptional reprogramming, ultimately leadingto PAMP-triggered immunity. The mechanisms controlling PRRactivation at the plasma membrane and regulating intracellularsignallingremainhoweverlargelyunknown.Usingacombinationofbiochemicalandgeneticapproaches,wehaveuncoveredvariouscomponentscontrollingdirectlytheactivityoftheFLS2andEFRcomplexes at the plasma membrane. In addition to underlyingthe activation of PAMP-triggered immunity, these mechanismsalsolimit theover-activationofimmuneresponsesthatwouldbeotherwisedetrimentaltotheplant.

PL1-2The role of Fusarium effectors in NLR-mediated innateimmunityFrankTakken1, LisongMa1, PetraHouterman1, FleurGawehns1,MaradeSain1,FabianoSillo1,BenCornelissen1,MartijnRep11Molecular Plant Pathology, Swammerdam Institute for LifeSciences,UniversityofAmsterdam,Amsterdam,[email protected] interaction between the fungus Fusarium oxysporum f.sp.lycopersici(Fol)andtomatofollowsagene-for-generelationship.TomatoresistancegenesI, I-2andI-3conferresistancetoFolbasedon recognitionofAvr1,Avr2andAvr3, respectively.These threeAvrshavebeenidentifiedamongthefungalproteins(Sixproteins)found in the xylem sap of Fol-infected tomato plants. Of the Rgenes, only I-2 hasbeen cloned; thegene is expressed inxylemcontactcellsandencodesanintracellularNB-LRRprotein.AllFolraceshaveAVR2anditsexpressionisinduceduponrootcontactandduringcolonizationofxylemvessels.AVR2isavirulencefactorasitsdeletioncompromisespathogenicity.Foldeploystwostrategiesto overcome I-2-mediated resistance. Race 3 strains carry pointmutationsinAVR2thatdonotaffectvirulencebutallowittoevaderecognition.AVR1doesnotcontributetovirulenceonsusceptibleplantsbutsuppressesI-2function.Surprisingly,aSIX5knockout,like theAVR2knockout,becomesvirulentonan I-2 tomato line.Nevertheless,AVR2aloneissufficienttoinduceI-2-mediatedcelldeath inN. benthaminaand in tomato,suggesting thatcelldeathand resistance are not strictly linked. Support for a functionalinteractionofthiseffectorpairisthattheirexpressionisdrivenbysamepromoterandthatbothproteinsinteractinaY2Hsystem.Weaimtofurtherunravelthemolecularmechanismsunderpinningtheobservedvirulenceandavirulencefunctionsoftheseeffectorsandtherelevanceoftheformationofaputativeheteromericcomplex.

PL1-3DefensomeinriceinnateimmunityKoShimamoto1,AkiraAkamatsu1,SatoshiHamada1,YojiKawano11LaboratoryofPlantMolecularGenetics,NaraInstituteofScienceandTechnology,Japansimamoto@bs.naist.jpWehavebeenstudyingmolecularsignalinginriceinnateimmunitybystudyingthesmallGTPaseOsRac1anditsinteractingproteinsby using a variety of methods.We have identified a number ofOsRac1-interacting proteins and studied their functions andinteractionswith other proteins.We found thatOsRac1 interactswith two types of receptors; membrane-bound receptor-likekinases and NB-LRR type receptors. OsRac1 forms a proteinnetworkwithseveralcheperonesandco-chaperones,SGT1,RAR1,Hsp90,Hsp70,andHop/Sti1.Ascafflodingprotein,RACK1,alsointeracts with OsRac1. The OsRac1 network includes enzymessuchasNADPHoxidaseandCCRwhichareimportantforimmuneresponses. Based on genetic, protein-protein interaction, andbiochemicalstudiesweproposethatOsRac1isahubofriceinnateimmunitywherePTI andETIpathwaysmerge.Wealsoproposethat these proteins form complex termed defensome. Based onthe recentbiochemical analysiswe foundPTIandETI receptorsformseparatedefensomesbutcontainthesamechaperonesineachdefensome.Our results suggest that thedefensomecomplex is akeyregulatoryunitforriceinnateimmunity.

Page 7: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PlenaryLecture2-PlantsignalingI

5

Plenary 2

PL2-1DefiningthecoreArabidopsis thalianarootmicrobiomeDerek S. Lundberg1, Sarah L. Lebeis1, Sur H. Paredes1, ScottYourstone1,SusannahG.Tringe2,JeffDangl1,31UniversityofNorthCarolinaatChapelHill,2DOEJointGenomeInstitute,[email protected] plants associate with a root microbiota distinct from thecomplex microbial community present in surrounding soil. Themicrobiota colonizing the rhizosphere (immediately surroundingthe root), and the endophytic compartment (within the root),contribute to plant growth, productivity, carbon sequestration,and phytoremediation. Colonization of the root occurs despitea sophisticated plant immune system, suggesting finely-tuneddiscrimination of mutualists and commensals from pathogens.Genetic principles governing the derivation of host-specificendophyte communities from soil communities are poorlyunderstood. We pyrosequenced the bacterial 16S rRNA geneof >600 Arabidopsis thaliana plants to test the hypotheses thatthe root rhizosphere and endophyte compartment microbiota ofplants grown under controlled conditions in natural soils are (i)sufficiently dependent on the host to remain consistent acrossdifferentsoiltypesanddevelopmentalstages,and(ii)sufficientlydependent on host genotype to vary between inbredArabidopsisaccessions. We describe different bacterial communities intwo geochemically distinct bulk soils, and in rhizosphere andendophytecompartmentspreparedfromrootsgrowninthesesoils.The communities in each compartment are strongly influencedby soil type. Endophyte compartments from either soil featureoverlapping low-complexity communities that are markedlyenrichedforActinobacteriaandspecificfamiliesfromotherphyla,notablyProteobacteria.Somebacteriavaryquantitativelybetweenplantsofdifferentdevelopmentalstagesandgenotypes.Ourworkprovidesunprecedentedrigortodefineanendophytecompartmentmicrobiome, facilitating controlled dissection of plant-microbeinteractionsderivedfromcomplexsoilcommunities.

PL2-2Revealing structure and assembly cues forArabidopsis root-inhabitingbacterialmicrobiotaBulgarelli Davide1,Matthias Rott1, Klaus Schlaeppi1, Emiel VerLoren van Themaat1, Nahal Ahmadinejad1, Federica Assenza1,ThiloEickhorst2,PaulSchulze-Lefert11Department ofPlantMicrobe Interactions,MaxPlanck InstituteforPlantBreedingResearch,2InstituteofSoilScience,[email protected] plant root defines the interface between a multicellulareukaryote and soil, one of the richest microbial ecosystems onearth.Remarkably,soilbacteriaareabletomultiplyinsiderootsasbenign endophytes andmodulateplant growth anddevelopment,with implications ranging from enhanced crop productivity tophytoremediation.We describemethodology to characterize andcompare soil and root-inhabiting bacterial communities, whichrevealsnotonlyafunctionformetabolicallyactiveplantcellsbutalsoforinertcellwallfeaturesintheselectionofsoilbacteriaforhost colonization. We show that roots of Arabidopsis thaliana,grown in different natural soils under controlled environmentalconditions, are preferentially colonized by Proteobacteria,Bacteroidetesand Actinobacteria, and each bacterial phylum isrepresentedbyadominatingclassorfamily.Soiltypedefinesthecomposition of root-inhabiting bacterial communities and hostgenotype determines their ribotype profiles to a limited extent.The identification of soil type-specificmemberswithin the root-inhabitingassembliessupportsourconclusionthattheserepresentsoil-derivedrootendophytes.Surprisingly,plantcellwallfeaturesofothertestedplantspeciesappeartoprovideasufficientcuefortheassemblyof~30%oftheArabidopsisbacterialroot-inhabitingmicrobiota, with a bias for Betaproteobacteria. Thus, this root

sub-communitymay not beArabidopsis-specific but saprophyticbacteria thatwouldnaturallybefoundonanyplant rootorplantdebris in thetestedsoils.Incontrast,colonizationofArabidopsisrootsbymembersoftheActinobacteriadependsonadditionalcuesfrommetabolicallyactivehostcells.

PL2-3Oomycetes,effectors,andallthatjazzSophienKamoun1,TolgaO.Bozkurt1,LilianaM.Cano1,AngelaChaparro-Garcia1, SuomengDong1, Stuart R. F. King2, KrissanaKowitwanich1, Vladimir Nekrasov1, Marina Pais1, SylvainRaffaele1,DianeG.O.Saunders1,SebastianSchornack1,JoeWin1,KentaroYoshida1,MarkJ.Banfield21TheSainsburyLaboratory, 2Dept.ofBiologicalChemistry, JohnInnesCentre,NorwichResearchPark,Norwich,NR47UH,UKsophien.kamoun@tsl.ac.ukThefieldofplant-microbeinteractionshasnowcoalescedarounda general model. The major classes of molecular players bothfrom plants (surface and intracellular immune receptors) andmicrobes (PAMPs and effectors) have now been revealed. Thismodel applies to plant pathogenic oomycetes, such as the Irishpotato famineorganismPhytophthora infestans.Thesepathogenssecreteadiverserepertoireofeffectorproteinsthatmodulatehostinnateimmunityandenableparasiticinfection.Someeffectorsaretargetedtotheapoplast(apoplasticeffectors),whileothers,notablytheRXLRandCRNfamilies,aretranslocatedinsidethehostcell(cytoplasmic effectors). A number of RXLR effectors activateimmunityinplantsthatcarrycognateRimmunereceptorsoftheNBS-LRRclass.Otheroomycetemolecules,suchaselicitins,havefeaturesofPAMPs; theyactivate immunityvia surface receptorsandtheirmodulators,whichincludethereceptor-likekinaseBAK1/SERK3.Westudyseveralaspectsofoomycete-plant interactionswithafocusontwoquestions:(i)howdoeffectorsevolve,howdotheyadapttotheirhosttargetsandevaderecognitionbyimmunereceptors?; (ii) how do effectors function, how exactly do theymodulate host immunity?This presentationwill highlight recentadvances on these topics. We made important progress with,notably, the elucidation of the 3D structures ofRXLR effectors,novel insights into how effectors modulate host cell immunity,and the discovery that someRXLR effectors accumulate aroundhaustoriatointerferewiththeexecutionofpolarizedhostdefenses.Finally,wearealsoconcernedwithexploitingbasicknowledgeoneffectorbiologytoimpactagriculture.

PL2-4SystemsbiologyinitiativesforthericeblastfungusYong-HwanLee11Department of Agricultural Biotechnology, Center for FungalGenetic Resources, and Center for Fungal Pathogenesis, SeoulNationalUniversity,Seoul,[email protected] researchgoalofmy laboratory is toelucidate themolecularmechanisms of fungal pathogenesis and interactions betweenrice blast pathogen,Magnaporthe oryzae and its host plant, riceat the genomic level. Rice blast is a compelling model systemfor studying host parasite interactions due to its socioeconomicimpact and the availability of both the rice and fungal genomicsequences.Inanattempttounderstandthemolecularmechanismsofriceblast,wehavebeentakingbothforwardandreversegeneticsapproaches.Ourresearchesusingreversegeneticsapproachfocuson identifying and characterizing the genes involved in signaltransduction pathways leading to appressorium formation, genesencoding transcription factors, and genes that are required forpost penetration stages. For forward genetics studies,we carriedout a large scale insertionalmutagenesis of theM. oryzae strainKJ201 via Agrobacterium tumefaciens mediated transformation,generatingover25,000mutants.Wealsodevelopedhighthroughputphenotypescreeningsystemthatenablesrapidandrobustassayofmutantphenotypes.Thosemutantsarestoredandmaintainedinthe

Page 8: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PlenaryLecture2-PlantsignalingI

6

Plen

ary

2

CenterforFungalGeneticResources.Inadditiontoourendeavortofunctionalgenomics,webuiltacyberinfrastructureforstorageofheterogeneousdataandanalysisofsuchdatainmultiplecontexts.ThegenomesequenceinformationofM. oryzaeaswellasmostoftheresultsfromexperimentalbiologyishousedinourcustomizeddatabases.Ourcomprehensiveandintegrativeapproachescoupledwith a web based Laboratory Information Management Systemwouldprovideanovelplatformforsystemsbiologyinitiativesforfungalpathogenesis.

Page 9: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterLecture3-PlantimmunityI

7

Plenary 3

PL3-1Partitioningofeffector-triggeredimmuneoutputsinplantcellsJane E. Parker1, Servane Blanvillain-Baufume1, KatharinaHeidrich1,NoraPeine1,LaurentDeslandes2,CelineTasset2,SteffenRietz1,StephanWagner3,JohannesStuttmann1,KarstenNiefind31Dept.Plant-MicrobeInteractions,Max-PlanckInstitute forPlantBreedingResearch,Cologne,Germany,2CNRS/INRALaboratoiredes Interactions Plantes-Microorganismes, Castanet-Tolosan,France,3InstituteofBiochemistry,UniversityofCologne,Cologne,[email protected] have evolved a multi-layered innate immune system todefend themselves against microbial pathogens. Recognitionof pathogen effectors in their attempts to disable basal cellularimmunity isgovernedbyhost intracellularNB-LRR (Nucleotidebinding/Leucine Rich Repeat) receptors which then activatedefenseandcelldeathpathways.NB-LRRtriggereddefensesneedtobe tightlycontrolledbecause theyareenergeticallycostlyanddisturbnormalmetabolismandgrowth.Wehavebeenstudyingthemolecular interactions,protein structural features and subcellularfunctionsofArabidopsis biotic stress regulatorEDS1 (EnhancedDisease Susceptibility1) as a means to understand plant diseaseresistance signaling dynamics. EDS1 is a nucleocytoplasmiclipase-likeproteinwhich,togetherwithitssignalingpartnersPAD4andSAG101, controls basal immunity tovirulent pathogens andisrecruitedbyintracellularTIR(Toll-Interleukin1-Receptor)-NB-LRR receptors for effector-triggered immunity. I’ll describe ourrecent data on resistancemediated byArabidopsisTIR-NB-LRRreceptorRPS4inresponsetothePseudomonas syringaeTypeIIIsecretedeffector,AvrRps4.Usingthisrecognition-responsesystemwe have identified RPS4-EDS1 defense branches operating indifferent parts of the cell and processes inside nuclei associatedwithtranscriptionaldefenseamplification.Weproposeamodelinwhichresistanceoutputsarecoordinatedacrosscellcompartments,allowingtheplanttorespondflexiblytoaparticularmodeorsiteofpathogeneffectorinterference.

PL3-2HowoomycetepathogensofArabidopsiscauseorfailtocausediseaseJonathanJones1,EricKemen1,KeeSohn1,LennartWirthmueller1,ShutaAsai1,Marie-CécileCaillaud1,ArianeKemen1,AlexRobert-Seilaniantz1,SimonSaucet1,[email protected] disease resistance mechanisms are initiated by surfacereceptors and cytoplasmic receptors that respectively recognizeconservedorvariablepathogencomponents.Tosuppressdefence,pathogensdelivereffectormoleculesintohostcells.Understandingtheseeffectorsisimportanttoidentifynewprobestohostdefencemechanisms and develop durable resistance strategies.Althoughthe effector complements of bacteria are becomingwell defined,and the mechanisms of many bacterial effectors are quite wellunderstood,theeffectorsofthefungalandoomycetepathogensthatcause themost serious crop losses are still poorly characterized.Recent advances in sequencing methods now enable us todefine genomes of such pathogens and to predict gene models.As amodel system,weworkwith the downymildew pathogenHyaloperonospora arabidopsidis (Hpa) and two other oomycetepathogens,Albugo laibachiiandA. candida.TheHpagenome isavailable.We used Illumina paired read sequencing to assemblesequencesofmultiple racesofAlbugo laibachii, apathogen thatisparticularlyeffectiveatshuttingdownhostdefence,andalsoofmultipleA. candida races.Weareusingassociationgenomics tocorrelate genetic variation in the secretome ofAlbugo laibachiiwithvirulenceoravirulenceonspecificArabidopsisaccessions.Inaddition,weareusingtheMAGICinbredlinesofKoverandMott,to reveal transgressive segregation for susceptibility toBrassica-infectingA. candidastrains,inordertoidentifygenesfornon-host

resistance.Anupdateonrecentprogresswillbepresented.

PL3-3MessagesfrompowderymildewDNA:howinterplaywiththehostmouldsthepathogengenomesPietroD.Spanu11ImperialCollegeLondonp.spanu@imperial.ac.ukThe genomes of obligate biotrophic fungi that have becomecompletely dependent on a plant to survive and multiply havecommon hall-marks. These features indicate a striking instanceofconvergentevolutionintheseeukaryoticmicrobes.InthistalkIwill illustrateusing theexampleof thebarleypowderymildewBlumeria graminis, how a compulsory addiction to a biotrophiclifestylehasleadtoreductionsofcommongenesandgenefamilieson the one hand, and to an extraordinary expansion of lineage-specific genes that we postulate encode effectors devoted tocontrollinghostimmunityanddefence.Iwillpresenttheanalysisofrecentdatatosupportthishypothesisanddiscusshowlife-styleand“choices”inreproductivestrategiesappeartohavedriventhemannerinwhichtheseorganismshaveevolved.

Page 10: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PlenaryLecture4-Plant-microbeinteractionsI

8

Plen

ary

4

PL4-1Reprogramming root cells for arbuscular mycorrhizal (AM)symbiosisMariaJ.Harrison11BoyceThompsonInstituteforPlantResearchmjh78@cornell.eduIn natural ecosystems, most vascular flowering plants live insymbiosiswitharbuscularmycorrhizal(AM)fungi.Thesemutuallybeneficial associations develop in the roots, where the funguscolonizes the cortex toobtain carbon from theplant. In additionto inhabiting the root, the fungus establishes hyphal networks inthe soil, via which phosphorus and other mineral nutrients aretransferredtotheroot.Thus,thesymbiosishasabeneficialimpacton plant health. In AM symbiosis, nutrient exchange occursbetweenbranchedhyphae,calledarbusculesandtheplantcorticalcell in which they reside.Arbuscule development is a complexprocessthatrequiresnotonlythedifferentiationofthefungus,butalsomajoralterationstothecolonizedcorticalcell, includingthedepositionof theperiarbuscularmembranearound thearbuscule.Weareinterestedinthemolecularandcellulareventsthatunderliedevelopment of arbuscules and the trafficking of proteins to theperiarbuscular membrane. We have identified three Medicago truncatula genes, Vapyin, STR and STR2, that are required forarbuscule formation and a phosphate transporter,MtPT4, that isrequired for symbioticPi transport.The rolesof thesegenesandthe traffickingofMtPT4 to theperiarbuscularmembranewillbediscussed.

PL4-2EvolutionofRhizobiumnodulesymbiosisTonBisseling1,2,ElenaFedorova1,ErikLimpens1,RenéGeurts11Wageningen University, graduate school Experimental PlantSciences,Wageningen, TheNetherlands, 2King SaudUniversity,Riyadh,SaudiArabiaton.bisseling@wur.nlBothrhizobiaandAMfungicanestablishanendosymbiosiswithplants.Inbothcasesthehostmembraneformscompartmentsthatact as a symbiotic interface to control exchange of compounds;thesecompartmentsareattheheartofendosymbiosis.Atfirstglancebothsymbiosesseemratherdifferent.TheAMfungalsymbiosisisancient,asitevolved450millionyearsago,roughlythesametimeaslandplants.About80%oftoday’slandplantspeciesmaintainedthis ancient symbiosis, underlining its ecological importance.In contrast, nitrogen fixing rhizobium symbiosis is specific forlegumes (Fabaceae), with the important exception of the genusParasponiaintheCannabaceae(cannabisfamily).Therhizobium-legumesymbiosisisasoldasthelegumefamily(~60millionyears),whereas rhizobium-Parasponia symbiosis evolved even morerecent(<10millionyears).Despitethesedifferencesrecentresearchhasrevealedstrikingsimilarities.AMfungiandrhizobiumsecretesimilar lipochito-oligosaccharides (LCOs,Nod andMyc factors)and in thenon-legumeParasponia, themycorrhizalandrhizobialLCOsareevenrecognizedbythesame“Nodfactor”receptor(OpdenCampetal.,Science,2011).InlegumesNodfactorreceptorsarenotessentialfortheinteractionwithAMfungiwhichsuggeststhat“Nodfactor”receptorgenesduplicatedanddivergedbyneo-functionalization. Previous studies had already revealed that acommon signalling pathway was activated by rhizobia andAMfungi.Inadditiontothesesimilaritiesinsignalling,weshowedthatthecellularmachineriesinvolvedintheformationofthesymbioticinterfaces involves the same exocytotic pathway (Ivanov et al.,PNAS,2012,inpress).

PL4-3WhatdidwelearnfromtheMOSes?XinLi11Michael Smith Laboratories/Botany, University of BritishColumbia,Vancouver,BC,[email protected] nucleotide-binding leucine-rich repeat (NB-LRR) proteinsserveasintracellularimmunesensorstodetectpathogeneffectorsand trigger immune responses. The Arabidopsis snc1 mutantcarries a gain-of-function mutation in a gene encoding a TIR-NB-LRRprotein, resulting in the constitutive activation of plantdefenseresponses.snc1 suppressorscreensundertakenusingfastneutron,EMSorT-DNA insertionalmutagenesis, resulted in theidentificationofalargenumberofmodifier of snc1(mos)mutants,which either completely or partially suppresses the autoimmunephenotypesofsnc1.Previousstudiesonthemosmutantsrevealedthat nucleocytoplasmic trafficking and protein modifications arecriticalfortheregulationofNB-LRRprotein-triggeredimmunity.Our more recent findings suggest that alternative splicing andthe regulation of NB-LRR gene expression levels by histonemodificationalsoplayimportantrolesintheregulationofNB-LRRprotein-mediateddefense.

PL4-4ChitinreceptorsinplantimmunityNaotoShibuya1,HanaeKaku1,TomonoriShinya1,TakeoShimizu1,TomomiNakagawa1,NorikoMotoyama11DepartmentofLifeSciences,[email protected] isamajorcomponentof fungalcellwallsandservesasamolecular pattern for the detection of these microbes. Variousplants are equippedwith a sensitive system to detect chitin andinitiate defense responses.Wepreviously identified two types ofcell surface receptors, CEBiP and CERK1/OsCERK1, involvedin theperceptionof chitin in rice andArabidopsis (1-3).CEBiP,a GPI-anchored protein that binds chitin oligosaccharidesspecifically,formsaheteromericreceptorcomplexwithareceptor-likekinaseOsCERK1liganddependently(3).Thisseemstotriggerdownstreamsignaling leadingtodefenseresponses.Ontheotherhand,werecentlyfoundthatArabidopsischitinreceptordoesnotrequireCEBiP-likemoleculesforchitinsignaling,thoughaCEBiPhomologue inArabidopsis is biochemically very similar to riceCEBiP.ImportanceofchitinrecognitioninplantimmunityhasbeensupportednotonlybytheinfectionexperimentswithKOmutantsofthesereceptorsbutalsobyrecentfindingsonthefungaleffectorsthat inhibit the perception of chitin oligosaccharides by thesereceptors (4-5). Interestingly, lipochitinoligosaccharides secretedby nodulating rhizobia andmycorhizal fungi serve as symbioticsignals for host plants. These molecules are also recognized bythe receptorsstructurally related toCERK1.WerecentlyshowedthataverylimitedmutationinthekinasedomainofCERK1couldswitch cellular responses from defense to symbiosis, indicatingclose evolutional relationships between these systems (6).(1)Kakuetal.,2006;(2)Miyaetal.,2007;(3)Shimizuetal.,2010;(4)deJongeetal.,2010;(5)Mentlaketal.,2012;(6)Nakagawaetal.,2011.

Page 11: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PlenaryLecture5-PlantsignalingII

9

Plenary 5

PL5-1RecognitionofrusteffectorsinplantinnateimmunityPeter Dodds1, Jeff Ellis1,Maud Bernoux1,Michael Ravensdale1,BostjanKobe2,SimonWilliams2,ThomasVe2,AdrienneHardham3,David Jones3,Ann-Maree Catanzariti3, Maryam Rafiqi3, MarkusKoeck1,WenjieWu31CSIRO Plant Industry, 2University of Queensland, School ofChemistry and Molecular Biosciences, 3Australian NationalUniversity,ResearchSchoolofBiologypeter.dodds@csiro.auRustfungicauseeconomicallyimportantdiseasesofcerealcropsworldwide.Wehavebeenstudyinghowtheplantimmunesystemcanrecogniseandrespondtothesepathogensinordertodevelopnovel disease control strategies. Rusts are obligate parasites ofplants, and have evolved an intimate cellular association withtheir hosts.They produce a specialised infection structure calledthehaustoriumwhichdirectlypenetratesaninfectedcellandisthemainsiteofnutrientextractionfor thefungus.Asuiteofdiseaseeffectorproteinsaresecretedfromhaustoriaandenterthehostcellswhere theymayallow the rust tocommandeerhostcellbiology.It is these translocated effector proteins that are recognised byhost immunereceptors,knownasresistance(R)proteins.Weareexploringthestructureandfunctionofhost-translocatedeffectors,their recognition by host immune receptors, and the receptorsignalling activation process, which offers the opportunity toexperimentallyengineernewrecognitioncapacities.

PL5-2SignalingnetworksinplantinnateimmunityJenSheen1,GuillaumeTena1,MarieBoudsocq2,HorimLee1,YanXiong1,MatthewMcCormack1,YajieNiu1,JeniferBush1,LeiLi1,LiboShan3,PingHe41The Department of Molecular Biology, Massachusetts GeneralHospital,Boston,MA,USA,2UnitedeRechercheenGenomiqueVegetale, INRA-CNRS-UEVE, Cedex, France, 3Department ofPlantPathologyandMicrobiology,andInstituteforPlantGenomicsandBiotechnology,TexasA&MUniversity,CollegeStation,TX,USA,4DepartmentofBiochemistryandBiophysics,andInstitutefor Plant Genomics and Biotechnology, TexasA&MUniversity,CollegeStation,TX,[email protected] molecular patterns (MAMPs) are perceivedby cell-surface receptors to mount pattern-triggered immunity(PTI)forbroad-spectrummicrobialresistanceinplants.However,successful pathogens acquired virulence effectors to suppressPTI. To confine or eliminate pathogens, plants further evolvedpolymorphicRproteinstodirectlyorindirectlyrecognizeeffectorsand initiate effector-trigger immunity (ETI) accompanied withlocalized PCD and transcriptional reprogramming. How distinctcell-surfaceand intracellular immunesensors triggeroverlappingor/and differential primary immune signaling responses are stilllargely open questions. Chemical genetic analyses and genome-widegeneexpressionprofilingrevealthatcomplexMAPKcascadesand CDPK activation mediate convergent signaling triggeredbydiverseMAMPs.Our recent studiesdiscover the surprisinglycentral roles ofCDPKbut notMAPKactivation in primary andcell-autonomousETI signaling.Consistentwith the activationofspecific CDPKs byMAMPs and effectors, someCDPK-specificmarkergenesareactivatedbybothsignalingpathways.However,MAMPs trigger a transientCa2+ increase andCDPKactivation,whereas Ca2+ increase induced by effectors lasts for hoursaccompaniedwithsustainedCDPKactivation,whichisresponsiblefor bifurcate transcriptional reprogramming and PCD. Thus, thetiming, amplitude and duration of differential CDPK activationappear to dictate their substrate specificity and differentialtranscriptional reprogramming in ETI and PTI signaling. Thecurrentdata implythatactivationofdistinctcell-surfacereceptorkinasesrecognizingdifferentMAMPsandintracellularNLR(NB-LRR)immunesensorssensingdiversepathogen-encodedeffectors

initiate differential primary signaling events, which trigger bothoverlapping and specific immune responses to maximize plantdefensetopathogenattacks.

PL5-3MolecularbasisofATR1effectorrecognitionandactivationoftheRPP1NLRinnateimmunereceptorcomplexKseniaKrasileva1,AdamSteinbrenner1,SandraGoritschnig1,KarlSchreiber1,BrianStaskawicz11Department of Plant and Microbial Biology, University ofCalifornia,Berkeley,CA94720USAstask@berkeley.eduTheArabidopsisthalianaRPP1diseaseresistanceproteinspecificallyrecognizesitscognateATR1effectorproteinofHyaloperonospora arabidopsidistoactivatediseaseresistance.Thissystemprovidesauniqueopportunity toexploit3-Dstructural informationof thesolvedcrystalstructureofATR1andthe3-DmolecularmodelingoftheLRRdomainofRPP1todefinesurfaceexposedaminoacidresiduesthatdefinerecognitionalinterfacesthatareimportantforbinding and the releaseof thenegative regulation and activationof theRPP1 protein.The solving of the 3-D crystal structure oftheATR1 effector protein has revealed an unprecedented, two-domain,dimericfoldinthisprotein.Wehaveidentifiedconservedhydrophobicsurfaceresiduesthatcandrivethedesignoftargetedand random PCR mutagenesis experiments to discover thefunctionalregionsofthisproteininvolved.Furthermore,wehavedemonstrated that theATR1proteinassociates inplantawith theLRRdomainofthecognateRPP1proteinsuggestingthatthesetwoproteinsdirectlyinteractinplanta.Theseobservationsarefurthersupported by the isolation and characterization of RPP1 gain offunctionmutantsthatcannowrecognizepreviouslyunrecognizedallelesofATR1.Thesestudiesexemplifythepowerofcombiningstructural and biological approaches to reveal critical domainsinvolvedinpathogeneffectorrecognition.ArecentupdateonourprogresstounderstandthepreactivationandpostactivationstateoftheRPP1resistanceproteincomplexwillbepresented.

Page 12: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PlenaryLecture6-Plant-microbeinteractionsII

10

Plen

ary

6

PL6-1BiochemicalfunctionsofbacterialeffectorsandplantimmunityJian-MinZhou1,ChaozuHe21Institute of Genetics and Developmental Biology, ChineseAcademyofSciences,Beijing,China,2HainanUniversity,Haikou,[email protected] have been using Pseudomonas syringae pv. tomato andXanthomonas campestris pv. campestris type III effectors asmodels tounderstandhowpathogensmodulatehostprocesses totheiradvantageandhowthishasledtotheevolutionofeffector-triggeredimmunityinplants.OurresultsshowthattypeIIIeffectorsoftenusenovelbiochemicalmechanisms toattackplant immuneproteins. For example, we recently found that theXanthomonas campestriseffectorAvrACinhibitsplantimmunityandcontributestoXccvirulenceinArabidopsisbytargetingBIK1andRIPK,tworeceptor-like cytoplasmic kinases mediating immune signaling.AvrAC is a new enzyme that uridylylates the conserved serineand threonineresidues in theactivation loopofBIK1andRIPK.The uridylylation on these residues masks the phosphorylationsites, inhibits the kinase activity, and blocks downstreamsignaling. Together with previous work, it becomes clear thatimmunesignalingmodulesincludingtheimmunereceptorkinasecomplexes,receptor-likecytoplasmickinases,andMAPKcascadesare targeted frequently bymultiple type III effectors, suggestingthat these modules are major hubs in plant innate immunity.Furthermore, these studies have uncovered striking parallelsbetweenthebiochemicalmechanismforeffectorvirulencefunctionandthemechanismbywhicheffectorsarerecognizedinbyplantdisease resistance proteins, providing insight into plant immunesignalingnetworkandhost-pathogenco-evolution.OngoingworkontypeIIIeffectorsandplantimmunitywillbepresented.

PL6-2Targeting transcription factors: mechanism of effectorrepressionMaryBethMudgett1,Jung-GunKim1,WilliamF.J.Stork11DepartmentofBiology,StanfordUniversity,Stanford,CA,[email protected] of host protein sumoylation by pathogens is animportant virulence strategy to suppress immunity. The directlink between protein sumoylation and eukaryotic transcriptionsuggests thatpathogensmightdirectlymodulate the sumoylationstate of transcription factors. Here we provide evidence thatXopD,aSUMOproteasefromXanthomonas campestrispathovarvesicatoria (Xcv), directly interferes with plant transcriptionto modulate ethylene (ET) responses during infection. XopD isrequiredtopromoteXcvgrowthintomatoleavesandtosuppressdiseasesymptomdevelopment.GiventhatXopDcontainstwoEARmotifsimplicatedinETsignalingandtranscriptionrepression,wehypothesizedthatXopDmaydirectlyregulateETproductionand/orsignaling.Consistentwiththishypothesis,ETgasandbiosynthesismRNAs were significantly higher in Xcv delta xopD-infectedleaves compared to Xcv-infected leaves. Both ET productionandperceptionwererequiredfor tomato immunityandsymptomdevelopment. Inspection of tomato ERFs expressed in Xcv-infectedleavessuggestedthatSlERF4isaputativeXopDsubstrate.Virus-induced gene silencing in tomato revealed that SlERF4mRNAexpressionwas required forXcvdelta xopD-inducedETproduction and ET-stimulated immunity. XopD was found tocolocalizewithSlERF4 insubnuclear fociandhydrolyze tomatoSUMO1fromK53ofSlERF4resultinginSlERF4destabilization.MutationofK53toR53preventedSlERF4sumoylation,decreasedSlERF4 levels, and reducedSlERF4-dependent transcription.Weconclude thatXopD directly binds and desumoylates SlERF4 torepressETinduced-transcriptionrequiredforXcvimmunity.ThisisthefirstexampleofapathogenSUMOproteasethattargetsahostsumoylatedtranscriptionfactortosuppressdefense.

PL6-3SignaltransductioninplantrootsymbiosisMartinParniske11Faculty of Biology, Genetics, University of Munich (LMU),Germanyparniske@lmu.deWeareinterestedinunravelingthemolecularmechanismsinvolvedin the intracellular accommodation of symbioticmicroorganismsby plants. Legumes form symbiosis with phosphate-acquiringarbuscularmycorrhizafungiandnitrogen-fixingrhizobia.Forwardgenetics has identified a series of plant genes required for earlydevelopmental stages of both symbioses. The predicted proteinproducts of these common symbiosis genes include a receptor-likekinase,nuclearlocalizedionchannelsandcomponentsoftheNUP84 sub-complex of the nuclear pore.These components actupstreamofsymbiosis-inducedcalciumspiking,whichislikelytobe decodedby a complex formedby a calciumand calmodulin-dependent protein kinase andCYCLOPS, a nuclear proteinwithacoiled-coildomain.Recentprogressinanalyzingthefunctionofindividualsymbiosissignalingcomponentsatthemechanisticlevelwillbepresented.

PL6-4Establishing beneficial interactions with the symbiosissignallingpathwayGilesOldroyd11JohnInnesCentregiles.oldroyd@jic.ac.ukThe establishment of rhizobial and mycorrhizal symbiosesrequires the common symbiotic signalling pathway that utilisesoscillations in calcium as a secondary messenger. Despitecommonalities in signalling, it is clear that differential outputsoccur from the signalling pathway, which coordinate specificaspectsofeachsymbiosis.Calciumoscillationsareperceivedbya calcium and calmodulin dependent protein kinase (CCaMK)and gain-of-function mutations in this protein autoactivate bothnodulation and mycorrhizal responses. Downstream of CCaMKare a suite of GRAS-domain transcription factors, with NSP2havingdualrolesinnodulationandmycorrhization,butNSP1andRAM1 functioning specifically in nodulation or mycorrhizationrespectively.NSP2interactswithbothNSP1andRAM1andthissuggeststhatthespecificityofsymbiosissignallingmaybedefinedby the specific formationof oneor theother transcription factorcomplex. NSP1 can bind the promoters of Nod factor induciblegenes and of particular importance is the activation of the NINandERN1transcriptionfactors.Thesearenecessaryforactivationof nodulation and bacterial infection. In contrast, RAM1 bindsthe promoters ofmycorrhizal induced genes, includingRAM2 aproteinthatfunctionsinthepromotionofmycorrhizalcolonisation.Whilewenowhaveagrasponthenatureofspecificdownstreamresponses, the precise mechanisms that ensure the appropriateactivation ofmycorrhizal or rhizobial-specific responses remainsunclear.

Page 13: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PlenaryLecture7-PlantimmunityII

11

Plenary 7

PL7-1PathogeneffectorproteinsandpathogenicityonplantsJohnRathjen11ResearchSchoolofBiology,TheAustralianNationalUniversity,Canberra,[email protected] serve as useful models for the study of plant-pathogeninteractions because they represent a simplified examplar of theantagonisticrelationshipsbetweenhostandpathogen.Contributionsfrommanylabsacrossarangeofpathosystemshavedemonstrateda general model for biotrophic interactions, in which invadingmicrobesfirststimulatehostdefencesthroughactivationofsurfacepatternrecognitionreceptors(PRRs),thendampenthehostresponsethrough delivery of toxins and effectors. A particular interestinmy laboratory has been study of recognition of the unrelatedPseudomonas syringae effectorsAvrPto andAvrPtoB,which aredelivered to the host cell cytoplasm to target PRRs, but can berecognisedbythePrfrecognitioncomplexoftomato.Prfencodesa nucleotide-binding leucine-rich repeats (NB-LRR) protein thatforms a constitutive complexwith Pto kinase.By characterisingthePrfcomplex,wehavefoundthatitisasophisticatedmoleculartrap for effectors that target protein kinases: by perturbing onekinasemolecule in themultimericcomplex, another is activated,thus inducing thedefense cascade.Recently,wehavebroadenedour studies to include the obligate biotrophic pathogen wheatstriperust,whichcausesdevastatingcroplossesworldwide.Asahaustorial pathogen, it is possible to purify thepathogenicnicheintactfromtheplant.Wehavesequencedthestriperustgenome,andanalysedthetranscriptomesofdifferentdevelopmentalstagesofthefungus.Wehaveidentifiedalmostathousandeffectorgenecandidates,andgainedconsiderableinsighttopathogenicstrategiesofthefungus.

PL7-2EffectorsinsmutfungiandhowtheyaffectvirulenceRegineKahmann11Max Planck Institute for Terrestrial Microbiology, Marburg,[email protected] maydisisabiotrophicplantpathogeninfectingmaize.Themost prominent symptoms are large plant tumors inwhichthefungusproliferates.DuringhostcolonizationU. maydisestablishes an extended interaction zone inwhich fungal hyphaearecompletelyencasedbythehostplasmamembrane.Interactionwith the plant is largely determinedbyprotein effectors that areconventionally secreted and exert their function either in theinteractionzoneoraretakenupbyhostcellsandreprogramhostresponses.Manyoftheseeffectorsarenovel,existonlyinrelatedsmutfungiandlocatetoclustersinthegenome.InmypresentationIwillconcentrateontransferredeffectors,theirsiteofactionandfunctionafteruptake.InadditionIwilldescribehowthetransferredchorismatemutaseCmu1canbeused to assay translocation andpresent evidence that unconventionally secreted effectors alsocontributetovirulence.

PL7-3BacterialmanipulationofjasmonatereceptorandimmunityinplantsShengYangHe11MichiganStateUniversityhes@msu.eduWe have been studying how Pseudomonas syringae pv. tomato(Pst)strainDC3000causesdiseaseinArabidopsis thaliana.Duringinfection, Pst DC3000 produces a battery of virulence factorsto engagemultiple host cell types anddiverse host physical andchemicalbarriers.Thebacterial type III secretionsystem(T3SS)

delivers effector proteins directly into the host cell,whereas thephytotoxin coronatinemimics the active form of plant hormonejasmonate. Study of the molecular action of T3SS effectorsand coronatine has begun to show the great utility of bacterialpathogenesisasaprobeinthediscoveryofnewcomponentsoftheplantimmunesystem,aswellasfundamentalcellularmechanismsin plants. In this talk, I will discuss our recent research thatcontributedtotheidentificationofthejasmonatereceptorcomplexand an understanding of the mechanism by which coronatinesuppresseshostdefenses.OurworkonT3SSeffectors,particularlytwo functional redundant effectors HopM1 andAvrE, begins toyieldinsightintoanaspectofpathogenesisthatmaybeconservedforbacterialpathogenesisinplants.Wehavecharacterizedahosttarget (MIN7) of HopM1 and found MIN7 to be important forPAMP-triggered immunity (PTI), effector-triggered immunity(ETI)andsalicylicacid(SA)-dependentresistance.BelongingtotheARFfamilyofguaninenucleotideexchangefactors,MIN7likelycontributestodefense-associatedintracellularvesicletraffickingfortransportingcomponentsofPTI,ETIandSA-dependentimmunity.Finally,althoughresearchonAvrEhasbeenamajorchallengetousandothercolleagues,progresshasbeenmade.

Page 14: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PlenaryLecture8-Plant-microbeinteractionsIII

12

Plen

ary

8

PL8-1RNA-seq identifies a novel Xanthomonas specific plantresistancegeneinpepperThomasLahaye11Ludwig-Maximilians-UniversityMunichlahaye@biologie.uni-muenchen.deTranscription-activator likeeffector (TALE)proteinsof theplantpathogenic bacteriumXanthomonas bind to and transcriptionallyactivate host susceptibility genes to promote disease. Plants cantake advantage of thismechanism, as exemplified by the pepperBs3 and riceXa27 resistance (R) genes that both containTALEbinding sites, which direct transcriptional activation of these Rgenes thereby triggering a defense response. Since mono- anddicotplantsevolvedthesamemechanismtodetectXanthomonaspathogenswepostulatedthattranscriptomeprofiling,insteadofthelaboriouspositionalcloningapproach,couldbeemployedtocloneTALE-specificRgenes.Inaproof-of-principleexperimentRNA-seq studies identified a candidate for the pepperBs4C gene thatmediates recognitionof theXanthomonasTALEproteinAvrBs4.Geneticmapping and complementation studies indeed confirmedthatthecandidatetranscriptcorrespondstothepepperBs4Cgene.These findings demonstrate that TALE-specific R genes can beclonedevenfromlarge-genomecropspeciesbyahighly-efficientRNA-seqapproach.

PL8-2TheroleofLysMtypereceptorsinNodfactorperceptionJensStougaard11DepartmentofMolecularBiologyandGenetics,AarhusUniversity,Denmarkstougaard@mb.au.dkFormationofrootnodulesinlegumesreliesonageneticprogramcontrolling and synchronising two processes running in parallel.Noduleprimordiaareformedfromrootcorticalcellsinitiatingcelldivisionsandsimultaneouslyabacterial infectionprocess targetstheprimordiadevelopingfromthecelldivisionfoci.Plantreceptorsinvolved inperceptionofbacterial signalmolecules are requiredfortriggeringsignaltransductionthroughthesepathwaysandtheyarealsoinvolvedinthespecificrecognitionofrhizobia.TheroleofLotusjaponicusLysMtypeserine/threoninereceptorkinasesinperception of Nod-factor signals from bacterial microsymbiontsduringnoduleinitiationandnodulemaintenancewillbediscussed.The extracellular domains of the trans-membrane kinases carryLysMdomainssuggestingthattheyareinvolvedinperceptionoftherhizobiallipochitin-oligosaccharidesignalsandindecipheringthestructure of lipochitin-oligosaccharides. Experiments and studiesaddressingthesequestionswillbepresentedandtheinvolvementofreceptorkinasesintheearlyphysiologicalandcellularresponsesaswellaslaterduringnoduledevelopmentwillbeillustrated.

PL8-3VirusandplantendogenoussiRNAsinantiviralresponsesandpathogendiscoveryShou-WeiDing11Department of Plant Pathology&Microbiology& Institute forIntegrativeGenomeBiology,UniversityofCalifornia,Riverside,California,[email protected] antiviral immunity (RVI) mediates specific virusclearance in diverse eukaryotic organisms by the cellular RNAipathway using virus-derived siRNAs produced in response toinfection. We show that effective RVI in Arabidopsis thalianarequires production and antiviral activities of viral secondarysiRNAs in pathways involving two members from each of theDicer (DCL4/DCL2), RNA-dependent RNA polymerase (RDR1& RDR6) and Argonaute families (AGO1/AGO2). However,

the two members of each gene family exhibit distinct antiviralactivities,indicatingthatgeneduplicationisfollowedbyfunctionaldiversification in A. thaliana. In addition to amplifying viralsiRNAs,wefoundthatRDR1alsomediatesproductionofanovelclassofendogenoussiRNAstargetingmorethanathousandofA. thalianagenes,suggestinganewmechanismforRDR1-dependentantiviral activity. Finally, I shall describe development of novelapproaches for the discovery of viruses and viroids based oncomputationalanalysesofthetotalhostsmallRNAs.

PL8-4PlantvolatilesdriveecologicalinteractionnetworksJunjiTakabayashi11CenterforEcologicalResearch,KyotoUniversity,Shiga,[email protected] response to damage by herbivorous arthropods, plants emit ablend of volatiles,which are referred to herbivore-induced plantvolatiles (HIPVs). Several studies have reported that blends ofHIPVs are herbivore species-specific, and such specific HIPVsattractedcarnivorousnaturalenemiesofthedamagingherbivores.Forplants, theemissionofHIPVs thatattractnaturalenemiesofherbivores is regarded as an induced indirect defence strategywhen the attracted carnivores reduce the damage caused by acurrent herbivore infestation. For foraging carnivores, specificresponse to HIPVs increases their prey finding efficacy, sinceHIPVsindicatethepresenceoftheirpreyonplants.Forherbivores,HIPVsindicatethepresenceofcon/heterospecificherbivoresandnaturalenemiesonplants.Thus,someherbivoresavoidHIPVsthatindicatepreviouslyusedfoodresourcesandpotentialenemydensespace.HIPVscansignalwithinanindividualplant;plantsincreaseresistance in undamaged parts when exposed to volatiles fromdamagedpartsofthemselves.Further,HIPVsemittedfrominfestedplantsinducedefensiveresponsestoneighboringintactconspecificplants. In this context, HIPVs mediate interaction betweenherbivore-infestedplantsandintactneighboringplants(plant-plantsignaling). Taken together, HIPVs mediate multiple interactionsand function as information in food web.We call such systemsinteraction/informationnetworks.Inthispaper,wewillreportourrecent studies on interaction/information networks mediated byHIPVsintritrophicsystemsof(1)plants,caterpillarsandparasiticwasps,and(2)plants,spidermitesandpredatorymites.

Page 15: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ABSTRACTS

Concurrent Sessions

13

Page 16: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession01-RecognitionandsignalingI

14

Conc

urre

nt 0

1

CS01-1PatternsandreceptorsinArabidopsisimmunityThorstenNuernberger11UniversityofTuebingen,CenterforPlantMolecularBiologynuernberger@uni-tuebingen.deHostpatternrecognitionreceptor-mediatedperceptionofmicrobe-associated molecular patterns (MAMP) is a prerequisite for theinitiationofantimicrobialdefenses inallmulticellularorganismsincluding plants. As metazoans, plants have evolved immunereceptors for the recognition of bacterial lipopolysaccharides,flagellinandpeptidoglycan.Here,Iwillreportontheidentificationofaplantpeptidoglycanreceptorcomplexmediatingpeptidoglycansensing and immunity to bacterial infection, and will discussconvergentevolutionofpeptidoglycanrecognitionreceptorsacrosslineageborders.Immunitytobacterialinfectionisnotonlytheresultofmicrobial pattern recognition, butmay also be brought aboutupon recognition of host derived damage-associated microbialpatterns. Experimental evidence will be presented for how amicrobial pore-forming toxin resembling aquaporins mediatesmicrobialattackandplant immunity.Phytotoxin-inducedcellulardamage-associatedactivationofplantimmunityisreminiscentofmicrobial toxin-induced inflammasome activation in vertebratesand, thus, constitutes another conserved element in animal andplantinnateimmunity.

CS01-2OsRLCK2 targeted by Xanthomonas Xoo1488 effectorregulates MAP kinase cascade activated by OsCERK1-mediatedrecognitionofchitininriceKoji Yamaguchi1, Kenta Yamada1, Kazuya Ishikawa1, MitsukoKishi-Kaboshi2,AkiraTakahashi2,SeijiTsuge3,KazuyaIchimura4,HirofumiYoshioka5,KoShimamoto6,TsutomuKawasaki11Graduate School ofAgriculture, Kinki University, 2Division ofPlant Sciences, National Institute of Agrobiological Sciences,3Graduate School of Agriculture, Kyoto Prefectural University,4Graduate School ofAgriculture, Kagawa University, 5GraduateSchoolofBioagriculturalSciences,NagoyaUniversity,6GraduateSchool of Biological Science, Nara Institute of Science [email protected] bacterial pathogens equipped with the type III secretionsystem(TTSS)generallydeliverdifferentTTSSeffectorproteinsinto plant cells. These TTSS effector proteins modulate thefunction of crucial host regulatorymolecules and allow bacteriato invadeplantcells.ToidentifyXooTTSSeffectors that inhibithost immune responses, we generated transgenic rice plantsexpressingeachof10effectorsofXanthomonas oryzaepv.oryzae(Xoo).Amongthem,thetransgenicriceplantsexpressingXoo1488showedseveresusceptibilitytotheTTSS-deficientmutantofXoo.Over-expression of Xoo1488 also suppressed chitin-inducedimmune responses includingMAPkinase activation and defensegene expression in rice, suggesting that Xoo1488 may inhibithost factors involved in chitin-triggered resistance.We identifiedOsRLCK1 and OsRLCK2 encoding receptor like cytoplasmickinasesaspotentialtargetsofXoo1488.OsRLCK1andOsRLCK2aregroupedintotheRLCKVIIsubfamilyandlocalizedatplasmamembrane.BiFCexperimentsindicatedthatOsRLCK2interactedwithchitinreceptorOsCERK1atplasmamembrane.TheinteractionbetweenOsRLCK2andOsCERK1wasalsoconfirmedbyCo-IPand two-hybrid experiments. Phosphorylation of OsRLCK2wasinduced at 5 min after chitin treatment, which preceded MAPkinase activation. In addition, over-expression of OsRLCK2enhanced chitin-inducedMAP kinase activation, suggesting thatOsRLCK2 functions upstreamofMAPkinase cascade.WehavealsoidentifiedriceMAPKKKinteractedwithOsRLCK2.Thus,itispossiblethatOsRLCK2maytransmitasignalfromOsCERK1tothedownstreamMAPKKKinchitin-inducedimmunity.

CS01-3Identification of a receptor-like kinase (RLK) required forfunctionality of receptor-like proteins (RLPs) involved inpathogenresistanceoftomatoMatthieu H. A. J. Joosten1,4, Patrick E. J. Smit1, Ahmed Abd-El-Haliem1, Anja Kombrink1, Ronnie de Jonge1, Jan H. G.Cordewener2,4,AntoineH.P.America2,4,JanSklenar3,AlexandraM.E.Jones3,SilkeRobatzek3,GrardyC.M.vandenBerg1,BartP.H.J.Thomma1,4,WladimirI.L.Tameling1,ThomasW.H.Liebrand1,41Laboratory of Phytopathology, Wageningen University,Wageningen, The Netherlands, 2Plant Research International,WageningenUR,Wageningen,TheNetherlands., 3TheSainsburyLaboratory,NorwichResearchPark,UnitedKingdom,4CentreforBioSystemsGenomics,6700ABWageningen,[email protected] and Ve1 are membrane-anchored receptor-like proteins(RLPs) that mediate tomato resistance to the fungal pathogensCladosporium fulvumandVerticillium dahliae,respectively.SincetheidentificationofthefirstRLP(Cf-9;Jonesetal.,Science(1994)266: 789-7931), the mechanism by which these extracellularreceptors activate cytoplasmic signalling has remained elusive.As RLPs lack a cytoplasmic signalling domain, we anticipaterecruitment of a co-receptorwith a signallingdomain, such as akinase(JoostenandDeWit,Ann.Rev.Phytopathol.(1999)37:335-367).Toidentifysuchaco-receptor,weimmunopurifiedtransientlyexpressedCf-4-eGFPandVe1-eGFPfusionproteinsfromNicotiana benthamiana,followedbymassspectrometry.Indeed,weidentifieda receptor-like kinase (RLK) that interacts with both Cf-4 andVe1.WhentheRLKgeneissilencedinN. benthamiana,theCf-4/Avr4-triggeredhypersensitiveresponse(HR)iscompromised.Ve1providesVerticilliumresistanceinArabidopsis(Fradinetal.,PlantPhysiol. (2011) 156: 2255-2265), which contains a homologueofthisRLK.Interestingly,Ve1functionislostinRLKknock-outmutants,astheseplantsarefullysusceptibletoVerticillium.Futurestudiesareaimedatelucidating theexact roleof thisRLKinCfandVe1 function. Besides this RLK, we identified endoplasmicreticulum (ER) HSP70 binding proteins (BiPs) and lectin-typecalreticulins(CRTs),whicharechaperonesinvolvedinER-QualityControl(ER-QC).Interestingly,silencingofCRT3aresultedinlossoffullresistancetoC. fulvum.WefoundthattheCf-4proteinstillnormally accumulates, however the pool ofmature Cf-4 proteincarryingcomplex-typeN-linkedglycansislargelyreduced.

CS01-4Identification of innate immunity elicitors using molecularsignaturesofnaturalselectionHonourC.McCann1,HardeepNahal2,ShalabhThakur1,DavidS.Guttman1,21Department of Cell& Systems Biology, University of Toronto,Toronto Canada, 2Centre for Genome Evolution & Function,UniversityofToronto,[email protected] innate immune system is an ancient and broad-spectrumdefensesystemfoundinalleukaryotes.Thedetectionofmicrobialelicitors results in the up-regulation of defense-related genesand the elicitation of inflammatory and apoptotic responses.These innate immune responses are the front-line barrier againstdiseasebecause theycollectivelysuppress thegrowthof thevastmajorityofinvadingmicrobes.Despitetheircriticalrole,weknowremarkablylittleaboutthediversityofimmuneelicitors.Toaddressthis paucity, we reasoned that hosts are more likely to evolverecognition to “core” pathogen proteins under strong negativeselection for the maintenance of essential cellular functions,whereasrepeatedexposuretohost-defenseresponseswillimposestrongpositiveselectivepressureforelicitordiversificationtoavoidhost recognition.Therefore,wehypothesized thatnovelbacterialelicitorscanbeidentifiedthroughtheseopposingforcesofnaturalselection.Wetestedthishypothesisbyexaminingthegenomesof46bacterialphytopathogensandidentifyingstrongcandidateelicitors

Page 17: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession01-RecognitionandsignalingI

15

Concurrent 01

thathaveanexcessofpositivelyselectedresiduesinabackgroundofstrongnegativeselection.Weshowthatthesepositivelyselectedresiduesareatypicallyclustered,similartopatternsseeninthefewwell-characterizedelicitors.We thenvalidatedselectedcandidateelicitorsbyshowingthattheyinduceArabidopsis thalianainnateimmunityinfunctional(virulencesuppression)andcellular(callosedeposition)assays.Thesefindingprovide targets for thestudyofhost-pathogen interactions and applied research into alternativeantimicrobialtreatments.

CS01-5BacterialeffectormanipulatesJAZtranscriptionrepressorsofjasmonatesignalingtofacilitatebacterialinfectionShushuJiang1,JianYao3,HuanbinZhou1,2,5,Ka-WaiMa1,Sheng-YangHe3,4,WenboMa1,2,51DepartmentofPlantPathologyandMicrobiology,UniversityofCalifornia, Riverside, California, USA, 2Institute of IntegrativeGenomics,University ofCalifornia,Riverside,CA92521,USA,3DOEPlantResearchLaboratory,MichiganStateUniversity,Eastlancing,MI48824,USA,4DepartmentofPlantBiology,MichiganStateUniversity,Eastlancing,MI48824,USA,5CenterforPlantCellBiology,UniversityofCalifornia,Riverside,CA92521,[email protected] Gram negative phytopathogenic bacteria inject an arrayof type III secreted effectors (T3SEs) into plant cells via thetypeIIIsecretionsystem(T3SS).Afterentering thehostcytosol,T3SEsassociatewithspecifichost targetsandfacilitatepathogeninfection. Many of these host targets are key components ofplant immunity.Here,wewill reportour recentfindings that thePseudomonas syringaeT3SEHopZ1, directly targets jasmonate-ZIM-domain (JAZ) proteins in the natural host soybean andthe model plant Arabidopsis thaliana. JAZs are key negativetranscription regulators of jasmonate (JA)-responsive genes andmajor components of the jasmonate receptor complex. Duringinfection,P. syringaeproducingHopZ1inducesthedegradationofJAZproteinsandactivatestheexpressionofJA-responsivegenes.Importantly,HopZ1couldpartiallyrescuethevirulencedefectofP. syringae pv. tomato(Pto)strainDC3118,amutantthatdoesnotproducetheJA-mimickingphytotoxincoronatine.Thisisanovelexample by which a bacterial effector directly manipulates thecore regulatorsof phytohormone signaling to facilitate infection.TargetingofJAZrepressorsbybothcoronatinetoxinandHopZ1effectorsuggeststhattheJAreceptorcomplexispotentiallyamajorhubofhosttargetsforbacterialpathogens.RecentprogressonthemechanismsunderlyingHopZ1-mediatedJAZdegradationwillbediscussed.

CS01-6LectinreceptorkinasesasmodulatorsoftheArabidopsisinnateimmunityresponseLaurentZimmerli1,MarieDesclos-Theveniau1,PrashantSingh11InstituteofPlantBiologyandDepartmentofLifeScience,NationalTaiwanUniversity,Taipei,Taiwanlauzim2@ntu.edu.twDiseasescausedbymicrobialpathogenssignificantlycontributetotheoveralllossincropyieldworldwide.Inordertobetterunderstandplant resistance todeleteriouspathogens,my laboratoryuses theprimingagentbeta-aminobutyricacid(BABA)asatooltodiscovernew genes involved in theArabidopsis defense response. Lectinreceptorkinasesplayimportantroleinanimalinnateimmunity,buttheirpossibleinvolvementsinplantresistancetopathogenremainlargely elusive.Using a reverse genetic approach inArabidopsis thaliana, we demonstrated that the BABA-responsive L-typelectin receptor kinase-VI.2 (LecRK-VI.2) contributes to diseaseresistanceagainstthehemi-biotrophicPseudomonas syringaeandthe necrotrophic Pectobacterium carotovorum bacteria. Notably,LecRK-VI.2isrequiredforfullactivationofthepattern-triggeredimmunity (PTI) response.Overexpressionstudiescombinedwithgenome-wide microarray analyses indicated that LecRK-VI.2

positivelyregulatesthePTIresponse.LecRK-VI.2isalsorequiredfor full BABA-induced resistance and priming of PTI.Our dataindicate thatLecRK-VI.2 is anovelmediatorof theArabidopsisPTI response and provides insight into molecular mechanismsgoverningpriming.Wewillprovidenovelinformationontheroleof lectin receptor kinases inArabidopsis innate immunity, withemphasizesonstomatalimmunity.

Page 18: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession02-SymbiosisI

16

Conc

urre

nt 0

2

CS02-1inhospitable, a novel rice mutant abolishes hyphopodiaformationbyarbuscularmycorrhizalfungiCaroline Gutjahr1,2, Michael Riemann3,4, Ken Haga5, MakotoTakano3,MoritoshiIino5,PeterNick4,UtaPaszkowski21Institute ofGenetics, Faculty of Biology,University ofMunich(LMU), Germany, 2Department of Plant Molecular Biology,University of Lausanne, 1015 Lausanne, Switzerland, 3NationalInstitute ofAgrobiological Sciences,Tsukuba, Ibaraki 305-8602,Japan, 4Botanical Institute 1, University of Karlsruhe, 76128Karlsruhe, Germany, 5Botanical Gardens, Graduate School ofScience,OsakaCityUniversity,Kisaichi,Katano-shi,Osaka476-0004,[email protected](AM)isanancientsymbiosisbetweenmost landplants andglomeromycotan fungi that isbasedon themutualexchangeofnutrientsbetweenthetwopartners.Arbuscularmycorrhizal colonization is initiated by an exchange of signalsinvolvingplantstrigolactonesandfungalsignalscalledmycfactors.FollowingrecognitionAMfungiformahyphopodiumattherootsurface,entertherootcortexandformbranchedarbusculesinsidecortexcells.Plantproteinsrequiredforintraradicalcolonizationandarbusculeformationhavebeenidentified.Incontrast,factorsthatgovernhyphopodiumformation,whichmarks theearlieststepofphysicalcontactbetweenthesymbionts,remainlargelyunknown.InvestigatingtheroleofJAforAMcolonizationofricewefound,that theJA-deficientmutanthebibadoesnotsupporthyphopodiaformation.Thehebibamutationwasmappedtoagenomicdeletionof170kbcontainingaJAbiosynthesisgene.ComplementationofthemutantwithexogenousJAorthedeletedJAbiosynthesisgenedid not restoreAM colonization. TheAM phenotype of hebibais thereforedue to thedeletionofanovelgene,whichwecalledInhospitable (IHO). Progress on the identification of the IHOgeneandfurthercharacterizationofthemutantphenotypewillbepresented.

CS02-2HAR1, KLAVIER and TOO MUCH LOVE mediate CLEpeptidesignalinginlong-distancecontrolofnodulationMasayoshiKawaguchi11Division of Symbiotic Systems, National Institute for BasicBiology,Okazaki,[email protected] keep the symbiotic balance with rhizobia, legumes evolvedspecificmechanismstocontrol thenodulenumberinresponsetointernalandexternalcues.Animportantinternalcueisafeedbackregulatorysysteminvolvinglong-distancesignalingalsoknownasautoregulation of nodulation (AON).AON is believed to consistof two presumptive long-distance signals, i.e., the root-derivedandshoot-derivedsignals.Theroot-derivedsignalisthoughttobegenerated in roots in response to rhizobialNod factors and thentranslocatedtotheshoot,whiletheshoot-derivedsignalisgeneratedin shoots and then translocated to the root to restrict furthernodulation.MutantsdefectiveinAONdisplaya‘hyper-nodulation’phenotype. Using Lotus japonicus ecotypes, Gifu B-129 andMiyakojimaMG-20,wehaveisolatedhar1,klavier,too much love(tml) andplenty hyper-nodulationmutants.Grafting experimentsrevealed that HAR1 and KLAVIER function in the shoot whileTMLandPLENTYintheroot.HAR1encodesaLRRreceptor-likekinasethatshowsthehighestsimilaritywithArabidopsisCLV1thatmaintainsshootapicalmeristembyreceivingaCLEpeptidederivedfromthestemcellregion.KLAVIERisalsoindispensableforAONsignaling and encodes aLRR receptor-like kinase.Themutationexhibitsstemfasciationaswellashyper-nodulationphenotype.Ontheotherhand,TMLis likely to functiondownstreamofHAR1,possiblyasareceptororamediatoroftheas-yetunidentifiedshoot-derivedsignal.TwoCLEpeptides(LjCLE-RS1,-RS2)arestrongcandidates of the root-derived signal. Overexpression of CLE-RS1/2 inhibits nodulation systemically inHAR1,KLAVIER and

TML-dependentmanner.

CS02-3ActivationofthehostsymbiosissignalingbyrhizobialtypeIIIsecretionsystemShinOkazaki1,TakakazuKaneko2,ShuseiSato3,KazuhikoSaeki41GraduateSchoolofAgriculture,TokyoUniversityofAgricultureandTechnology,Tokyo,Japan,2KyotoSangyoUniversity,3KazusaDNAResearchInstitute,4NaraWomen’[email protected] symbiosisbetween leguminousplants andnitrogen-fixing bacteria (rhizobia) requires molecular communicationbetween both partners. Key components for the establishmentof symbiosis are host plant-derived flavonoids that induce thetranscription of rhizobial nodulation (nod) genes and rhizobium-produced lipochitooligo-saccharides (Nod-factors) that initiatenodule development and bacterial entry. Besides the Nod-factors there are other determinants that influence the extent ofthe symbiosis. Among them, we have focused on a rhizobialproteinsecretionsystem,calledtypeIIIsecretionsystem(T3SS).In this study, we analyzed the role of T3SS in the interactionbetweenBradyrhizobium elkanii and soybean (Glycine max (L.)Merr.).Mutational analysis and inoculation tests of B. elkaniiUSDA61 revealed that the presence ofT3SS affected symbioticcapacityeitherpositivelyornegativelydependingonhostgenotype.OnG.max cv.Enrei,wild-typeUSDA61 inducedmorenodulesthan T3SSmutant. On the other hands, cultivar Hill interdictednodulationbythewildtypebutwasnodulatedbytheT3SSmutant.Intriguingly,wheninfectedtothesoybeanmutantEn1282thathasdefectiveNodfactorreceptor1(NFR1)andshownon-nodulatingphenotypewithB. japonicumandotherrhizobialstrains,USDA61butnotitsT3SSmutantinducedeffectivenodules.Transcriptionalanalysis revealed that the expression of early nodulation geneENOD40andNINwasincreasedintherootofEn1282inoculatedwithwildtypebutnotwithT3SSmutant.TheseresultssuggestthatT3SSofUSDA61hasfunctionstoenforcelegumehosttoinitiatesymbioticprogramsbybypassingNod-factorrecognition.

CS02-4Studies on putative type III-secreted effector proteinscontainingaself-cleavableDUF1521domainJana Schirrmeister1, Liane Flor1, Sara Zocher1, Markus Hoppe1,Anne-KatrinHoffmeister1,MichaelGottfert1,SusanneZehner11InstituteofGenetics,DepartmentofBiology,DresdenUniversityofTechnology,Dresden,FederalRepublicofGermanymichael.goettfert@tu-dresden.deBradyrhizobium japonicumisasymbiontofsoybeanandsecretesproteins whose synthesis is induced by the isoflavone genistein.Twoof these type III-secretedproteins are thehomologsNopE1and NopE2, which exhibit 77% sequence identity. In plantexperiments, it was shown that the proteins affect nodulationpositivelyornegativelydependingonthehost(1).ReporterassaysrevealedthatNopE1andNopE2aretranslocatedintotheplantcell.Both proteins contain two similar domains of unknown function(DUF1521).NopE1andtruncatedderivativeswereexpressedinE. coliasGSTfusionproteinsandpurifiedwithglutathionesepharoseaffinity chromatography. NopE1 contains an autoproteolyticcleavage site between an aspartate and proline within each oftheDUF1521domains (1).Self-processingof theproteincanbeinduced by calcium and is prevented by calcium chelators (2).Experiments with truncated derivatives show that the minimaldomainrequiredforautocleavageistheDUF1521domain.Undernative conditions, NopE1 forms dimers and the fragmentedprotein parts adhere to each other. Database searches indicatethe presence of theDUF1521 domain in proteins from differentProteobacteria, e.g. Vibrio coralliilyticus and Burkholderia phytofirmans. The DUF1521 domain-containing protein of V. coralliilyticusexhibitsasimilarself-processingactivityasNopE1.Therefore,thisdomainprobablyservesafunctioninseveralnon-

Page 19: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession02-SymbiosisI

17

Concurrent 02

related interactions between bacteria and their eukaryotic host.(1)Wenzeletal.(2010).Mol.Plant-MicrobeInteract.23:124-129;(2)Schirrmeisteretal.(2011).J.Bacteriol.193:3733-3739.

CS02-5Zwitterionicmembrane lipids phosphatidylethanolamine andphosphatidylcholine affect transcription and physiology ofSinorhizobium melilotiindifferentwaysOtto Geiger1, Daniela B. Medeot1, Diana Vera-Cruz1, Diana X.Sahonero-Canavesi1, StefanWeidner2,AlfredPuehler2, IsabelM.Lopez-Lara1,ChristianSohlenkamp11CentrodeCienciasGenomicas,UniversidadNacionalAutonomade Mexico, 2Institut fuer Genomforschung und Systembiologie,CentrumfuerBiotechnologie,[email protected] meliloti contains the negatively chargedphosphatidylglycerol and cardiolipin as well as the zwitterionicphosphatidylethanolamine (PE) and phosphatidylcholine (PC)as major membrane phospholipids. In previous studies we hadisolatedS. melilotimutantsthatlackPEorPC.Transcriptprofilesof mutants unable to form PE or PC are distinct; they differfrom each other and they are different from the wild type. Forexample, a PE-deficientmutant ofS. meliloti shows an increaseof transcripts that might be required for the degradation of C1compounds and a decrease of transcripts thatmight be requiredforironuptakeorforthecatabolismofmyo-inositol.Incontrast,aPC-deficientmutantofS. melilotishowsanincreaseoftranscriptsthatencodeapossiblelytictransglycosylaseorenzymesrequiredfor succinoglucan biosynthesis and a decrease of transcripts thatare requiredforflagellumformation.Changessimilar to those inthePC-deficientmutantareobservedwhenS. melilotiwildtypeisexposedtoacidicconditionsofgrowth.GrowthofthePC-deficientmutantisespeciallysensitivetoacidityandwesuggestthataPC-deficientmembraneinS. melilotiismorefluidandthereforemorepermeable for protons.Also, somemutants altered in theExoR/ExoS/ChvIregulatorysystemresemblethePC-deficientmutantintheir transcript profile andwe suggest that the lackofPC in thesinorhizobialmembrane is sensed and transmitted by the ExoR/ExoS/ChvIregulatorysystem.

CS02-6Sinorhizobium meliloti ECF sigma factors are required forsymbiosisonMedicago sativaandM. truncatulaSharonR.Long1,MichelleE.Diodati1,RobertFisher11DepartmentofBiology,StanfordUniversity,StanfordCA,[email protected] regulation is a key feature of Sinorhizobium meliloti adaptationtotheplantenvironment(1).RNApolymerasesigmasubunitsprovideamechanismtocontrol transcriptionataglobal scale by determining promoter specificity.TheS. meliloti genomeencodes9ECF-likesigmafactorsthatfallintomajorECFfamilies(2)ECF26,15,16,29,and41.ThefecIgeneisECF-likebutuncategorized.Anotherlocus,Smc01150,probablyencodesanECF42-likesigma.Usingtheneomycin-resistanceinsertionalvectorpVO155 (3) and a hygromycin-resistant variant, we constructedsingleanddoublemutantsfortheECFsigmafactorgenesrpoE1-rpoE9 and fecI.All singleanddoublemutantswereprototrophicand showed normalmotility andEPS production; however, theyall showed some degree of enhanced sensitivity to the detergentDOC.The 10 singlemutants all appeared normal for symbiosis,as judged by nodule formation, nodule appearance, and rate ofacetylenereduction.Amongthe45doublemutants,32establishednormal symbiosiswith bothMedicago sativa andM. truncatula.However,13wereabnormal:4wereNod-,andanother9wereNod+Fix-.AfewoftheECFdouble-mutantswerenormalononehostplant,butdefectiveontheother.Weassayednodgeneexpressionandvisualizedbacterialinvasiontodefinepotentialdevelopmentalevents that require action of these alternative sigma factors.(1)BarnettandFisher(2006)Symbiosis42:1-24;(2)Staronetal

(2009)Molec.Microbiol. 74:557-581; (3)Oke andLong (1999)Molec.Microbiol32:837-849.

Page 20: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession03-Pathogenicfungi

18

Conc

urre

nt 0

3

CS03-1AnovelcomponentofthePrp19-associatedcomplexisessentialtosafeguardingefficientintronsplicingofpathogenicitygenesinthericeblastfungusYou-Liang Peng1, Jun Yang1, Weixiang Wang1, Lingan Kong1,Xiaolin Chen1, Wensheng Zhao1, Dawei Wang1, Minfeng Xue1,Jing Sun1, Xiaoying Zhou2, Yan Zhang3, Junfeng Liu3, RuijinWang1,XiaowenXu1,YunfeiXing1,Jin-RongXu21StateKeyLaboratory ofAgrobiotechnology andDepartment ofPlant Pathology, ChinaAgricultural University, Beijing 100193,China, 2Department of Botany and Plant Pathology, PurdueUniversity,WestLafayette,IN47907,USA,3DepartmentofPlantPathology,ChinaAgriculturalUniversity,Beijing100193,Chinapengyl@cau.edu.cnThespliceosomesofhighereukaryotesusuallycontainadditionalcomponentsthatareabsentinSaccharomyces cerevisiae.However,few of them have been functionally characterized. We isolateda novel gene named PCG1 that is essential to pathogenicity ofthe model phytopathogenic fungus Magnaporthe oryzae andencodessuchasplicingfactor.DeletionofPCG1resultedinlossofpathogenicity and intron retention in transcripts for thousandsof genes. Interestingly, 55 genes required or important forpathogenicitywerefoundtohaveintronretentionintheirtranscriptsin the PCG1 deletion mutant. Pcg1 was co-immunoprecipitatedwith dozens of components of the spliceosome, and physicallyinteracted with several components of the Prp19-associatedcomplex, notablywithCwc2 that is required for intron splicing.DeletionofFgPCG1,theorthologinthewheatscabfungus,alsoresultedinlossofpathogenicity.IntroductionofFgPCG1andthehumanorthologhCCDC12couldcompletelyandpartiallyrescuethedefectscausedbyPCG1deletion,respectively.Thus,Pcg1anditsorthologsinhighereukaryotesareanimportantcomponentofthe Prp19-associated complex and are essential to safeguardingefficientintronsplicingofpathogenicitygenesinfungalpathogens.This study also provided new insights into protein interactionnetworksofthePrp19-associatedcomplex.

CS03-2ChTn1, a Tc1-mariner transposable element ofCochliobolus heterostrophusisregulatedbyintronretentionMarisaV.Queiroz1,BarbaraGillianTurgeon21Department of Microbiology, Federal University of Vicosa,Vicosa,MinasGerais,Brazil,2DepartmentofPlantPathologyandPlant-MicrobeBiology,CornellUniversity,Ithaca,NY,[email protected] Cochliobolus heterostrophus genome carries class IItransposable elements of the Tc1-mariner superfamily. One ofthesetransposableelementsnamedChTn1hasbeenanalyzedandfoundtooccurasninecompletecopies.Thesequencesfallintofivesubfamiliesbasedonnucleotideidentity.ComparisonofdifferentsequencesrevealedthepresenceofaRIP-likeprocess.ThemajorityoftheChTn1sequencesareflankedbygenesandthreeofthemareveryclosetopromotersequences.AnalysisofdifferentstrainsofC. heterostrophusshowedpolymorphisminhybridizationprofiles,butno footprintswere foundat sites that showedabsenceof theelement, indicating that there was no integration of elements inthesepositionsortheexcisionswereperfect.ChTn1-likesequencesarepresentinAlternaria brassicicola,Pyrenophora tritici-repentis,Pyrenophora teres,Cochliobolus carbonum,Cochliobolus sativus,and Setosphaeria turcica and thus conserved in Dotheomycetes.The Analyses of the ChTn1 sequences indicate introns can beretainedandthat twotranscriptsareproducedandtranslatedintotwopolypeptideswith128aaand436aa(transposase).ThesetwopolypeptidesmaycompeteforbindingsitesintheTIRsequences.Thisisthefirstreportwhereintronretentionisshownasapossibleregulatorymechanismintransposableelementsoffungi.

CS03-3RolesofhistonelysinemethyltransferasesinthepathogenicityofMagnaporthe oryzaeKieuT.M.Pham1,BaVu1,QuocNguyen1,HitoshiNakayashiki11GraduateSchoolofAgriculturalSciences,KobeUniversity,Kobe,[email protected] rice blast fungus Magnaporthe oryzae shows dramaticmorphologicalchangesduringinfectionwithglobaltranscriptionalalterations possibly resulted from genome-wide chromatinremodeling. Here we report genetic dissection of histonemethyltransferase (HMT) genes inM. oryzae. BLAST searchesagainst theM. oryzae genome identified seven putative histonelysinemethyltransferasegenes,whichwenamedMoHMT1to7.Usingawheat-infectingstrainofM. oryzae,weconstructedknock-out(KO)mutantsofthesevenMoHMTgenesbythesplit-markerrecombinationmethod.Westernblottinganalysisofhistoneproteinin the KOmutants revealed thatMoHMT1was associatedwithmethylationofhistoneH3lysine9(H3K9me),andMoHMT4wasresponsibleforH3K4me.SomeoftheMoHMT-KOmutantsshoweddefectsinvegetativegrowth,conidiation,appressoriumformation,and pathogenicity at variable levels. Remarkably,MoHMT4-KOmutants were severely impaired in appressorium formation andcompletelylostpathogenicityontheoriginalhostwheat,indicatingthatH3K4meisanimportantepigeneticmarkforinfection-relatedgeneexpressioninM. oryzae.Appressoriumformationwasgreatlyrestored in theMoHMT4-KOmutants by exogenous addition ofcAMPorthecutinmonomer16-hydroxypalmiticacid,suggestingthatMoHMT4mightbe involved in signalperception leading toappressoriumformation.Interestingly,theMoHMT4-KOmutantswere still infectious on the susceptible barley cultivar Nigrate,suggesting its role in overcoming some host-specific resistance.Chromatin immunoprecipitation (ChIP) and ChIP-seq analysesrevealeddynamicchanges indistributionpatternsofH3K4me intheM. oryzaegenomeduringinfection.

CS03-4A refinement of the predicted secretome for the wheat leafpathogenMycosphaerella graminicolaAlexandreAmaral1,2,JohnAntoniw2,JasonRudd2,KimHammond-Kosack21EmbrapaLabExEurope,[email protected] infection of wheat leaves by the fungus Mycosphaerella graminicola involves an initial extended period of symptomlessintercellular colonisation prior to the development of diseaselesions. Previous functional genomics and gene expressionprofiling studies have implicated the production of secretedvirulence effector proteins as a key component facilitating theinitialsymptomlessgrowthphase(1,2).Withaviewtoidentifyingfurther candidate virulence effectors, we have re-analysed thepredicted protein secretome from this pathogen, by combiningseveralbioinformaticapproachesaimedtoincreasetheprobabilityofidentifyingtrulysecretedproteins.Aninitialsecretomeof970proteinswaspredictedanda furtherpredictionof556wasmadebased upon further stringent selection criteria deriving fromWolfPsort protein localisation prediction. Of these, 298 possesssomefunctionalannotation(baseduponPFam;KOGortheCDDdatabases) leaving 258 with no functional annotation. Furthercharacterisationoftheun-annotatedproteinsincludedtheanalysisof features associatedwith known fungal effectors, for example,small size, cysteine-rich, and Blastp searches performed againstother sequenced fungal genomes. Finally evidence in supportof gene prediction was derived from gene expression profilingduringfungalgrowthinvitroandinplanta.Subsetsofcandidategenesarecurrentlybeingsubjected tosequenceanalysis, reversegenetics and BSMV-mediated overexpression in wheat leaves.(1)Marshalletal.,(2011).PlantPhysiol.156,756-769;(2)Ruddetal.,(2010)FungalGenetBiol.47,19-32.

Page 21: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession03-Pathogenicfungi

19

Concurrent 03

CS03-5Septin-mediated plant cell invasion by the rice blast fungusMagnaporthe oryzaeYasinF.Dagdas1,KaeYoshino1,GulayDagdas1, LaurenRyder1,EwaBielska1,GeroSteinberg1,NickTlabot11SchoolofBiologicalSciences,UniversityofExeter,Exeter,[email protected] cause rice blast disease, the fungus Magnaporthe oryzaedevelopsapressurizeddome-shaped infectionstructurecalledanappressorium,whichphysicallyrupturesthericeleafcuticletogainentrytoplanttissue.ThemetabolicchangesandMAPKsignallingpathways accompanying appressorium development have beenwidely studied over the last decade. However, we have verylittle information regarding the cell biology of infection, and inparticularthebreakingofcellularsymmetryduringappressoriumrepolarization. One of the striking features of appressorium-mediated infection is thegenerationofan8MPaturgorpressureand its conversion into mechanical force sufficient to break theplant cuticle. Given that there is nomelanin layer at the site ofpenetration, it is intriguing to know how the plasmamembranemaintainsintegrityatthislevelofpressure.Inthisreport,wewillpresent a hitherto unknown scaffold around appressorium pore,which ismainlycomposedofseptinsandactin.Furthermore,wewillprovidedataabouttheorganizationofseptin/actinrings,theirrelationshipwithplasmamembraneandtheirrolesinmaintainingcortical rigidityandpolarityestablishment.Also,wewilldiscusshow septins control diffusionofproteins involved inpenetrationpeg emergence.Additionally we will show turgor pressure actsas a signal for formation of septin/actin rings. Finally, we willproposeamodel,which,webelieve,willsignificantlyincreaseourunderstandingofappressoriumfunction.

CS03-6Pathogenesis and infection related morphogenesis ofColletotrichum orbiculareYasuyukiKubo11Graduate School of Life and Environmental Sciences, KyotoPrefecturalUniversity,Kyoto,[email protected] species form well-developed infection structurenamedappressoriaasahostinvasionstructure.Theyaregenerallymelanized single cells developed fromgerm tubes from conidia.By forward genetics approach, factors involved in appressoriumdevelopment of Colletotrichum orbiculare were extensivelyanalyzed.Findingsonmorphologicalandfunctionaldevelopmentof infection structure in Colletotrichum orbiculare will bepresented. Signal transduction : MAPK and cAMP signalingpathwaysarelinkedtoinfection-relatedmorphogenesis.Recently,we identifiedageneCoIRA1 coding forapredictedproteinwithRASGTPase-activatingdomain,whichpresumablycontrolsRAS,upstreamofcAMPsignalingbasedontheS. cerevisiaehomologsfunction. The coira1mutant showed attenuated infection relatedmorphogenesis. Peroxisome function : Peroxisome biogenesisgenesofwhichrolesinpathogenesishavebeenelucidatedincludeCoPEX6 and CoPEX13 . We identified a novel peroxin geneCoPEX22 thatshuttlesbetweenperoxisomeandWoroninbody,aperoxisomederivedcellularorganellethatfunctionforsealingofseptalporewhenthefungalsporedamaged.Thecopex22mutantshowedattenuatedappressoriumdevelopment.Cellularpolarity:KelchmotifcontaininggenesCoKEL1andCoKEL2areinvolvedin appressorium development. Cellular location of Cokel1 andCokel2 proteins is microtubule dependent fashion. The genedisruptedmutants form aberrant appressoria which accompaniesdefectiveness in further development of infection hyphae.Recently,weidentifiedCoBUB2 ,aS. cerevisiae BUB2homologthatconstitutesacheckpointofmitoticexitnamedSPOC(spindlepositioncheckpoint).cobub2mutantsshowedattenuatedinfectionrelatedmorphogenesis anddeficiency inpropernucleardivision.Organizedcontrolofmitosisandcellpolaritywouldbeessential

forproperappressoriummorphogenesis.

Page 22: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession04-Plant-oomycete/fungalinteractions

20

Conc

urre

nt 0

4

CS04-1Nonhost interactions between Arabidopsis and anthracnosefungiYoshitakaTakano1,KeiHiruma11GraduateSchoolofAgriculture,KyotoUniversity,Kyoto,[email protected] thaliana exhibits durable resistance, called nonhostresistance,againstnon-adaptedColletotrichum species thatcauseanthracnose disease on other plants.We have reported that bothPEN2-dependent antifungal metabolite and EDR1-dependentantifungalpeptidepathwaysareinvolvedinpreventingentryofanon-adaptedColletotrichum gloesporioides (Cg).Here,we showthatGSH1/PAD2isrequiredforbothpre-invasiveandpost-invasivedefenseinnonhostinteractionofArabidopsiswithColletotrichumspecies.GSH1 encodes γ-glutamylcysteine synthetase critical forbiosynthesisofglutathione(GSH).InoculationassayofCgongsh1mutantswithorwithoutGSHshowedthatbiosynthesisofGSHisrequiredforpre-invasiveresistanceagainstCg.Thegeneticanalysisofpen2 gsh1suggeststhatadefectinpre-invasivedefenseingsh1ismainlyduetoreductioninbiosynthesisofPEN2-relatedantifungalmetabolites in response toCg. Incontrast topen2,gsh1mutantspermittedsubsequentpost-invasivegrowthofCg,suggestingthatGSH1iscriticalforpost-invasiveresistancethataccompaniescelldeath response.Phenotypic analysisof seriesofmutants suchaspen2 pad3andcyp79B2 cyp79B3mutantssuggeststhattryptophan-derivedantifungalmetabolites,includingacamalexin,areinvolvedinpost-invasiveresistanceagainstCg.TheadaptedC. higginsianuminfects the ecotype Col-0 of Arabidopsis but cannot infect theecotypeWs-0becauseWs-0hasafunctionaldualRgeneset(RPS4andRRS1).Notably,gsh1orcyp79B2 cyp79B3impairedthedualRgeneresistanceagainstC. higginsianum.Theseresults indicatethat GSH-mediated synthesis of tryptophan-derived antifungalmetabolitesisrequiredforhypersensitiveresponseofArabidopsisagainstbothadaptedandnon-adaptedanthracnosefungi.

CS04-2RAC/ROPG-proteininteractingproteinsofbarleyareinvolvedinmicrotubuleorganizationandbasalresistancetopenetrationbythebarleypowderymildewfungusRalphHuckelhoven1,TinaReiner1,CarolineHoefle11TechnicalUniversityofMunich,TUM-Phytopathologyhueckelhoven@wzw.tum.deLittleisknownaboutthenatureandfunctionofhostsusceptibilityfactors.ThebarleyRAC/ROPG-proteinRACBisrequiredforfullsusceptibility to the powderymildew fungus,Blumeria graminisf.sp. hordei, and it is involved in cell polarity and cytoskeletonorganization.We identifiedanovelmicrotubuleassociatedRAC/ROP-GTPASEACTIVATINGPROTEIN(MAGAP1)andaROPbinding cytoplasmic kinase (RBK1) interacting with RACB inyeast and in planta. Fluorescent MAGAP1 decorated corticalmicrotubulesandcanberecruitedbyconstitutivelyactivatedCARACBtotheplasmamembrane.CARACBsupportedfungalentryandmightdestabilizemicrotubules,possibly releasingMAGAP1for negative feedback regulation. Under fungal attack, corticalmicrotubules strongly polarized to sites of successful defence atcellwallpapillae.Incontrast,microtubuleslocallyloosenedwhenthefungussucceededinpenetration.OverexpressionofMAGAP1supportedfocalpolarizationofmicrotubulestositesoffungalattack.RNAi targeting MAGAP1 or RBK1 supported susceptibility topenetrationbyB. graminis,whereasover-expressionofMAGAP1limitedfungalentry.Accordingly,adominantnegativevariantofMAGAP1supportedfungalpenetrationsuccess.RNAiofRBK1,whichcanbeactivatedbyactiveRAC/ROPsinvitro,destabilizedcorticalmicrotubules.DatasuggestthatfunctionofRACBmightinvolvereorganizationofmicrotubules,whichisunderantagonisticoradditionalcontrolofMAGAP1andRBK1.Resultsaddtoourunderstanding of how intact plant cells accommodate biotrophicinfectionstructuresandestablishRACB,MAGAP1andRBK1asplayersinre-organizationofmicrotubulesunderfungalattack.

CS04-3Mechanisms of secretion and delivery of rice blast effectorproteinsintolivericecellsBarbara Valent1, Martha C. Giraldo1, Mihwa Yi1, Chang-HyunKhang1,2, Melinda Dalby1, Yasin Dagdas3, Yogesh K. Gupta3,NicholasJ.Talbot3,MarkFarman41Department of Plant Pathology, Kansas State University,Manhattan,Kansas, 2Department of PlantBiology,University ofGeorgia,Athens, Georgia 30602, USA, 3School of Biosciences,UniversityofExeter,ExeterEX44QD,UK,4DepartmentofPlantPathology,UniversityofKentucky,Lexington,Kentucky,40546,[email protected] disease, caused byMagnaporthe oryzae, remains a threattoglobalriceproduction,andhasrecentlyemergedasathreattoglobal wheat production. During biotrophic invasion,M. oryzaesecretes cytoplasmic effectors, which preferentially accumulatein biotrophic interfacial complexes (BICs) and are translocatedinto the rice cytoplasm, and apoplastic effectors, which areretained in the extracellular compartment between the fungusand the riceplasmamembrane.BICs localize adjacent to tipsoffilamentoushyphaethatenterricecells,andremainbesidethefirst-differentiatedbulbous invasivehyphalcells. Incontrast, secretedapoplasticeffectorsuniformlyoutlinebulbousinvasivehyphaethatgrowtofilltheinvadedcell.Chimericgeneanalysesindicatethateffector promoters play amajor role in determining preferentiallocalization of cytoplasmic effectors in BICs. Consistent withthis, a cytoplasmic effector is strongly up-regulated in the BIC-associatedhyphalcells.Livecellmicroscopyof invasivehyphaeexpressingfluorescentsecretionmachinerycomponentsconfirmeddistinct growth and secretion patterns for the filamentous andbulbous invasivehyphae, and suggested that secretion intoBICscontinuedwhileinvasivehyphaegrewelsewhereinthehostcell.Disruption of the conventional ER-Golgi secretion pathway byBrefeldinA treatment blocked secretion of apoplastic effectors,whichwere retained in theER, but not secretionof cytoplasmiceffectorsintoBICs.Pathogenmutantsthatfailedtoexpressexocystcomplexcomponentsorat-SNAREweredefectiveinsecretionofBIC-localizedeffectors.OurdatasuggestthatexocystandSNAREcomplexes play a role in secretion of cytoplasmic effectors intoBICsbyanunconventional,Golgi-independentsecretorypathway.

CS04-4Phytophthoraeffectors facilitate infectionbysuppressinghostRNAsilencingWenbo Ma1,3, Yongli Qiao1, Lin Liu2, James Wong1, CristinaFlores1,HowardJudelson1,3,XuemeiChen2,31Department of Plant Pathology and Microbiology, 2DepartmentofBotanyandPlantSciences,UniversityofCaliforniaRiverside,3InstituteforIntegrativeGenomeBiology,UniversityofCaliforniaRiversidewenboma@ucr.eduEffectorsareessentialvirulenceproteinsproducedbyabroadrangeofparasitesincludingviruses,bacteria,fungi,oomycetes,protozoa,insects and nematodes. Upon entry into host cells, effectorsmanipulatespecificphysiologicalprocessesorsignalingpathwaysto subvert plant immunity. So far, the majority of effectors,especially those produced by eukaryotic pathogens, remainfunctionallyuncharacterized.HereweshowthattwoPhytophthoraRxLReffectorssuppressRNAsilencinginplantsbyinhibitingthebiogenesisofsmallRNAs.EctopicexpressionofeitherofthetwoPhytophthora suppressors ofRNA silencing (PSRs) significantlyenhancesthesusceptibilityofNicotiana benthamianatoinfectionwith potato virus X or Phytophthora infestans.Although PSR2specificallysuppressesthebiogenesisofsmallinterferenceRNA,PSR1representsthefirstexampleofnon-viralpathogeneffectorsthat is able to suppress both microRNA and small interferenceRNApathways.ThesedatademonstratedthatPhytophthorahaveevolved effectors to manipulate host RNA silencing processes

Page 23: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession04-Plant-oomycete/fungalinteractions

21

Concurrent 04

throughdistinctivemechanismsinordertofacilitateinfection.TheidentificationandcharacterizationofthePSRs,andrecentfindingsonthemolecularmechanismsbywhichPSRssuppressplantRNAsilencingwillbepresented.

CS04-5IsolationandfunctionalcharacterizationofthehosttargetsofPhytophthora infestansRXLReffectorAvr-chc1Ahmed Abd-El-Haliem1, Joe Win2, Sebastian Schornack2, JanSklenar2,SophienKamoun2,VivianneVleeshouwers1,YulingBai1,JackVossen11Laboratory of Plant Breeding, Wageningen University, TheNetherlands, 2SainsburyLaboratory;Norwich,NR47UH,[email protected], a large new family of late blight R genes (Rpi) wascharacterisedfromsouthAmericanspecieslikeSolanum chacoenseandSolanum berthaultii and is referred to as theRpi-chc1 genefamily.ThecorrespondingAvrgenes,referredtoasAvr-chc1,wereidentifiedandalsotheybelongtoalargeeffectorgene-familyfromPhytophthora infestans.DifferentmembersoftheRpi-chc1familycan recogniseoverlapping-butalsononoverlappingsetsofAvr-chc1 family members. This illustrates the co-evolution betweenpathogenandhostandsuggeststhattheRpi-chc1proteinsguardoneormoreimportantvirulencetarget(s)orsusceptibilityfactor(s).Inordertoidentifythistarget(s),weusepull-downassaysfollowingin plantaexpressionofepitope-taggedAvr-chc1proteinstoisolateco-purifyinghostproteins.UsingLCMSco-purifyingpeptideswereidentifiedandtheycorrespondedtoputativeeffectortargetswhichwereeitherspecificorcommonforoneormoreAvr-chc1members.Asputative targetswe identifiedoneproteinof theCC-NB-LRRtypeinadditiontoseveralproteinsessentialforvesicletrafficking.Currently,co-immunoprecipitationandyeasttwo-hybridassaysareusedtoconfirmtheinteractionbetweentheidentifiedtarget(s)ononesideandthecorrespondingAvr,orthecorrespondingRproteinon theotherside.Thefunctionof the identifiedeffector target(s)in plant defence or susceptibility is studied using virus inducedgene silencing (VIGS) in Nicotiana benthamiana. Ultimately,thisknowledgewillbetranslatedintonovellateblightresistancebreedingstrategiesforpotato.

CS04-6Multiple translocation of the AVR-Pita effector gene amongchromosomesofthericeblastfungusMagnaporthe oryzaeandrelatedspeciesIzumiChuma1,ChihiroIsobe1,YumaHotta1,KanaIbaragi1,NatsuruFutamata1,MotoakiKusaba2,KentaroYoshida3,RyoheiTerauchi3,Yoshikatsu Fujita4,HitoshiNakayashiki1, BarbaraValent5,YukioTosa11GraduateSchoolofAgriculturalSciences,KobeUniversity,Kobe,Japan, 2Faculty of Agriculture, Saga University, Saga, Japan,3ResearchgroupofGeneticsandGenomics,IwateBiotechnologyResearch Center, Kitakami, Japan, 4College of BioresourceSciences, Nihon University, Kanagawa, Japan, 5Department ofPlant Pathology, Kansas State University, Manhattan, Kansas,[email protected] oryzae is the causal agent of rice blast disease, adevastatingproblemworldwide.Thisfungushascausedbreakdownofresistanceconferredbynewlydevelopedcommercialcultivars.Toaddresshowthericeblastfungusadaptsitselftonewresistancegenessoquickly,weexaminedchromosomallocationsofAVR-Pita,a subtelomeric gene family corresponding to thePita resistancegene, invariousisolatesofM. oryzaeanditsrelatedspecies.Wefound that AVR-Pita is highly variable in its genome location,occurring in chromosomes 1, 3, 4, 5, 6, 7, and supernumerarychromosomes, particularly in rice-infecting isolates. Whenexpressed inM. oryzae, most of the AVR-Pita homologs couldelicitPita-mediatedresistance,eventhosefromnon-riceisolates.

AVR-Pita was flanked by a retrotransposon, which presumablycontributed to its multiple translocation across the genome. Ontheotherhand,familymemberAVR-Pita3,whichlacksavirulenceactivity,wasstablylocatedonchromosome7inavastmajorityofisolates.These results suggest that the diversification in genomelocation of AVR-Pita in the rice isolates is a consequence ofrecognitionbyPitainrice.WeproposeamodelthatthemultipletranslocationofAVR-Pitamaybeassociatedwithitsfrequentlossandrecoverymediatedbyitstransferamongindividualsinasexualpopulations.ThismodelimpliesthatthehighmobilityofAVR-Pitais a key mechanism accounting for the rapid adaptation towardPita. Dynamic adaptation of some fungal plant pathogens maybeachievedbydeletionandrecoveryofavirulencegenesusingapopulationasaunitofadaptation.

Page 24: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession05-Biocontrolinteractions

22

Conc

urre

nt 0

5

CS05-1RegulationofbioprotectivemetabolitebiosynthesisinthegrasssymbiontEpichloe festucaeD.BarryScott1,TetsuyaChujo1,[email protected] festucaeinassociationwithperennialryegrasssynthesizesa range of secondary metabolites that confer bioprotectivebenefitstothegrasshost.Theseincludeperamineapotentinsectfeeding deterrent and indole-diterpenes, a structurally diversegroup of metabolites best known as inhibitors of mammalianlarge conductanceCa2+-gatedK+ (BK) channels.A single non-ribosomalpeptidesynthetaseenzyme,encodedbyperA,isproposedtocatalyseallthestepsrequiredforthesynthesisofperamine.Bycontrast a cluster of up to 11 genes is required for the synthesisoflolitremB,themainindole-diterpeneproductsynthesizedbyE. festucaestrainFl1.TheltmlocusinFl1issubtelomericwiththe11genesorganisedintothreesub-clustersseparatedbylargeblocksoftypeIandtypeIItransposonrelics.BothperAandltmgenesarepreferentiallyexpressed in planta,suggestingthatplantsignalingis important for de-repression of these biosynthetic pathways.The aimof thiswork is to determine themechanismunderlyingthepreferentialactivationofthesegenesin planta.Toachievethisgoalweareusinganumberofdifferentapproachesincluding:(i)a comparative analysis of promoter regions of different strainsto identify putative regulatory elements, (ii) deletion analysis ofpromoter-gusAreporterconstructs,(iii)metaboliteactivationofapromoter-gfp knock-in ex planta, (iv) targeted deletion of genesinvolved in chromatin remodeling, and (v) RNAseq analysis ofwild-typeversusmutantendophyte-grasssymbiota.Insightsgainedinto regulation of these bioprotective symbiotic genes from thiscombinedapproachwillbepresented.

CS05-2EffectofcolonizationofendophyticbacteriaonriceHideo Nakashita1,3, Tsuyoshi Isawa2,3, MichikoYasuda2, MiyukiKusajima1,3, Junta Hirayama2,3, Kiwamu Minamisawa4, SatoshiShinozaki2,31DepartmentofAppliedBiologyandChemistry,TokyoUniversityof Agriculture, 2Research and Development Center, MayekawaMFG.CO.,LTD.,3RIKENInnovationCenter,RIKEN,4GraduateSchoolofLifeSciences,[email protected] kinds of fungal and bacterial endophytes are isolatedformvariousplants.Someendophyteshavethepreferableeffectson thehostplants, suchasgrowthpromotion,disease resistance,anddroughtresistance.Anendophyticbacterium Azospirillumsp.strainB510fromsurface-sterilizedstemsoffield-grownricewasexpectedtohavesomebenefitstothehostriceplants.InoculationexperimentswithAzospirillumsp.strainB510wereconductedinpotsinagreenhouse,andinpaddyfieldsinHokkaido,Japan.B510significantlyenhanced thegrowthofnewlygenerated leavesandshootbiomassundergreenhouseconditions.Whenriceseedlingswere treated with 1x108 CFU ml-1, then transplanted to paddyfields, tiller numbers and seed yield significantly increased.Wealso analyzed the effects of Azospirillum sp. B510 on diseaseresistance in host rice plants, resulting the induction of diseaseresistanceinriceagainstriceblastdiseaseandricebacterialblightdisease.Analyzingthelevelsofstress-relatedphytohormonesandexpression of defense-related genes indicated the possibility thatstrainB510isabletoinducediseaseresistanceinricebyactivatinganoveltypeofresistancemechanismindependentofSA-mediateddefense signaling. The detailed mechanisms of plant growthpromotion and resistance induction by strain B510 are underinvestigation.

CS05-3ppGppcontrolledbytheGac/RsmregulatorypathwaysustainsbiocontrolactivityinPseudomonas fluorescensCHA0KasumiTakeuchi1,KosumiYamada2,DieterHaas31National Institute of Agrobiological Sciences, 2University ofTsukuba,3Université[email protected] Pseudomonas fluorescens CHA0 and other fluorescentpseudomonads, the Gac/Rsm signal transduction pathway isinstrumental for secondary metabolism and biocontrol of rootpathogensviatheexpressionofregulatorysmallRNAs(sRNAs).Furthermore, in strain CHA0, an imbalance in the Krebs cyclecan affect the strain’s ability to produce extracellular secondarymetabolites including biocontrol factors (1). Here we report themetabolomeofwild-typeCHA0, agacA-negativemutant,whichhas lost Gac/Rsm activities, and a retS-negative mutant, whichshowsstronglyenhancedGac/Rsm-dependentactivities.Capillaryelectrophoresis-based metabolomic profiling revealed that thegacAandretSmutationshadoppositeeffectson the intracellularlevels of a number of central metabolites, suggesting that theGac/Rsm pathway regulates not only secondary metabolism,but also primary metabolism in strain CHA0. Among theregulatedmetabolites identified, the alarmone ppGpp (guanosinetetraphosphate) was characterized in detail by the constructionof relA (for ppGpp synthase) and spoT (for ppGpp synthase/hydrolase) deletion mutants. In a relA spoT double mutant,ppGpp synthesis was completely abolished, the expression ofRsmsRNAswasattenuated,andphysiological functions suchasantibioticproduction,rootcolonizationandplantprotectionweremarkedly diminished. Thus, ppGpp appears to be essential forsustainingepiphyticfitnessandbiocontrolactivityofstrainCHA0.(1)TakeuchiK,KieferP,ReimmannC,KeelC,DubuisC,RolliJ,VorholtJA,HaasD.2009.JBiolChem284:34976-85.

CS05-4Role of the root-specific transcription factor MYB72 inrhizobacteria-inducedsystemicresistanceChristosZamioudis1,PeterA.H.M.Bakker1,[email protected] colonization by plant growth-promoting rhizobacteria cantrigger an induced systemic resistance (ISR) that is effectiveagainstabroadspectrumofpathogensandeveninsects(Zamioudiset al., 2012; MPMI 25:139-150). The root-specific transcriptionfactorMYB72was identified as an essential component for theestablishmentofISRinArabidopsis(VanderEntetal.,2009;PlantPhysiol. 146:1293-1304). Confocal laser scanning microscopyrevealed thatMYB72 is strongly activated in root epidermal andcortical cells upon colonization of the roots by ISR-inducingPseudomonas fluorescensWCS417r.Asurveyof theArabidopsistranscriptomelinkedMYB72expressiontoironlimitedconditions.Here, we report that ISR-inducing rhizobacteria upregulate theiron deficiency response in roots even under non-iron-limitingconditions.WefurtherdemonstratethatWCS417r-inducedMYB72transcriptionisdependedonthetranscriptionfactorsFIT1(bHLH29)andbHLH38/39,whicharecentralregulatorsofironacquisitionintheroots,indicatingthatthetranscriptionalregulationofMYB72issimilartothatoftheironuptakegenesFRO2andIRT1.Microarrayanalysis of theMYB72-dependent root transcriptome revealed asmall number of upregulated genes thatmay be involved in thegenerationortranslocationofasystemicISRsignal.Inaddition,alargeclusterofMYB72-dependentgenesweredownregulatedbyWCS417r,themajorityofwhicharedefense-related.WeconcludethatWCS417rhijackstheiron-deficiencyresponseofArabidopsis,resulting in a MYB72-dependent attenuation of local immuneresponses to establish successful root infections. Accordingly,activerootcolonizationbyWCS417rwasfoundtobeimpairedinthemyb72mutant.

Page 25: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession05-Biocontrolinteractions

23

Concurrent 05

CS05-5Paenibacillus polymyxa M-1, a plant growth promotingrhizobacterium,iscapableofcolonizingtherootsofwheatQi Wang1, Ben Niu1, Rainer Borriss2, Xiaohua Chen2, JoachimVater3,AntonHartmann4,YanLi1,WilfridBleiss51Department of Plant Pathology, China Agricultural University,P.R. China, 2Institut für Biologie/Bakteriengenetik, HumboldtUniversitätBerlin,Berlin,Germany,3InstitutfürChemie,TechnischeUniversität Berlin, Berlin, Germany, 4DepartmentMicrobe-PlantInteractions,HelmholtzZentrumMünchen,Germany,5InstitutfürBiologie/Molekulare Parasitologie, Humboldt Universität Berlin,Berlin,Germanywangqi@cau.edu.cnStrainM-1isolatedfromsurfacesterilizedwheatroottissueswasidentifiedby16SrRNAgenesequencingandbyphysiologicalandbiochemical analysis as beingPaenibacillus polymyxa.Not onlycanPaenibacillus polymyxaM-1 promote the growth of Lemna minorST,Arabidopsis,Zea maysandTriticum aestivum,butalsocansuppresswheatsharpeyespotdiseasewhichisaserioussoil-borne disease onwheat caused byRhizoctonia cerealis. BesidesRhizoctonia cerealis, P. polymyxa M-1 inhibited the growth ofseveral phytopathogenic fungi (Alternaria sonali, Rhizoctonia cerealis, Fusarium oxysporum, Fusarium solani, Botrytis cinerea, Gaeumannomyces graminis, Magnaporthe grisea andPhytophthora infestans) and bacteria (Erwinia amylovora andErwinia carotovora) in vitro by producing antibiotics, includingfusaricidin and polymyxin, and through secreting hydrolyticenzymes.P. polymyxaM-1iscapableofcolonizingwheatroots.Byfluorescencein situhybridization(FISH),confocallaserscanningmicroscopy(CLSM)andelectronmicroscopy(EM),itwasfoundthatwheat colonization byM-1was restricted to the rhizoplane.FewbacteriawereobservedintheinternaltissuesofwheatrootsinoculatedwithM-1inadvance.M-1colonizedpreferentiallyatthejunctionofprimaryrootsandlateralroots,thejunctionofprimaryrootsandroothairsaswellasroothairsurfacebyformingbiofilmsconsistingofextracellularmatrixandcells.

CS05-6LossofvirulenceinthephytopathogenRalstonia solanacearumthroughinfectionbyφRSMfilamentousphagesTakashiYamada1, Hardial S.Addy1, Takeru Kawasaki1, MakotoFujie11Graduate School of Advanced Sciences of Matter. HiroshimaUniversity,Higashi-Hiroshima,[email protected] solanacearum is a widely distributed soil-bornephytopathogenbelongingtotheβsubdivisionofProteobacteria.Itcauseslethalbacterialwiltofmorethan200plantspecies,includingeconomicallyimportantcrops.Duringinfection,R. solanacearumcellsexpressvariousvirulenceandpathogenicityfactorsresultingin typicalwilting symptoms in host plants.φRSM1andφRSM3(φRSMphages)arefilamentousphages(inoviruses)thatinfectR. solanacearum.InfectionbyφRSMphagescausesseveralculturalandphysiologicalchangestohostcells,especiallylossofvirulence.Inthisstudy,wecharacterizedchangesrelatedtothevirulenceinφRSM3-infectedcells,including(i)reducedtwitchingmotilityandreducedamountsof typeIVpili (Tfp), (ii) lower levelsofβ-1,4-endoglucanase (Egl) activity and extracellular polysaccharides(EPS)production,and(iii)reducedexpressionofcertaingenes(egl,pehC,phcA,phcB,pilT,andhrpB).ThesignificantlylowerlevelsofphcAandphcBexpressioninφRSM3-infectedcellssuggestedthat functional PhcAwas insufficient to activatemany virulencegenes. Tomato plants injected with φRSM3-infected cells ofdifferentR. solanacearumstrainsdidnotshowwiltingsymptoms.ThevirulenceandvirulencefactorswererestoredwhenφRSM3-encodedorf15, thegene foraputative repressor-likeproteinwasdisrupted. Expression levels of phcA aswell as other virulence-relatedgenesinφRSM3-dORF15-infectedcellswerecomparablewith those in wild type cells, suggesting that orf15 of φRSM3

may repress phcA and consequently result in loss of virulence.Similareffectsonlossofvirulencewerealsoobservedforinfectionwith another group of filamentous phages (φRSS phages) in R. solanacearum.

Page 26: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession06-Plant-nematode/insectinteractions

24

Conc

urre

nt 0

6

CS06-1Finding new candidate parasitism genes in plant parasiticnematodes: an evolutionary and comparative genomicsapproachPierre Abad1, Laetitia Perfus-Barbeoch1, Amandine Campan-Fournier1,Marie-JeanneArguel1,MartineDaRocha1,Marie-NoëlleRosso1,EtienneG.J.Danchin11UMR ISA INRA 1355-UNSA-CNRS 7254, Institut SophiaAgrobiotech,SophiaAntipolis,[email protected] root-knotnematode (RKN)Meloidogyne incognitais a mitotic parthenogenetic parasite able to infect the roots ofalmostallcultivatedplants,whichpossiblyrendersthisspeciesthemostdamagingcroppathogen in theworld.Wehavedecipheredthe genomeof this nematode specieswhich represented thefirstwhole genome sequence assembly and annotation for a plant-parasitic nematode. As part of this genome annotation we firstidentified a set of RKN-specific genes, based on a comparativeanalysiswith25eukaryoticgenomes.WeshowedthatmorethanhalfofthepredictedproteinsinM. incognitacouldnotbeassignedanorthologinanyoftheeukaryoticgenomesconsideredbasedonreciprocalbestblasthitscriteria(OrthoMCL).Becauseourgoalistoidentifydruggableparasitismgenes,wediscardedallgenesthathadapredictedorthologwithOrthoMCLorthatshowedsignificantsimilarity inBlast analysiswith species that could represent co-lateral damage (e.g. plants, chordates, pollinator insects).Using aseriesofbioinformaticscreens,weselectednematodegeneswhichwerefurtheranalyzedwithdesignofsiRNAsandinfestationtestexperiments after silencing. In total 10 out of the 15 inactivatedgenesshowedasignificantreductioninthenumberofeggmassesorgallnumberscomparedtothecontrol.Reductionsinthenumberofeggmassesorgallsreachedasmuchas60%comparedto thecontrol. Such a protein set could therefore represent a putativewealth for identifying specific targets todevelop sharp strategiesagainstthesepests.

CS06-2Miningtheactiveproteomeofnematode-inducedfeedingcellsinrootsofArabidopsis thalianaShahid Siddique1, Marion Huetten1, Melanie Geukes1, JohanaMisas-Villamil2,ReniervanderHoorn2,FlorianM.W.Grundler11INRES, Department of Molecular Phytomedicine, Universityof Bonn, 2Plant Chemetics lab, Max Planck Institute for PlantBreedingResearch,50829Cologne,[email protected] cyst nematode Heterodera schachtii infects roots ofArabidopsis and parasitizes by modifying root cells to ahypertrophic syncytial feeding cell system. Nematodes secreteeffectors thatmanipulates host protein activities in a network ofinteractions by post-translational modifications e.g. inhibitionand activation.Transcriptomic and proteomic approaches cannotdisplay this functional proteomic information. Activity-basedproteinprofiling(ABPP)isamethodtoinvestigatetheactivityofproteomeusingactivitybasedprobes(ABPs).ABPsaremolecularprobesthatreactwithasubsetofenzymesinanactivitydependentmanner.Inthisway,allthoseproteinsareruledout,whicharenotactivated.WeappliedABPPusingthreedifferentprobes(MV151,FP,MV101)todisplaydifferentialenzymeactivitiesinsyncytiuminduced byH. schachtii.Our analysis shows that the activity ofseveralgroupsofenzymesisdifferentiallyregulatedinsyncytium.Amongthosespecificallysuppressedinsyncytiumareproteasomalsubunits (β1, β2, β5), several Papain-like cysteine proteases(PLCPs i.e. Cathepsin, RD21, AALP, XCP etc.) and vacuolarprocessing enzymes (VPEs).An analysis of transcriptional dataforproteasomalsubunitsrevealedanaccumulationoftranscriptsinsyncytium.Theseresultsimplysuppressionofproteasomeactivityin syncytium. Similarly, activity of a serine carboxypeptidase-like protein (SCPL), a S-formyl-glutathione hydrolase (SFGH)andmethylesterase is specificallyup-regulated in syncytium.We

characterized the role of some of these differentially regulatedenzymes(Cathepsin,VPEs,RD21,AALP,XCP)byusingT-DNAinsertion knock-out mutants. This analysis revealed a change insusceptibilityofplantstonematodes.Ouranalysisprovidesafirstinsightintofunctionalproteomicsofsyncytium.

CS06-3Interactionbetweenroot-knotnematodesandplant signalingnetworksduringparasiticinvasionShuhei Hayashi1, Narumi Souda2, Tatsuhiro Ezawa3, MasayoshiKawaguchi4,ErikaAsamizu2,DerekGoto31Graduate School ofAgriculture, HokkaidoUniversity, Sapporo,Japan, 2Graduate School of Life and Environmental Sciences,University of Tsukuba, Tsukuba, Japan, 3Research Faculty ofAgriculture, Hokkaido University, Sapporo, Japan, 4Division ofSymbioticSystems,NationalInstituteforBasicBiology,Okazaki,[email protected] nematodes (RKNs) are obligate parasites that attackplant roots. Following invasion of root tips as a juvenile, theyestablish a specialised feeding site next to the vascular tissueandremainprotectedat thissinglesitefortheirwholelife-cycle.RKNsdonotshowhighhostspecificityandareabletoparasitiseabroadrangeof importantplantspecies.UnderstandingofRKNparasitismat themolecular level iscurrently limited,particularlyin the context of the broad host range. Itwas generally thoughtthatRKNsavoidactivating thehostdefense responseduring theinitialinfectionstages.However,wehavenowshownthatinvasionbyMeloidogyne haplaRKNisindeedrecognisedbythehostandelicitsstrongdefense-likesignalinginroottissues.Thefactthatthislocalsignalingdoesnotdevelopintoaneffectiveimmuneresponseraised the possibility that RKNs manipulate an additional hostsignalingnetwork togainacceptanceof infection site formation.Usinga seriesofgeneticmutants,wenowshow thatadefect ina commonplant signaling pathway limits the parasitic ability ofM. hapla.RKNdevelopmentstalledinthemutantrootssoonafterinitiationofinfection,consistentwithadirectroleforthesignalingpathwayininfectionsitedevelopmentratherthananindirecteffectrelated to root entry or target cell selection.These data reveal acommonnetworkusedbyM. haplatoachieveparasiticsuccessthatcanalsoexplainitscompatibilitywithdifferenthostplants.

CS06-4Tritrophic interactions among thrips, tospovirus andArabidopsisHiroshi Abe1, Yasuhiro Tomitaka2, Takeshi Shimoda2, ShigemiSeo3,TamitoSakurai4,SoichiKugimiya5,ShinyaTsuda2,MasatomoKobayashi11RIKEN BioResource Center, 2National Agricultural ResearchCenter, 3National Institute ofAgrobiological Sciences, 4NationalAgricultural Research Center for Tohoku Region, 5NationalInstituteforAgro-EnvironmentalSciencesahiroshi@rtc.riken.jpThe western flower thrips (Frankliniella occidentalis) is apolyphagous herbivore that causes serious damages on manyagriculturalplantsandalsotransmitstospoviruses,suchasTomato spotted wilt virus (TSWV).Therefore, feedingdamageandvirusdisease caused by thrips attack are serious problems in manycountries.OurpreviousstudyreportedthatJAplaysanimportantrole to plant response and resistance to thrips, and JA-regulatedplantdefensedecreasethripsperformanceandpreference.Inthismeeting,wereporttheanalysesofthetritrophicinteractionbetweenplants (Arabidopsis plants) and insect vector (western flowerthrips),andalsoplantvirus(TSWV).Inecologicalsystem,TSWVonlymovetothenewhostplantsfromtheinfectedhostplantsbyinsect vector, thrips.We indicate thatTSWV infection enhancesthrips performance such as feeding activity and increases thripspopulationdensityofnextgenerationinArabidopsisplants.TSWVinfection elevated Salicylic acid (SA) contents and induced SA-

Page 27: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession06-Plant-nematode/insectinteractions

25

Concurrent 06

regulatedgeneexpression.Meanwhile,TSWVinfectiondecreasedthrips feeding inducible JA-regulated gene expression. We alsoindicate that TSWV infection enhances the thrips preference ofhostplants.ThripswasattractedtotheTSWVinfectedplants,andits attractancewasdecreased in JA insensitivecoi1-1mutants ascomparedtoWTplants.Inaddition,SAapplicationtoWTplantsenhancedthisthripsattractancelikeTSWVinfection.Ourresultssuggestthemechanismofvirusstrategytoattractvectorthripstovirus-infectedplantstakingadvantageofantagonisticSA-JAplantdefensesystem.

CS06-5Rewiring of the jasmonate signaling pathway inArabidopsisduringinsectherbivorySaskiaC.M.VanWees1,AdriaanVerhage1,CorneM.J.Pieterse11Plant-MicrobeInteractions,UtrechtUniversity,[email protected] defenses against insect herbivores and necrotrophicpathogensaredifferentiallyregulatedbydifferentcomponentsofthejasmonicacid(JA)signalingpathway.InArabidopsis,thebasichelix-loop-helix leucine zipper transcription factor MYC2 andtheAPETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF)domaintranscriptionfactorORA59antagonisticallycontroldistinctbranches of the JA pathway. Feeding by larvae of the specialistinsectherbivorePieris rapaeactivatedMYC2transcription,whichled to expression of the MYC-branch marker gene VSP2 andsuppression of the ERF-branch regulator ORA59 and the ERF-branchmarkergenePDF1.2(Verhageetal.,2011;FrontiersPlantSci.2:47).Thehormoneabscisicacid (ABA)was identifiedasacriticalcomponentinrewiringoftheMYC-andERF-branchesoftheJApathwayduringinsectherbivory.Intwo-choicesetupswithmutant andwild-type plants, the larvae consistently preferred tofeedonplantsthathadactivatedtheERF-branchoverplantsthathadactivatedtheMYC-branchorneitheroneofthetwobranches.Thissuggeststhattheherbivoreswerestimulatedtofeedfromplantsexpressing the ERF-branch rather than that they were deterredby plants expressing theMYC-branch. Interestingly, applicationof larval oral secretion into wounded leaf tissue stimulated theERF-branchoftheJApathway,suggestingthatcompoundsintheoralsecretionhavethepotentialtomanipulatetheplantresponsetoward the caterpillar-preferred ERF-regulated branch of the JAresponse.Our resultssuggest thatbyactivating theMYC-branchof theJApathway,plantsprevent stimulationof theERF-branchbytheherbivore,therebybecominglessattractivetotheattacker.

CS06-6InvolvementofMAPkinasecascadeandNOinplantimmuneresponsetoHenosepilachna vigintioctopunctataNorihisa Senga1, Yutaka Sato2, Teruyuki Niimi3, HirofumiYoshioka11Defense in Plant-Pathogen Interactions, Graduated School ofBioagricultural Sciences, Nagoya University, Nagoya, Japan,2PlantGeneticsandBreeding,GraduatedSchoolofBioagriculturalSciences, Nagoya University, Nagoya, Japan, 3Sericulture andEntomoresources,Graduated School ofBioagricultural Sciences,NagoyaUniversity,Nagoya,[email protected] vigintioctopunctata is a herbivorous insect thatfeedssolanaceaecrops.Emergingevidenceemphasizesthatplantshavedevelopeddefensemechanismstoinsectsaswellaspathogens.However, the detailed mechanisms are unclear. To investigatefactors involved in herbivorous insect resistance of solanaceaeplants,wedevelopedamodelsystemusingH. vigintioctopunctataand Nicotiana benthamiana. The model system is useful foranalysisofherbivorous insect-plant interactions,becauseRNAitechnology is available for both H. vigintioctopunctata and N. benthamiana.Virus-mediatedsilencingofSIPKandWIPK,whichareMAPkinasesinvolvedinimmuneresponsetovariouspathogens,decreasedresistancetoH. vigintioctopunctata.Furthermore,SIPK

andWIPKproteinsarephosphorylatedbyH. vigintioctopunctatafeeding. We have reported that MAPK signaling regulates NOandRBOH-dependent ROS bursts inN. benthamiana. SilencingNbRBOHB did not affect insect resistance,whereas treatment ofL-NAME,whichisanNOsynthaseinhibitor,decreasedresistancetoH. vigintioctopunctata.Inaddition,NOproductionwasinducedbyH. vigintioctopunctatafeeding.Thus,theseresultssuggestthatMAPK cascades andNO have important roles in plant immuneresponsestoH. vigintioctopunctata.

Page 28: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession07-Effectorproteins

26

Conc

urre

nt 0

7

CS07-1Pseudomonas syringaetypeIIIeffectorsJeanGreenberg1,JiyoungLee1,YongsungKang1,JoannaJelenska1,TadeuszWroblewski2,RichardW.Michelmore21TheUniversityofChicago,2UniversityofCalifornia,[email protected],P. syringaeharborsdozensofeffectorsthatarepotentiallyinjectedintohostcellstopromotebacterialfitnessand/or cause disease.A decade has passed since our first globalanalysisofeffectorrepertoires.Inthistalk,Iwilldiscussourrecentprogressinunderstandingtherolesofeffectorsinspecificniches,their biochemical activities and the value of continuing to studyeffectorsusingmultipleapproaches.

CS07-2The Xanthomonas oryzae pv. oryzae type III effector XopRalters ethylene perception and signal transduction pathwaypostMAMPstreatment, suppressesplant innate immunity inArabidopsis thalianaChiharu Akimoto-Tomiyama1, Ayako Furutani2, Seiji Tsuge3,HirokazuOchiai11Plant-Microbe Interaction Research Unit, Division of PlantSciences,NationalInstituteofAgrobiologicalSciences,Tsukuba,Japan,2GeneResearchCenter,IbarakiUniversity,Inashiki,Japan,3Laboratory of Plant Pathology,Graduate School ofAgriculture,KyotoPrefecturalUniversity,Kyoto,[email protected] oryzaepv.oryzae(Xoo)isthecausalagentofbacterialblightofrice.TheXopRprotein,secretedintoplantcellsthroughthetypeIIIsecretionapparatus,iswidelyconservedinxanthomonadsandispredictedtoplayimportantrolesinbacterialpathogenicity.WehavereportedthatXopRinhibitedbasaldefenseresponsesinplantsrapidlyafterMAMPrecognition(MPMI25:505-5142012).ToaddressXopRfunctioninplant,earlyeventsoccurredbyflg22treatment on XopR transgenic Arabidopsis plants were tested.MAPkinaseactivationwasnotchangedinXopR-expressingplant.Onthecontrast,oxidativeburst triggeredbyflg22wasabolishedunder the XopR-expressing condition. Similar phenotypes werereportedonflg22-treatedetr1-1andein2-1mutantsbothdefectivein ethylene perception (Plant Physiol. 154:391-400 2010), thetripleresponseonetiolatedseedling,typicalethyleneresponsetest,wasobserved.InXopRexpressingplants,apicalhookcurvewasweakened under ethylene treatment, in addition stem elongationwas diminished under silver ion (ethylene perception inhibitor)treatment.Oxidativebursttriggeredbyelf-18andchitinoligomeron XopR-expressing plant were abolished as in case of flg-22treatment. Taken together, it was suggested that XopR attacksethyleneperceptionandcommonsignaltransductionpathwaypostMAMPsperceptionnotparticularMAMPreceptor.

CS07-3The Pseudomonas syringae type III effector HopD1 targetsthe ER-localizedArabidopsis transcription factor NTL9 andblockseffector-triggeredimmunityAnnaBlock1,TaniaToruno1,JamesR.Alfano11CenterforPlantScienceInnovationandtheDepartmentofPlantPathologyTheUniversityofNebraska,Lincoln,[email protected] phytopathogenic bacteria Pseudomonas syringae injectseffectorproteinsintoplantcellsviathetypeIIIsecretionsysteminordertosuppresshostimmunity.Hereweshowthatoneoftheseeffectors,HopD1,contributestovirulence, isastrongsuppressorof effector-triggered immunity, and localizes to the endoplasmicreticulum (ER) of plant cells. Protein-protein interaction assaysidentify theArabidopsis transcription factorNTL9 as a target of

HopD1.NTL9isamembraneboundtranscriptionfactorthatdueto aC-terminal transmembrane domain resides in theER.Uponactivation, the transmembrane domain of NTL9 is removed byproteolyticcleavageandNTL9entersthenucleuswhereitinducesgenetranscription.WehypothesizethatHopD1promotesvirulenceofP. syringaebytargetingNTL9topreventitsactivationorreleasefrom theER and thus the transcription of genes associatedwitheffector-triggeredimmunity.

CS07-4TowardunderstandingMagnaporthe oryzaeeffectorfunctionsRyoheiTerauchi11IwateBiotechnologyResearchCenter,Iwate,Japanterauchi@ibrc.or.jpRiceblastcausedbytheascomycetefungusMagnaporthe oryzaeis the most devastating disease of rice worldwide, thereforeunderstanding of the molecular mechanisms of Magnaporthe-rice interactions is important to devise efficient control of thedisease.UsingM. oryzaewholegenomesequenceinformationandassociationgeneticsapproach,we isolatedgenes for threeAVRs,AVR-Pia,AVR-Pii andAVR-Pik/km/kp aswell as other effectorcandidates.AllthreeAVRswereshowntobedeliveredtoricecells.Using biochemical approaches, we are trying to elucidate theireffectorfunctions.Inthispaper,IshowourlatestfindingsontheirinteractionswithricefactorsincludingR-proteins.

CS07-5HighresolutioncrystalstructureofCladosporium fulvumLysMeffectorEcp6AndreaSanchezVallet1,RaspudinSaleemBatchabSaleemBatcha2,AnjaKombrink1,DirkJanValkenburg1,JeroenMesters2,BartP.H.J.Thomma11Department of Phytopathology, Wageningen University,Wageningen, The Netherlands, 2Institute of Biochemistry,UniversityofLubeck,D-23538Lubeck,Germanyandrea.sanchezvallet@wur.nlPlantsinduceimmuneresponsesuponpathogenattackduetotheirabilitytorecognizemicrobial-derivedmolecularcomponents,suchas fungal cell wall chitin. To prevent this induction of immuneresponses,fungalplantpathogenssecretelargeamountsofLysMeffectors which sequester chitin oligossaccharides preventingtheir recognition and the induction of host defence response (1-3).Lysinmotifs(LysM)arehighlyconserveddomainspresentinseveral prokaryotic and eukaryotic proteinswhich are known tobind various carbohydrates, including peptidoglycan and chitin.Despite the biological relevance of LysM domain-containingproteins, thebiochemistryof the interactionwith their substrateshasnotyetbeenelucidated. In thiswork,wepresentamodelofthe molecular mechanisms of the Cladosporium fulvum LysMeffectorECP6basedon its high-resolution crystal structure.Thestructure provides evidence for a high-affinity binding pocketwithin theLysMdomains towhich chitin oligomers are directlyboundandcapturedtoavoidtheirrecognitionbyplantreceptors.Biochemical and biological data will be presented and themolecularmechanismofLysMeffectorsfunctionwillbediscussed.(1) de Jonge R. et al. (2010); (2)Marshall R. et al. (2011); (3)MentlakT.A.etal.(2012).

CS07-6Effectorssecretedbyplantpathogenicoomycetesasmolecularprobes to understand focal immune responses at pathogenpenetrationsitesTolga O. Bozkurt1, Sebastian Schornack1, Sylvain Raffaele1,[email protected]

Page 29: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession07-Effectorproteins

27

Concurrent 07

Oomycete pathogens such as Phytophthora infestans formaccommodationstructurestermedhaustoriatodeliverpathogenicityeffector proteins and acquire nutrients. The haustorium issurrounded by a host-derived membrane called extrahaustorialmembrane (EHM), which differs from plasma membrane invarious aspects. However, the composition of the EHM and themechanisms underlining its biogenesis are poorly understood.WerecentlyshowedthatplasmamembranelocalizedproteinsareselectivelyexcludedfromEHM,whereassomeplasmamembraneassociated proteins and proteins mediating vesicle traffickinglocalized around the EHM. In addition, we recently discoveredthatahost-translocatedRXLR-typeeffectorproteinAVRblb2ofP. infestans focally accumulates at the EHM,while anotherRXLReffector HaRXL17 secreted byHyaloperonospora arabidopsidis localizestothetonoplastsurroundingtheEHMinN. benthamianainfected by P. infestans. We hypothesized that AVRblb2 andHaRXL17canbeusedasmolecularprobestobetterunderstandthecompositionof theEHMand togain insights aboutmechanismsfor its biogenesis. For this, we co-expressed the effectors withplantproteinsthatlocalizearoundtheEHMininfectedcells,butlabel different subcellular compartments in uninfected cells and/or implicated in plant microbe interactions. These experimentsrevealed that: (i) a trafficking pathway between vacuole or pre-vacuoler compartments andEHM; (ii) rather thanbeinguniformtheEHMappearsasapatchworkhighlightedbydifferentmarkerproteins; and (iii) somehostproteinsmight localize at theEHMin a spatio-temporalmanner.Our findings indicate that effectorssuchasAVRblb2areuniquetoolstounderstandfocalresponsesatpathogenpenetrationsites.

Page 30: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession08-Plant-virus/viroidinteractions

28

Conc

urre

nt 0

8

CS08-1Microtubule (+)-end-associated protein interacting withpotyviralhelpercomponentproteinaseTuuliHaikonen1,Minna-LiisaRajamaki1,JariP.T.Valkonen11Department of Agricultural Sciences, University of Helsinki,Helsinki,[email protected] virus A(PVA)belongstogenusPotyvirusthatisthelargestand economically the most important group of plant-infectingRNA viruses. Potyviral helper component proteinase (HCpro)is a multifunctional protein involved e.g. in virus amplification,movement and suppression of the antiviral defence mechanism,RNA-silencing.HCproofPVAinteractswithpotatoproteinHIP2.OurresultsshowthatHIP2isanorthologofmicrotubule-associatedArabidopsisproteinsSPR2andSP2L.TransientlyexpressedHIP2taggedwithredfluorescenceprotein localized tomicrotubules in planta.TheinteractingHCproandHIP2alsolocalizedtocorticalmicrotubulesduringvirusinfection,asanalysedusingbimolecularfluorescencecomplementation(BiFC).TheC-proximalalphahelixrichdomainofHIP2controlledHIP2-HCprointeraction,whereastheN-proximalTOGandcoiled-coildomainsofHIP2controlleddimerization and binding of HIP2 to microtubules. Silencing ofHIP2 inNicotiana benthamiana resulted in a spiral-like growthphenotype, similar to Arabidopsis spr2 mutant, and the spr2phenotype inArabidopsis was complemented with potato HIP2.Accumulation of PVA was significantly reduced in the HIP2-silenced leaves ofN. benthamiana, indicating that HIP2-HCprointeractions are important for virus infection.Movement ofPVAwasnotalteredsignificantly.

CS08-2Tobacco mosaic virus movement protein co-targets toplasmodesmatawithvirus-inducedhostβ-1,3-glucanasesBernardL.Epel1,RaulZavaliev1,AmitLevy11DepartmentofMolecularBiologyandEcologyofPlantsblepel@post.tau.ac.ilCell-to-cellspreadofplantvirusesisdependentonvirusencodedmovementproteins (MPs) that target to andgateplasmodesmata(Pd). We recently showed that replication of Tobacco mosaic virus(TMV)intheabsenceofitsMPresultsinincreasedcalloseaccumulation at Pd and decreased Pd permeability, while in thepresence of MP the accumulation of callose is reduced and Pdpermeabilityincreased(Guenoune-Gelbart,etal.,2008.MolPlantMicrobeInteract21:335-45).ItwassuggestedthatTMVreplicationinduceshostβ-1,3-glucanases(BGs),whicharetargetedbyMPtoPdthusreducingcalloseaccumulationandfacilitatingviralspread.We showhere that infectionofArabidopsiswithvariousvirusesinducesexpressionoftwopathogenesisrelatedBGproteins,AtBG2andAtBG3.WhenAtBG2isexpressedinNicotiana benthamiana,it accumulates in ER strands that transect walls at Pd. It is notexported to the wall. In transgenic N. benthamiana that over-expressingAtBG2-GFP andwhichwere infectedwithTMVδCPMP-RFP,AtBG2-GFP co-localizes with MP-RFP in ER-derivedbodies which target to Pd sites. Other ER resident luminal andmembrane proteins also co-localizewithMP-RFP in bodies thatareappressedtoPdsitesattheinfectionfront.AsthevirusspreadstoadjacentcellsER-derivedbodiesarefirst formedin thenewlyinfectedcellonthewallcontiguoustothesourceofinfection.DataispresentedwhichsuggestthatBG2isredundantandthatmultiplefactorsmaybeinvolvedinvirusspreadthroughthePd.

CS08-3Replication-independent long-distance trafficking of Bamboo mosaic virussatelliteRNANa-ShengLin11InstituteofPlantandMicrobialBiology,AcademiaSinica,Taipei,[email protected] RNAs, the subviral agents, completely depend on theirhelper viruses for replication and encapsidation. However, howsatellite RNAs traffic in the whole plants is largely unknown.Previously,we showed thatBamboo mosaic virus satellite RNA(satBaMV) is dependent on BaMV for efficient long-distancetrafficking in Nicotiana benthamiana plants. The satBaMV-encodedP20proteinisanRNAbindingproteinthatfacilitatesthesystemicmovement of satBaMV in the co-infected plants.Here,we demonstrated that the systemic movement of P20-defectivesatBaMVcanbetranscomplementedintransgenicN. benthamianaexpressingP20protein.ToexamineifsatBaMVcantrafficalone,thescionsofwild-typeplantsweregraftedontotherootstocksoftransgenic N. benthamiana expressing the full-length cDNA ofsatBaMVandviceversa.ThesatBaMVRNAcouldbedetectedinthescionsorrootstocksofwild-typeplantsbynorthernblotanalysis3-6 days post grafting. Deep sequencing of small RNAs fromscion stems revealed that satBaMV-specific siRNApreferentiallymappedtoP20regionofsatBaMV.NosatBaMVRNAorsiRNAwasdetectableinthewild-typecontrols.Moreover,fibrillarinwasco-immunoprecipitatedwithP20proteinwhentotalproteinsfromBaMVandsatBaMVco-infected leavesofN. benthamianaweretreatedwithanti-P20serum.Byvirus-inducedgenesilencing,thefibrillarin-silenced plants strongly suppressed the long-distancetrafficking of satBaMV. Taken together, these results suggestthat host fibrillarin plays a vital role in satBaMV long-distancetraffickingbyreplication-independentmanner.

CS08-4TransgeneviralsiRNAprofileand itseffectoncucurbitviralresistanceAmitGal-On1,DianaLeibman11Department of Plant Pathology,ARO, The Volcani Center, BetDagan50250,[email protected] resistance based on gene silencing has been developedfor many viruses. However, little is known concerning thetransgene-small-interfering RNA (t-siRNA) population causingviral resistance. Transgenic cucumber and melon plants wereconstructed bearing a hairpin construct including a fragment ofthe Zucchini yellow mosaic potyvirus (ZYMV) HC-Pro gene.Transgenic lines accumulating t-siRNA exhibited resistance tosystemic ZYMV infection. In resistant lines t-siRNA comprised12-44% of total small RNA in cucumber and 6-8% in melon,determined by Illumina sequencing.Themajority of t-siRNA intransgenicmelonandcucumberwas21(40-60%)and22nts(28-35%), while accumulation of 24 nts t-siRNA (20%) was foundonly in a cucumber line harboring high t-siRNA levels.Unevent-siRNAdensitiesalongthetransgenesequencewerecharacterized,reflecting accumulation of t-siRNA in hot spots. One transgenicline exhibited resistance to systemic infection of four differentRNA viruses, independent of homology between the transgenesequence and the virus. This line accumulated an exceptionallyhigh level of t-siRNA, 43%of total plant siRNA, in addition toincreased level of RNA-dependent-RNA-polymerase 1 (RDR1).OurdatashowforthefirsttimeacorrelationbetweenabroadRNAvirusresistanceandanincreasedlevelofRDR1mRNAexpression.Wesuggestanewmodelinwhichahighleveloft-siRNAincreasesRDR1expressionleadingtotheinductionofbroadviralresistance,independentofinvolvementofsalicylicacid.

Page 31: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession08-Plant-virus/viroidinteractions

29

Concurrent 08

CS08-5The single dominant resistance gene Tsw is triggered by afunctional RNA silencing suppressor protein of the Tomato spotted wilt virusDryasdeRonde1,PatrickButterbach1,DickLohuis1,MarcioHedil1,JanW.M.vanLent1,RichardKormelink11LaboratoryofVirology,WageningenUniversity,Wageningen,[email protected] dominant resistance geneTsw inCapsicum annuum againsttheTomato spotted wilt virus(TSWV)hasbeenbrokeninthefieldbyvarious isolatesof thisvirus.Todetermine the identityof theavirulence-protein,theNandNSsgenesofresistanceinducing(RI)andresistancebreaking(RB)isolateswereclonedandtransientlyexpressed in resistantCapsicumplants. It isshown that theNSs,the TSWV RNA silencing suppressor (RSS) protein, of the RIisolatetriggersanHypersensitiveResponse(HR)inTswcontainingCapsicum plantswhile noHRwas discerned after expressionoftheN protein, or whenNSs from an RB isolatewas expressed.WhereasNSsfromtheRIisolatewasabletosuppressthesilencingofa functionalGFPconstructduringAgrobacterium tumefacienstransient transformationassaysonNicotiana benthamianaplants,NSsfromtheRBisolatehadlostthiscapacity.Surprisingly,localGFPsilencingcouldstillbesuppressedwhenaco-infectionwithRB or RI viruses was performed. Earlier, the NSs protein wasshown to exertRSS activity by sequestering small (si- andmi-)RNAs.ElectrophoreticmobilityshiftassaysrevealedthattheNSsproteinofRBisolates,incontrasttotheNSsfromRIisolates,losttheir affinity to short-interfering (si)RNAs.Altogether these datademonstratethatNSstriggersTsw-mediatedresistanceandsuggestaputativelinkbetweenthemechanismofdominantvirusresistanceandRNAsilencing.Currently,alaninesubstitutionanalysisisbeingperformedtomapdomainswithintheNSsproteininvolvedinRSSactivityand/ortriggeringofHR.

CS08-6Genetic,biochemical,andstructuralstudiesaboutinteractionsbetweenTomato mosaic virusandtheresistancegeneTm-1KazuhiroIshibashi1,ShuheiMiyashita1,2,MasahikoKato1,YuichiroKezuka3,EtsukoKatoh1,MasayukiIshikawa11Plant-Microbe Interactions Research Unit, National Institute ofAgrobiological Sciences, Tsukuba, Japan, 2Japan Science andTechnologyAgency,PrecursoryResearchforEmbryonicScienceand Technology, Kawaguchi, Japan, 3Depertment of StructuralBiology,SchoolofPharmacy, IwateMedicalUniversity,Yahaba,Iwate,Japanbashi@affrc.go.jpThetomatoTm-1geneisaresistancegeneagainstTomato mosaic virus(ToMV).Tm-1wasintrogressedfromawildtomatospeciesSolanum habrochaites and encodes a protein that inhibitsToMVRNA replication through binding to the replication proteins.HomologousgenestoTm-1arewidelyconservednotonlyamongplants but also even in fungi, bacteria, and archaea, suggestingthat Tm-1 has a primary function other than ToMV resistanceand incidentally acquired the ability to bind ToMV replicationproteins.ToexaminewhethernaturalselectionhasactedonTm-1for the evolution of ToMV resistance, we analyzed the Tm-1alleles ofS. habrochaites.Whereasmost parts of the genewereunderpurifyingselection,asmall region(approx.30aa)showeda signature of positive selection. Deletion analysis of the Tm-1protein suggested that functional fragments for the inhibition ofToMVRNA replication contained the positively selected region.Unexpectedly, we found Tm-1 alleles from S. habrochaites thatinhibit RNA replication of LT1, a Tm-1-resistance-breakingToMVmutant.AnaminoacidchangeintheregionunderpositiveselectionwasidentifiedtoberesponsiblefortheabilitytoinhibitLT1multiplication.Biochemicalanalysessuggestedthattheaminoacid changemakesTm-1amorepotent inhibitor andcapableofbindingtoLT1replicationproteinswhichdoesnotbindtheoriginal

Tm-1.Finally,wewilldiscuss the interactionbetweenTm-1andToMVreplicationproteinsfromastructuralview.

Page 32: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession09-Cellwallmodificationandresistance

30

Conc

urre

nt 0

9

CS09-1OligogalacturonidesalerttheplantimmunesystemtocellwalldamageGiuliaDeLorenzo11Dip.BiologiaeBiotecnologieC.Darwin,SapienzaUniversita’diRoma,Roma,[email protected] of the immune system in animals and plants byendogenous molecules released upon tissue injury (damage-associated molecular patterns or DAMPs) is emerging as anessentialpartof the strategies evolved for survival.ExtracellularDAMPs, like microbe-associated molecular patterns (MAMPs),are recognized by plasma membrane receptors indicated asPattern Recognition Receptors (PRRs). Oligogalacturonides(OGs),releasedfromthehomogalacturonanofthecellwalluponmechanical damage or upon digestion by pectinases secreted byinvading pathogens, are the best characterized class of plantDAMPs.AnoverlapexistsbetweenthedefenseresponsesactivatedinArabidopsisbyOGsandthoseactivatedbythebacterialMAMPsflg22andelf18.BothtypeofelicitorsactivateasignaltransductionpathwaythatinvolvesphosphorylationoftheArabidopsis thalianaMAP kinases MPK3 and MPK6, and are capable of repressingresponses induced by auxin.We have identified novel elementsof the MAP kinase cascade that mediate activation of defenseresponsesbyOGs.Dynamicsstudies in vivo revealafunctionofthesekinasesintheregulationofelicitor-inducedROSproductionbymitochondriaandplastids.

CS09-2Uncoupling resistance to pathogens from tradeoffs byremodelingArabidopsiscellwallAntonio Molina1, Eva Miedes1, Marie Pierre Riviere1, AndreaSanchez-Vallet1,ClaraSanchez-Rodriguez1,MagdalenaDelgado1,LuciaJorda1,NicolaDenance2,PhilippeRanocha2,XavierBartel3,YvesMarco3,DeborahGoffner21Centro de Biotecnologia y Genomica de Plantas (UPM-INIA),Departamento Biotecnologia-UPM, Universidad Politecnicade Madrid, Madrid, Spain, 2Unite Mixte de Recherche CentreNacional de la Recherche Scientifique Univ Toulouse III, PoledeBiotechnologieVegetale,BP 42617Auzeville 24,Chemin deBorde Rouge, 31326 Castanet Tolosan, FRANCE, 3Laboratoirede Interactions Plantes-Microorganismes, Centre Nacionalde la Recherche Scientifique Instiut National de la RechercheAgronomique,ChemindeBordeRouge,31326CastanetTolosan,FRANCEantonio.molina@upm.esTheunderstandingofthedynamicsandevolutionofplantdefensiveresponsesisoffundamentalimportanceastheyimpactagriculturalyield.Inparticular,thecharacterizationoftrade-offsassociatedtobroad-spectrum,durableresistanceincropsneedsfurtherattention.Thecontributionofplant cellwall to this typeof resistancewasanalysedinArabidopsis thalianabydeterminingthesusceptibility/resistance of 120 cell wall mutants (cmw) to different types ofpathogens.Weidentifiedasignificantnumberofcmwmutantsthatuncoupled resistance to pathogens from yield, further indicatingthatwall remodellingmightbeanefficient strategy toovercometrade-offs associated to pathogen resistance. The relevance ofcell wall-mediated resistance to pathogens was also supportedby the finding that key components of Arabidopsis thalianadefensive mechanisms, such as the ERECTA (ER) ReceptorProtein Kinase, the ELK2 Mitogen-Activated Protein KinaseKinaseKinase(MAP3K),andtheβsubunitoftheheterotrimericGprotein(AGB1)modulatedtheimmuneresponsebyregulatingcellwallintegrity.Mutantsimpairedinthesegenesshowedamis-regulationofcellwall-associatedgenesandalterationsincellwallcomposition/structurecomparedwiththoseofwild-typeplants.Thecharacterizationofthegeneticandmolecularbasesoftheresistancein thesemutants revealed that novel, previously uncharacterisedsignallingpathwayscontrolledtheirdefensiveresponses.Moreover,

wefoundthatArabidopsisimmuneresponsecanbemodulatedbycellwallsignals(DAMPs,damaged-associatedmolecularpatterns)derivedfrompathogen-resistantcwmplants.Allthesedatasuggestthat remodelling of cell wall would be an efficient strategy inpathogen-resistancebreedingprograms.

CS09-3CellwallacetylationplaysapivotalroleinthecuticleassemblyandsusceptibilitytonectroticfungalpathogenBotrytis cinereaMajse Nafisi1,2, Maria Stranne1,2, Daniel Silvestro1,2, YuzukiManabe3, Henrik Vibe Scheller3, Meike Burrow1,2, ChristianeNawrath4,HelleJuelMartens1,YumikoSakuragi1,21DepartmentofPlantBiologyandBiotechnology,2VKRResearchCentre Pro-Active Plants, 3DOE Joint Bioenergy Institute,California,USA,4DépartementdeBiologieMoléculaireVégétale,UniversitédeLausanne,[email protected] we show that the cell wall acetylation plays an importantrole in pathogen susceptibility inArabidopsis thaliana.WehaverecentlyidentifiedREDUCEDWALLACETYLATION2,whichisrequiredforthefullacetylationofthecellwallpolysaccharides(1).Themutantsshowedanincreasedresistant toBotrytis, indicatingthat cellwall acetylation is a susceptibility factor. In the presentstudytheleavesofrwa2mutants(rwa2-1andrwa2-3)wereshowntoexhibitan increasedpermeability to toluidineblueandcalloseandanenhancedrateofwater lossascompared to thoseofWT.Themajorityoftrichomeswerecollapsedordead.Ultrastructuralanalysis revealed that the thickness of the cell wall increasedby30-40%of theWT levels in themutant leaveswith electron-densematerials,whichisindicativeoflipidiccompounds,trappedinthecellwallofthemutantsbutnotinthatofWT.Applicationof chitosan to the seedlingandBotryis tomature leaves inducedenhancedcalloseandhydrogenperoxidedepositions,respectively,inthemutantsascomparedtoWT.Theseresultsindicatethatthedeliveryand/orassemblyofcuticularcomponentsthroughthecellwallisimpairedinthemutants,leadingtotheincreasedwaterlossandthefastersensingofelicitors.Ourresultsdemonstratethatthecellwall acetylationplays apivotal role in the surface assemblyandsuggestthatacetylationislikelytohaveevolvedtooptimizethe surface structures at the expense of pathogen resistance.(1)Manabeetal.(2011)PlantPhysiol155:1068.

CS09-4Poly(ADP-ribosyl)ation plays an essential role in pathogen-inducedcellwallreinforcementBrianD.Keppler1,AmyG.Briggs1,JunqiSong2,AndrewF.Bent21Program in Cellular and Molecular Biology, University ofWisconsin, Madison, WI, 2Department of Plant Pathology,UniversityofWisconsin,Madison,[email protected](ADP-ribosyl)ation is an important post-translationalmodificationinwhichchainsofpoly(ADP-ribose)areaddedtoatargetprotein.Althoughpoly(ADP-ribosyl)ationhasbeenstudieddeeplyinmammaliansystemsduetoitsroleinDNAdamagerepairandcellstress,novelrolesforpoly(ADP-ribosyl)ationintheplantinnateimmuneresponsearebeingelucidated.Chemicalinhibitorsof poly(ADP-ribosyl)ation such as 3-amino-benzamide (3AB)blockcertainaspectsof theplant innate immune response.Earlysteps afterMAMPperception such as the production of reactiveoxygenspeciesremainintact,butsomelatersteps,includingcellwallreinforcementwithcallosedepositions,areblocked.AlthoughMAMP-inducedcalloseisblocked,wound-inducedcalloseisstilldepositedinthepresenceof3ABdespitethefact that theGSL5/PMR4callosesynthaseenzymeisresponsibleforboth.QuantitativeRT-PCR analysis revealed that expression of GSL5 increasesapproximatelythree-foldbetweentwoandfourhoursafterMAMP(flg22)treatment.Asimilarincreaseinexpressionisobservedwhenseedlingsaretreatedwithflg22and3AB,suggestingthat3ABdoesnotblockGSL5 expression.Analysisof callose inparp1,parp2,

Page 33: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession09-Cellwallmodificationandresistance

31

Concurrent 09

andparp3mutantsrevealedareductioninflg22-inducedcalloseinparp3mutants,whilecalloseinparp1andparp2mutantsappearedsimilartowildtypelevels.AscreenofArabidopsisT-DNAmutantsdisruptedingeneswhoseMAMP-responsiveexpressionisalteredbypoly(ADP-ribosyl)ationrevealedtwogenesthatimpactcallosedeposition.Theseandotherresultsaresuggestinganimportantroleforpoly(ADP-ribosyl)ation in theplant innate immune response,andinpathogen-inducedcellwallreinforcementinparticular.

CS09-5Reduced carbohydrate availability and altered pectincomposition in Arabidopsis enhance susceptibility towardsColletotrichum higginsianumLars Voll1, Timo Engelsdorf1, Robin Horst1, Reinhard Proels2,Marlene Proeschel1, Cornelia Will1, Joerg Hofmann1, RalphHueckelhoven21Division of Biochemistry, FAU Erlangen-Nuremberg,Erlangen, Germany, 2Technical University Munich, Division ofPhytopathology,Freising-Weihenstephan,[email protected] higginsianum is a hemibiotrophic ascomycetefungus that is adapted to Arabidopsis thaliana.After breachingthehostsurface,thefungusestablishesaninitialbiotrophicphasein the penetrated epidermis cell, before necrotrophic growth isinitiated upon further host colonization. We could observe thatArabidopsis mutants with impaired starch turnover were moresusceptible towards C. higginsianum infection, with starch-freemutants exhibiting the strongest susceptibility. By altering thelengthof the lightphaseandbyemployingadditionalgenotypesimpaired in nocturnal carbonmobilization, we could reveal thatperiodic nocturnal starvation for carbon represents an enhancedsusceptibility factor in the investigated pathosystem. Especially,dark-induced starvation during the necrotrophic phase increasedthe susceptibility of the host. Most importantly, systematicstarvationexperimentscouldrevealthatnutrientsupplybythehostis dispensable during the biotrophic phase ofC. higginsisanum.However, earlypost-penetrationestablishmentof the funguswasalso most strongly increased in starchless mutants.An in-depthanalysisofcellwallcompositionandthecomparisontodescribedcell wall mutants demonstrated that pectin of the starch-freemutants contained less arabinose, galactose and galcturonic acidresidues,whichcouldbeattributedtoenhancedestablishmentofC. higginsianum.Incontrast,thestarchlessmutantsweremoreresistanttowardsthefungalbiotrophErysiphe cruciferarum,whichwasnotduetotheobservedchangesinpectincomposition,indicatingthatthe two identified susceptibility factors,periodiccarbonshortageand pectin composition, do not increase susceptibility in allinteractions.

CS09-6Links between the cell wall and powdery mildew diseaseresistanceinArabidopsisCandice Cherk1,2, Yves Verhertbruggen3, Heidi Szemenyei1,2,BradleyR.Dotson1,2,ChrisSomerville1,2,HenrikVibeScheller1,3,ShaunaSomerville1,21DepartmentofPlantandMicrobialBiology,UCBerkeley,2EnergyBiosciences Institute, UC Berkeley, 3Joint Bioenergy Instituteand Physical BiosciencesDivision, Lawrence [email protected] pmr5 (powdery mildew resistant 5) mutant was found in ascreen for genes involved in susceptibility to Golovinomyces cichoracearum, a biotrophic pathogen that infects Arabidopsis.PMR5isamemberoftheTBL(TRICHOMEBIREFRINGENCELIKE)family,whichiscomposedof46functionallyuncharacterizedplant-specific proteins. Initial characterization of this mutantshowedthatpmr5-mediateddiseaseresistanceactsindependentlyofthesalicylicacid,jasmonicacid,andethylenesignaltransductionpathways,andthattherearechangesinthepmr5cellwallthatmay

belinkedtothegainofresistanceinthemutant(Vogelet al.,2004).We characterized the cell wall composition in more detail andbelieve PMR5 affects pectin, specifically rhamnogalacturonan I.Severalothercellwallmutantshaveshownenhancedresistancetoplantpathogens,leadingtothehypothesisthattheremaybeanovelcellwallintegritysignalingpathwaythatistriggeringdownstreamdefenseresponses(Hematyet al., 2009).Wehypothesizethatthecell wall changes in pmr5 are activating a constitutive defenseresponseagainstthehostpowderymildew,andaimtocharacterizethisnoveldefensepathwaybymicroarrayanalysisandsuppressormutantcharacterization.

Page 34: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession10-Planthormonesintegratingdefenseresponse

32

Conc

urre

nt 1

0

CS10-1RolesofCBP60proteinsintheplantdefensenetworkJaneGlazebrook1,LinWang1,WilliamTruman1,SumaSreekanta11DepartmentofPlantBiology,[email protected] Binding Protein 60 (CBP60) proteins comprise asmallfamilyofeightmembersinArabidopsis.Plantswithcbp60gloss-of-functionmutations aremore susceptible toPseudomonas syringae pv.maculicola strain ES4326 (Pma ES4326) and havereducedlevelsofsalicylicacid(SA)atearlytimesafterinfection.CBP60gbindscalmodulin(CaM)throughaCaM-bindingdomainat the amino-terminus. CaM binding is required for function, asmutants that cannot bindCaMdo not complement the pathogengrowthorSAphenotypes.Thefamilymembermostcloselyrelatedto CBP60g is called SARD1. Plantswith sard1 loss-of-functionmutations are also more susceptible to Pma ES4326, and havereduced levels of SA at later times after infection. SARD1 doesnotbindCaM.Plantsdoublymutantforcbp60gandsard1displaysevereenhancedsusceptibilitytoPmaES4326andgreatlyreducedSA levels. Expression profiling experiments demonstrated thatCBP60gandSARD1arerequiredforexpressionofSA-dependentgenes,aswellasanothergroupofgenesthatareSA-independentbutdependentonPAD4andEDS1.Aclusteringanalysisofgenesco-expressed with genes known to have reduced expression incbp60g sard1plantsidentifiedadditionalgeneswhoseexpressionisaffectedbyCBP60gandSARD1.Curiously,someoftheseshowreduced expression in cbp60g sard1 plants, while others showincreased expression. The family member most closely relatedtoCBP60g andSARD1 isCBP60a. Plantswith cbp60a loss-of-functionmutationsaremore resistant toPmaES4326 thanwild-typeplants,andhaveelevatedSAlevelsintheabsenceofinfection.

CS10-2DynamicregulationofplantimmuneresponseXinnianDong11DepartmentofBiology,DukeUniversity,Durham,[email protected];therefore,theirphysiologicalprogramsarehighlyentrainedwithenvironmentalcues,resultingincircadianrhythmsandseasonallifecycles.Sinceplantcellsarepolypotent,theirresponsestotheenvironmentalcueshavetobebalancedwithgrowth and development. This balanced is maintained throughsophisticated regulatory mechanisms. In my talk, I will presentevidence for the circadian clock regulation of plant defense inanticipationofinfectionatthetimeofthedaywhenthepathogenthreatisthehighest.Underpathogenchallenge,infectedcellscanundergoprogrammedcelldeath(PCD)torestrictpathogengrowth,whereastheintactcellsneedtoturnonanti-PCDgenestopreventthespreadofcelldeathandactivatesystemicacquiredresistance.Iwillshowdataonhowcelldeathandsurvivalisregulatedthroughperceptionoftheplantimmunesignal,salicylicacid,whichcontrolsthefunctionofthekeyimmuneregulator,NPR1.Moreover,wealsodiscoveredasynergismbetweenplantimmuneresponsesandDNAdamagerepairmechanism.Throughgeneticscreensandsubsequentcharacterization,we found that genes involved in damage repairaredirectlyassociatedwithtranscriptionofplantimmunity-relatedgenes.Thepotentialsignificanceofthissynergybetweenthesetwomostfundamentalstressresponseswillbediscussed.

CS10-3Rice WRKY45 plays a key role in priming of diterpenoidphytoalexin biosynthesis through the salicylic acid signalingpathwayAya Akagi1, Setsuko Fukushima1, Kazunori Okada2, Chang-Jie Jiang1, Riichiro Yoshida3, Masaki Shimono4, Shoji Sugano1,HisakazuYamane5,HiroshiTakatsuji11Disease Resistant Crops Research Unit, National Institute of

AgrobiologicalSciences,Tsukuba,Ibaraki,Japan,2BiotechnologyResearchCenter,TheUniversityofTokyo,Tokyo,Japan,3Facultyof Agriculture, Kagoshima University, Kagoshima, Japan,4Department of Plant Pathology, Michigan State University,Michigan,Japan, 5DepartmentofBiosciences,TeikyoUniversity,Tochigi,[email protected] activators such as benzothiadiazole (BTH) prime defenseresponsesinplantsbyactingonthesalicylicacid(SA)signalingpathway. In rice, BTH-inducible transcription factor WRKY45plays a key role in BTH-induced disease resistance throughthe rice SA pathway, which branches into OsNPR1/NH1- andWRKY45-dependent subpathways. Overexpression of WRKY45(WRKY45-ox) conferred strong resistance against fungal blast(Magnaporthe oryzae) to rice due to pre-invasive defense. Toelucidate the mechanism underlying WRKY45-mediated blastresistance, we performed expressional analysis focusing onditerpenoid phytoalexin (DPA) biosynthesis genes. Microarrayanalysis revealed that the expression ofDPA biosynthesis geneswas only moderately upregulated in WRKY45-ox rice, but theexpression levels increased rapidly after M. oryzae inoculationcomparedwithnon-transformantriceplants.ThegeneexpressionpatternwasreflectedintheaccumulationofDPAs,momilactonesand phytocassanes. In non-transformant rice plants, either BTHtreatment orM. oryzae inoculation alone barely upregulated theDPAbiosynthesis genes, but theywere highly upregulatedwhenM. oryzae was inoculated to BTH-treated rice plants at 1 daypost-inoculation.TheupregulationwasnotobservedinWRKY45-knockdownriceplants.TheseresultsindicatethatWRKY45playsa role inprimingof the inductionofDPAbiosynthesisgenesbyBTH.CytokininhasbeenknowntoinducetheexpressionofDPAbiosynthesis genes in rice. In our system using rice leaf discs,cytokinin alone upregulated them only slightly, but co-treatmentwithSAandcytokinindramaticallyupregulatedthem,suggestingaroleofcytokininintriggeringdefensegeneexpressioninplantsprimedbySA/BTH.

CS10-4HormonalmodulationofplantimmunityCorneM. J.Pieterse1,DieuwertjeVanderDoes1,AntonioLeon-Reyes1,JohanMemelink2,SaskiaC.M.VanWees11UtrechtUniversity,[email protected] between the defense hormones salicylic acid (SA) andjasmonicacid(JA)playsacentralroleinthemodulationofinducedplant immune responses (1). In Arabidopsis, the SA pathwayantagonizestheJAsignalingsectoroftheplantimmunesignalingnetwork.WeaimtounravelhowSAexertsitsantagonisticeffectontheJAsignalingsector.Here,weshowthatsuppressionoftheJA pathway by SA functions downstream of the E3 ubiquitin-ligase SCFCOI1 complex that targets JASMONATE ZIM-domaintranscriptionalrepressorproteins(JAZs)forproteasome-mediateddegradation.TheJAZproteinsthemselveswereshownnottobeatargetforSA.Instead,theantagonisticeffectofSAappearstobedirectlytargetedatthelevelofgenetranscription.Insilicopromoteranalysis of the SA-JA crosstalk transcriptome of Arabidopsisrevealedthatthe1-kbpromoterregionsofJA-responsivegenesthatweresuppressedbySAaresignificantlyenrichedinGCC-boxmotifs,whicharebindingsites forAP2/ERFtranscriptionfactors.UsingplantscarryingtheGUSreportergeneundercontroloftheGCC-box,wedemonstratedthattheGCC-boxisasufficientelementforSA-inducedsuppressionofJA-inducedgeneexpression.WefurtherprovideevidencethatSAstimulatesdegradationoftheERF-typetranscriptionfactorORA59.Collectively,ourdataindicatethatSA-mediatedsuppressionofJAsignalingismediatedbytargetingthestabilityofpositive transcriptional regulatorsof the JA response.(1) Pieterse C. M. J., Van der Does, D., Leon-Reyes, A., andVan Wees, S. C. M. (2012). Hormonal modulation of plantimmunity.Annu.Rev.CellDev.Biol. 28: doi: 10.1146/annurev-cellbio-092910-154055.

Page 35: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession10-Planthormonesintegratingdefenseresponse

33

Concurrent 10

CS10-5Brassinosteroids antagonize gibberellin- and salicylate-mediatedrootimmunityinriceDavid De Vleesschauwer1, Evelien Van Buyten1, Kouji Satoh2,JohnyBalidion3,RamilMauleon4, Il-RyongChoi3,CasianaVera-Cruz3,ShoshiKikuchi2,MonicaHofte11LabofPhytopathology,GhentUniversity,Ghent,Belgium,2PlantGenomeResearchUnit,AgrogenomicsResearchCenter,NationalInstituteofAgrobiologicalSciences,Tsukuba,Ibaraki,Japan,3PlantBreeding, Genetics, and Biotechnology Division, InternationalRiceResearchInstitute,MetroManila,Philippines,4CropResearchInformatics Laboratory, International Rice Research Institute,MetroManila,[email protected](BRs)areauniqueclassofplantsteroidhormonesthat orchestrate myriad growth and developmental processes.AlthoughBRshavelongbeenknowntoprotectplantsfromasuiteofbioticandabioticstresses,ourunderstandingoftheunderlyingmolecular mechanisms is still rudimentary. Aiming to furtherdecipherthemolecularlogicofBR-modulatedimmunity,wehaveexamined the dynamics and impact of BRs during infection ofricewiththerootoomycetePythium graminicola.ChallengingtheprevailingviewthatBRspositivelyregulateplantinnateimmunity,weshowthatP. graminicolaexploitsBRsasvirulencefactorsandhijacks the rice BR machinery to inflict disease. Moreover, wedemonstrate that this immune-suppressive effect of BRs is due,at least inpart, tonegativecrosstalkwithsalicylicacid(SA)andgibberellicacid (GA)pathways.BR-mediated suppressionofSAdefenses occurred downstreamof SAbiosynthesis, but upstreamof the master defense regulators OsNPR1 and OsWRKY45.In contrast, BR alleviated GA-directed immune responses byinterfering at multiple levels with GA metabolism, resultingin indirect stabilization of the DELLA protein and central GArepressorSLR1.Collectively,thesedatafavoramodelwherebyP.graminicolaco-optstheplantBRpathwayasadecoytoantagonizeeffectual SA- and GA-mediated defenses. Our results highlighttheimportanceofBRsinmodulatingplantimmunityanduncoverpathogen-mediatedmanipulationofplantsteroidhomeostasisasacorevirulencestrategy.

CS10-6Tyrosine sulfated peptide receptors PSKR1 and PSY1RmodulateArabidopsisimmunityStephen L.Mosher1, Heike Seybold1, Patricia Rodriguez1,MarkStahl2, Michael Wierzba3, Kelli Davies3, Santiago Morillo3,SajeewaniDayaratne3,FransE.Tax3,BirgitKemmerling11ZMBPPlantBiochemistry,Eberhard-Karls-UniversityTuebingen,Tuebingen,Germany,2ZMBPAnalytics,Eberhard-Karls-UniversityTuebingen, Tuebingen, Germany, 3Department ofMolecular andCellularBiology,UniversityofArizona,Tucson,USAstephen.mosher@zmbp.uni-tuebingen.deTwotyrosinesulfatedpeptidesPSKαandPSY1havebeenshownto be bound by leucine-rich repeat receptors to control cellproliferation. Using a reverse genetics approach we identifiedthe PSKα receptor,PSKR1, as an important component of plantimmunity.PSKR1andasubsetofgenesencodingPSKαpropeptidesweretranscriptionallyup-regulatedbypathogentreatment.PSKR1loss-of-function mutants were more resistant to the biotrophicbacterial pathogen Pseudomonas syringae pv. tomato DC3000andhadenhancedPAMPresponses.Conversely,PSKR1mutantswere more susceptible to the necrotrophic fungal pathogenAlternaria brassicicola, exhibiting increased lesion formationand fungal growthwhich is restricted inwild-type plants.Theseantagonistic defense responses were correlated with enhancedSA levels, enhanced PR1 and FRK1 expression and suppressedexpressionofPDF1.2andOPR3 inPSKR1mutants.AnalysisofmultiplemutationsintheparalogousreceptorsPSKR1,PSKR2andPSY1R revealed that PSKR1 and PSY1R, but not PSKR2, playan overlapping role in plant immunity. Itwas demonstrated that

tyrosine sulfation by the tyrosine protein sulfotransferase TPSTis critical forPSKαandPSY1modificationand signaling. tpst-1mutantsalsodisplayedtheabovementionedantagonisticdefenseresponses, phenotypically mimicking the triple receptor mutant.PSKα pretreatment of tpst-1 leaves lead to a partial restorationof the resistance phenotypes, indicating that perceptionofPSKαhas a direct effect on plant defense. These results suggest amechanism whereby sulfated peptide perception by the PSKRLRR-RLKsubfamilyleadstoanintegrationofgrowth-promotinganddefensesignalstomodulatecellularplasticityforadjustmenttoenvironmentalchanges.

Page 36: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession11-Cropprotection

34

Conc

urre

nt 1

1

CS11-1ThewheatMlahomologueTmMla1 exhibits an evolutionaryconservedfunctionagainstpowderymildewinbothwheatandbarleyTina Jordan1,SamiraMilani1,SabineSeeholzer1,ArminToeller2,SimonSchwizer1,ImreE.Somssich2,BeatKeller11InstituteofPlantBiology,UniversityofZurich,Switzerland,2Max-Planck-InstituteforPlantBreeding,DepartmentofPlant-MicrobeInteractions,Carl-von-LinneWeg10,D-50829Koeln,[email protected](Blumeria graminis f. sp. hordei)resistancegeneMlaencodesCC-NB-LRRtyperesistanceproteins. Genetic studies in breeding material have identified alargenumberoffunctionalresistancegenesattheMlalocus.Inter-genericalleleminingresultedintheisolationandcharacterisationof anMla homologue from diploid wheat, designated TmMla1,which shares 78% identity with barley HvMLA1 at the proteinlevel. TmMla1 was found to be a functional resistance geneagainstBlumeria graminis f. sp. triticiinwheat,herebyprovidingan example ofR gene orthologs controlling the same disease intwodifferentspecies. Interestingly,TmMLA1wasnot functionalinbarleytransientassaysagainsta limitedsetofbarleypowderymildew isolates. Replacement of the TmMLA1 LRR domainwith thatofHvMLA1revealed that this fusionproteinconferredmoderateresistanceagainstB. graminis f. sp. hordeiisolateK1inbarley. Thus,TmMLA1 not only confers resistance in wheat butpossiblyalsoinbarleyagainstanasyetunknownbarleypowderymildew race. The conservation of functional R gene orthologsover at least 12 million years is surprising given the observedrapid breakdown ofMla-based resistance against barleymildewin agricultural ecosystems.This suggests a high stability ofMlaresistance in the natural environment before domestication. Inanalogy to Mla, homologues of the race-specific R gene Pm3(wheat) are isolated frombarley and analysed for their responseagainstwheatpowderymildew.Theaim is to establish awheat-barley-powdery mildew model system to investigate resistanceresponsesagainstpowderymildew.

CS11-2AllelepyramidingofthewheatpowderymildewresistancegenePm3:Astrategyformoredurableresistance?DanielStirnweis1,SusanneBrunner1,TinaJordan1,BeatKeller11InstituteofPlantBiology,UniversityofZurich,Zurich,Switzerlanddaniel.stirnweis@uzh.chPyramidinggenesofinterestinelitecropcultivarsisanimportantstrategy to improveplantperformancebybreeding. In resistancebreeding, this allows the combination of genes effective againstdifferentracesorspeciesofpathogens.Sincesingle,race-specificresistance genes (R genes) are rapidly overcome, gene or allelestacksagainstasinglepathogenareexpectedtorenderresistancemoredurable.Stablecombinationofallelesinahomozygousstateisonlypossibleintransgenicplants.Inwheat,allelesoftheRgenePm3conferresistanceagainstabroadvarietyofpowderymildewisolates (Blumeria graminis f.sp. tritici,Bgt).In our group, eightdifferentPm3 alleleshavebeen stably transformed inwheat andproventobefunctionalovermultiplegenerations.Wecrossedthesetransgenic lineswith each other to testwhetherPm3 alleles canbecombinedsuccessfully.Infectiontestswithdoublehomozygousplants and Bgt isolates that differentiate the resistance reactionofeachparent showed that abouthalfof theallelecombinationsexhibited additive resistance. However, in the remaining allelecombinations a loss of resistance function of one of the twoalleleswas observed.This indicates that at least for some allelecombinationssuppressionbetweenPm3allelestakesplace,whichreducestheeffectivenessofPm3pyramiding.FurtherexperimentsindicatethatinterferencetakesplaceattheproteinlevelandthattheLRRdomainmayberesponsibleforthesuppression.KnowledgeonthemolecularbasisofRgenesuppressioncouldbeimportanttoovercomethepotentiallimitationsbytheseeffectsforefficient

resistancebreeding.

CS11-3The genome of the fungusCladosporium fulvum suggests anancestralhostjumptotomatoPierreJ.G.M.DeWit1,AtevanderBurgt1,BilalOkmen1,IoannisStergiopoulos1,2,Ali Bahkali3, Henriek Beenen1, Pranav Chettri4,YananGuo4, ShahjahanKabir4,Mansoor Karimi Jashni1, RahimMehrabi1,JeromeCollemare1,2,BradshawRosieE.41WageningenUniversity, Laboratory of Phytopathology,, 2Centrefor Biosystems Genomics, Wageningen, The Netherlands,3DepartmentofBotanyandMicrobiology,KingSaudUniversity,Riyadh,SaudiArabia,4InstituteofMolecularBioSciences,MasseyUniversity,PalmerstonNorth,[email protected] fulvum isaDothideomycete funguspathogenicontomatobutitsbiotrophiclifestylediffersfrommostothermembersof this class of fungi. Its genome sequence is most related toDothistroma septosporum, a hemi-biotrophic pathogen causingpine needle blight and producing the toxin dothistromin. TheC. fulvum genome size is twice that ofD. septosporum becauseof invasion by transposable elements that have strongly shapedits structureand likely the interactionwith itshostplant tomato.Although it is a biotroph, theC. fulvum genome containsmanygenesthataretypicallyfoundinhemi-biotrophsandnecrotrophs.Inparticular,itscarbohydrate-degradingenzymecatalogcomprisesalargearsenalforpectindegradationandC. fulvumgrowswellondifferentcomplexcarbohydratesubstratesincludinglignin.Also15geneclustersforsecondarymetabolitebiosynthesisarepresentinthegenome,includingthegeneclusterresponsiblefordothistrominproduction.Strikingly,severalofthegenesinvolvedincellwall-degradationandsecondarymetaboliteproductionarenotexpressedin planta and others are pseudogenized. These phenomena arereminiscent of a jump by an ancestral D. septosporum-relatedfungalpathogentotomatowhereitadaptedtoabiotrophiclifestyleby differentiation in gene content and gene regulation. Genesinvolvedinadaptationtothislifestylemayencodenotonlysmallsecreted effectors, but also structural proteins like hydrophobinsand enzymes involved in degradation of antimicrobial saponinslikeα-tomatinase.

CS11-4Protectingforestcropsfromdisease:cancomparativegenomicsprovidemanagementsolutions?Rosie E. Bradshaw1, Yanan Guo1, Shahjahan Kabir1, PranavChettri1,MurrayP.Cox1,BilalOkmen2,JeromeCollemare2,PierreJ.G.M.deWit21InstituteofMolecularBioSciences,MasseyUniversity,PalmerstonNorth,NewZealand,2LaboratoryofPhytopathology,WageningenUniversity,Wageningen,TheNetherlandsr.e.bradshaw@massey.ac.nzCommercialforestcropshavelifespansmeasuredindecades,butare equally susceptible to diseases as conventional short-livedfood crops.An emerging problem is that the incidence of somefoliardiseases is increasingdue toclimatechange.Forexample,epidemicsofDothistromaneedleblight(DNB)ofpinesinEuropeandCanada are associatedwith increased rainfall.Newmethodsof disease management are needed but difficulties inherent inworking with this forest pathosystem have slowed progress. Abreakthrough occurred recently when the genome of the DNBcausalagent,Dothistroma septosporum,wassequencedbytheJointGenome Institute.Availabilityof thegenome facilitated researchthat showedD. septosporum tobe ahemi-biotroph rather than anecrotrophaspreviouslysupposed.Furthermore,thegenomeofD. septosporumisremarkablysimilartothatofthebiotrophictomatopathogenCladosporium fulvum.Comparativeanalysisofgenomesfrom these species revealed differences in genes for secondarymetabolite biosynthesis and carbohydrate degradation that mayhelp to determine host specificity. Genes common to the two

Page 37: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession11-Cropprotection

35

Concurrent 11

speciesarealsoof interest.D. septosporum hasputativeeffectorgenesthatappeartobefunctionalorthologsofthewell-studiedC. fulvum Avr andEcp genes.Although resistant races are notwelldefinedinpinepopulations,somepinespecieshaveRgenesthatfunction in a gene-for-gene manner in a rust pathosystem. ThisraisesthepossibilitythatcandidateD. septosporumeffectors,alongwithothersimilargeneproductsidentifiedfromthegenome,maybeusedtoscreenforDNBresistanceinpineaccessions.

CS11-5Transgenic potato plants expressing WRKY8 transcriptionfactorshowresistancetopotatoblightpathogensMikiYoshioka1,Nobuaki Ishihama2,YoshikoKanehara1,HiroakiAdachi1,YoshitakaTakano3,HirofumiYoshioka11GraduateSchoolofBioagriculturalSciences,NagoyaUniversity,Nagoya,Japan, 2RIKENPlantScienceCenter,Yokohama,Japan,3GraduateSchoolofAgriculture,KyotoUniversity,Kyoto,[email protected] reported that Nicotiana benthamiana WRKY8 transcriptionfactor is a physiological substrate of defense-related MAPKs,SIPK, NTF4 and WIPK. The phospho-mimicking mutant ofNbWRKY8induces3-hydroxy-3-methylglutaryl CoA reductase 2(HMGR2),whichcatalyzestherate-limitingstepinthebiosynthesisof sesquiterpenoid phytoalexins. Here we investigated the roleof StWRKY8, a potato ortholog, in the defense responses in thepotato.TheexpressionlevelofStWRKY8wastransientlyinducedafter inoculation with an avirulent isolate of potato late blightpathogenPhytophthora infestans.EctopicexpressionofStWRKY8driven by a pathogen-inducible promoter in N. benthamianashowedresistancetoapotentpathogenColletotrichum orbiculare,indicatingthatStWRKY8canconferresistancetopathogens.WegeneratedtransgenicpotatoplantsexpressingStWRKY8underthecontrolof thepathogen-induciblepromoter.Theup-regulationofgenesforHMGR2andsesquiterpene cyclase,whichisakeybranchenzymeofsesquiterpenoidphytoalexinsynthesis,wasobservedinresponse to avirulent isolateofP. infestans.Thevirulent isolateofP. infestansandearlyblightpathogenAlternaria solaniinducedbrowninginmesophyllcellsattheinfectionsitesofthetransgenicplants.Biomassesofbothpathogenswerereducedinthetransgenicplants comparewithwild-type plants.Thus,WRKY8 transgenicplants exhibited resistance to both near-obligate hemibiotrophicandnecrotrophicpathogens.

CS11-6Resistance genes within the sameTIR-NBS-LRR locus fromawildNorthAmericangrapevinespeciesconferresistancetopowderymildewanddownymildewincultivatedgrapevineAngelaFeechan1,ClaireAnderson1,LaurentTorregrosa2,AngelicaJermakow1,PereMestre3,SabineWiedemann-Merdinoglu3,DidierMerdinoglu3, Amanda Walker1, Lance Cadle-Davidson4, BruceReisch5, SebastienAubourg6, Nadia Bentahar6, Bipna Shrestha2,Alain Bouquet2, Anne-Françoise Adam-Blondon6, Mark R.Thomas1,IanB.Dry11CSIRO Plant Industry, Adelaide, Australia, 2UMR DIAPC -CampusSupAgro-INRA,placeViala,34060,Montpellier,France,3INRA,SanteVigne&QualiteVinUMR1131,F-68000Colmar,France,4USDA-ARSGrapeGeneticsResearchUnit,Geneva,NY,USA, 5Department of Horticulture, Cornell University, Geneva,NY, USA., 6INRA-URGV 2, rue Gaston Cremieux CP 5708F-91057Evry,[email protected] cultivated grapevine, Vitis vinifera, is highly susceptible tothe fungal pathogen powdery mildew (Erysiphe necator) andthe oomycete pathogen, downy mildew (Plasmopara viticola).Both of these biotrophic pathogens are economically importantdiseasesofviticultureworldwide.E. necatorandP. viticolawereintroduced into Europe from North America during the 1800sand as a result theEurasian speciesV. vinifera has little geneticresistancetoeitherpathogen.Duetotheuseofelitewinecultivars

it can be undesireable to introduce resistance genes from wildgrapevine relatives through classical breeding techniques. TheRUN1/RPV1locuswhichoriginatesfromthewildNorthAmericangrapevine speciesMuscadinia rotundifoliawas previously foundtoconferresistancetobothgrapevinepowderyanddownymildewfollowing introgression into aV. vinifera background. Fine-scalegeneticmappinglocalisedRUN1andRPV1resistancetoaregioncontaining seven full-length TIR-NBS-LRR type resistance (R)genecandidates.TheseR-genecandidateshavebeentransformedintosusceptibleV. viniferacultivars includingShiraz,PortanandTempranillo. This has allowed us to identify and functionallycharacterise the first powdery mildew (RUN1, Resistance toUncinula necator,syn.E. necator)anddownymildewresistance(RPV1, Resistance to Plasmopara viticola) genes in grapevine.CloningofRUN1andRPV1revealedthattheseRgenesundergoalternative splicing across a cryptic intron to produce fourtranscripts, threeofwhichare truncated.Bothfull lengthRgeneproductsshownuclearlocalisationwhichisduetothepresenceofaC-terminalnuclearlocalisationsignal(NLS).

Page 38: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession12-Evolutionofsusceptibilityandresistance

36

Conc

urre

nt 1

2

CS12-1Plantrecognitionofchitinandlipo-chitinsignalingmoleculesGaryStacey11Divisions of Biochemistry and Plant Science, University ofMissouri,Columbia,MO,[email protected] is now well established that chito-oligosaccharides (CO) andlipo-chitooligosaccharides (LCO) are potent signal molecules inplants.CO signals are recognized by plants leading to inductionofbasalresistancetoinvadingfungalpathogens.Incontrast,LCOsignals,producedeitherbyrhizobiaormycorrhiza,arerecognizedbyplantsandfacilitatetheestablishmentofsymbioticinteractions.An interestingquestion ishowplants can recognizevery similarmolecules but respond in such different ways. It is clear thatLysM domain receptor-like kinases are involved in recognizingbothCOandLCOsignalsand,hence,thetwosystemsarelikelyevolutionarilylinked.OurlaboratoryisfocusedonunderstandingthedifferencesbetweenCOandLCOsignaling,characterizingtherecognition steps, defining the downstream signaling processesand unraveling the extensive complexity that exists. Recentresults suggest that for bothCOandLCOsignaling at least tworeceptor proteins are involve, only one of which has an activekinasedomain. In the caseofCO signaling,CERK1 is essentialbutappearstointeractwithotherproteinsdependingonthespecificbiologicalcontext.Indeed,wehavenowidentifiedor infermanylayersofcomplexityinCOsignaling,dependingonthechemistryoftheCO,whichproteinscomprisethereceptorcomplexandhowthepathogenmodulatestheseprocesses.

CS12-2Yin and yang of effector-triggered immunity: the negativeregulator SRFR1 interacts with the positive regulator EDS1andwithresistanceproteinsSaikatBhattacharjee1,MorganHalane1, SangHeeKim1,2,WalterGassmann11Division of Plant Sciences, University of Missouri, Columbia,USA, 2Department ofBiology, IndianaUniversity,Bloomington,[email protected] innate immune responses are tightly regulated becauseuncontrolledactivityoftheimmunesystemleadstoseveregrowthanddevelopmentalabnormalities.Sensingthepresenceofaspecificpathogen effector by a cognate resistance protein is the triggerfor one branch of the plant immune system, effector-triggeredimmunity(ETI).Whereasmanyeffector-resistanceproteinsystemshave been identified, molecular processes that activate, signaland regulate ETI remain largely unknown. We had previouslyreported the identification and characterization of ArabidopsisSUPPRESSOR OF rps4-RLD (SRFR1), a negative regulator ofAvrRps4- andHopA1-triggered immunity, two effectors that areusuallyrecognizedbytheTIR-NB-LRRresistanceproteinsRPS4andRPS6,respectively.InCol-0,absenceofSRFR1alsoleadstoenhancedbasalimmunity,mostprominentlyviaactivatingtheTIR-NB-LRRproteinSNC1.Here,weidentifycytoplasmicmembrane-associated complexes of SRFR1 with RPS4, RPS6 and SNC1,and with ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1).A known positive regulator of basal immunity, EDS1 is alsoessential for ETImediated by TIR-NB-LRR resistance proteins.Interestingly, AvrRps4 and HopA1 target EDS1 and disrupt itsassociationswithSRFR1,RPS4andRPS6.Theseeffector-inducedmolecular perturbations likely form the basis for initiating ETIsignaling.OurstudiesidentifyEDS1asadirectvirulencetargetofpathogeneffectorsthatisguardedbysomeTIR-NB-LRRresistanceproteins,andprovidesamolecularbasisfornegativeregulationofETIbySRFR1.FundedbyNSFIOS-0715926andIOS-1121114.

CS12-3EDS1 connects pathogen effector recognition to cellcompartment-specificimmuneresponsesKatharina E. Heidrich1, Lennart Wirthmueller2, Celine Tasset3,CecilePouzet4,LaurentDeslandes3,JaneE.Parker11MaxPlanckInstituteforPlantBreedingResearch,DepartmentofPlantMicrobeInteractions,2JohnInnesCentre,NorwichResearchPark,NorwichNR47UH,UK,3CNRS,LaboratoiredesInteractionsPlantes-Microorganismes(LIPM),UMR2594,F-31326Castanet-Tolosan, France, 4Federation de Recherche 3450, PlateformeImagerieTRI,PoledeBiotechnologieVegetale,F-31326Castanet-Tolosan,[email protected] have evolved a sophisticated innate immune system toresist pathogenattack.Detectionofpathogeneffectorproteins ismediated by intracellular nucleotide-binding leucine-rich-repeat(NB-LRR) receptors. The TIR-NB-LRR receptor class requiresbasal resistance regulator EDS1 to activate defense responses.We have investigatedmechanisms linking receptor activation todownstream defense reprogramming.We show thatArabidopsisEDS1 connects recognition of Pseudomonas syringae type IIIeffector AvrRps4 by TIR-NB-LRR receptor RPS4 to distinctdefenseoutputs.RPS4residesinacomplexwithEDS1intobacconucleiaftertransientcoexpressionandinArabidopsisleafextractsafter resistance activation, suggesting that EDS1 molecularlylinksRPS4activationtodownstreampathways.WealsofindthatAvrRps4 interacts with EDS1 in tobacco nuclei indicating thatEDS1mightbethevirulencetargetofAvrRps4.WedeterminedinwhichsubcellularcompartmentAvrRps4inducesdefenseresponsesbyforcingAvrRps4localizationtothehostcytoplasmornucleus.Strikingly,nuclear localizationofAvrRps4issufficient to locallyrestrictbacterialgrowthwhereashostcelldeathandtranscriptionaldefense amplification leading to systemic resistance requirenucleo-cytoplasmic AvrRps4. We propose that RPS4 engagesEDS1 to interceptAvrRps4 and transduce receptor activation toqualitativelyandspatiallydifferent immuneoutputs.Wearenowexploringwhether EDS1 is the virulence target ofAvrRps4 andwhetherAvrRps4 modifies EDS1 to compromise TIR-NB-LRR-mediated resistance. We are also determining whether EDS1 isguarded byRPS4 or recruited to the activatedRPS4 receptor totriggerdownstreamdefense.

CS12-4Arabidopsis Non-race specific Resistance-1 Disease (NDR1) isrequiredforrobustactivationofdroughttoleranceandPAMPtriggeredimmunityviaanabscisicaciddependentpathwayPatriciaFerreiraSantos1,CalebKnepper1,LieweiYan1,ElizabethA.Savory1,BradDay11DeptofPlantPathology,MichiganStateUniversity,EastLansing,MI,USApsantos@msu.eduMuchoftheprogressmadetowardstheidentificationofaspecificcellularroleforArabidopsis(Arabidopsis thaliana)NON-RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1) has focused oneffector-triggered immunity (ETI) signaling. Previous work inour laboratory provided the first mechanistic understanding ofthe global physiological role ofNDR1 in plasmamembrane-cellwalladhesionanditsimpactondiseaseresistancetoPseudomonas syringae. With distinct physiological and effector-dependentsignaling roles for NDR1 established, our present study focusesonthelinkbetweenNDR1andstomataresponse,viaanabscisicacid(ABA)dependentpathwaythatultimatelyleadstoadroughtstresstoleranceandPAMPtriggeredimmunity(PTI).Weanalyzedthe effects of drought stress on the relativewater content (RWC%) of leaves over time, as well as the gene expression of keyregulatorsintheABAmetabolicpathway.Furthermore,aroleforNDR1intheregulationofstomatalclosureinresponsetoexternalABAwasfound.Seedgerminationwasalsoaffectedbydifferentconcentrationsofthishormone.Additionally,itwasalsoobserved

Page 39: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession12-Evolutionofsusceptibilityandresistance

37

Concurrent 12

stomatalclosureaftertreatmentwiththePAMPflg22.Furthermore,the loss of NDR1 alters the delivery of theP. syringae effectorAvrRpt2 to the cell interior by the type-three secretion system.Thesefindings,togetherwithpreviousresults,haveallowedustohypothesize that NDR1 fulfills a physiological and/or signalingrole,notonlyinETI,butalsointheresponsetodroughtstressandpathogenentry.Intotal,ourdatasuggestNDR1mediatescross-talkbetweendiseaseresistanceandabioticstresssignaling.

CS12-5TimingofinnateimmunitybythecircadianclockinArabidopsisChong Zhang1, Qiguang Xie2, RyanAnderson3, Gina Ng1, NickSeitz1, C. RobertsonMcClung2, JohnM.McDowell3,DongdongKong4,JuneKwak4,HuaLu11Department of Biological Science, University of MarylandBaltimoreCounty,Baltimore,MD,USA,2DepartmentofBiologicalSciences, Dartmouth College, Hanover, New Hampshire 03755,3Department of Plant Pathology, Physiology, andWeed Science,Virginia Tech, Blacksburg, VA 24061-0323, USA., 4DepartmentofCellBiologyandMolecularGenetics,UniversityofMaryland,CollegePark,MD20742,[email protected] timing of effective defense responses against invadingpathogensiscrucialforplantfitness.Thecircadianclockintegratestemporal informationwithenvironmental cues, suchas light andtemperature,inregulatingplantgrowthanddevelopment.Recently,the circadian clock has been shown to affect plant responses tobiotic cues. To further examine a role of the circadian clock inregulatingplantimmunity,wetesteddiseaseresistanceinmutantsdisruptedinCIRCADIANANDCLOCKASSOCIATED1(CCA1)and LATE ELONGATED HYPOCOTYL (LHY), two criticalcomponents of the central oscillator synergistically contributingto the circadian clock. We found that cca1 and lhy mutantssynergistically affect basal and resistance gene-mediated defenseagainst the bacterial pathogen Pseudomonas syringae and theoomycete pathogen Hyaloperonospora arabidopsidis (Hpa).Arrhythmicity of the circadian clock caused by overexpressionof CCA1 or LHY resulted in severe disease susceptibility toP. syringae.We identified a downstream target ofCCA1andLHY,GLYCINE-RICHRNA-BINDINGPROTEIN(GRP7),previouslyshowntoinfluenceplantdefenseandstomatalactivityandasakeyconstituentofa slaveoscillator regulatedby thecircadianclock.WeshowthatthedefenseroleofCCA1,LHY,andGRP7againstP. syringaeisatleastpartiallythroughcircadiancontrolofstomatalaperture.Furthermore,wefounddefenseactivationbyP. syringaeinfectionandtreatmentwithflg22(anelicitorofbasaldefense)canalsofeedback-regulateclockactivity.Togetherthesedatastronglysupportaroleofthecircadianclockindefensecontrolandrevealreciprocal crosstalkbetween thecircadianclockandplant innateimmunity.

CS12-6Repeated evolution of genetic incompatibilities involving asingle NB-LRR gene cluster: lessons from hybrid necrosisstudiesinArabidopsis thalianaEunyoung Chae1, Kirsten Bomblies1, Sang-Tae Kim1, DaryaKarelina1, Stephan Ossowski1, Beth Rowan1, Monika Demar1,ChristaLanz1,DetlefWeigel11Department of Molecular Biology, Max Planck Institute forDevelopmentalBiology,Tuebingen,[email protected] necrosis in plants, a commonly observed phenomenonin crossesofdivergent lineages, is characterizedbyautoimmuneresponses that can potentially generate gene flow barriers. WeexploitF1hybridnecrosis(incompatibility)inArabidopsis thalianaas a tool to study fitness effects of immune system diversity inplant population. Our studies identified a single cluster of NB-LRR encoding genes,DANGEROUS MIX2 (DM2)/RPP1, as thecauseformultiple,independentlyevolvedgeneticincompatibilities

inA. thaliana.TheDM2d gene in theUk-1 strain,which likelyarosethroughwithin-clusterduplicationevents,interactswiththeUk-3alleleoftheunlinkedNB-LRRlocusDM1/SSI4.TheBla-1alleleofDM2h,which is foundinararesyntenicposition in thecluster (with clear orthologs inmany accessions), interacts withtheHh-0 allele ofDM3, which encodes a peptidase.The causalchangesintheDM1andDM2hgenesareintheC-termini,whichincludethehighlyvariableLRRdomains.ProfilingoftheDM1andDM2clustersusingshortreadsfromnumerousaccessionsprovideda nuanced picture of the structural complexity of these genomicregions.Althoughspecificincompatibilityallelesarerare,thereisextendedhaplotypesharingbetweenaccessionswiththenecrosis-inducing alleles, suggestive of selective pressures that maintainthesealleles.Ourresultssuggestthatbothfunctionalandstructuralfeaturesinteracttomakespecificgenomicregions,suchastheDM2cluster,particularlylikelytogenerategeneticincompatibilities.Inaddition,ourstudiesrevealnewmechanisticdetailsofhowimmunereceptorsareactivatedbyidentifyingnewNB-LRRinteractors.

Page 40: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession13-Pathogenicbacteria/phytoplasma

38

Conc

urre

nt 1

3

CS13-1MolecularaspectsofdefenseprimingUweConrath11Department of Plant Physiology, RWTH Aachen University,Aachen,[email protected] can be primed for more rapid and robust activation ofdefense tobioticor abiotic stress.Priming followsperceptionofmolecularpatternsofmicrobesorplants,recognitionofpathogen-derivedeffectorsorcolonizationbybeneficialmicrobes.Howeverthe process can also be induced by treatmentwith some naturalor synthetic compoundsandwounding.Theprimedmobilizationof defense is often associated with development of immunityand stress tolerance.Although the phenomenon has been knownfordecades,themolecularbasisofprimingispoorlyunderstood.I will summarize recent progress made in unraveling molecularaspects of defense priming that is the accumulation of dormantmitogen-activated protein kinases and chromatin modificationsin the promoters of defense genes. I will also discuss thepotential of plant defense priming for application in the field.References:Beckers&Conrath (2007)CurrOpinPlantBiol10:425-431;Beckersetal.(2009)PlantCell21:944-953;Jaskiewiczetal.(2011)EMBOrep12:50-55;Conrath(2011)TrendsPlantSci16:524-531.

CS13-2Effectormodulationof theArabidopsis actin cytoskeletonbyPseudomonas syringaeBradDay1,MasakiShimono1,KatiePorter1,AllisonCreason2,JeffChang21MichiganStateUniversity,2OregonStateUniversity,DepartmentofBotanyandPlantPathology,Corvallis,[email protected] plant actin cytoskeleton plays a critical role in a variety ofcellular processes, including development, cell organizationand innate immune signaling. Recent work in our laboratoryhas identified a role for the actin cytoskeleton in defense of thephytopathogenic bacterium Pseudomonas syringae. By firstscreeningapanelofactinbindingprotein(ABP)mutantlinesfromArabidopsis, we mapped the signaling network(s) required forresistancemediatedthroughpolymerizationanddepolymerizationofG-andF-actinfilaments,respectively.Thisworkhasidentifiedadirectlinkbetweenpathogenperception,actindepolymerizationandtheregulationoftranscriptionofanumberofNB-LRRresistancegenes. In total,wehave identifieda requirementofnuclear-actindynamics in the control of R-gene expression and function. Tofurtherthiswork,andtoelucidatethespecificsignalingofresistanceandvirulence throughmodulationof thehost actin cytoskeleton,we have utilized a high-throughput confocal microscopy-basedscreenfortheidentificationofeffectortargetingoftheArabidopsisactincytoskeleton.Usingacombinationofcellbiology,geneticandbiochemicalanalyses,wehavescreenedapanelofABPmutantsfortargetingofthecytoskeletonbyP. syringae.Inbrief,wehaveidentifiedP. syringae DC3000 effector proteins that specificallymodify the host actin cytoskeleton 24 hours after infection.Ourdatasuggestionastrongcorrelationbetweenhostactinmodificationinplant-pathogeninteractionsandthatpreviouslycharacterizedinmammalian-pathogeninteractions.

CS13-3Dynamics and biological significance of RNA-directed DNAmethylationinplantimmunityAgnes Yu1, Gersende Lepere1, Florence Jay2, Laure Bapaume1,JingyuWang1,YuWang3,Anne-LaureAbraham1,OlivierVoinnet2,LionelNavarro11Institut de Biologie de L Ecole Normale Superieure, 2SwissFederal Institute of Technology Zurich Department of Biology

ZurichSwitzerland.,3DepartmentofPlantScienceCenterforLifeandFoodSciencesWeihenstephanTechnicalUniversityMunichayu@ens.frInhighereukaryotes, thevastmajorityof thegenomeappears tobetranscribed,leadingtoanextraordinarydiversityofnon-codingRNAs (ncRNAs). Whereas the functional significance of thesencRNAs ismostlyunknown, increasingevidencesuggestsa roleforthesemoleculesinguidingchromatinmodifications.Inplants,a large portion of ncRNAs is processed by the RNA silencingmachinerytoproducesiRNAsthatguidecytosineDNAmethylationof repeated sequences such as transposable elements leading totheir transcriptional silencing.Thisphenomenon is referred toasRNA-directedDNAmethylation (RdDM) and contributes to thetranscriptional repression of some developmentally- as well asabiotic stress- regulatedgenes thatcarry repeats in theirvicinity.WhereasourknowledgeonthemechanismsofRdDMhasrapidlyincreasedoverthepastfewyears,littleisknownonthedynamicsas well as biological roles of this pathway in physiological andecological relevant processes such as plant disease resistance.Here, we provide evidence that RdDM negatively regulates theArabidopsis innate immune response. Accordingly, we haveidentified immune-response genes that are controlled by RdDMand thatcarryrepeats,andassociatedsiRNAs, in theirvicinity. IwillpresentthedynamicsofsiRNA-directedepigeneticchangesatthoselociandreportthebiologicalsignificanceofsuchregulatoryprocessinthecontextofantibacterialdefense.Iwillalsopresentthe extent to which bacterial effectors have evolved to interferewiththisepigeneticpathwaytoenabledisease.

CS13-4Lack of susceptibility factors: a novel breeding strategy fornon-hostlikeresistance?YulingBai1,RobinHuibers1,AnneliesE.H.M.Loonen1,DongliGao1,GuidovandenAckerveken2,RichardG.F.Visser11WageningenUniversity,2UtrechtUniversity,theNetherlandsbai.yuling@wur.nlPlantarecontinuouslyattackedbyabroaddiversityofpathogens.Breeding for resistance to pathogens has been focused onintroducing resistance genes that encode proteins to recognizespecific pathogen effector proteins leading to host resistance.Thistypeofhostresistanceisfrequentlybrokenasnewpathogenraces constantly appear. Another type of resistance is non-hostresistance, which describes the immunity of an entire plantspecies against all genetic variants of a pathogen species. Non-host resistance is yet unexploited in plant breeding. In order toovercome non-host resistance pathogens have to suppress plantinnate immunity, forwhichpathogen effectors and their targetedhost-factorsplayacentralrole.Theabsenceofcertainhost-factorsencoded by plant susceptibility genes (S-genes) enable plants toescapethedefence-suppressionandthustomaintaintheirnon-hoststatus.InArabidopsis,geneticdissectionofdiseasesusceptibilityto powdery and downymildews has identifiedmultiple S-geneswhoseimpairmentresultsindiseaseresistanceinabsenceofseverefitnesscosts.AlthoughseveraloftheseS-geneshavebeenclonedand characterized inmore detail it is unknown towhich degreetheirfunctionindiseasesusceptibilityisconservedamongdifferentplant species.Hereweshow thatArabidopsisPMR4andDMR1encoding a callose synthase and homoserine kinase respectivelyhavefunctionalorthologsintomato.SilencingofbothgenesusingRNAi resulted in resistance to tomato powderymildew,Oidium neolycopersici. Severe fitness costs were found associated withSlDMR1butnotwithSlPMR4silencing,indicatingthelatterhaspotentialindiseaseresistancetomatobreeding.

Page 41: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession13-Pathogenicbacteria/phytoplasma

39

Concurrent 13

CS13-5MolecularmechanismsforgenerationofNOandROSinplantimmunityHirofumiYoshioka11GraduateSchoolofBioagriculturalSciences,NagoyaUniversity,Nagoya,Japanhyoshiok@agr.nagoya-u.ac.jpRapidproductionofreactiveoxygenspecies(ROS)andnitricoxide(NO) has been implicated in plant immunity.A potato calcium-dependentproteinkinase5(StCDPK5)activatesNADPHoxidasesStRBOHA to D by direct phosphorylation of their N-terminalregions,andheterologousexpressionofStCDPK5andStRBOHsinNicotiana benthamiana results in ROS burst. The transgenicpotatoplantsthatcarryaconstitutivelyactiveStCDPK5drivenbyapathogen-induciblepromoterofthepotatoshowedhighresistanceto late blight pathogen Phytophthora infestans accompanied byHR-like cell death andH2O2 accumulation in the attacked cells.Incontrast,theseplantsshowedhighsusceptibilitytoearlyblightnecrotrophicpathogenAlternaria solani,suggestingthatROSburstconfershighresistancetonear-obligatehemibiotrophicpathogenP. infestans,buthighsusceptibility tonecrotrophicpathogen.Therearemanyreportsaboutcomplementary,synergisticandoverlappingfunctionsofNOandROSinthedefenseresponses.Twomitogen-activated protein kinase (MAPK) cascades, MEK2-SIPK andcytokinesis-related MEK1-NTF6, are involved in the inductionof NbRBOHB at the transcriptional level in N. benthamiana.On the other hand, NO burst is regulated by the MEK2-SIPKcascade.Conditional activationofSIPK inpotatoplants inducesROSandNObursts,andconfersresistance tobothnear-obligatehemibiotrophic andnecrotrophicpathogens, indicating theplantsmayhaveobtainedduringevolutionthesignalingpathwaywhichregulatesbothNOandROSproductiontoadapttowide-spectrumpathogens.

CS13-6PlantimmuNOlogy:CrackingtheredoxcodeGaryJ.Loake11IMPS,UniversityofEdinburgh,[email protected] in redox status are a conspicuous feature of immuneresponsesinavarietyofeukaryotes,buttheassociatedsignallingmechanismsarenotwellunderstood.Inplants,attemptedmicrobialinfection triggers the rapid synthesis of nitric oxide (NO) and aparallel accumulation of reactive oxygen intermediates (ROIs),the latter of which is generated by NADPH oxidases related tothose responsible for the pathogen-activated respiratory burst inphagocytes.BothNOandROIshavebeenimplicatedinimmunesignallingand thecontrolof thehypersensitive response (HR),aprogrammedexecutionofplantcellsatsitesofattemptedinfection.Our findings suggest that S-nitrosylation, the addition of anNOmoiety to a protein cysteine thiol to form an S-nitrosothiol, is akey regulator of the plant defence response, controlling ROIsynthesis, the accumulation of the immune activator, salicylicacid(SA)andcognateSAsignalling.Weareemployingavarietyof complementary approaches, including: forward and reversegenetics, Solexa-based gene expression profiling and novelproteomics strategies, to uncover the molecular landscape ofS-nitrosylationduringplantimmunefunction.

Page 42: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession14-Plantresponse

40

Conc

urre

nt 1

4

CS14-1Harnessing TAL effector-DNA targeting to understand andpreventplantdiseasescausedbyXanthomonasAdam J. Bogdanove1,2, R. Andres Cernadas1,2, Erin L. Doyle2,AaronW.Hummel2,ClariceL.Schmidt2,LiWang1,21DepartmentofPlantPathologyandPlant-MicrobeBiology,CornellUniversity, 2Department of Plant Pathology and Microbiology,IowaStateUniversity,Ames,[email protected] activator-like (TAL) effectors are type III-secreted,DNA binding proteins used by Xanthomonas to activate plantgenes thatpromote infection.SomeTALeffectorsactivategenesthatconferresistanceassociatedwithhostcelldeath.Theproteinscontain polymorphic repeats that assemble into a superhelix totrack theDNAmajorgroove andmakebase specific contacts.ATALeffector-DNAbindingcodethatlinksindividualrepeattypesto individualbases,with somedegeneracy, enablespredictionorsynthesisofTALeffectorbindingsitesandcustomizationofTALeffectorsforbindingnewDNAsequences,acceleratingdiscoveryand enabling applications from targeted regulation to genomeediting.Usingthecodeandtranscriptprofilingdata,weidentifiedmultiplecandidatetargetsinriceforTALeffectorsofX. oryzaepv.oryzicola,whichcausesbacterialleafstreakofrice,andX. oryzaepv.oryzae,whichcausesricebacterialblight,andexperimentallyvalidatedroughlyhalfthatwetestedfurther.UsingTALeffector-basedtechnologies,wediscoveredamongthesethefirstknowngenefor bacterial leaf streak susceptibility.Also, comparing validatedand non-validated candidates yielded characteristics useful forbetterpredictionanddesign.Usingthisinformation,weengineeredabacterialblightresistancegenetobeactivatedbymultipleoryzaeandoryzicolaTALeffectors.Asastabletransgene,thisconstructprovided resistanceagainstdiversestrainsofbothpathovars.Weobserved however, that the TAL effector binding sites containsequencesapparentlyunderselectioninricepromoters,suggestingendogenous regulatory roles thatmight activate cell death undersomeconditions,indicatinganeedforcautionwiththisapproach.

CS14-2Phytoplasmaeffectorsmodulateplantdevelopmentandplant-insectinteractionsSaskia A. Hogenhout1, Akiko Sugio1, Allyson M. MacLean1,HeatherN.Kingdom1,VictoriaM.Grieve11DepartmentofCellandDevelopmentalBiology,TheJohnInnesCentre,Norwich,[email protected] thaliana plants infectedwith the bacterial pathogenAster Yellows phytoplasma strain Witches’ Broom (AY-WB)exhibitwitches’ broom and leafy flower symptoms and promotereproductionratesoftheAY-WBinsectvector(theasterleafhopperMacrosteles quadrilineatus) by 60% compared to non-infectedArabidopsis plants. We previously sequenced the genome ofAY-WB and identified 56 secretedAY-WB proteins (SAPs) thatare candidate effector proteins. To investigate which effectorsmodulateplantdevelopmentandleafhopperfitness,wegeneratedstable transgenic Arabidopsis lines for these effectors. SAP11Arabidopsis plants show crinkled leaves and increase in stemnumbersresemblingthewitches’broomphenotype,whileSAP54plantsexhibitleafyflowersandSAP05plantslongslenderleavesandearlyflowering.WefoundthatSAP11bindsanddestabilizesArabidopsisCINCINNATA (CIN)-relatedTCPsthatareconservedplant transcription factors involved in plant development andpositively regulate lipoxygenase (LOX) genes required forjasmonate (JA) synthesis. LOX2 expression and JA productionare downregulated in the SAP11 plants, and M. quadrilineatusproducessignificantlymoreprogenyontheseplantsandonLOX2-silenced and jar1 mutant Arabidopsis. Thus, SAP11 suppressesthe plant defence response to theAY-WB leafhopper vector bydestabilizingTCPsleadingtoanincreaseininsectvectorprogeny.AsinnatureAY-WBdependsontheseinsectsfortransmissionto

otherplants,weproposethatSAP11isavividexampleofagenethathasanextendedphenotypebeyond theorganisminwhich itresides, a conceptput forward inRichardDawkins’ classicbook“Theextendedphenotype-Thelongreachofthegene”.

CS14-3The trimeric autotransporter adhesin XadA is localized inoutermembranevesiclesandmediatesattachmenttosurfacesandsuppresscell-cellaggregationinXylella fastidiosaMichaelIonescu1,AlineM.daSilva1,2,CleliaBaccari1,AlessandraA. de Souza3, Nabil Killiny4, Rodrigo P. P.Almeida4, Steve E.Lindow1

1Department of Plant and Microbial Biology, University ofCalifornia, Berkeley, USA, 2Department of Biochemistry,UniversidadedeSaoPaulo,SaoPaulo,Brazil,3IAC-CentroAPTACitros Sylvio Moreira, Cordeiropolis, Brazil, 4Department ofEnvironmental Science, Policy, and Management, University ofCalifornia,Berkeley,[email protected] virulence of Xylella fastidiosa to grapevines requiresmigrationandspreadwithinthexylem,itstransmissionbyxylemsap-feedinginsectsisfosteredbyexpressionofattachmentfactors.XadAisatrimericautotransporteradhesinthatissecretedintotheextracellularmilieuandwhoseexpressionishighin-planta.Usingdeconvolutionmicroscopy to assess immunolocalizationwe findthatXadAislocalizedtoboththeoutermembrane(OM)andoutermembranevesicles(OMVs).WhileXadAexpressionisenhancedbyDSF-mediatedquorumsensingandcyclicdi-GMPsignalingitssecretionissuppressedinthepresenceofDSF.DeletionofxadAimpairedinsecttransmissionbutdidnotaffectbacterialvirulencetograpevine.WhileheterologousexpressionofxadAinEscherichia coliincreasedtheattachmentofcellstosurfaces,itdidnotincreasecell-cell aggregation.A X. fastidiosa xadA deletion mutant wasmoreadhesivetosurfacesandmoreself-aggregativethanthewildtypestrainapparentlyduetocompensatoryincreasesinabundanceof other adhesins in the mutant. Thus, although it attaches tosurfaces,XadAfunctionalsopreventsself-aggregation.SinceitcanbelocalizedtoboththeOMandOMVswehypothesizethatunderconditions of high DSF levels XadA is retained, enhancing theadhesivenessofcells,therebyfacilitatingtransmissionbyinsects,while at low DSF levels XadA-containing OMVs are releasedwheretheyserveasvirulencefactorscoatingxylemvesselswallsand preventing attachment and aggregation, thereby promotingmigrationandcolonizationofthehostplant.

CS14-4Towards a life history model of Pseudomonas syringae pv.tomatothatintegratesadaptationstohabitatsbeyondtheplantapoplastBorisA.Vinatzer1,RongmanCai1,ChristopherR.Clarke1,CarolineL.Monteil2,DavidJ.Studholme3,CindyE.Morris21PPWS Department, Virginia Tech, Blacksburg, Virginia, USA,2INRACentredeRechercheenPACA,PlantPathologyResearchUnit,Montfavet,France,3UniversityofExeter,Exeter,Devon,UKvinatzer@vt.eduThemostintensivelystudiedpartofthelifehistoryofPseudomonas syringae pv. tomato (Pto) is its behavior inside the tomato leafapoplastwhilecausingbacterialspeck.Little isknownabout thelife of Pto before reaching the apoplast and its life after havingcauseddisease.SamplingofP. syringaefromprecipitation,snowpack, leaf litter, and surface water in non-agricultural areas ofFranceandNewZealandhasrevealedtheexistenceofP. syringaestrainsthatareasaggressiveontomatoasPtostrainsisolatedfromdiseased tomatoes. These strains are genetically very similar toPto; in particular, strains indistinguishable from strain DC3000have been found in a creek inNewZealand.We report genetic,genomic,andphenotypiccomparisonofthesestrainswithtypicalPtostrainstoinfertheevolutionaryhistoryofPtoandthepossibleconnectionofPto lifehistorywith thewater cycle.Additionally,

Page 43: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession14-Plantresponse

41

Concurrent 14

genomic comparison among Pto strains revealed mutational hotspots in genes coding for methyl-accepting chemotaxis proteinssuggestinganimportantroleofchemotaxisinthelifehistoryofPto.Weshowexperimentalevidenceoftheimportanceofchemotaxisfor leaf invasion and for life in the apoplast.We finally reporton preliminary results on the life of Pto after its departure fromdiseasedplantsandlayouthowtodevelopandtestanintegrativemodelofthelifehistoryofPto.

CS14-5Systematic dissection of theAgrobacterium typeVI secretionsystem reveals machinery and secreted components forsubcomplexformationJer-ShengLin1,Lay-SunMa1,2,3,Erh-MinLai1,2,31InstituteofPlantandMicrobialBiology,AcademiaSinica,Taipei,Taiwan,2MolecularandBiologicalAgriculturalSciencesProgram,Taiwan International Graduate Program, National Chung-HsingUniversity and Academia Sinica, Taipei, Taiwan., 3GraduateInstitute of Biotechnology, National Chung-Hsing University,Taichung,[email protected] type VI secretion system (T6SS) is widely distributed inpathogenic Proteobacteria. The evolutionary and structuralanalysisofT6SSrevealsitsresemblanceoftheT4bacteriophagetail, inwhichanouter sheath structurecontractsan internal tubefor injectingnucleic acid into bacterial cells.However, how thisphage tail-likeT6SSstructure isassembled invivoandexecutedforexoproteinoreffectorsecretionremainslargelyunknown.Here,we used a systematic approach to identifyT6SSmachinery andsecreted components and investigate the interaction relationshipamongtheputativesheathandtubecomponentsofAgrobacterium tumefaciens.Weshowedthatatotalof14T6SScomponentsplayessential roles for the secretionof theT6SShallmarkexoproteinHcp. In addition, we discovered a novelAgrobacterium-specificT6SS exoproteinAtu4347 that is dispensable for Hcp secretion.Interestingly, the putative tube components Hcp and VgrG aswellastheAtu4347exoproteinarelocalizedonbacterialsurface.Atu4342(TssB)andAtu4341(TssC41)interactandstabilizeeachother,suggestingtheyarefunctionalorthologsofTssB(VipA)andTssC(VipB),thesheathcomponentsidentifiedinVibrio cholerae.Importantly,TssBinteractsdirectlywiththethreeexoproteins, inwhichHcpalso interactsdirectlywithVgrG-1byco-purificationfrom Escherichia coli. Further co-immunoprecipitation andpulldownassaysrevealedthesesubcomplex(es)inA. tumefaciensandtherebyinsupportofT6SSfunctioningasacontractilephagetail-likestructure.

CS14-6Isolation of Burkholderia glumae resistance genes from riceusingwholegenomeassociationmappingShiveta Sharma1, Shailendra Sharma1, Hiromasa Saitoh1, HirokiTakagi1,AkiraAbe1,MulunehTamiruOli1,RymFekihEpLaribi1,RyoheiTerauchi11Rice Genetics and Genomics, Iwate Biotechnology Institute,Kitakami,Iwate,[email protected] glumae, formerly known asPseudomonas glumae,wasfirstdescribedinJapanasacausalagentofgrainrotinrice.In last few years, this pathogen has been reported from majorrice growing regions of theworld.A large-scale study has beeninitiated to isolate thegenegoverning resistance toBurkholderia glumae in rice by utilizing naturally available genetic variationofdiverse ricecultivars.Thisongoing researchwill enableus tounderstandindepththegenetic/molecularmechanisminvolvedinB. glumaediseaseresistanceandwillhelptominimizethisdisease.RiceNAMpopulationhasbeengeneratedatIwateBiotechnologyResearch Center using the cultivar Hitomebore as the commonparentcrossedwith22worldOryzaaccessionsrepresentingwildgeneticdiversity.ScreeningofNAMpopulationhasbeeninitiated

aftersuccessfulselectionoftheparentcultivarsshowingresistanceor susceptibility/hyper susceptibility for B. glumae infection.Segregationtestarebeingperformedundergreenhouseconditions.Quantitative trait loci (QTL) analysis and whole genomeassociationmappingwillbeconductedemployinghigh-throughputgenotypingofvalidatedSNPsintheselectedmappingpopulationandphenotypesoobserved.BesidesusingNAMpopulation,EMS(EthylMethanesulfonate)generatedmutant linesofanelite ricecultivar Hitomeborewill also be screened to identify novel ricegenesinvolvedingrainrot/seedlingblightdiseaseresistance.

Page 44: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession15-Systemsbiology

42

Conc

urre

nt 1

5

CS15-1Regulation of innate immunity in barley-powdery mildewinteractionsRogerWise1,PriyankaSurana2,GregFuerst1,DanNettleton3,LinWang4,TomBrutnell41Crop and Insect Genetics, Genomics, and Informatics ResearchUnit, U.S. Department of Agriculture-Agricultural ResearchService, 2Bioinformatics and Computational Biology GraduateProgram,IowaStateUniversity,Ames,Iowa50011,3Departmentof Statistics, Iowa State University,Ames, Iowa 50011, 4BoyceThompsonInstituteforPlantResearch,CornellUniversity,Ithaca,NY14853rpwise@iastate.eduGenesencodingearlysignalingeventsinpathogendefenseoftenareidentifiedonlybytheirphenotype.Suchgenesinvolvedinbarley-powderymildewinteractionsincludeMla,specifyingrace-specificresistance;Rar1 (Required for Mla12-specified resistance1), andRom1 (Restoration of Mla-specified resistance1). The HSP90-SGT1-RAR1complexappearstofunctionaschaperoneinMLA-specified resistance, however, much remains to be discoveredregarding global signaling underlying plant immunity. Geneticanalyses of fast-neutronmutants derived fromCI 16151 (Mla6)uncovered a novel locus, designated Rar3 (Required for Mla6-specified resistance3). Rar3 segregates independent ofMla6 andRar1,andrar3mutantsaresusceptibletoBlumeria graminisf.sp.hordei (Bgh) isolate5874(AVRa6),whereas,wild-typeprogenitorplants are resistant. Seven-dayold seedlings (PO:0007094) fromthe rar3 mutant and wild-type progenitor were inoculated withBgh 5874, harvested at 16 and 32 HAI, and subjected to bothBarley1 GeneChip and RNA-Seq analyses.A randomized blockdesign with two independent biological replications was usedto obtain expression measurements. The resulting data sets arebeing used for two purposes; 1) transcript-based isolation of thegene(s)responsiblefortherar3phenotype,and2)anassessmentofrar3-mediatedtranscriptomereprogramminginbothcompatibleand incompatible interactions in response to challenge with thebiotrophicpathogen,Bgh5874.WhereasRar1affectstranscriptionofonlyafewgenes;Rar3appearstoinfluencethousands,notablyingenescontrollingATPbinding,catalyticactivity, transcription,andphosphorylation;possiblymembraneboundorinthenucleus.ResearchsupportedinpartbyNSFPlantGenomegrant0922746.

CS15-2PropertiesandstructureoftheplantimmunesignalingnetworkFumiakiKatagiri1,KenichiTsuda1,2,YungilKim3,RachelHillmer1,DaisukeIgarashi1,4,ChadMyers31Department of Plant Biology, Microbial and Plant GenomicsInstitute, University of Minnesota, MN, USA, 2Departmentof Plant Microbe Interactions, Max Planck Institute for PlantBreedingResearch,Cologne,Germany,3DepartmentofComputerScienceandEngineering,MicrobialandPlantGenomicsInstitute,University of Minnesota, MN, USA, 4Institute for Innovation,AjinomotoCo.,Inc.,Kawasaki,Japankatagiri@umn.eduTheplantimmunesignalingnetworkisdifferentfromotherplantsignaling networks because pathogens not only initiate signalingeventsbuthavealsobeenrapidlyevolvingtointerferewithplantsignaling. Therefore, the plant immune signaling network musthave properties that allow it to withstand perturbations from awidevarietyofpathogenswithoutheavilyrelyingonevolutionaryadaptation.Unnecessaryimmuneresponsescarrynegativeimpactsonplantfitness, furtherconstrainingpossiblenetworkproperties.Pattern-triggeredimmunity(PTI)andeffector-triggeredimmunity(ETI) are two well-defined modes of plant immunity. PTI isinitiatedbyrecognizingmolecularpatternscommonamongrelatedmicrobes, including pathogens and benign microbes. Pathogenswell-adapted to a host plant deliver effectors into the plant cellthatinterferewithPTIsignalingandnegatePTI.Plantsmayhavereceptorsthatrecognizesomeofthepathogeneffectorsandtrigger

ETI,resultinginimmunity.WedemonstratedthatatleastsomecasesofPTIandETIextensivelysharethesignalingmachineryandthatwhatdistinguishesPTIandETIisthewaythecommonsignalingnetworkoperates.ThereissynergyamongsignalingsectorsinPTIand compensation in ETI. The latter explains the robustness ofETI.InETIcompensationdoesnotresultfromsimpleredundancyamongsectorsbutlikelymediatedbyprevalentnegativeregulatoryrelationshipsbetweendifferentsignalingsectors.WearecurrentlymodelingsignalingdynamicsamongimmunesignalingsectorstounderstandhowthesamesignalingnetworkmachinerycanresultindifferentnetworkpropertiesobservedinPTIandETI.

CS15-3Rapid Nod factor-induced changes in the phosphoproteomeandthetranscriptomeofMedicago truncatulaMuthusubramanian Venkateshwaran1, Christopher M. Rose2,4,JeremyD.Volkening3, PaulA.Grimsrud3, JunkoMaeda1,DerekJ.Bailey2,4,KwanghyunPark4,5,MaegenHowes-Podoll1,MichaelS.Westphall2,4, Joshua J. Coon2,4,6,Michael R. Sussman3,4, Jean-MichelAne11DepartmentofAgronomy,UniversityofWisconsin,Madison,WI-53706,USA,2DepartmentofChemistry,UniversityofWisconsin,Madison, WI-53706, USA, 3Department of Biochemistry,University of Wisconsin, Madison, WI-53706, USA, 4GenomeCenterofWisconsin,UniversityofWisconsin,Madison,WI-53706,USA,5DepartmentofComputerSciences,UniversityofWisconsin,Madison, WI-53706, USA, 6Department of BiomolecularChemistry,UniversityofWisconsin,Madison,WI-53706,[email protected] of symbiotic associations between legumes andnitrogen-fixingrhizobiacommenceswiththeperception,bythehostplant,ofbacteriallipochitooligosaccharidesknownasNodfactors(NF). Recognition of NF by plasmamembrane receptor kinasestriggers rapid cellular and molecular responses that culminatewithinonehour,intheactivationofanuclearcalcium/calmodulin-dependentproteinkinasecalledDMI3,andtheregulationofgeneexpression.Despite great progress in genetic analyses, there hasbeen little large-scale biochemical characterization of the earlymoleculareventsinthissignalingcascade.Wereporthereextensivetandem mass spectrometric-based, untargeted measurements ofrapidNF-inducedchangesinthephosphorylationstatusof13,506phosphosites,in7,739proteinsfromMedicago truncatula.Inorderto place these changes within a biological context, untargetedquantitative phosphoproteomic and RNAmeasurements in wild-typeplantswerecomparedwiththoseobservedintwomutants,onedefectiveinNFperception(nfp)andonedefectiveinnuclearsignaltransductionevents (dmi3).Theseexperimentshave revealed theidentity of phosphosites within several hundred phosphorylatedproteinsthatappeartobespecificallyassociatedwithNF-signaling.In addition, these experiments have revealed an additional layerof complexity involving dmi3-mediated feedback mechanism,and cryptic NF-receptors, probably involving those required formycorrhizalsignalperception.

CS15-4Ceramide accumulation plays a key role in ArabidopsisprogrammedcelldeathFang-chengBi1,ZheLiu1,HuaLiang2,Xue-liXi1,FangCe1,JeanT.Greenberg2,NanYao11School of Life Sciences, Sun Yat-sen University, 2DepartmentofMolecularGenetics andCellBiology,University ofChicago,Chicago,[email protected] plants that lack ceramide kinase (ACD5) eventuallydisplayspontaneousprogrammedcelldeath (PCD)andaremoresusceptible to certain pathogens. Here, we report our study ofceramide accumulation kinetics, ultrastructural changes andgene expression inacd5 plants duringpathogen infection.Usingquantitativesphingolipidprofiling,ahighlevelofceramideswas

Page 45: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession15-Systemsbiology

43

Concurrent 15

found concomitant with the appearance of the spontaneous celldeathphenotypeinacd5mutants,suggestingthataccumulationofceramidesisimportantforPCD.Moreover,expressionofdefense-relatedPRgenes,ROSrelatedgenes,senescencemarkergenes,andautophagy-relatedgeneswerealsodetectedlateinthedevelopmentofacd5.WhenyoungerplantswereinfectedwithBotrytis cinerea(before spontaneous PCD), much higher levels of ceramideaccumulated in acd5 plants when compared with wild-typeplants.Our results indicate that ceramide accumulation is highlycorrelatedwiththespontaneouscelldeathphenotypeandincreasedsusceptibilitytoBotrytis cinereainacd5plants.ThepossibilityroleofceramideinplantPCDwillbediscussed.

CS15-5Two novel transcription factors regulating MAMP-elicitedphenylpropanoidmetabolisminArabidopsisWilliamR.Chezem1

1Molecular,CellularandDevelopmentalBiology,YaleUniversity,NewHaven,Connecticut,[email protected] has been known for some time that recognition of bacterialMAMPs such as flagellin by plants elicits the production ofphenylalanine-derived secondarymetabolites, knowncollectivelyas phenylpropanoids. This pathway, including the productionof the phenolic polymer lignin, is highly conserved throughoutplantevolution,anditsregulationisaprimaryconcernforbiofuelcrops. However, the transcriptional networks that coordinate thebiosyntheticgenesremainlargelyuncharacterized.Fromavailablemicroarray data in the model plant Arabidopsis thaliana, twotranscriptionfactorswereidentifiedtobehighlyupregulatedbythebacterialMAMPflagellin, oneof theMYBclass andoneof theERFclass.Hereweproposearolefor these transcriptionfactorsin regulation of defense-elicited phenylpropanoid metabolism.We demonstrate this through qPCR experiments on inducibleoverexpression lines, complemented with metabolic profilingvia HPLC-MS. TheMYB-type TF appears to regulate MAMP-inducible lignin biosynthesis, regulating transcription of thebiosyntheticgenes and exhibiting reducedMAMP-elicited ligninwhensilenced.TheERF-typeTFregulatesanthocyaninproductionand when silenced, plants are rendered susceptible to non-hostpathogens. Together, these two proteins control defense-relatedphenylpropanoid metabolism in a complementary manner. Theresults of these experiments should provide new insight to theregulationofthephenylpropanoidpathwayindefense.

CS15-6SignalinginsoybeandefenseresponsesStevenA.Whitham1,Jian-ZhongLiu1,ChunquanZhang1,MichelleA.Graham2,JohnH.Hill11Department of Plant Pathology & Microbiology, Iowa StateUniversity,Ames, Iowa, USA, 2Corn Insects and CropGeneticsResearchUnit,USDA-ARS,Ames,Iowa,USAswhitham@iastate.eduImprovedprotectionofcropplantsagainstpathogenswillrequiredetailedunderstandingofthegenesmediatingpathogenrecognitionanddefenseresponsesineachspecies.Insoybean,recentadvancesingenomic resourcesand theavailabilityof functionalgenomicstoolshaveenabledsystematiccharacterizationofdefensesignalingpathwaysthatbuilduponframeworksestablishedinmodelplantssuch as Arabidopsis. We have used gene expression profiles,knowledge from model systems, and sequence information ofknownresistanceloci togeneratea libraryofvirus-inducedgenesilencing(VIGS)constructsinaDNA-basedBean pod mottle virusvector.TheVIGSconstructshavebeentestedfortherolesoftheirtargetgenesinregulatingsoybeandefenses.Inascreentargetingsoybean MAP kinase (MAPK) cascades, silencing of soybeanMAPkinase4(GmMPK4)stronglyactivatedconstitutivedefenseresponses including cell death, increased salicylic acid levels,increased expression of defense-related genes, and decreased

expressionofgenesthatpromoteplantgrowth.GmMPK4-silencedplants weremore resistant to Soybean mosaic virus (SMV) anddownymildew thanvectorcontrolplantsconfirming its functionas a negative regulator of defenses to biotrophic pathogens. Inan independent screen, eight genes were identified as requiredforRsv1-mediated resistance to SMV.These genes includeRsv1candidate genes, GmEDR1, GmEDS1, GmHSP90, GmJAR1,GmPAD4andtwoWRKYtranscriptionfactors.Thisdirectreversefunctionalgenomicsapproachhasenabledustogaininsight intosignaling modules regulating soybean defenses against diversepathogens.

Page 46: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession16-RecognitionandsignalingII

44

Conc

urre

nt 1

6

CS16-1Involvement of a novel class of NB-LRR proteins in diseaseresistancePeterMoffett11Department of Biology, University of Sherbrooke, Sherbrooke,Quebec,[email protected] genomes encode large numbers of nucleotide-binding,leucine-richrepeat(NB-LRR)proteinswhichmakeupaonebranchoftheplantinnateimmunesystemthroughrecognitionofpathogen-encoded effector proteins. NB-LRR proteins fall into two broadclasses:thosewithaTollandinterleukin-1receptor(TIR)domainat theirN-terminus and thosewith a coiled-coil (CC) domain attheN-terminus.Althoughanumberofrecentstudieshaveyieldedinsights intohowNB-LRRrecognize their cognateeffectors, themoleculareventsthattakeplacepost-recognitionsignalingislessclear.WehaveidentifiedabasalcladeofNB-LRRproteinsthatisdistinguished from all others by havingCC domains resemblingtheArabidopsis thalianaRPW8protein,whichwerefertoasCCRdomains.WefindthatCCR-NB-LRR-encodinggenesarepresentinthegenomesofallhigherplantssurveyed,andthattheycomprisetwodistinctsubgroups:onetypifiedbytheNicotiana benthamianaN-requiredgene1(NRG1)proteinandtheotherbytheArabidopsisactivateddiseaseresistancegene1(ADR1)protein.Consistentwithpreviousreports,ourresultssuggestthattheseproteinsarerequireddownstreamofcanonicalNB-LRRproteinsandarethuslikelytoplayaroleinsignalingratherthanineffectorrecognition.Thisisfurther supportedby thefinding that, incontrast toCC-NB-LRRproteins,theCCRdomainsofbothNRG1-andADR1-likeproteinsaresufficientfortheinductionofdefenseresponses,includinganti-viralresponsesintheabsenceofcelldeath.

CS16-2ProteomicandgeneticanalysesofplantimmunecomplexesGittaCoaker11UniversityofCaliforniaDavisglcoaker@ucdavis.eduTheplantinnateimmunesystemiscapableofrecognizingdiversemicrobialpatternsandpathogeneffectorsthroughintracellularandsurface-localizedimmunereceptors.TheplantproteinRIN4playsakeyroleinimmunesignalinginArabidopsis,tomato,lettuce,andsoybean. The Arabidopsis RIN4 protein is targeted by multiplepathogen effectors and is guarded by the plant NLR immunereceptorsRPM1andRPS2.Furthermore,RIN4alsoplaysa roleinPAMPdefenseresponsesandpathogenentry throughstomatalapertures.We hypothesize that RIN4 acts as an adapter protein,bridginginteractionsbetweenimportantimmunesignalingproteins.ProteomicanalysesofRIN4proteincomplexconstituentsrevealsdynamicchangesinRIN4proteincomplexesinresponsetostimuluswith the bacterial pathogenPseudomonas syringae. The role ofRIN4phosphorylation in triggeringactivationof theArabidopsisimmune receptor RPM1 will be presented. The importance ofRIN4 phosphorylation during compatible interactions will alsobe presented. Collectively, results indicate that posttranslationalmodificationofRIN4inducesdynamicchangesinitsinteractionswithkeyimmunesignalingproteins.

CS16-3Danger sensing and signaling via an endogenous elicitor/receptorsysteminArabidopsisKohjiYamada1,AnnegretRoss1,NicoTintor1,MisuzuYamashita-Yamada1,YusukeSaijo11Department of Plant-Microbe Interactions,MaxPlanck InstituteforPlantBreedingResearch,Cologne,[email protected] ofmicrobe-associatedmolecular patterns (MAMPs)

viacell-surfacereceptorssuchasFLS2andEFRiscentraltoinitiateMAMP-triggered immunity (MTI) that restrictsmultiplicationofpotentially infectious microbes. However, how hosts distinguishpathogensfromnon-pathogensthatshareMAMPsremainslargelyunknown.WehypothesizethatcoincidentaldetectionofMAMPsand danger signals, e.g. disruption of host cell integrity and/orperturbationofMAMP-triggeredsignaling,actsasapotenttriggerfor immune response against pathogens. Our genetic work inArabidopsispointstoacriticalroleofsustained,ratherthaninitial,transcriptional reprogramming for effectiveMTI activation. Theendogenous elicitor/receptor Pep/PEPR pathway has emergedasatargetbutalsocomponentofsustainedMTIsignaling.Ithasbeendescribedthatrecognitionoftheelicitor-activeligandsPepsoccurs through the cell-surface receptors PEPR1 and PEPR2,despite the lackofanN-terminal signalpeptide for targeting theligandprecursors to thesecretorypathway.This implies thatPepligands released upon cellular damages activatePEPR signaling,but compelling evidence is missing for this model and for thesignificanceofthissysteminhostimmunity.Weprovidegenetic,biochemical,andgenomicsevidence that thePep/PEPRpathwayis tolerant to or rather enhanced under the conditions in whichMAMP-triggeredsignalingishampered.TogetherwithourfindingsforaroleofPEPRsinbasalandsystemicimmunityandintheco-activation of otherwise antagonizing salicylate- and jasmonate-mediatedimmunity,weproposethatthePep/PEPRpathwayservesasa fail-secure system inMTIand facilitates theengagementofdifferentimmunebranches.

CS16-4Lectin-mediated resistance as a novel and universal innateimmunitytowardplantvirusesYasuyuki Yamaji1, Kensaku Maejima1, Ken Komatsu1, TakuyaShiraishi1, Yukari Okano1, Misako Himeno1, Kyoko Sugawara1,Yutaro Neriya1, Nami Minato1, Chihiro Miura1, MasayoshiHashimoto1,ShigetouNamba11GraduateSchoolofAgriculturalandLifeSciences,TheUniversityofTokyo,Tokyo,[email protected] possess a multilayered defense response known as plantinnateimmunitytoinfectionbyawidevarietyofpathogens.Similartotheplantinnateimmunityagainstbacteria,fungi,andoomycetes,thedefensemachinerytoplantvirusescanbedividedintomultiplestages.ThemostextensivelystudiedplantinnateimmuneresponsestovirusesaretheRprotein-mediatedresistanceandRNAsilencing.Lectinsaresugar-bindingproteins,sotheyhavebeenregardedasself-nonself-discriminating molecules. Several kinds of lectinsfromanimalsaswellasplantsactuallyplayessentialrolesintheinnate immunity of animal cells. However, despite the fact thatlectinswerefirstidentifiedinplantsandthatplantshaveevolvedthe largest families of lectins with heterogenous structures andactivities, thedetailedphysiologicalrolesof lectins inplantcellsare unclear. Here we identified a novel lectin gene that confersresistancetopotexviruses,membersofthegenusPotexvirus,usingmap-basedpositionalcloninganalyses.Sincethelectinconferredresistance to potexviruses, we designated it JACALIN-TYPE LECTIN REQUIRED FOR POTEXVIRUS RESISTANCE 1(JAX1).JAX1-mediatedresistancewasindependentofRprotein-mediatedresistance,RNAsilencinganddefensiveplanthormonesignalingpathways. Through the molecular characterization of JAX1, werevealed that lectins showavariety in the levelsaswell as theirtarget viruses of resistance.Alongwith the distinct properties ofthe resistance from known resistance machineries, we suggestthegeneralityofadefiniteclassofplant innateimmunity, lectin-mediatedresistance(LMR).

Page 47: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession16-RecognitionandsignalingII

45

Concurrent 16

CS16-5Interplays between positive and negative transcriptionalregulatorsmouldNB-LRRproteintriggeredimmunityChengChang1,DeshuiYu1,JianJiao1,ShaojunJing1,PaulSchulze-Lefert2,Qian-HuaShen11Institute of Genetics and Developmental Biology, ChineseAcademy of Sciences, Beijing, China, 2Dept of Plant MicrobeInteractions, Max-Planck Institut Pflanzenzuchtungsforschung,Cologne,[email protected] of plant immune receptors usually leads to defensereprogramming that involves the coordination of cellulartranscriptionalmachinery.The barleyMLAgene is polymorphicinnatureandencodesNLRsofthecoiled-coil(CC)-NB-LRRtypethat each detects a cognate isolate-specific effector of the barleypowderymildew fungus.We showed thatMLAprotein functionin the nucleus to confer resistance against the powdery mildewfungus, and recently we reported that MLA induces cell deathsignalinginthecytoplasm,togetherourdatasuggestabifurcationofMLA-triggeredcelldeathanddiseaseresistancesignalinginacompartment-dependent manner.We recently identified a barleyR2R3-typeMYBtranscriptionfactor(namedHvMYB1)withtwoDNAbindingdomain interactingwith theCCdomainof severalMLA proteins in yeast, in vitro and in vivo. Significantly, theseinteractionsappeartobedependentonMLACChomodimerization.Moreover,HvMYB1mutationsdiminishingMLACCinteractionalsocompromiseitsDNAbindingactivity.Interestingly,HvMYB1also interacts specificallywith barleyWRKY1but notWRKY2.These twoWRKYswerepreviously found to interactwithMLACCdomainandactasnegativeregulatorsinbasaldefenseaswellas MLA triggered defense responses. HvMYB1 overexpressionin barley markedly enhancedMLA-mediated disease resistance,whereasknock-downofHvMYB1,achievedviaBSMV-mediatedVIGSor transiently inducedgenesilencing,compromisedbarleydiseaseresistanceagainstthefunguspathogen.Ourstudysuggeststhat this type of NB-LRR proteins activates immune responsesthroughtheinterplaysoftightlycontrolledcellulartranscriptionalnetworks.

CS16-6mRNAdecayinkinase-mediatedresponsestopathogensMilena Roux1, Kristoffer Palma1, Magnus Rasmussen1, LauraArribas1,JohnMundy1,MortenPetersen11DepartmentofPlantMolecularBiology,UniversityofCopenhagen,Copenhagen,[email protected] have evolved multi-layered defence responses, activateduponrecognitionofinvadingpathogens.Onelayerincludestrans-membrane receptors that recognize evolutionarily conservedmicrobe-associated molecular patterns (MAMPs). Signalling viaMAPkinasesfromthesereceptorsleadstoreprogrammingofgeneexpressionandproductionofhostproteinsforthwartingpathogenicintruders.MAMP-activatedMAPkinase4 (MPK4) regulates theexpressionofasubsetofdefencegenesviaaWRKYtranscriptionfactor.However,howplantMAPkinasesregulatedefencegenesisstillpoorlyunderstood.Recentlywefoundanin vivoassociationinArabidopsisbetweenMPK4andPAT1,acomponentofthemRNAdecappingmachinery. Interestingly, pat1 mutants exhibit similarphenotypic characteristics to mpk4 mutants, namely dwarfismand increased resistance toward bacterial pathogens. These datastronglysuggestthatMPK4andPAT1functiontogethertoregulatedefense responses. mRNA decapping represents a critical stepin eukaryotic mRNA turnover, and MPK4 is a regulatory nodecontrollingtranscriptionalreprogrammingviatranscriptionfactors.Thus, linking MPK4 to mRNA decay offers another efficientmechanism for this MAP kinase to regulate the rapid changesrequired to instigate defense responses. I am using genetics andbiochemistrytoprobethefunctionofPAT1andmRNAdecappinginplantinnateimmunity,researchthatremainslargelyunexplored.

Page 48: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession17-Endophytesandparasiticplants

46

Conc

urre

nt 1

7

CS17-1TranscriptionalregulationfornodulationinlegumesMakotoHayashi1,TakashiSoyano11NationalInstituteofAgrobiologicalSciencesmakotoh@affrc.go.jpFormationofrootnodulesisoneofthecriticalstepsinsuccessfulinteraction of nitrogen fixing soil bacteria with legumes. Uponrecognitionofthebacteriabyhostplants,asetofsymbiosisgenesis activated for intracellular signal transduction. Among them,CCaMK plays pivotal roles for nodulation. A gain-of-functionmutantofCCaMKtriggersnodulationintheabsenceofrhizobia,which requires transcription factorsNSP1,NSP2,andNIN.NINisoneoftheproteinsoftheplant-specificNLPfamily,andseemslegume specific by its phylogenetic position.We screened geneswhose expressionwas affected by the presence ofNIN.Amongthem,weidentifiedasetofgenesthatwerenecessaryforbacterialinfection in theepidermisandnoduledevelopment in thecortex.Those genes possessed specific nucleotide sequences in theupstreamofORF,towhichNINdirectlybound.Ectopicexpressionof the genes conferred aberrant formation of lateral roots. OurfindingsuggeststhatNINhasevolvedtoregulateformationofrootnodulesinlegumes,byco-optionofgenesexistedforlateralrootformation.

CS17-2Identification of a common regulator involved both innodulation and shoot apical meristem maintenance in Lotus japonicusTakuya Suzaki1,2, Chong S. Kim3, Naoya Takeda1,2, KrzysztofSzczyglowski3,MasayoshiKawaguchi1,21National Institute for Basic Biology, 2School of Life Science,Graduate University for Advanced Studies (SOKENDAI),3SouthernCropProtectionandFoodResearchCentre,[email protected] is a characteristic trait acquired mainly by legume.Despite recent progress in our understanding of molecularmechanismregulatingnodulationperse, itsevolutionallygeneticcontextthathaveenabledlegumetoformnodulesremainselusive.In the early developmental process of nodulation, infection ofrhizobia into the host plant root induces dedifferentiation anddivision of some of the cortical cells, and recent studies haveclarified activation of cytokinin signaling in the cortical cells isapivotal event fornoduleorganogenesis.Togain further insightinto themolecularmechanismof it,we isolated tricot (tco) as asuppressor mutant of spontaneous nodule formation2 (snf2), again-of-functionmutantofcytokininreceptorinLotus japonicus.Intco snf2doublemutant,spontaneousnodulesformedinsnf2inthe absence of rhizobia barely develop. The result suggests thatTCO positively regulates nodule organogenesis downstream orindependentlyofcytokininsignaling.Inaddition,infectionprocessofrhizobiaisaffectedandsymbiosiswitharbuscularmycorrhizalfungusisalsoimpairedintco.Intriguingly,thetcomutationcausesan enlargement of the shoot apicalmeristem (SAM) and affectsrootdevelopment.Map-basedcloningapproachrevealsTCOisaputativeorthologueoftheproteinsthatarereportedtobeinvolvedin theSAMmaintenance inotherplants.Thesefindings indicateanexistenceofacommongeneticregulatorymechanismbetweennodulation and the SAM formation. We propose a hypothesis,inwhich an ancestor of legumemight have recruited such generegulatingtheSAMmaintenancetoachievenodulationduringitsevolution.

CS17-3Regulation of Medicago truncatula HMGR1 by symbioticreceptor-likekinasesanditsroleinearlysymbioticsignalingJean-MichelAne1, Dhileepkumar Jayaraman1, Kari L. Forshey1,MuthusubramanianVenkateshwaran1,BrendanK.Riely2,EstibalizLarrainzar2,MaegenHowes-Podoll1,DouglasR.Cook21Department ofAgronomy, University ofWisconsin - Madison,Madison,Wisconsin53706,USA,2DepartmentofPlantPathology,UniversityofCalifornia-Davis,Davis,California95616,[email protected](3-hydroxy-3-methylglutarylcoenzymeAreductases)arekey enzymes in the mevalonate pathway controlling isoprenoidbiosynthesis. Surprisingly, one of these enzymes (HMGR1)wasfoundtointeractwiththesymbioticreceptor-likekinaseNORKandisrequiredforlegumenodulationinthemodellegumeMedicago truncatula. Using split-ubiquitin assays, interactions betweenHMGR1andtwoothersymbioticreceptor-likekinases,NFPandLYK3,were found. Invitrokinaseassays revealed thatHMGR1is phosphorylated by NORK but not by NFP or LYK3. Massspectrometrywasusedand localized thephosphorylationsites tothe linker region of HMGR1, a region which is highly variablebetweendifferentHMGRisoforms.EnzymaticassaysrevealedthatHMGR1activityisaffectedbyinteractionwithNORK.Mimickingphosphorylation by serine to aspartic acid substitutions at thephosphorylation sites also affected HMGR1 activity. HMGR1-silencedrootswereimpairedfornuclearcalciumspiking,symbioticgeneexpression,andarbuscularmycorrhizalsymbiosis,suggestingthatHMGR1isacomponentof thecommonsymbioticpathway.Reciprocally, application ofmevalonate, the product ofHMGR1activity, was sufficient to induce calcium spiking and symbioticgene expression inwild-type andHMGR1-silenced roots.Theseresults indicate thatHMGR1plays anearly role in the signalingcascade.Wehypothesize thatHMGR1connects signalingeventsat the plasma membrane levels to nuclear ones by controllingthe synthesis of isoprenoid compounds required for downstreamsymbioticsignaling.

CS17-4NewrolesforstrigolactonesinlegumesymbiosesEloiseFoo1,CassandraHugill1,LauraQuittenden1,JamesB.Reid1,KaoriYoneyama21School of Plant Science, University of Tasmania, Tasmania,Australia,2WeedScienceCenter,UtsunomiyaUniversity,Japaneloise.foo@utas.edu.auThereiscurrentlymuchresearchbeingdonetodefinenewrolesfortherecentlyidentifiedgroupofplanthormones,thestrigolactones.Oneoftheirkeyrolesisasregulatorsofplantsymbioses.Theyactas a rhizosphere signal in arbuscularmycorrhizal symbioses andas a positive regulator of nodulation in legumes.Nutrient statusof the soil has emerged as a powerful regulator of strigolactoneproduction, most particularly phosphorous but also nitrogen.However, until now the potential role of strigolactones inregulating mycorrhizal development and nodulation in responsetonutrient-deficiencyhasonlybeenpostulatedbutnottested.Wecriticallyexaminetheroleofstrigolactonesynthesisandresponsein regulating both symbioses using pea (Pisum sativum), whichhas a range of well-characterised strigolactone-biosynthesis andresponsemutantsthatisuniqueamongstthelegumes.Weprovideevidence for a novel endogenous role for strigolactone responsewithintherootitselfduringmycorrhizaldevelopment,inadditionto action of strigolactones on the fungal partner.We also revealthatthestrigolactoneresponsepathwaythatregulatesmycorrhizaldevelopmentmayhavesomedifferencestotheresponsepathwaythat regulates nodulation. Finally, studies with strigolactone-deficient pea mutants indicate that despite strong regulation ofstrigolactoneproductionbybothnitrateandphosphatestarvation,strigolactones do not appear to be required to regulate thesesymbiosesinresponsetonutrient-deficiency.

Page 49: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession17-Endophytesandparasiticplants

47

Concurrent 17

CS17-5Intracellular accommodation of microbes by plants: Novelsystems to study commonalities and differences betweensymbiontsandpathogensSebastian Schornack1, Ertao Wang2, Andy Breakspear2, JeremyMurray2,GilesOldroyd2,SophienKamoun11The Sainsbury Laboratory, Norwich, UK, 2John Innes Centre,Norwich,[email protected] develop specialized cellular structures to engage withfilamentousmi crobial organisms. For example, both oomycetesandarbuscularmycorrhiza(AM)fungifollowstructurallysimilardevelopmental processes to establish intracellular interfaces,knownashaustoriaandarbuscules, respectively.Despitestrikingstructuralsimilarities,ourknowledgeofthemolecularmechanismsthat drive differentiation of host cells and tissues to formintracellularaccommodationstructuresislimited.Inparticular,welackplantsystemsthatenabledirectcomparisonofsymbioticandpathogenicinteractions.Herewepresentnewsystemstostudytheextenttowhichbeneficialanddetrimentalmicroorganismsemploysimilar plant developmental processes required for colonization.Weemploytheroot-infectingoomycetePhytophthora palmivora,whichinfectsMycorrhiza-hostplantssuchasMedicago truncatulaaswell as themodel plantNicotiana benthamiana.P. palmivoraforms haustoria in M. truncatula roots which are analogous toMycorrhiza arbuscular host-cell interfaces enabling comparativestudies of interface processes.We exploited these systems in avariety of experiments. First, we used expression profiling toidentify genes induced during both biotrophic Phytophthorainfections andmycorrhization.Second,we tested an arrayofM. truncatulamutantsdefectiveinAMsymbiosisandidentifiedandcharacterised amutantwhich impairs bothAM colonisation andP. palmivora infection. Third, our systems enable comparativestudiesofeffectortargetedprocessesinAMfungalarbuscules.Wefound that perihaustorialPhytophthora effectors also localise toandinterferewithfungalarbuscules.Insummary,weexpectthesesystems to greatly impact our understanding of commonalitiesanddifferencesinbeneficialanddetrimentalinteractionsbetweenfilamentousmicrobesandplantroots.

CS17-6Essentialfactorsforarbuscularmycorrhizalsymbiosis:lessonsfrommaizeandriceMarinaNadal1,RuairidhSawers1,CarolineGutjahr1,Shu-YiYang1,KyungsookAn2,GynheungAn2,KevinAhern3,TomBrutnell3,UtaPaszkowski11DepartmentofPlantMolecualrBiology,UniversityofLausanne,Lausanne,Switzerland,2CropBiotechInstituteandDepartmentofPlantMolecular SystemsBiotechnology,KyungHeeUniversity,Yongin, Korea, 3Boyce Thompson Institute for Plant Research,CornellUniversity,Ithaca,NewYork,[email protected] beneficial arbuscularmycorrhizal (AM) symbiosisis themostwidespreadplant-fungal interactionbetween roots ofterrestrialplantsandfungioftheGlomeromycota.Theassociationreceives increasing scientific attention because of the nutritionalbenefititconferstohostplants,whichisparticularlypronouncedforphosphate.MutantsdefectiveinAMsymbiosisresultedfromaforwardgeneticsscreeninmaize(PASZKOWSKIetal.2006,PlantJ.47:165-173).Thenope1 (no perception 1)mutantdisplayedlossofsusceptibility,indicativeofpre-symbioticfunctiontobeaffected.Themutation segregated as amonogenic recessive trait andwasmappedtotheperi-centromericregionofmaizechromosome10.Gene cloning efforts employed a synteny-based approach in riceand identifiedacandidategene,whosedisruptionreproducedthemaizenope1phenotype,therebysuggestingthesuccessfulcloningofNOPE1.InsertionallelesinthecorrespondingmaizegenehavebeenidentifiedviaDstaggingandarecurrentlyexaminedfortheirimpactonsymbioticproperties.Thegeneispredictedtoencodea

proteinofunknownfunctionbutassumedtobeinvolvedintransportprocessesacrossmembranesasitgroupswiththemajorfacilitatorsuperfamily.Recently,wehavemadetheexitingobservationthatwild-type root exudates complemented the mutant phenotype intrans.ItcanthereforebehypothesizedthatNOPE1participatesinaneffluxactivityacrosstheplasmamembraneofrootcells.

Page 50: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession18-SymbiosisII

48

Conc

urre

nt 1

8

CS18-1What does community analysis of plant-associated microbestellus?Kiwamu Minamisawa1, Seishi Ikeda2, Takashi Okubo1, MizueAnda1, Kazuhiro Sasaki1, Zhihua Bao1, Tadashi Sato1, HarukoImaizumi-Anraku31GraduateSchoolofLifeSciences,TohokuUniversity, 2MemuroResearch Station, National Agricultural Research Center forHokkaidoRegion,3DepartmentofPlantSciences,NationalInstituteofAgrobiologicalScienceskiwamu@ige.tohoku.ac.jpDiversemicroorganismsare livingasendophytes inplant tissuesandepiphytesonplantsurfacesinnature.Questionsaboutdrivingforces shaping the microbial community associated with plantsremainunanswered.Becauselegumesdevelopedsystemstoattainendosymbioseswithrhizobiaaswellasmycorrhizaeduringtheirevolution, the above questions can be addressed using legume(soybean)andnon-legume(rice)mutantsrelevanttoplantgenesforsymbiosis.Analyticalmethodsofmicrobialcommunityhavebeenrecently advanced by enrichment procedures of plant-associatedmicrobes and culture-independent analyses inmicrobial ecology.The global diversity of bacteria associated with field-grownsoybeanswas evaluatedwith different nodulation genotypes andnitrogenapplication.AsubpopulationofProteobacteriainsoybeanshootswaslikelytoberegulatedthroughbothoftheautoregulationsystem for plant-rhizobium symbiosis and the nitrogen-signalingpathway, suggesting that legumes accommodate taxonomicallycharacteristic microbial community through unknown plant-microbe communications. Impacts of OsCCaMK genotypeswere examinedon rice root-associatedbacteria under paddy andupland field conditions. Phylogenetic compositions revealed thatthe relative abundance of Alphaproteobacteria was decreasedin recessive plants under both paddy and upland conditions.Population shifts of Sphingomonadales and Rhizobiales weremainlyresponsibleforthelowabundanceofAlphaproteobacteriain recessive plants. PCoA on bacterial communities revealedunidirectionalcommunityshiftsinamannerofgenedosageeffectforthefunctionalOsCCaMK.TheseresultssuggestthesignificantimpactsofOsCCaMKonthediversityofroot-associatedbacteria.Interestingly, the impacts were enhanced under an unfavorableenvironment of low N input, and extended to plant growth andgeochemicalprocesses.

CS18-2FactorsaffectingendophyticcolonizationofriceBarbaraReinhold-Hurek1,TejaShidore1,TheresaDinse1,HannahKlingenberg11Dept. of Microbe-Plant Interactions, Uni versity of Bremen,Bremen,[email protected],amutualisticendophyteofriceandothergrasses, is of agro-biotechnological interest because it suppliesfixednitrogentoitshostandcolonisesplantsinremarkablyhighnumbers without eliciting disease symptoms. This raises thequestionofmechanismsof compatible interactionsbetweenhostandbacterium.ThecompletegenomeofstrainBH72wassequenced(1),andthericegenomeisalsoavailable.Thisallowsapplicationoffunctionalgenomicanalysesofbothpartnersduringinteraction.Transcriptomicanalysisdemonstratedthatpartnersshowextensiveadaptations during endophytic interaction. Exudates-exposedAzoarcus sp. On exposure to exudates, an overall expression of4.4%ofthe3992proteincodinggenesofAzoarcussp.strainBH72was altered, out ofwhich 2.4%was up-regulated and 2.0%wasdown-regulated.Geneswithmodulatedexpressionincludedafewwhoseinvolvementinplant-microbeinteractionhadalreadybeenestablished,whereasalargefractioncomprisedofgenesencodingproteinswithputativeorunknownfunctions.MutationalanalysisofseveraldifferentiallyregulatedgeneslikethoseencodingaminorpilinPilX,signaltransductionproteinscontainingGGDEFdomains

andaserine-threoninekinaseasaputativecomponentofthetype6secretionsystem(T6SS),revealedtheirroleinhostcolonization.OurdatasuggestthatstrainBH72maybeprimedfortheendophyticlifestylebyexudates,astheexpressionofbacterialgenesrelevantforendophyticcolonizationof roots is inducedbyrootexudates.(1)Krauseetal.2006.Genomic insights into the lifestyleof themutualistic,N2-fixinggrassendophyteAzoarcussp.strainBH72.NatureBiotechnol.24:1385-1391.

CS18-3Effects of colonization of a bacterial endophyte,Azospirillumsp.B510,ondiseaseresistanceinArabidopsisMichiko Yasuda1, Junta Hirayama1,2,3, Kiwamu Minamisawa3,SatoshiShinozaki1,3,HideoNakashita1,41Plant-Endophyte Interactions Laboratory, RIKEN InnovationCenter, Saitama, Japan, 2Plantech Research Institute,MayekawaMFG.Co., Ltd., Shizuoka, Japan, 3Laboratory of EnvironmentalPlant Microbiology, Graduate School of Life Sciences, TohokuUniversity, Sendai, Japan, 4Department ofApplied Biology andChemistry,TokyoUniversityofAgriculture,Tokyo,[email protected],Azospirillumsp.B510,elicitedsystemicresistanceagainstdiseasescausedbythevirulentriceblastfungusMagnaporthe oryzae and by the virulent bacterial pathogenXanthomonas oryzaeinrice(Oryza sativacv.Nipponbare).B510confers disease resistance against the virulent bacterial pathogenPseudomonas syringaepv.tomatoDC3000(PstDC3000)alsoinArabidopsis thaliana ecotype Col-0. To investigate mechanismsunderlying disease resistance, expression patterns of defense-related genes,PR-1,PR-2,PR-5,PDF1.2,ERF1, andVSP2 andaccumulationofdefense-relatedphytohormones suchas salicylicacid(SA)andjasmonicacid(JA)wereinvestigated.SA-mediatedPR-1 genes expression was inhibited by treatment with B510,however,thecontentsofSAandJAwerenotchanged.TreatmentwithB510reducedpathogenproliferationinNahGtransgenicplantandetr1andjar1mutants.However,bacterialgrowthinnpr1andein2mutantswere not influenced byB510 treatment.TranscriptlevelsofPR-1andVSP2genesafterinoculationwithPstDC3000wereslightlyincreasedinB510-treatedplantscomparedtocontrolplants. These results indicate the possibility that B510 primesNPR1-andEIN2-dependentdiseaseresistanceinArabidopsis.

CS18-4GenomicandtranscriptomicanalysesoftheparasiticplantsKenShirasu1,SatokoYoshida1,JulianeIshida1,RiichiroManabe21RIKEN,PlantScienceCenter,Yokohama,Japan,2RIKENOmicsScienceCenter,Yokohama,[email protected] plants are quite common and more than 4000 speciesare known to date.Among them, plants belonging to the familyOrobanchaceaehaveemergedasseriousthreatsinagriculture.Forexample,Striga hermonthica, thewitchweed, is an obligate rootparasitethatinfectseconomicallyimportantcropssuchassorghum,maize,millet,anduplandriceinsub-SaharanAfrica,andtheyieldlossescausedbythisspecieshavebeenestimatedtocostasmuchas US$ 7 billion annually. Despite its agricultural importance,molecularmechanismscontrollingtheestablishmentofparasitismarepoorlyunderstood.Tounderstandoftheparasitism,weinitiatedlarge-scalegenomeandtranscriptomeanalysesofS. hermonthicaand its close relative S. asiatica. These analyses revealed anunexpected horizontal gene transfer event from the host to theparasite.We have also developed amodel system to understandtheparasitismusingthehemiparasitePhtheirospermum japonicumbelonging to Orobanchaceae.P. japonicum can be easily grownin the lab and is amenable for various genetic analyses, such ascrossing,mappingandtransformation.Thetranscriptomeanalysishasprovidedalistofgenesspecificallyexpressedduringinfectionandausefulresourceformolecularmarkers.

Page 51: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession18-SymbiosisII

49

Concurrent 18

CS18-5Reduced exudation of 5-deoxystrigol confers resistance toStrigainmaizecultivarsKaoriYoneyama1,RyotaArakawa2,XiaonanXie1,TakayaKisugi1,TakahitoNomura1,TatsuhiroEzawa2,KoichiYoneyama11WeedScienceCenter,UtsunomiyaUniversity,Utsunomiya,Japan,2Graduate School ofAgriculture, HokkaidoUniversity, Sapporo,[email protected](Strigaspp.),devastatingrootparasiticweeds,attackmonocot crops including sorghum, millet, and maize in semi-arid tropics. Their seeds require germination stimulants (mainlystrigolactones,SLs)releasedfromhostroots togerminate.In thepresent study, characterization of SLs in the root exudates fromthreemaizecultivars,theStriga-susceptiblePioneer3253,andthetwoStriga-tolerantKST94andWH502,grownhydroponicallywasconductedbycomparingretentiontimesofgerminationstimulantson reversed-phase HPLC with those of synthetic and naturalstandardsandbyusingLC-MS/MS.ThemostabundantSLintherootexudatefromthesusceptiblecultivarwas5-deoxystrigolwhilethetolerantcultivarsexudedmainlyhydroxy-SLssuchasstrigol,sorgomol, and orobanchol. 5-Deoxystrigol is more stable thanhydroxy-SLsandthusthesusceptiblecultivarswouldinducemoregerminationofStrigaseedsinthefields.

CS18-6Nitrogen fluxes in the Phelipanche ramosa / Brassica napusinteractionZachary Gaudin1, Jean-Bernard Pouvreau1, Richard J. Robins2,PhilippeDelavault1,PhilippeSimier11Plant Biology and Pathology Laboratory, University of Nantes,Nantes, France, 2Chemistry and Interdisciplinarity Laboratory :Synthesis,Analysis,Modelisation.University ofNantes,Nantes,[email protected] holoparasitic plant Phelipanche ramosa L. Pomel (syn.Orobanche ramosa)strictlyreliesonnutrientuptakesfromphloemelements of the host plants through a specific structure calledhaustorium.InFrance,itsrecentadaptationtowinteroilseedrape(WOSR,Brassica napus L.) results in an emergent agronomicalproblem causing severe yield losses. Our study aimed to give abetter understanding of some functional traits of this new host-parasite interaction. Given that fertilization plays a major rolein WOSR productivity, our studies focused on nitrogen fluxeswithinhost-parasiterelationship.Using15Nlabeling,comparativeanalyses were performed between two WOSR accessions, ESAlienor (Seminis Company) and Shakira (Maisadour SemencesCompany), which induced rapid and delayed emergence of theattached parasites in fields, respectively. When challenged withPhelipanche ramosa, behaviour of Shakira is characterized by alaginbroomrapeattachmentanddevelopment.TwocharacteristicspromoteanimportantdevelopmentofbroomrapegrowingonESAlienor : a higher susceptibility to Phelipanche ramosa beforevernalizationandanearlyimportantnitrogenfluxfromhostleavestoparasitefollowingvernalization.Analysisoffree15N-aminoacidpatternsinexsudatesfromWOSRleafphloemandinbroomrapeorgansgiveabettercharacterizationofnitrogenfluxeswithintheseinteraction.Glu,Asp,Gln,S-MethylCysteineSulfoxide“SMCSO”,SerineandGABAaremainlytransferredbythephloem.SMCSO,Gln,Asp,GluandAsnaremainlyaccumulated inbroomrape.Astudyofthenitrogenmetabolismofthehost-derivedaminoacidsinbroomrapeisinprogress.

Page 52: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession19-Biotechnology

50

Conc

urre

nt 1

9

CS19-1Harpin, elicitor of hypersensitive response for new eraagriculturalapplication-opportunitiesandchallengesZhongminWei11PlantHealthCareInc.zwei@planthealthcare.comHarpins are a group of naturally occurring proteins first isolatedfromErwiniaamylovoramorethan20yearsago.Harpinproteinsactivateaplant’ssignalingmechanismbybindingtoaplantprotein.This signaling mechanism turns on internal cascade responsesin plants including the activation of two well-characterizedplant defense pathways and further stimulates the expressionof genes involved in plant growth,which results in a significantincreaseofmarketablecropyield.Afteradecadeofresearchanddevelopmentdrivenbyacademicuniversitiesandprivatebiotechcompanies, severalharpin-derivedproductshavebeendevelopedandcommercialized.First-generationharpinproductsusedasinglenaturalharpinproteinas theactive ingredient,while the second-generation products are derived from a combination of activedomains of individual natural harpin proteins, which ultimatelyresults in higher potency and better performance. The primaryapplicationsofharpinproductsareseedtreatmentandfoliarspray;either method can be used in combination with other chemicalproducts such as fungicides. Currently harpin derived productshave been widely adopted for use by the agricultural industry.Harpinproductshavebeenappliedtomillionsofacresofvariouscropsinmanycountries.Thispresentationwilldiscussthebenefitsofharpinproducts,itssuccessandchallengesinthemarketplace.

CS19-2TowarddurablediseaseresistancetowheatrustsBrandeWulff2, Matthew Moscou2, Nicolas Champouret2, DianaHorvath2,JamieKaufman3,BrianSteffenson3,EricWard1,21TwoBladesFoundation, 2TheSainsburyLaboratory, [email protected] Blades Foundation supports the development of durableresistancetoimportantcropdiseases.Aspartofthiseffort,weworkcloselywithTheSainsburyLaboratory.Ourcorestrategyisbasedonidentificationofnewresistancegenesfrompreviouslyuntappedsources.Foranydiseasetarget,weplantoclonemanyresistancegenesanddeploythemasstacksatsingletransgenicloci.Oneofour projects focuses on novel resistance genes effective againstwheat stem and stripe rusts. We will present progress towardidentifyingandgeneticallycharacterizingnewsourcesofresistancefromseveralplantspecies.

CS19-3Addition of TAL effector binding sites to a pathogen strain-specific rice bacterial blightresistance genemakes it effectiveagainstadditionalstrainsandagainstbacterialleafstreakAaronW.Hummel1,ErinL.Doyle1,AdamJ.Bogdanove11Department of Plant Pathology and Microbiology, Iowa StateUniversity,Ames,Iowaahummel@iastate.eduXanthomonasTALeffectorspromotediseaseinplantsbybindingto and activating host susceptibility genes. Plants counter withTALeffector-activatedexecutorresistancegenes,whichcausehostcell death and block disease progression.We askedwhether thefunctionalspecificityofanexecutorgenecouldbebroadenedbyaddingdifferentTALeffectorbindingelements (EBEs) to it.Weadded sixEBEs to the riceXa27 gene,which confers resistanceto strains of the bacterial blight pathogen X. oryzae pv. oryzae(Xoo) that deliverTAL effectorAvrXa27.TheEBEs correspondto threeothereffectors fromXoostrainPXO99Aand threefromstrainBLS256of thebacterial leafstreakpathogenX. oryzaepv.

oryzicola(Xoc).StableintegrationintoriceproducedhealthylinesexhibitinggeneactivationbyeachTALeffector,andresistancetoPXO99A,aPXO99AderivativelackingAvrXa27,andBLS256,aswellas twootherXooand tenXocstrainsvirulent towardwild-typeXa27plants.Transcriptsinitiatedprimarilyatacommonsiteregardlessofactivatingeffector.SequencesintheEBEswerefoundtooccurnonrandomlyinricepromoters,suggestingoverlapwithendogenousregulatorysequences.Thus,executorgenespecificitycanbebroadenedbyaddingEBEs,but caution iswarranteddueto the possible coincident introduction of endogenous regulatoryelements.

CS19-4Effector-drivendiseaseresistancebreedinginpotatoVivianneG.A.A.Vleeshouwers11Wageningen UR Plant Breeding, Wageningen University &ResearchCentre,Wageningen,TheNetherlandsVivianne.Vleeshouwers@wur.nlThemajorfoodcroppotatoseverelysuffersfromthedevastatinglateblightdisease,whichiscausedbyPhytophthora infestans.Thisoomycetepathogensecreteshost-translocatedRXLReffectorsthatincludeavirulence(AVR)proteins,whicharetargetedbyresistance(R)proteinsfromwildpotatospecies.Wehavegeneratedagenome-wide infection-ready library ofP. infestans RXLR effectors thatwehavebeenusingtoacceleratecloningandspecificityprofilingof R genes. This effectoromics strategy has proven effectiveand complementary to classical breeding approaches. We haveidentified and characterized approximately a dozenR-AVRpairsthatcanbe immediatelyexploited toaccelerateand improve lateblightresistancebreeding.StudiesofeffectordiversityandactivityrevealedthemechanismsthatP. infestansemploysforevadingRproteinrecognitionfor thevariousR-AVRpairs.Spatio-temporalmonitoringofeffectorallelicdiversityinP. infestanspopulationsenablesamoreeducateddeploymentofRgenesinpotato.Recently,wehaveexpandedtheR-AVR-basedlineofdefensewithstudiesonapoplastic immunity,whichhasgenerally abroader spectrumandisbasedonrecognitionofconservedproteinsofpathogens.WehaveisolatedapotatosurfacereceptorELR1thatsenseselicitins,secreted oomycete proteins with features of pathogen-associatedmolecularpatterns(PAMP).Intransgenicpotatoes,ELR1confersa hypersensitive response to INF1 elicitin of P. infestans andenhancedresistancetolateblight.Ouraimistoachieveeffectiveanddurable resistanceagainst lateblight inpotatobycombiningmultiplelayersofimmunity.

CS19-5ApplicationofMutMaptoidentifyricegenesinvolvedinblastresistanceAkiraAbe1,ShunichiKosugi1,KentaroYoshida1,SatoshiNatsume1,HirokiTakagi1,2,HiroyukiKanzaki1,HideoMatsumura1,3,KakotoYoshida1, Chikako Mitsuoka1, Muluneh Tamiru1, Hideki Innan4,LilianaCano5,SophienKamoun5,RyoheiTerauchi11IwateBiotechnologyResearchCenter, 2UnitedGraduate SchoolofAgriculturalScience,IwateUniversity,3GeneResearchCenter,Shinshu University, 4The Graduate University for AdvancedStudies,[email protected] majority of agronomic traits are controlled by multiplegenes that causeminorphenotypiceffectsmakinggene isolationchallenging. To isolate genes with minor effects by wholegenome resequencng,wedevelopedMutMapmethod.Followingmutagenesis, amutantwith a useful phenotype is crossed to theoriginal wild-type line allowing unequivocal segregation in theF2 progeny even of subtle phenotypic differences. BulkedDNAof 20F2progeny showing themutant phenotype is subjected towholegenomeresequencing.Scanningofthegenomeforregionsexhibitinghigherfrequenciesofsequencereadsoriginatingfromthemutantidentifieslociharboringthemutation.Thismethodallowsidentificationofmutatedgenes in a single runofwholegenome

Page 53: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession19-Biotechnology

51

Concurrent 19

resequencing, circumventing development of DNA markers andreducingcostandeffortingeneisolation.WeareapplyingMutMaptoisolategenesinvolvedinriceblastresistance.

CS19-6A polygalacturonase inhibitor confers to transgenic tobaccoresistanceagainstfungiandoomycetesFelice Cervone1, Orlando Borras-Hidalgo2, Claudio Caprari3,ManuelBenedetti1,GiuliaDeLorenzo11DepartmentofBiologyandBiotechnology“C.Darwin”,SapienzaUniversityofRome,Italy, 2CenterofBiotechnologyandGeneticEngineering,LaHabana,Cuba,3DepartmentSTAT,UniversitàdelMolise,Pesche(IS),[email protected] have tested whether a gene encoding a polygalacturonase-inhibiting protein of Phaseolus vulgaris L. (Pvpgip2) protectstobacco against a fungal disease (Rhizoctonia solani) andtwo oomycetes (Phytophtora parasitica var. nicotianae andPeronospora hyoscyamif.sp.tabacina)notonlyundergreenhouseconditions but also in field trials. Under greenhouse conditions,disease symptomscausedbyR. solaniwere severeonwild typeplants and very limited on transgenic lines. Under greenhouseconditionstransgenictobaccowasalsoremarkablyresistanttotheoomycetepathogenP. parasiticavar.nicotianae.Trialswerealsoconductedinthefieldduringthecoldandwetseasonwhentobaccoblue mold caused by P. hyoscyami f. sp. tabacina constitutes asignificant problem in Cuba. Transgenic plants displayed a highlevelofresistancethatwascomparabletothatofNicotianaspeciesthatarenaturallyhighlyresistanttoP. hyoscyamif.sp. tabacina.We concluded that expression of PGIP is a powerful way ofengineeringabroad-spectrumdiseaseresistance.ThetransferofaPGIPgene fromcommonbean to tobacco, i.e.aplantbelongingto the economically important class of Solanaceae, confers totransgenicplantsastrongresistanceagainstfungiandoomycetes,both in greenhouses and in the field. The structure of PGIPs isbeingstudiedinordertoenlargetheirrecognitionspecificitiesandimprove their inhibitory strength. This knowledge may help inplanningmutationalstrategiesaimedatimprovingthepropertiesofthenaturalPGIPsandtheirrecognitionversatilityagainstthemanymicrobialPGsevolvedinnature.

Page 54: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession20-Genomicsandevolutionofvirulenceinpathogenicfungiandoomycetes

52

Conc

urre

nt 2

0

CS20-1Life-style transitions in hemibiotrophic Colletotrichum fungiuncoveredbycomparativegenomeandtranscriptomeanalysesRichardO'Connell1,MichaelThon2,StéphaneHacquard1, JochenKleemann1, Stefan Amyotte3, Marc-Henri Lebrun4, Emiel VerLorenvanThemaat1,Li-JunMa5,LisaVaillancourt31DepartmentofPlantMicrobeInteractions,MaxPlanckInstituteforPlantBreedingResearch,Cologne,Germany,2CentroHispano-LusodeInvestigacionesAgrarias(CIALE),UniversidaddeSalamanca,Salamanca,Spain, 3DepartmentofPlantPathology,UniversityofKentucky,Lexington,Kentucky,USA,4INRABIOGER,Thiverval-Grignon,France,5TheCollegeofNaturalSciences,UniversityofMassachusettsAmherst,Amherst,Massachusetts,[email protected] species are devastating pathogens onmajor cropplantsworldwide.Infectioninvolvesdifferentiationofspecializedcell-types associated with host penetration (appressoria), growthinsidelivinghostcells(biotrophichyphae)andtissuedestruction(necrotrophic hyphae). We sequenced and compared thegenomes and transcriptomes of C. higginsianum (Ch) infectingArabidopsis and C. graminicola (Cg) infecting maize. Bothspecies encode large repertoires of carbohydrate-active enzymesbutusedifferentstrategiestodeconstructplantcellwallsthatareadaptedtotheirhostpreferences.Thus,Chencodesmorepectin-degradingenzymesandactivates themduringnecrotrophy,whileCg predominately activates hemicellulases and cellulases at thisstage. Both species encode more secondary metabolism (SM)keyenzymesthanmostothersequencedfungi,with42SMgeneclusters inCg and39 inCh, suggestingeach is capableofgreatchemicaldiversity.Genome-wideexpressionprofilingrevealedthetranscriptional dynamics underlying hemibiotrophy, with wavesofgeneactivationlinkedtoeachpathogenictransition.TheearlytranscriptomeisdominatedbySMandeffectorgenes,suggestingbothappressoriaandbiotrophichyphaefunctionasplatformsfordeliveringproteinandsmallmoleculeeffectorstothefirstinfectedcells. Genes encoding a vast array of wall-degrading enzymes,proteasesandmembranetransportersareup-regulatedattheswitchtonecrotrophy,whenthepathogenmobilizesnutrientsfromdeadcellsforgrowthandsporulation.Remarkably,althoughappressoriain vitro are morphologically indistinguishable from those in planta,comparisonoftheirtranscriptomesshowed1,500genesareinduceduponhostcontact,suggestingthatpre-invasionsensingofplantsignalsbyappressoriadramaticallyreprogramsfungalgeneexpression.

CS20-2GlobalreprogrammingofDNAmethylationduringpathogenicdevelopmentinthericeblastfungusJunhyunJeon1,JaeyoungChoi1,Gir-WonLee1,Sook-YoungPark1,AramHuh1,RalphDean2,Yong-HwanLee11Department of Agricultural Biotechnology, Seoul NationalUniversity,Seoul,Korea, 2Department ofPlantPathology,NorthCarolinaStateUniversity,Raleigh,NC,USAplantdr1@snu.ac.krAkeydeterminantofmicrobialpathogenesisisanabilityofpathogento make morphological switching in response to environmentalstimuli.Thiscapacity tochangeformandstructure iscritical forsurvival, dispersal, and successful infection of hosts. Geneticpathways that regulatemorphological transitions are extensivelystudied inmanyspeciesofmicrobialpathogens,yetcontributionof the epigenetic component is largely unknown. Here we usegeneticmanipulationsandhigh-throughputbisulphite sequencing(methylC-seq)onthemodelplantpathogenicfungus,Magnaporthe oryzaetodecipherthedynamicsandmechanicsofDNAmethylationduring fungal development at single-nucleotide resolution. Weshow that two genes encoding DNA methyltransferases areresponsible inacooperativefashionforDNAmethylationinthisfungusandthatprogressionoffungaldevelopmentcorrelateswithgenome-wide reductionand reprogrammingofDNAmethylome.

Detailed analysis of methylC-seq data show that reduction andreprogramming is commonly associated with upstream anddownstreamregionsofannotatedgenes,suggestingregulatoryroleofDNAmethylation in transcriptionofgenes.RNA-seqanalysisofwild-typeandDNAmethyltransferasedeletionmutantssupportsthat transcript abundance of genes, transposable elements, andunannotatedintergenictranscriptsarealteredbyDNAmethylation.OurworksprovidenewinsightsintoevolutionofDNAmethylation,revealingthatDNAmethylationinfungi isadynamicepigeneticentity thatmay contribute tomorphological switching driven byenvironmentalcues.

CS20-3GenomicevolutionandspecializationofwheatrustfungiChristinaA.Cuomo1,SharadhaSakthikumar1,JonathanGoldberg1,SarahYoung1,GuusBakkeren2,XianmingChen3,4,ScotHulbert4,LesSzabo5,JohnFellers61Broad Institute of MIT and Harvard, Cambridge, MA U.S.A.,2Agriculture & Agri-Food Canada, Summerland, BC, Canada,3USDA-ARS,WheatGenetics, Quality, Physiology, andDiseaseResearchUnit,Pullman,WA,U.S.A,4WashingtonStateUniversity,Pullman,WA, U.S.A, 5USDA-ARS, Cereal Disease Laboratory,University of Minnesota, St Paul, MN, U.S.A, 6USDA-ARS,KansasStateUniversity,Manhattan,KS,U.S.Acuomo@broadinstitute.orgRustfungicausesomeofthemostdevastatingplantdiseasesonallmajorcerealcrops.Wesequencedthegenomesofthethreemajorrustpathogensofwheat:Puccinia graminisf.sp.tritici(Pgt,wheatstem rust or black rust pathogen), Puccinia triticina (Pt, wheatleaf rust orbrown rust pathogen), andPuccinia striiformis f. sp.tritici (Pst,wheat stripe rust oryellow rust pathogen.These rustgenomesare largecompared toother fungi, ranging insize from82Mbto106Mb;allgenomescontainahighfractionofrepetitivesequence. Previous analysis of Pgt revealed features related tothe obligate biotrophic life-style including a large repertoire ofeffector-likesmallsecretedproteins(SSPs),impairednitrogenandsulfurassimilationpathways,andexpandedfamiliesofamino-acid,oligopeptideandhexosemembranetransporters.ComparisonofthethreePucciniagenomesallowsdelineationofgenegainandlossesbothforthePucciniaasagroupaswellasdifferencesbetweeneachspecieswouldcouldbeimportantfordifferenthostadaptationandphenotypes.Togaininsightintomorerecentevolutionofvirulence,wearecomparingthesequenceofisolateswhichvaryinvirulencephenotypesonwheatdifferentials,including65isolatesofPtand56isolatesofPgt,byidentifyingSNPsinthesestrains.Variationinsequenceorgeneexpressionofpredictedsecretedproteinscansuggestcandidateeffectorproteinsforfuturestudy.

CS20-4EvolutionofcellentryfunctioninoomyceteandfungaleffectorsBrettM.Tyler1,2,ShivD.Kale2,VincenzoAntignani2,JulioVega-Arreguin2,ZiShi3,RyanAnderson2,QunqingWang1,BiaoGu2,4,Daniel G. S. Capelluto2, Daolong Dou2,8, Amanda Rumore2,JonathanPlett5,RajatAggarwal6,ThierryRouxel7,FrancisMartin5,JeffJ.Stuart6,JohnMcDowell2,ChristopherB.Lawrence2,WeixingShan4,MarkGuiltinan31Oregon State University, 2Virginia Tech, Blacksburg, Virginia,USA,3PennsylvaniaStateUniversity,StateCollege,Pennsylvania,USA, 4NW Agricultural and Forestry University, Yangling,China, 5Centre INRA de Nancy, Champenoux, France, 6PurdueUniversity,WestLafayette,Indiana,USA,7INRA-Bioger,CampusAgroParisTech,Thiverval-Grignon,France, 8NanjingAgriculturalUniversity,Nanjing,[email protected], both pathogenic and beneficial, must integrate theirphysiologywiththatoftheirhostinordertoachieveasuccessfulcolonization.Effectorproteinsthatenterthecytoplasmofhostcellsarewidelyutilizedforthispurposebybacterial,fungal,oomycete,protistan, nematode, and insect symbionts.Thusmechanisms for

Page 55: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession20-Genomicsandevolutionofvirulenceinpathogenicfungiandoomycetes

53

Concurrent 20

effectorentrymusthaveevolvednumeroustimesamongthesediverseorganisms.Herewewillpresentrecentprogressonunderstandinghoweukaryoticeffectorsenterhostcells.ThegenomesofoomyceteplantpathogensencodehundredsofpotentialeffectorproteinswiththemotifRXLR.RXLRdomainsareresponsiblefortheentryoftheseproteinsintoplantcells.Domainswithsimilar“RXLR-like”motifsappear toberesponsibleforentrybysomeeffectors fromsome fungi and insects, includingmutualistic fungi.RXLR- andRXLR-like-domain proteins from oomycetes, fungi and insectsbind the cell surface lipid phosphatidylinositol-3-phosphate(PI3P) and this binding enables entry into the cells, possibly byendocytosis. In some effectors, additional residues inC-terminaldomains also contribute to PI3P-binding, suggesting that theseeffectors have undergone “affinity maturation” to improve theirbindingtoPI3Pandthustheirabilitytoeffectivelyenterplantcells.We are currently exploringmethodologies for disruptingPI-3-P-mediatedeffectorentryinordertocreatenewmeansformanagingoomyceteandfungaldiseasesandinsectpests.

CS20-5Mining the Rhynchosporium commune genome andtranscriptomeforpathogenicitydeterminantsAnnaAvrova11CellandMolecularSciences,TheJamesHuttonInstitute,Dundee,[email protected] commune,formerlyknownasR. secalisisoneofthemostdestructivepathogensofbarleyworldwide,especiallyinareaswithcooltemperateclimates.Itcanleadtoyieldlossesofupto30-40%anddecreaseingrainquality.DespitethedamagethatR. communeinflictsonbarleycrops,knowledgeofitspathogenicityfactors is almostnon-existent.The challenge therefore is togaina greater understanding of novel and essential pathogenicitydeterminants, as these represent good targets for recognition byhost plant genotypes. Some pathogenicity determinants essentialfor the core biology of the pathogen during infection may alsorepresent potential targets for new environmentally benignfungicides.RecentsequencingofR. communegerminatedconidiatranscriptome revealed enrichment for transcripts encodingpotential structural cell wall proteins, adhesion proteins, plantcuticleandcellwalldegradingenzymes,signallingproteins,stressresponse and detoxification enzymes, and nutrient transporters.A subset of transcripts encodes for small secreted proteins,representing putative effectors, including the well-characterisedavirulence gene Nip1. R. commune genome and interactiontranscriptome sequencing provided further information about theextentofgenefamilies,aswellasasubsetofgenesexpressedatthe onset ofR. commune colonization of barley. Comparison ofgenome sequences from strains with different race specificitieswillallowrapidpredictionofcandidateeffectors,includingthoseless variable inR. commune populations.R. commune potentialpathogenicitydeterminantswillbeprioritisedforfurtherfunctionalanalysisbasedontheirexpressionprofiles.

CS20-6IdentifyingeffectorproteinsintwofungalpathogensofBrassica napusRohanG.T. Lowe1,Anglea P.Van deWouw1,AndrewCassin1,BarbaraHowlett11The School of Botany, University of Melbourne, Melbourne,Australiarohan.lowe@unimelb.edu.auEffectorsaresmallsecretedproteins(SSPs)producedbypathogensto modify or subvert defence responses of the host organism.Leptosphaeria maculans, a fungal pathogen of Brassica napus(canola),has650genespredictedtoencodesmallsecretedproteins(SSPs),andarepotentialeffectors.ThecloserelativeL. biglobosaalso infects Brassicas but has different symptomology, causingdamagingstemcankersfarlessfrequently.Weaimtousethiskey

difference of L. biglobosa to dissect genomic requirements forstemcankerformation.ThegenomeofL. biglobosa“canadensis”has been sequenced by an Illumina method, and compared tothat of the published L. maculans reference genome. Comparedto L. maculans, L. biglobosa has a relatively compact genome(30 Mbp) and lacks AT-rich, gene-poor repeats, however, bothfungihaveasimilarnumberofpredictedSSPs.ONDEXnetworkanalysis identified SSP ortholog clusters and revealed that fewLeptosphaeriaSSPswerepresentinbothspecies.L. biglobosaSSPsspecifically expressed during pathogenesis have been identifiedbyRNAseqdeep sequencing.Over300Leptosphaeria genes arespecifically upregulated during growth in planta. Predicted SSPsaremore likely thannon-SSPs tohaveupregulatedexpression inplanta,contributing25%ofthetop100inplantaupregulatedgenesbut only6%of thepathogen’s gene content.Functional analysisof upregulated Leptosphaeria effectors is underway, includingexamples from the LysM chitin-binding family. L. maculanscontainsagenewithafourLysMdomainstructurethatisabsentin L. biglobosa, this conformation not been described in otherpathogenicfungi.

Page 56: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession21-Structuralbiology

54

Conc

urre

nt 2

1

CS21-1Chitin-induceddimerizationactivatesaplantimmunereceptorTingtingLiu1,ZixuLiu3,ChuangjunSong2,YunfeiHu5,ChangwenJin5,JunbiaoChang2,Jian-MinZhou5,JijieChai11TsinghuaUniversity,2ZhengzhouUniversity,3NanjingUniversity,4Institute of Genetics and Developmental Biology, ChineseAcademyofSciences,[email protected] recognition receptors (PRRs) confer plant resistanceto pathogen infection by recognizing the conserved pathogen-associatedmolecularpatterns(PAMPs).ThecellsurfacereceptorChitin Elicitor Receptor Kinase 1 of Arabidopsis (AtCERK1)directly binds chitin through its lysine motif (LysM)-containingectodomain(AtCERK1-ECD)toactivateimmuneresponses.Ourcrystal structure of anAtCERK1-ECD complexed with a chitinpentamer reveals that their interaction is primarily mediated byaLysMand threechitin residues.Byactingasabivalent ligand,a chitin octamer induces AtCERK1-ECD dimerization that isinhibited by shorter chitin oligomers. A mutation attenuatingchitin-inducedAtCERK1-ECDdimerizationorformationofnon-productive AtCERK1 dimer by overexpression of AtCERK1-ECD compromisesAtCERK1-mediated signaling in plant cells.Together,ourdatasupportthenotionthatchitin-inducedAtCERK1dimerizationiscriticalforitsactivation.

CS21-2StructuralbasisofdualRproteinsignallinginArabidopsisSimonJ.Williams1,LiWan1,ThomasVe1,MaudBernoux2,JeffreyG.Ellis2,PeterN.Dodds2,BostjanKobe1,31School ofChemistry andMolecularBiosciences andCentre forInfectiousDiseaseResearch,UniversityofQueensland,Brisbane,Queensland 4072, Australia, 2CSIRO Plant Industry, Canberra,AustralianCapitalTerritory2601,Australia,3InstituteforMolecularBioscience,UniversityofQueensland,Brisbane,Queensland4072,[email protected] plant’s ability to detect and resist the infection of a specificpathogen rests with two critical genes; a resistance (R) gene inthe plant and a corresponding avirulence (effector) gene in thepathogen.The proteins products ofR gene’s play a surveillancerole within the plant cell and stimulate defence signalling afterrecognition of a specific effector protein.Themost predominantclass of R genes encode tridomain proteins with a centralnucleotide-binding(NB)domain,aC-terminalleucinerichrepeat(LRR)andeitheraToll-interleukin1 receptor-like (TIR)domainor a coiled-coil (CC) domain at their N-terminus. Interestingly,resistancetosomepathogenisolatesrequiretwoNB-LRRproteins.An explicit example of this is presented in Arabidopsis wheretheTIR-NB-LRRproteinsRPS4andRRS1arebothrequiredforresistance to three different pathogens. We have demonstratedthat the TIR domain of RPS4 and RRS1 can form a direct andspecificinteractionin vitro,implicatingarolefortheTIRdomainsin coordinating dual resistance. In addition, we report crystalstructuresofboththeRRS1andRPS4TIRdomains,individuallyand inaheterodimercomplex.Theheterodimerstructure revealsthe interface thatmediates the interactionbetween theRPS4andRRS1TIRdomains.Wearecurrentlyinvestigatingmutationsthatdisruptthisinteractionandsurveyinganyfunctionalaffectsinaneffort to understand the molecular basis of R protein mediatedresistancesignalling.

CS21-3Crystal structure and interaction with host factors of thesuperfamily1helicasefromTomato mosaic virusEtsuko Katoh1, Masaki Nishikiori1, Shigeru Sugiyama2, HongyuXiang1,MayumiNiiyama2,KazuhiroIshibashi1,Tsuyoshi Inoue2,HiroyoshiMatsumura2,MasayukiIshikawa11NationalInstituteofAgrobiologicalSciences,[email protected] plant positive-strand RNA viruses encode superfamily 1(SF1)helicasedomains.AlthoughhelicasedomainsplayessentialrolesinviralRNAreplicationandotherprocesses,crystalstructuresofviralSF1helicaseshavenotbeendetermined.Herein,wereportthe crystal structure of a fragment encompassing the helicasedomain of the replication protein from Tomato mosaic virus(ToMV-Hel). The structure reveals a novel N-terminal domaintightlyassociatedwithahelicasecore.ThehelicasecorecontainstwoRecA-likeα/βdomainswithoutanyoftheaccessorydomaininsertions.TheN-terminaldomaincontainsaflexibleloop,alongα-helix, and an anti-parallel six-stranded β-sheet. Prediction ofsecondarystructuresinotherviralSF1helicasesandcomparisonofthosestructureswiththeToMV-HelstructuresuggestedthatmanyviralSF1helicaseshaveasimilarfold.Onthebasisofthestructure,weconstructeddeletionmutantsofToMV-Helandperformedsplit-ubiquitin-based interaction assays in yeast to map which regioninteracts with TOM1 andARL8, host proteins that are essentialfor tomatomosaic virus RNA replication. The results suggestedthat bothTOM1 andARL8 interactwith the long α-helix in theN-terminaldomain,andthatTOM1alsointeractswiththehelicasecore.Furthermore,locationofpreviouslycharacterizedmutationsinthehelicasedomainsoftobamoviruseswillbealsodiscussed.

CS21-4Structure-ledstudiesofoomyceteRXLReffectors:aconservedproteinfoldandnewhosttargetsStuartR.F.King1,LaurenceS.Boutemy1,RichardK.Hughes1,JoeWin2,SophienKamoun2,MarkJ.Banfield11Dept. of Biological Chemistry, John Innes Centre, NorwichResearch Park, Norwich, NR4 7UH, UK, 2The SainsburyLaboratory,NorwichResearchPark,Norwich,NR47UH,[email protected] the absence of significant sequence conservation, structuralbiology offers unique opportunities to discover functional andevolutionary relationships in proteins.Oomycete phytopathogensincludingPhytophthora andHyaloperonospora encode hundredsof modular effector proteins that are predicted to suppress hostdefence mechanisms and manipulate other cellular processes.Theseeffectorscanalsoberecognizedbyhostresistanceproteins,triggeringacelldeathresponse.MostRXLR-typeeffectorsdonotshare significant sequence homologywith other proteinsmakingthe functional annotation of virulence activities, the definingof evolutionary relationships and a molecular understanding ofeffector-triggered immunity a significant challenge. We havedeterminedthestructuresof threePhytophthoraRXLReffectors,AVR3a11,PexRD2andPexRD16,whichareunrelatedinprimaryamino acid sequence. We discovered unexpected similarities inthe folds of these proteins that suggest a common evolutionaryorigin.Intriguingly,thisfoldisalsofoundintheHyaloperonosporaRXLReffectorATR1.Wehaveusedbioinformaticstopredictthisdomain iswidelyconserved inphytopathogenicRXLReffectors.We propose that this protein fold may act as a stable scaffold,supporting functional diversification of effectors to developand maintain new virulence activities, but also evade the plantimmunesystem.Recently,wehaveusedY2Hstudies to identifyplant host signaling proteins that interact with PexRD2. Usingcombinedbiochemical,structuralandin plantaapproachesweareinvestigatingtheroleofthesehostproteinsinplantcellphysiology.WearealsoexploitingourstructureofPexRD2todeterminehowtheeffectormightmanipulatetheactivityofthesehostcelltargets.

Page 57: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ConcurrentSession21-Structuralbiology

55

Concurrent 21

CS21-5Structuralanalysisoftheflax-rusteffectorAvrMThomasVe1,SimonWilliams1,JeffreyG.Ellis2,PeterN.Dodds2,PeterA.Anderson3,BostjanKobe1,41SchoolofChemistryandMolecularBiosciences,andCentre forInfectiousDiseaseResearch,UniversityofQueensland,Australia,2CSIROPlantIndustry,Canberra,AustralianCapitalTerritory2601,Australia,3TheSchoolofBiologicalSciences,FlindersUniversity,Adelaide,Australia,4InstituteforMolecularBioscience(DivisionofChemistryandStructuralBiology),UniversityofQueensland,Australiat.ve@uq.edu.auPlantimmunityisusuallytriggeredbytherecognitionofapathogeneffector protein by a plant resistance protein, leading to theactivationofplantdefenses,whichoftenculminateinalocalizedcell death response. The R proteins can be divided into a fewconservedfamilies,whiletheeffectorsarediverseinbothsequenceand structure, and have roles in virulence and basal immunesuppression.TheflaxrusteffectorAvrMisasecretedproteinthatis recognized by theM resistance protein in flax.AvrM is ableto internalizeintoplantcells in theabsenceof thepathogen,andinteractsdirectlywiththeMproteininsidetheplantcell.AvrMhasnosignificantsequencesimilarity toproteinsofknownstructure,and its virulence functions andcellular targets areunknown.Wehave determined crystal structures of two different variants ofAvrM. One of these variantsAvrM-A, is recognized by the Mresistanceprotein,whilethesecondvariantavrM,isnotdetectedbyMandpromotesdisease.BothstructureshaveanovelL-shapedhelicalfoldandformadimerwithanunusualnon-globularshape.AnalysisoftheN-terminalregionimportantforcellentryrevealedthatseveralconservedhydrophobicresiduesareclusteredtogetherandsurfaceexposed,andmaybeinvolvedinmediatinguptakeofAvrMintotheplantcell.Furthermore,comparisonoftheavrMandAvrM-Astructures,andanalysisofpolymorphicresiduescombinedwithrecentinteractionstudiessuggestthatadistinctsurfaceregioninAvrMmediatesdetectionbytheMresistanceprotein.

CS21-6Protease-inhibitorarms-racesinthetomatoapoplastAnja C. Hoerger1, Muhammad Ilyas1, Selva Kumari1, FarnuschKaschani1,Mohammed Shabab1,MatthewSmoker2,MatthieuH.A.J.Joosten3,LauraE.Rose4,SophienKamoun2,RenierA.L.vanderHoorn11Plant Chemetics lab, Max Planck Institute for Plant BreedingResearch, Cologne, Germany, 2Sainsbury laboratory, John InnesCentre, Norwich, United Kingdom, 3Phytopathology laboratory,WageningenUniversity,Wageningen,TheNetherlands, 4Institutefor Population Genetics, Heinrich Heine University, Dusseldorf,[email protected] immune response of tomato includes the production andsecretionofseveralcysteineproteases(e.g.RCR3,PIP1andC14)into the extracellular space, creating a proteolytic apoplast that ispresumablyharmfulforcolonizingpathogens.Tomatopathogensaresecretinginhibitorsthatsuppresstheactivitiesofthesehostproteasesduringinfection.ThefungalpathogenCladosporium fulvumsecretesAVR2, which inhibits PIP1 and RCR3 whereas the oomycetepathogenPhytophthora infestans secretes cystatin-likeEPIC1 andEPIC2B, which inhibit RCR3, PIP1 and C14. RCR3 mediatesAVR2recognitioninplantscarryingtheCf-2resistancegene.IntheabsenceofCf-2, lackofRCR3doesnot affectC. fulvum growth,whereasPIP1 silencing causes hypersusceptibility, indicating thatPIP1istheoperativetargetofAVR2andRCR3isadecoy.RCR3isunderdiversifyingselection inwild tomato, resulting invariantresiduesonthesurfaceoftheprotease.Thesevariantresiduesaffectdifferentprotease-inhibitorinteractions:oneresiduepreventsAVR2inhibition,whereasthreeothersaffectEPICinhibition.Othervariantresiduesaffect thestrengthofHR.Thesestudiesreveala relevantongoingmoleculararms-raceinthetomatoapoplast.

Page 58: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

56

Page 59: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

ABSTRACTS

Poster Sessions

57

Page 60: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession01-RecognitionandsignalingI/II

58

Post

er 0

1

PS01-001Defence signaling triggered by flg22 and Harpin diverge atstilbenicbiosynthesisinVitiscellsXiaoliChang1,PeterNick11BotanicalInstitute,KarlsruheInstituteofTechnology,Karlsruhe,Germanyxl.changkit@hotmail.comPlantscanactivedefencetopathogenattackbytwolayersofinnateimmunity:pathogen-associatedmolecularpattern(PAMP)triggeredimmunity(PTI),oreffector-triggeredimmunity(ETI),whichoftenculminates in hypersensitive cell death. ETI can be triggered bythe bacterial effectorHarpin in suspension cells of the pathogenresistant grapeVitis rupestris, in contrast to the susceptibleVitis viniferacultivarPinotNoir.PTIcanbeactivatedbythebacterialPAMPflg22inbothcell lines.Toget insight intothetwomodesdefencesignaling,wecomparedbothlinesaftertreatmentwithflg22orHarpin.Wefoundthatextracellularalkalinisationwasblockedbyinhibitionofcalciuminflux,andmodulatedbypharmacologicalmanipulation of the cytoskeleton and mitogen-activated proteinkinaseactivitywithquantitativedifferencesbetweencelllinesandtypeof elicitor. In addition, anoxidativeburstwasdetected thatwasmuchstrongerandfaster inresponsetoHarpinascomparedtoflg22.InV. rupestris,bothflg22andHarpininducedtranscriptsofdefence-relatedgenesincludingstilbene synthase,microtubuledisintegrationandactinbundlinginasimilarwayinV. rupestris,butdifferentlyincv.PinotNoir.IncontrasttoHarpin,flg22failedto triggersignificant levelsof thestilbene trans-resveratrol,evenin the highly responsiveV. rupestris.We discuss these data in amodel,wherePAMPflg22-andeffectorHarpin-triggereddefenceresponsesoverlap in theirearlysignaling,butdivergeat stilbenebiosynthesis,leadingtoaqualitativelydifferentfinalresponse.

PS01-002Is Peptidoglycan recognized in plants via a LysM-proteinreceptorcomplex?YoshitakeDesaki1,RolandWillmann1,HeiniM.Grabherr1,DagmarKolb1,AndreaA.Gust1,ThorstenNuernberger11Center for Plant Molecular Biology, Department of PlantBiochemistry,UniversityofTuebingen,Tuebingen,[email protected](microbe-associatedmolecularpattern)recognitionsystemsplayakeyroleintheplantinnateimmunity.Peptidoglycans(PGN),whichareoneofthemajorcomponentsofbacterialcellwalls,aretypicalMAMPs inducing innate immune responses in themodelplant Arabidopsis thaliana (1). To identify the correspondingPGN pattern recognition receptor(s) in Arabidopsis we focusedon the LysM domain proteins that have been widely implicatedin the recognition of GlcNAc-containing glycans. For example,lipochitooligosaccharideNod-factorsandchitinarerecognizedbytheLysMdomaincontainreceptors,NFR1/5andCEBiP/CERK1,respectively. We recently identified three Arabidopsis LysMdomain receptor-like proteins, LYM1, LYM3 and CERK1, thatare involved in thePGNperception (2).The plasmamembrane-tetheredproteinsLYM1/LYM3physicallybind toPGN,whereasCERK1 does not but is likely required for signal transmissionacross the plasma membrane. This system is analogous toOsCEBiP/OsCERK1-mediated chitin perception and immuneactivation in rice.OsCEBiP andOsCERK1directly interact in aligand-dependend manner (3).We are now analyzing if LYM1/LYM3 andCERK1 also physically interact to form a functionalPGN-recognition complex in vitro (yeast-two-hybrid system,far western analysis) and in vivo (co-immunoprecipitation).(1)Gust,AA.etal.,JBC,282,32338(2007);(2)Willmann,R.etal.,PNAS,108,19824(2011); (3)Shimizu,T.etal.,PlantJ,64,204(2010).

PS01-003The role of antisense transcription in the quorum sensingregulationinPectobacterium atrosepticumSCRI1043Yuri V. Gogolev1, Vladimir Y. Gorshkov1, Lubov V. Shlykova1,NataliaE.Gogoleva11KazanInstituteofBiochemistryandBiophysics,RussianAcademyofSciences,Kazan,Russiagogolev.yuri@gmail.comThetranscriptomeprofileofbacteriacanbeextremelycomplex.InadditiontomRNAs,rRNAs,tRNAsandregulatorysmallRNAs,asignificantamountofcis-encodedantisensetranscriptshavebeenrevealed. Someof them can be produced due to transcription oftheoverlappinggenestowardseachother.Althoughtheportionofsuchconvergentlytranscribedgenesinbacterialgenomesreachesmorethan10%,thephysiologicalroleofthisphenomenonremainsunclear. In several species such asPectobacterium atrosepticum(Pba),Pseudomonas syringae,Serratia marcescens andPantoea stewartii, quorum sensing-related genes which encode LuxI andLuxR homologues are convergently transcribed and two openreading frames partially overlap. In Pba expI gene encodes thesynthase of quorum sensing pheromone acylhomoserine lacton(AHL)andexpRgeneencodesAHLsensor.ToelucidatewhetherthetopologyofthesegeneshasaregulatoryrolewetransferredtheexpI-expR loci fromPba intoEscherichia coli.Bothgeneswereplaced under inducible promoters. Additionally, expR sequencewas modified to prevent protein synthesis. The obtained modelallowed us to assess the effect of synthesis of expR transcriptson the expression of the expI gene. Our data demonstrated thatdependingontheleveloftranscriptionalactivityexpRactsaseitherweakactivatororstrongrepressorofAHLproduction.FurthermorewedeterminedthatrelativeabundanceofexpIandexpRmRNAsand their antisenseRNAs in thePba cells exhibited dependenceongrowthconditions.Theobtaineddatademonstratethat inPbaantisensetranscriptionisinvolvedtothequorumsensingregulation.

PS01-004Revealing mechanisms underlying conservedMLA-mediatedimmunityinmonocotsanddicotsbyinterfamilygenetransferTakakiMaekawa1,FlorenceJacob1,SaskiaVernaldi1,PaulSchulze-Lefert11Max Planck Institute for Plant Breeding Research, Cologne,[email protected] plants and animals, the NLR family perceives non-self andmodified-self molecules inside cells and mediates immuneresponsestopathogens.Immunitymediatedbythisreceptorclassisbelievedtobespecies-specificandithasbeensuggestedthatthefunctionisrestrictedtocloselyrelatedplants.Theplantkingdomcanbedividedintomonocotsanddicots,whichwereseparatedbyevolution~150millionyearsago.ItisthussurprisingthataNLRreceptor(MLA)frommonocotyledonousbarleyisfullyfunctionalin dicotyledonous Arabidopsis thaliana. We introduced MLAgene constructs in a partially immunocompromised A. thalianabackground, because wild-type Arabidopsis is resistant to thebarley powderymildew fungus,Blumeria graminis f. sp.hordei(Bgh). Reminiscent of the MLA-triggered immune response inbarley,immunityagainstBghinMLA-expressingstabletransgenicArabidopsis plants is specifically detected upon challenge withanavirulentBghstrain.This immuneresponseisassociatedwithahostcelldeathresponseat theinfectionsiteas inbarley.Thus,MLA-mediated immunity inArabidopsis toBgh is an authenticstrain-specificresistanceresponse.Thesedataimplythatmonocotsanddicots,despitetheirlongevolutionaryseparation,stillfollowacommonprincipleofimmunemechanism.Recentlyweidentifieda minimal signaling module of the MLA receptor and resolvedits crystal structure.We utilize this information to elucidate thesignalinitiationandtransductionthroughthismodule.Wepresentgenetic andmolecular data underlyingMLA-mediated immunityinArabidopsisandcomparethesewithMLAactivityinbarleyto

Page 61: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession01-RecognitionandsignalingI/II

59

Poster 01

identifyconservedreceptortargetsandsignalingpathwaysacrossplantlinages.

PS01-005AnalysisoftheDefensomecomplexinriceinnateimmunitySatoshiHamada1,MasayukiFujiwara1,KoShimamoto11NaraInstituteofScienceandTechnology,Ikoma,Nara,[email protected],asmallGTPase inrice,playscriticalrolesinreactiveoxygenspeciesproduction,defensegeneactivationandinitiationofcelldeathduringdefenseresponses.Recently,wehavetriedtoisolateOsRac1-interactingproteinsbyvariousmethods.Ourcurrenteffortsrevealedthesignalingnetworkof OsRac1, named the Defensome network, which is composedof immune receptors, molecular chaperones, scaffold proteins,OsRac1 and OsRac1 effectors. Here, gel filtration experimentsshowedthatOsRac1formedtwodifferentsizesofcomplex,alow(30-60kDa)andahigh(200-400kDa)molecularweightOsRac1complexes.WenamedthehighmolecularweightOsRac1complexthe “Defensome complex” and investigated its component anddynamicsofformation.WefoundthattheDefensomecomplexiscomposedofHSP90,HSP70,themolecularchaperoneHop/Sti1a,thechitinreceptorOsCERK1,andtheRproteinPit.Interestingly,co-immunoprecipitationexperimentsrevealedthatOsCERK1andPitarenotpresenttogetherintheDefensomecomplex.TheseresultssuggestthattheDefensomecomplexformstwotypesofcomplex:oneistheMTI-DefensomecomplexcontainingaMAMPreceptorlike OsCERK1 and the other is the ETI-Defensome complexcontaininganRproteinlikePit.Thus,Defensomecomplexesworkaskeyregulatorsinriceinnateimmunity.

PS01-006Disruption of sphingolipid biosynthesis in Nicotiana benthamiana activates salicylic acid-dependent responses andcompromisesresistancetoAlternaria alternata f. sp. lycopersiciJavierPlasencia1,MarianaRivas-SanVicente1,GuadalupeLarios-Zarate11Dept. Bioquimica, Facultad de Quimica, Universidad [email protected] play an important role in signal transductionpathwaysthatregulatephysiologicalfunctionsandstressresponsesin eukaryotes. Inplants, sphingolipids are important componentsinthedefenseresponseagainstbacterialandfungalpathogens.Infact, thevirulenceoftwounrelatednecrotrophicfungi,Fusarium verticillioides and Alternaria alternata which are pathogens ofmaizeandtomatoplants,respectively,dependsontheproductionof sphinganine analog mycotoxins (SAM). These metabolitesinhibitde novo synthesisof sphingolipids in theirhosts to causeaccumulationoflong-chainbases(LCB)whicharekeyregulatorsof programmed cell death (PCD). To gain more insight intothe function of sphingolipids in plant immunity, we disruptedsphingolipid metabolism in Nicotiana benthamiana throughthe silencing of the serine palmitoyltransfersase (SPT), whichcatalyzesthefirstreactioninLCBsynthesis.EfficientsilencingofSPTwas achieved and it profoundly affected plant developmentas it caused growth reduction and morphological changes inleaves and flowers. It also altered sphingolipid composition, asthe total levelsofphytosphingosinedecreasedwhile sphinganineand sphingosine levels increased, compared with control plants.Moreover,SPT-silencingcompromisedN. benthamianaresistanceagainstA. alternata,whichwas associatedwith accumulationofsalicylicacid(SA)andconstitutiveexpressionoftheSA-inducedNbPR-1gene.ExogenoussphinganineandfumonisinB1,aSAMproducedbyF. verticillioides,alsoup-regulatedPR-1expressioninN. benthamianawild-typeseedlings.Ourresultsstronglysuggestthat LCB are novel modulators of the SA-dependent responsesand provide a workingmodel on the potential role of SAMs indisruptingtheplanthostresponse.

PS01-007Reductionofsphingolipid2-hydroxyfattyacidshasanimpactondefenseresponsethroughdecreaseofmembraneraftsinriceMinoru Nagano1, Toshiki Ishikawa2, Maki Kawai-Yamada2, KoShimamoto11GraduateschoolofBiologicalScience,NaraInstituteofScienceandTechnology,Nara,Japan,2GraduateschoolofEnvironmentalScience and Human Engineering, Saitama University, Saitama,[email protected] have highly and sophisticated innate immunity systemto defend themselves against a variety of biotic stresses. It hasbeen reported that several proteins including some receptor-likekinasesorOsRac1,oneofthesmallGTPaseswhichisimportantin rice innate immunity, may exist on microdomains in plasmamembrane (PM), or membrane rafts.Membrane rafts are small,heterogeneous,highlydynamic,sterol-andsphingolipid-enricheddomains, and help protein-protein and protein-lipid interactionstoactivatecellularreactionssuchasdefenseresponses.However,it remainsunclearwhethermembraneraftsaffect themechanismofplantinnateimmunity,andifso,howmembraneraftsregulatedefense responses.Then,we tried to investigate the relationshipbetween rafts and rice innate immunity bymodifying2-hydroxyfatty acidsof sphingolipids that are reported to contribute to theraftformationin vitro.Therearetwogenesencodingsphingolipidfattyacid2-hydroxylase (OsFAH1andOsFAH2) in rice,andweestablishedknock-downlines(OsFAH-KD)bytheRNAisystem.GC-MSanalysisshowedthat2-hydroxyfattyacidsofsphingolipidswere substantially reduced inOsFAH-KD. In addition, phase ofPM was disordered in OsFAH-KD when membrane order wasvisualizedin vivo,implyingthatsphingolipid2-hydroxyfattyacidservesasamainfactorthatcomposesraftsinplantcells.Moreover,theexpressionofdefense-relatedgenes,suchasPAL1andPBZ1,were abnormal in the treatment of chitin elicitor inOsFAH-KD.Theseresultssuggestthatreductionofmembraneraftsbydeletionofsphingolipid2-hydroxyfattyacidsaffectsthemechanismofriceinnateimmunity.

PS01-008A MACPF protein is required for cell death regulation inbiosynthesisofantifungalcompoundsinArabidopsisSatoshi Fukunaga1, Miho Sogame1, Mariko Onozawa Komori1,Hiromasa Saitoh2, Ryohei Terauchi2, Tetsuro Okuno1, YoshitakaTakano11Laboratory of Plant Pathology, Graduate School ofAgricultute,Kyoto University, kyoto, Japan, 2Iwate Biotechnology ResearchCenter,Kitakami,Iwate,[email protected] thaliana exhibits durable resistance, called nonhostresistance, against non-adapted Colletotrichum species thatare the causal agents of anthracnose disease. We previouslyisolatedArabidopsis lic1mutants (lesion induced by nonadaptedColletotrichum).Thelic1-mediatedcelldeathwasnotaccompaniedbyinvasionofnon-adaptedColletotrichumspecies,suggestingthatLIC1 is involved in cell death regulation in nonhost resistance.Positional cloning ofLIC1 revealed thatLIC1 is allelic toNSL1encodingaproteinwithaMACPFdomain.Incontrasttothelic1mutants,thensl1mutants,taggedbyDstransposon,isdwarfwithspottednecroticlesionsintheabsenceofpathogen.PEN2encodesamyrosinaseinvolvedinglucosinolatemetabolismforantifungaldefense. Surprisingly, the pen2 mutation suppressed the lic1phenotype,suggestingalinkbetweenPEN2-mediatedantimicrobialresponse and LIC1/NSL1. In contrast, the pad3 mutation onlyhasslight suppressioneffectson the lic1phenotype.MammalianMACPF proteins are involved in pore-formation on plasmamembranesoftargetcellsinimmuneresponses.ExpressionofGFP-LIC1suggested thatLIC1is targeted toplantplasmamembrane.These findings suggested a possible involvement of LIC1/NSL1in export of the PEN2-related metabolites. Consistently, genetic

Page 62: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession01-RecognitionandsignalingI/II

60

Post

er 0

1

inactivationofthePEN3ABCtransporter,involvedintheexportofthePEN2-relatedmetabolites,enhancedthelic1phenotype.Itwasreported thatflg22-triggeredcallose formationdependsonPEN2and PEN3, suggesting the requirement of the PEN3-dependentexportation.Incontrast,flg22inducedcallosedepositioninthelic1mutants,suggestingthatLIC1/NSL1isnotessentialfortheexportofthePEN2-relatedmetabolitesintheflg22treatment.

PS01-009FMO1andALD1mediateacommonNPR1-dependentandSA-independentdefencesignalAndreaLenk1,CarstenPedersen1,HansThordal-Christensen11DepartmentofSciences,UniversityofCopenhagen,Frederiksberg,[email protected] syp122exhibitsmultiple activateddefence signallingpathways in the absenceofpathogens.Inaprevioussuppressormutantscreen,ALD1(AGD2-LIKEDEFENSERESPONSEPROTEIN)andFMO1 (FLAVIN-DEPENDENTMONOOXYGENASE1)werediscovered toplayimportantrolesindefencerelatedlesionformationandplantgrowthretardation(1).FMO1andALD1havepreviouslybeendemonstratedtohaveimportantrolesinpathogendefence.Althoughitisknownthat FMO proteins catalyse the transfer of hydroxyl groups tonucleophilic heteroatom-containing substrates such as sulphur,nitrogen, selenium, or iodine, the specific substrate and productof FMO1 remain unidentified. Furthermore, FMOs can changethecellularredoxstatethroughtheproductionofreactiveoxygenspecies.ALD1issuggestedtohaveaminotransferaseactivity,andcouldbeinvolvedinlysinedegradation.Inthepresentstudy,rosetteleave size analysis of triple, quadruple and quintuplemutants inthepen1 syp122backgroundsuggeststhatALD1andFMO1actonthesamedefencesignallingpathway,whichisindependentofSA-signalling,butdependentontheSA-downstreamcomponent,NPR1.(1) Zhang Z, LenkA,Andersson MX, Gjetting T, Pedersen C,NielsenME,NewmanM-A,HouB-H, Somerville SC,Thordal-Christensen H (2008). A lesion-mimic syntaxin double mutantin Arabidopsis reveals novel complexity of pathogen defensesignalling.Molecular Plant1,510-527.

PS01-010DevelopmentofRaichuFRETsensorstomonitortheimmuneresponsesinArabidopsis thalianaMasayukiHiguchi1,KoShimamoto11GraduateSchoolofBiologicalSciences,NaraInstituteofScienceandTechnology,Nara,[email protected] have a unique subfamily of Rho-family GTPases, calledRops(Rho-relatedGTPasefromplants)orRacs.Rac/Ropfamilymembers have been found in most all studied species. Recentstudies have implicated Rac/Rop signaling in diverse processesranging from cytoskeletal organization to hormone and immuneresponses and their cellular targets are predominantly the actincytoskeleton, cytosolic Ca2+ concentration and reactive oxygenspecies (ROS) production. Raichu (Ras and interacting proteinchimericunit)sensorwasdevelopedtomonitorthelocalactivityof Rho family GTPase.We have previously developed Raichu-OsRac1 for monitoring OsRac1 activation in rice. This sensoris based on fluorescence resonance energy transfer (FRET) andconsists of OsRac1, the Cdc42/Rac interactive binding (CRIB)motif,YFPandCFP.UponactivationofOsRac1, thebinding toCRIB increases the efficiency of FRET between CFP andYFP.Raichu-OsRac1enables imagingandquantificationof thespatio-temporalactivationofOsRac1inlivecells.UsingRaichu-OsRac1sensor, we demonstrated that OsRac1 is activated by MAMPs(Microbe-AssociatedMolecular Patterns) and R proteins in riceprotoplasts.TheseresultsshowedadecisiveroleofRopsinplantdiseaseresistance.However,mostofthesestudieshavebeenonlyconducted in rice. Here, to reveal the function of Arabidopsis

ROPs (AtROPs) in immune responses, we developed Raichu-AtROPs,whicharederivedfromRaichu-Rab5andappliedtostudyactivationofAtROPsinimmuneresponses.WeshowthatAtROPsactearlyinchitinsignalingpathwayofArabidopsis thaliana.

PS01-011NbMIP1, a J-domain Protein, is required for both Tobacco mosaic virusinfectionandplantdiseaseresistanceYumeiDu1,JinpingZhao1,HailiZhang1,TianyuanChen1,[email protected] isaCC-NBS-LRRresistancegeneandconfers thedurableandextremeresistanceagainstTomato mosaic virus (ToMV)andTobacco mosaic virus(TMV)byrecognizingthepresenceofviralmovement protein (MP). Here we report that NbMIP1, a novelJ-domainprotein,associateswithbothTMVMPandTm22invitroand in vivo. Suppression ofNbMIP1 inN. benthamiana plantssuggeststhatithasaroleinplantdevelopment.Further,silencingofNbMIP1inN. benthamianaplantsreducestheTMVcell-to-cellmovement. In addition,NbMIP1 suppression inTm22-containingplantscompromisesTm22-mediatedresistancetoToMVandTMV.WefoundthatsilencingofNbMIP1reducesthesteady-stateproteinlevelsofTMVMPandTm22.TheseresultssuggestthatNbMIP1isrequirednotonlyforvirusinfectionbutalsoforTm22-mediatedvirusresistancebymaintainingthesteady-statelevelsofproteins.

PS01-012TheMagnaporthe oryzae effectorsAvrCO39 andAvr-Pia arerecognizedbythericeNucleotideBinding-Leucinerichrepeat(NB-LRR)proteinRGA5throughdirectinteractionStella Cesari1, Imene Abidi1, Veronique Chalvon1, Jean-BenoitMorel1,RyoheiTerauchi2,ThomasKroj11INRA, Laboratory of Biology and Genetics of Plant-PathogenInteraction, 2Iwate Biotechnology Research Center, Kitakami,Iwate024-0003,[email protected] immunity strongly relies on direct or indirect recognitionof pathogen effectors by plant resistance (R) proteins. Thisrecognition activates disease-resistance signaling pathwaysleading to the inhibition of pathogen growth and the inductionof a localized programmed cell death called the hypersensitiveresponse (HR). To gain a better understanding of themolecularmechanisms governing effector recognition in plants, we studytwotranslocatedeffectorsfromthericeblastfungusMagnaporthe oryzae:Avr-PiaandAvrCO39.Ourworkshowsthatbothsequence-unrelatedeffectorsarerecognizedbythesameduoofriceNB-LRRproteins, RGA4 andRGA5.RGA4 andRGA5 genes are locatednexttoeachotheronricechromosome11andarebothnecessaryto confer resistance toM. oryzae strains expressing eitherAvr-PiaorAvrCO39. Interestingly,RGA5 transcriptsarealternativelyspliced leading to the production of two protein variants termedRGA5-A and RGA5-B.Yeast two hybrid analysis revealed thatAvr-Pia physically and specifically interactswithRGA5-A via asmallRGA5-A specificdomainwhereasAvrCO39 interactswithRGA5-BviaanothersmallRGA5-Bspecificdomain.Thissuggeststhat RGA5-A and RGA5-B act as receptors mediating specificrecognitionof theeffectorsbydirectbindingwhileRGA4mightact as a signaling component activating downstream resistancepathways. Furthermore, these results indicate that alternativesplicingmightbeamechanismcontributing to theevolutionanddiversificationofplantR-generepertoires.RecentadvanceintheinvestigationofRGA5-Aand-Brecognitionspecificitiesandinthevalidationoftheobservedinteractionswillbepresented.

Page 63: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession01-RecognitionandsignalingI/II

61

Poster 01

PS01-013Lipid modification of the NB-LRR-type R protein Pit isrequired for its localization to the plasma membrane andimmuneresponsesYoji Kawano1, AkiraAkamatsu1, Ai Yao1, Yusuke Housen1, KoShimamoto11LaboratoryofPlantMolecularGenetics,NaraInstituteofScienceandTechnology,Nara,Japany-kawano@bs.naist.jpThenucleotide-bindingdomainandleucine-richrepeat(NB-LRR)-containingfamilyproteinsfunctionasintracellularimmunesensorsin both plants and animals. NB-LRR family proteins recognizepathogen-derived molecules directly or indirectly and trigger avarietyofimmuneresponses.Inplants,themoleculesactivatedbyNB-LRRfamilyproteinsandthemechanismofimmuneresponseinductionbythesedownstreammoleculesarelargelyunknown.WehaverecentlyfoundthatthesmallGTPaseOsRac1isactivatedbyPit,anNB-LRR-typeRprotein,andthisactivationplaysacriticalrole in R protein-mediated immunity in rice.However, the sitesandmechanismofPitactivationinvivoarelargelyunknown.Toelucidate themechanisms involved in the localization of Pit,wesearchedconsensussequencesinPitformembranelocalizationandfound1potentialpalmitoylationsite.Wild-typePitwaslocalizedmainlyontheplasmamembrane,andthismembranelocalizationwas compromised in the palmitoylation-deficient mutant of theprotein.TheactiveformofPitinducedahypersensitiveresponseandreactiveoxygenspeciesproduction,whereasthepalmitoylation-deficientPitfailedtoinducebothresponses.Theinteractionofthepalmitoylation-deficientPitwithOsRac1ontheplasmamembranewassignificantlylowerthanthatofwild-typePit.Furthermore,invivoForsterresonanceenergytransferexperimentsindicatedthatthe active form of Pit induced the activation of OsRac1 on theplasmamembrane.TheseresultssuggestthatpalmitoylationofPitisimportantforitslocalizationandinteractionwithOsRac1ontheplasmamembraneandmayplayanessentialroleintheactivationofOsRac1.

PS01-014Plant immunereceptors:whatare thefirst steps that triggerdefencesignalling?MaudBernoux1,SimonWilliams2,JeffreyG.Ellis1,BostjanKobe2,PeterN.Dodds11CSIRO,PlantIndustry,Canberra,Australia,2SchoolofChemistryand Molecular Biociences, University of Queensland, Brisbane,Australiamaud.bernoux@csiro.auPlantdiseaseresistancecanbetriggeredbyspecificrecognitionofmicrobialeffectorsbyplantnucleotidebindingleucinerichrepeat(NB-LRR) receptors.However, themechanisms controllingNB-LRRsactivationandsignallingarepoorlyunderstood.Inflax,theL6 protein is aToll/interleukin-1 receptor (TIR) containingNB-LRRwhichconfersresistancetotheflaxrustfungus(Melampsora lini) containing theAvrL567 effector. Using a structure-functionanalysisapproach,wepreviouslydemonstratedthatL6activationdependsonthedimerizationofitssignallingTIRdomain(Bernouxet al., 2011). To further define the L6 activation model, twoquestionshavebeen investigated: i)howL6activity is regulatedbeforepathogenperceptionandii)where/howtheearlysignallingstepsfollowingL6TIRdimerizationaretriggered.i)Intheabsenceof a pathogen ligand, NB-LRRs have to be kept in an inactivestatetoavoidinappropriatedefenceactivationandcelldeath.Byusingstructure-guidedmutagenesisandLallelecomparisons,weidentifytworegionsinL6thatmaybeinvolvedinintramolecularinteractions and control the inactive to active state equilibrium.ii)L6 is attached to theGolgimembrane through itsN-terminalsignal anchor (Takemoto et al, 2012).A subcellular localisationstudyoftheL6TIRsignallingdomainrevealedthatitsmembraneattachmentisrequiredtoinducedownstreamdefencesignalling.

PS01-015TheCERK1-RacGEF-OsRac1 pathway is involved in chitin-inducedimmunityinriceAkiraAkamatsu1,HannLingWong2,JunOkuda1,KeitaNishide1,KeikoImai1,3,YojiKawano1,NaotoShibuya4,TsutomuKawasaki1,KoShimamoto11Nara InstituteofScienceandTechnology,Nara, Japan, 2FacultyofScience,UniversitiTunkuAbdulRahman,Malaysia,3BiologicalLaboratory, Kansai Medical University, Japan, 4Department ofLifeSciences,MeijiUniversity,Japan,5DepartmentofAdvancedBioscience,KinkiUniversity,[email protected] plants, perception of microbe-associated molecular patterns(MAMPs) with receptor-like kinase triggers innate immuneresponses. Previous studies have shown that the small GTPaseOsRac1, belonging to the Rac/Rop GTPase family, is a keyregulatorintheMAMP-triggeredimmunity(MTI)pathwayinrice.However,thespatio-temporaldynamicsoftransmittingthesignaltotheOsRac1fromthereceptor-likekinasesduringtheMTIpathwayis unknown. Here we report that N-acetylchitooligosaccharide(chitin) elicitor, a MAMP derived from the rice blast fungus,inducedrapidOsRac1activationat theplasmamembraneofriceprotoplasts. We detected activation using Raichu-OsRac1, anintracellular Forster resonance energy transfer (FRET) biosensorthat facilitates the in vivo monitoring of OsRac1 activation byelicitors.Moreover,weidentifythataguaninenucleotideexchangefactor (GEF)againstOsRac1,whichwe termedOsRacGEF1,byyeast two-hybridscreening.It isestablishedthataclassofplant-specificRopGEFs promotes the activity ofRop/Rac through thecatalytic PRONE (Plant-specific Rop nucleotide exchanger)domain. Our data show that OsRacGEF1 activates OsRac1 byexchangingGDPforGTPinvivoandinvitro,andinteractswithOsRac1attheplasmamembrane.Inaddition,ourdataindicatethattheOsRacGEF1interactswiththereceptor-likekinaseOsCERK1,whichwasidentifiedasachitinreceptorhavingaLysMmotifinitstheextracellulardomain,andisphospholylatedbyintracellulardomainofOsCERK1.These results indicate that the recognitionof N-acetylchitooligosaccharide elicitor by OsCERK1 inducesOsRacGEF1 activation by phosphorylation, and activatedOsRacGEF1thenfacilitatesOsRac1activation,atanearlystepinriceinnateimmunity.

PS01-016TheGac-RsmandSadBsignaltransductionpathwaysconvergeonAlgU to repress flagellar synthesis in the rhizobacteriumPseudomonas fluorescensF113Francisco Martinez-Granero1, Ana Navazo1, Emma Barahona1,MiguelRedondo-Nieto1,RafaelRivilla1,MartaMartin11DepartamentodeBiologia,[email protected] mediated motility, an important trait for competitiverhizospherecolonizationandbiocontrolability,istightlyregulatedin Pseudomonas fluorescens F113. We have previously shownthat swimmingmotility is repressed independentlyby theGacA/GacS system and by SadB through downregulation of the fleQgene, encoding themaster regulator of the synthesis of flagellarcomponents.HereweshowthatbothregulatorypathwaysconvergeintheregulationoftranscriptionandpossiblytranslationofthealgUgene,whichencodesasigmafactor.AlgUisrequiredformultiplefunctions,includingtheexpressionoftheamrZgenewhichencodesatranscriptionalrepressoroffleQ.GacregulationofalgUoccursduringexponentialgrowthandisexertedthroughtheRNAbindingproteinsRsmAandRsmEbutnotRsmI.RNAimmunoprecipitationassayshaveshownthattheRsmAproteinbindstoapolycistronicmRNAencodingalgU,mucA,mucBandmucD,resultinginlowerlevelsofalgU.Weproposeamodelforrepressionofthesynthesisof the flagellar apparatus linking extracellular and intracellularsignallingwith the levels ofAlgU and a new physiological rolefortheGacsysteminthedownregulationofflagellabiosynthesis

Page 64: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession01-RecognitionandsignalingI/II

62

Post

er 0

1

duringexponentialgrowth.

PS01-017SUMO-mediated transcriptional reprogramming in plantstressandinnateimmuneresponsesHarrold A. van den Burg1, Valentin Hammoudi1, Magdalena J.Mazur1,GeorgiosVlachakis11MolecularPlantPathology,UniversityofAmsterdam,Amsterdam,[email protected] for an effective plant innate immune response is theabilityofaplanttorapidlyinducetranscriptionalreprogrammingin response to pathogen invasion. In non-infected plants thisdefense response is suppressed by the SUMO (small ubiquitin-like modifier) machinery including the SUMO E3 ligase SIZ1.Correspondingly,SUMOmutantsshowconstitutiveSA-dependentdefense activation. SUMO (small ubiquitin-like modifier) is aproteinmodificationthatmodulatestheactivityandtherecruitmentof chromatin-modifying enzymes and transcriptional co-adaptorstotranscriptionsites.Whilestressconditionsinducesumoylationofmanyproteinsincludingheatshockproteins,SUMOisdeconjugatedfromtranscriptionfactors.Weareusingtranscriptomicstorevealhow SUMO controls gene regulation in response to heat stressanddefensesignalinginthemodelplantArabidopsis thaliana.Inaddition,wearebuildingaSUMOproteinnetworkbasedonyeasttwo-hybridinteractions,in vitroSUMOylationassays,andSUMOproteomics. This should reveal SUMO-dependent transcriptionregulation hubs and the role of SUMO in stress and defensesignalingviathesehubs.Thisnetworkwillbealsousedtoexaminetheroleofthe“non-conserved”SUMOparalogs.

PS01-018The Arabidopsis endogenous elicitor/receptor Pep/PEPRpathwaylinksdifferentbranchesofplantimmunityAnnegretRoss1,KohjiYamada1,KeiHiruma1,3,MisuzuYamashita-Yamada1, Yoshitaka Takano3, Birgit Kemmerling2, ThorstenNuernberger2,YusukeSaijo11Department of Plant-Microbe Interactions, Max-Planck-Institute forPlantBreedingResearch,Cologne50829,Germany,2Department of Plant Biochemistry, Center for Plant MolecularBiology,UniversityofTuebingen,D-72076Tuebingen,Germany,3GraduateSchoolofAgriculture,KyotoUniversity,Kyoto,[email protected] ofmolecular structures typical of amicrobial class,designatedmicrobe-associatedmolecularpatterns(MAMPs),leadsto the so-called MAMP-triggered immunity (MTI) that restrictstheinvasionandgrowthofpathogenicmicrobes.MTIactivationisalsolinkedtoconfersystemicacquiredresistance(SAR).However,themechanismsthatcoupleMAMPrecognitiontorobustimmuneactivation remain poorly understood.The Arabidopsis Leu-richrepeat receptor kinases PEPR1 and PEPR2 recognize the Pep-epitopesofPROPEP1-PROPEP6,triggeringanimmuneresponsethatisreminiscentofMTI.OfthesixPROPEPgenes,PROPEP2andPROPEP3aremassivelyupregulateduponpathogen-derivedelicitors, suggesting a role of the Pep/PEPR pathway in theamplificationand/orspreadofdefensesignaling.However,howthePEPRpathwaycontributestohostimmunityremainselusive.HereweshowthatbasaldefenseagainsthemibiotrophicpathogensandSARarecompromisedinpepr1pepr2plants,providingevidenceforaroleofthissignalingsysteminplantimmunity.TogaininsightintotheunderlyingmechanismsforPep/PEPR-triggeredimmunity,weperformedgenome-widetranscriptomeanalysis.ThisrevealedcommonalitiesanddifferencesbetweenEFR-andPEPR-regulatedgenes and pathways. Our data indicate that Pep/PEPR signalingactivationfacilitatesco-activationofthesalicylateandjasmonatepathways that would otherwise typically antagonize each other,consistentwitharoleofPEPRsfordefensesagainsthemibiotrophicpathogens.WeproposeamodelinwhichthePep/PEPRpathwaylinksdifferentcellautonomousandnon-cellautonomousbranches

inplantimmunity.

PS01-019Ethyleneandendogenouselicitor/receptorsignallingserveatapost-recognitionstepinMAMP-triggeredimmunityNicoTintor1,AnnegretRoss1,KazueKanehara1,YusukeSaijo11Department of Plant-Microbe Interactions,Max-Planck-InstituteforPlantBreedingResearch,Cologne50829,Germanytintor@mpipz.mpg.deRecognitionofmicrobe-associatedmolecularpatterns (MAMPs),conservedstructurestypicalofamicrobialclass,triggersimmuneresponse that restricts microbial invasion and growth. However,themolecularbasisofMAMP-triggeredimmunity(MTI)islargelyunknown. In Arabidopsis, the Leu-rich-repeat receptor kinases(LRR-RKs) FLS2 and EFR recognize the bacterial MAMPsflagellin and EF-Tu (and their bioactive epitopes flg22 andelf18), respectively.Likewise, theLRR-RKsPEPR1 andPEPR2recognize the endogenous elicitor epitopes Peps derived fromthe PROPEP family. We revealed priority in sweet life6 (psl6)mutants that are impaired in several flg22- and elf18-triggeredoutputs and exhibit enhanced susceptibility to Pseudomonassyringaepv tomatoDC3000 (Pst).PSL6 identifiesanovelalleleofEIN2 encoding themaster regulator of ethylene signaling. Incontrast toagreatdecreaseofFLS2 expression,EFR expressionand stable receptor accumulation are retained in ein2 plants.Genome-wide transcriptome profiling revealed an inventory ofEFR-regulatedgenesthataremodulatedbyEIN2.ThisindicatesaroleofEIN2foractivationofasubsetofSA-responsivegenesandfor suppression of aMYC2-dependent JA-branch. Indeed, EFR-triggeredimmunityisreducedinein2plantstowardsaPstmutantstraindevoidofcoronatine,whichactsthroughthehostMYC2-JAbranchforvirulencepromotion.Moreover,ourdataalsopoint toa contribution of the PEPR pathway toEFR-triggered immunityinbothethylene-dependentandindependentmanners.WeproposetheexistenceofdifferentbranchesemanatingfromthereceptorthatdifferentiallyengageethyleneandPEPRsinMTI.

PS01-020IdentificationofPTIsignalingcomponentsthroughasuppressorscreenusingthenovelallelebak1-5Jacqueline Monaghan1, Alexandra Matei1, Hanna Rovenich1,FrederikkeGroMalinovsky1,OluwaseyiShorinola1,CyrilZipfel11TheSainsburyLaboratory,Norwich,[email protected] utilize surface-localized receptors to sense microbialproteinsandtriggeranearlyimmuneresponseknownaspathogen-associated molecular pattern (PAMP) triggered immunity (PTI).The short leucine-rich repeat receptor-like kinase (LRR-RLK)BAK1isamasterpositiveregulatorofPTIandisimportantforplantdefense.BAK1wasinitiallyidentifiedasaninteractorandpositiveregulatorofthebrassinosteroid(BR)receptorBRI1,butalsoformsligand-inducedcomplexeswithPAMPreceptors,suchastheLRR-RLKsFLS2andEFR.Becauseofthemulti-functionalityofBAK1,aclearconclusionabouttheroleofBAK1inimmunityhasbeenhamperedbythepleiotropicphenotypesofbak1mutantslinkedtohypo-responsivenesstoBRandincreasedcelldeath.Werecentlyidentified a novel allele, bak1-5, that is strongly and specificallyimpaired inPTI,but is fullyfunctional inBRsignallingandcelldeathcontrol(1).Takingadvantageoftheseuniqueproperties,wecarriedoutabak1-5suppressorscreenandidentified11modifierofbak1-5(mob)mutantsthatrestorePAMP-inducedROSburstinthebak1-5background.Furtheranalysisshowedthatthemobmutantsrestoreadditionalimmunityphenotypesincludingseedlinggrowthinhibition,MAPKactivation,andresistancetothehemi-biotrophicbacteriumPseudomonas syringaepv.tomatoDC3000.Touncovercausalmutations,wearecombiningpositionalcloningwithwhole-genome re-sequencing by screening through F2 populationsfromback-andwide-crosses.The identificationofmob lociwilladd significantly to our understanding of immunity in plants.

Page 65: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession01-RecognitionandsignalingI/II

63

Poster 01

(1)Schwessingeretal.PLoSGenet(2011)7(4):e1002046.

PS01-021ArabidopsisNIFC1,acomponentofSCFE3ligase,impliestoactasanegativeregulatorinplantimmunityHuiH.Sun1,ShugoMaekawa1,YosukeMaruyama1,TakeoSato1,JunjiYamaguchi11Graduate School of Life Science, University of Hokkaido ,Sapporo,[email protected](UPS)playscrucialrolesduringthewholecourseofplantgrowthevents,includingcelldevelopment,signaltransduction,metabolicregulation,plantimmunityandtheothers.TheUPScanrecognizeanddegradeshort-livedregulatoryproteins as well as abnormal or misfolded proteins induced bybiotic and abiotic stresses. To clarify the processes involved inplant immunity, we characterized Arabidopsis nsl2 (necrotic spotted lesion2)mutant,whichhasbeenoriginallyreportedasthecad1(constitutively activated cell death 1),showsactivatedplantimmunitydefenseresponsesofHR(hypersensitiveresponse)andSAR(systemicacquiredresistance)(PlantCellPhysiol.2005,46:902-912;PlantBiotechnol.2011,28:9-15).Inthisstudy,apotentialF-box protein NIFC1, interacting with immune factor NSL2 issuccessfullydetectedbyyeasttwohybridassay.NIFC1combineswithASK1throughtheN-terminalregiontocompriseSCFcomplex(PNAS.2002,99:11519-11524),whichcatalyzesasubiquitinE3ligaseparticipatedinUPS.FunctionalandphysiologicalanalysisoftheNIFC1wouldshedanewlightonUPSrelatedplantimmunity.Further characterizations of the NIFC1 which controls plantimmunitywillbereported.

PS01-022Spatial and temporal cellular dynamics of the ArabidopsisflagellinreceptorFLS2revealendosomalsortingdependingonactivationstatusMartinaBeck1,JiZhou1,DanielMacLean1,SilkeRobatzek11TheSainsburyLaboratory,NorwichResearchPark,Norwich,[email protected] surface receptors mediate responses to environmental anddevelopmental cues.The activity of surface receptors is locationspecific,dependentuponthehighlydynamicmembranetraffickingnetwork and receptor-mediated endocytosis (RME). The spatio-temporal dynamics of RME are therefore critical to receptorfunction. The plant receptor kinase FLAGELLIN SENSING 2(FLS2)islocatedattheplasmamembraneandconfersimmunityagainstbacterial infection throughperceptionofflagellin (flg22).Followingflg22elicitation,FLS2is internalizedintovesicles.ToresolveFLS2trafficking,weexploitedquantitativeconfocalimagingforco-localisationstudiesandchemicalinterference.WedevelopedEndomembraneQuantifier and EndomembranetCoLocQuantifier,twoalgorithmsandsoftwareimplementationsforquantifyingandidentifyingco-localisedspot-likeobjects.InthisstudywedefinedtheendocytictraffickingpathwayoftheA.thalianaFLS2receptorintheabsenceofflg22ligandanduponflg22-inducedactivation.FLS2localisestobona-fideendosomesviatwodistinctendocytictrafficking routes depending on its activation status: FLS2receptors constitutively recycle in aBrefeldinA (BFA)-sensitivemanner while flg22-activated receptors traffic via ARA7/RabF2b-andARA6/RabF1-positiveendosomes, insensitive toBFA.Inaddition,flg22-inducedFLS2endosomalnumbersincreasedbyConcanamycinA(ConcA) treatmentbut reducedbyWortmannin(Wm)indicatingthatactivatedFLS2receptorsaretargetedtolateendosomalcompartments.TheRMEinhibitorsEndosidin1(ES1)andTyrphostinA23 (TyrA23) didnot blockflg22-inducedFLS2endocytosis,ThesefindingrevealthatFLS2employsanendocyticpathwaydistinct fromotherplantsurface receptorsandexposeadynamicpatternofsubcellulartraffickingforthisimmunereceptor.

PS01-023TrackingDIR1movementandinvestigatingtheroleofDIR1-likeduringSystemicAcquiredResistanceinArabidopsisRobin Cameron1, Marc Champigny1, Marisa Melas1, PhilipCarella1,DanWilson11DepartmentofBiology,McMasterUniversity,Hamilton,Ontario,[email protected] Resistance (SAR) is initiated by some localinfections leading to production of signals thatmove to and areperceived in distant leaves resulting in resistance to normallyvirulent pathogens. DIR1 participates in SAR long distancesignaling as demonstrated by immunoblotting studies in whichDIR1isdetectedinSAR-inducedwildtype,butnotdir1-1phloemsap-enrichedexudates.OccasionallyaDIR1-sizedbandisdetectedin dir1-1 exudates suggesting that DIR1-like (At5g48490) maybe involved in SAR. Additionally, recombinant protein studiesdemonstratethatDIR1polyclonalantibodiesrecognizeDIR1andDIR1-like.Although,DIR1andDIR1-likeare88%similarattheaminoacidlevel,dir1-1wasidentifiedinaforwardgeneticscreenanddir1-1israrelySAR-competent.Useofadir1-1linecontainingan estrogen-inducible DIR1-EGFP made it possible to visualizemovement of DIR1 from a SAR-induced leaf down the petiole.DIR1wasalsodetectedindistantleafexudates,howevertheDIR1-GFPfusionproteinwasrarelyobservedindistantleavesofplantsinduced for SAR suggesting that GFP was cleaved fromDIR1-GFP.ThusitwasimpossibletodistinguishDIR1fromDIR1-likeindistanttissues.TounderstandwhenandhowDIR1-likecontributestoSARincludingtheabilitytodistinguishDIR1fromDIR1-like,adir1-1 dir1-likedoublemutant line isbeingsubjected tostableand transient transformationwithAgrobacteriumexpressingHA-taggedDIR1andMYC-taggedDIR1-like.Moreover,experimentswiththedir1-1dir1-likemutantmayshedlightonthevariableSARoutcomesobservedinanumberofSARlabs(Cameron,Greenberg,Kachroo,Klessig,Shah,Zeier).

PS01-024Expanding theparadigmofflagellin-triggered immunity: theimportance of epitopes beyond flg22 and allelic diversity inbothplantreceptorsandbacterialflagellinsChristopherR.Clarke1,ScotlandLeman2,KateScheibel3,FumikoTaguchi5,RyujiMiki5,DelphineChinchilla6,GeorgFelix7,GregoryB.Martin3,4,BorisA.Vinatzer11Department of Plant Pathology,VirginiaTech, Blacksburg,VA,2Department of Statistics, Virginia Tech, 3Department of PlantPathologyandPlant-MicrobeBiology,CornellUniversity,4BoyceThompsonInstituteforPlantResearch,5GraduateSchoolofNaturalScienceandTechnology,OkayamaUniversity,6Zurich-BaselPlantScienceCenter,BotanicalInstitute,UniversityBasel,7ZentrumfurMolekularbiologiederPflanzen,[email protected](FliC)epitopeflg22isthearchetypicalplantimmunity-triggering microbe-associated molecular pattern (MAMP) andis recognized in plants by FLS2, a pattern recognition receptor(PRR). We recently reported a second MAMP within flagellinthat we termed flgII-28. This epitope corresponds to part of theregion within flagellin that directly interacts with the vertebrateflagellin-receptorTLR5, thus revealing a surprising new parallelin plant and animal immunity. Different flgII-28 alleles exist inclosely related pathogen strains and trigger immune responsesof different strength in tomato suggesting that evasion of plantimmunity through allelic variation in MAMPs is an importantpathogen strategy. Reciprocally, different Solanaceae plantsvary in their relative sensitivity to treatment with the differentflgII-28 alleles, suggesting allelic variation in the correspondingflagellin receptors. Complementation of a fliC-deltion mutantofPseudomonas syringaewithfliC alleles identical inflg22,butdifferent inflgII-28, results inbacteriawith restoredmotilitybutsignificant differences in virulence onwild-typeArabidopsis but

Page 66: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession01-RecognitionandsignalingI/II

64

Post

er 0

1

notfls2mutants.WethereforeconcludethatMAMPscanvaryinsequencewithoutanegativeeffectonfunction(motilityinthecaseofflagellin),andFLS2seemstoplayaroleinflgII-28recognition.Some of our experiments even suggest that FLS2 is the flgII-28receptor.However,contaminationofflgII-28withtraceamountsofflg22mayhaveaffectedsomeoftheseexperiments.WewillfurtherdiscussthegeneralriskofpeptidecontaminationandexperimentalapproachestodeterminewhetherFLS2orayetunidentifiedPRRbindsflgII-28.

PS01-025FunctionalanalysisofaRiceAAA-TypeATPase,anattentuatorofprogrammedcelldeathHannLingWong1,Masayuki Isshiki2, PekChin Loh1,WaiKeatToh1,TsutomuKawasaki3,KoShimamoto41Department of Biological Science, Universiti Tunku AbdulRahman, Kampar, Malaysia, 2Kihara Institute for BiologicalResearch, Yokohama City University, Yokohama, Japan,3Department of Bioscience, Kinki University, Nara, Japan,4LaboratoryofPlantMolecularGenetics,NaraInstituteofScienceandTechnology,Ikoma,[email protected] response (HR) is an effective mechanism usedby plants to restrict the spread of pathogens.Rapid induction ofcelldeath is a commonphenomenonduringHR.ThepotentiallydeleteriouseffectsofthecelldeathandHRmachinerydemandaleak-proofattenuationsystemintheabsenceofpathogeninfection.We identified a rice Cdr2 gene which encodes an AAA-typeATPase that showed anti-apoptotic activity. The loss-of-functionmutant cell death and resistance (cdr2) rice plants display aspontaneouscelldeathphenotypethatresemblesdiseasesymptomsin the absence pathogen infection. This mutant lesion mimicmutantexhibitsenhancedresistancetoriceblastfungusinfection.Thecdr2mutationwaslocalizedbymap-basedcloningandDNAsequencing of candidate ORFs around the localized region andrevealedthatthecdr2mutationisprobablycausedbyasingle-base(GtoA)substitution,resultinginaGlytoArgchangeinanORFencodinganAAA-typeATPase.OverexpressionofCdr2gene inthe cdr2mutant complemented the lesionmimic phenotype andsuppressed the cdr2 mutation-induced elevation defense-relatedgenes.Furthermore,co-expressionofCdr2geneattentuatedBax-induced cell death in Nicotiana benthamiana. Taken together,Cdr2may function as an attentuator in regulating cell death anddefence response.To further analyse the functionofCdr2,usingbioinformatics, we identified two potential interactors of Cdr2.Experimentisunderwaytocharacterisetheseinteractors.

PS01-026Arabidopsis transcriptional repressor ERF9 participates inresistanceagainstnecrotrophicfungimediatedbytheDEAR1JunjiYamaguchi1,YosukeMaruyama11FacultyofScience,HokkaidoUniversity,Sapporo,[email protected] characterized Arabidopsis DEAR1 (DREB AND EAR MOTIF PROTEIN 1)andshowed thatoverexpressionofDEAR1(DEAR1ox) resulted in a dwarf phenotype and lesion-like celldeath,accompaniedbyelevatedexpressionofPR(Pathogenesis-Related)genes(Tsutsuietal.J.PlantRes.2009).Here,weshowthatDEAR1oxhasenhancedresistancetothenecrotrophicfungusBotrytis cinerea (B. cinerea). This result implies that DEAR1represses negative regulators of plant defense, for exampletranscriptionalrepressorswhichbelongtotheERF(ETHYLENERESPONSEFACTOR)family.KnockoutmutantsofERF9(erf9),the gene that was down-regulated in the DEAR1ox, showedtranscriptionalpromotionofPDF1.2genes,whichserveaspositivemarkers for the ethylene/JA signaling pathway, and enhancedresistancetoB.cinerea.BiochemicalassaysdemonstratedthattheERF9proteiniscapableofbindingtotheGCCbox,acis-elementcontained in the promoters of the PDF1.2 gene and possessing

trans-repression activity. Moreover, infection with B. cinerearesulted in thepromotionofPDF1.2 expression,coincidingwithsuppression of theERF9 gene under the control of theDEAR1gene.TheseresultsindicatethatthetranscriptionalrepressorERF9participatesinplantdefenseagainstnecroticfungimediatedbytheDEAR1dependentethylene/JAsignalingpathway.

PS01-027Conventional and unconventional functions of NLR immunereceptorsinArabidopsisVeraBonardi1,MelindaRoberts1,AnnaStallmann1,JefferyDangl11UniversityofNorthCarolina,ChapelHill,NC,[email protected] (nucleotide-binding leucine-rich repeat) proteins representthe major class of intracellular innate immune receptors inplants which typically recognize specific pathogen effectors fordefense responses.We previously showed that theADR1 familyof Arabidopsis NLR receptors differs from conventional NLRactivationandfunctions.Specifically,theADR1proteinsfunctionas helperNB-LRRs to transduce signals downstream of specificNLRreceptoractivationduringeffector-triggered immunity, theyarerequiredforbasaldefenseagainstvirulentpathogens,andtheyregulatemicrobialassociatedmolecularpattern-dependentsalycilicacidaccumulationinducedbyinfectionwithadisarmedpathogen.Remarkably these functions do not require an intact P-loopmotif (essential for nucleotide binding) for at least one ADR1family member (ADR1-L2), suggesting that some NLRs withunconventionalfunctionsmightactasscaffoldforinteractionswithyet unknown immune partners.Although the nucleotide bindingactivityisnotrequiredforanyofthedescribedADR1-L2functions,amutationintheconservedMHDVmotifthatisthoughttofavoranATP-bound form of theNLR protein, leads to autoactivationphenotypes.Anextensiveepistasisanalysisaimed to identify thegenetic requirements of a P-loop-dependent autoactive allele ofADR1-L2(D484V)willbedescribed.Ourdatasuggestaworkingmodel for the downstream signalling of activatedNLRproteins,likelyconservedamongotherimmunereceptorswithconventionalP-loop-dependent functions. In an effort to investigate the non-canonical functionsof theADR1family,abiochemicalapproachwill be described to elucidate the molecular mechanisms thatregulatestheADR1scaffoldmachineryanditscomponents.

PS01-028Short chitin oligomers from arbuscular mycorrhizal fungitriggerNFP-independentCa2+spiking inMedicago truncatularootsAndrea Genre1, Mireille Chabaud2, Coline Balzergue3, VirginiePuech-Pages3, Soizic Rochange3, Guillaume Becard3, PaolaBonfante1,DavidG.Barker21DepartmentoofLifeScienceandSystemsBiology,UniversityofTorino, Torino, Italy, 2Laboratory of PlantMicrobe Interactions,UMR CNRS-INRA 259 441, Castanet Tolosan, France, 3PlantScience Research Laboratory, UMR 5546 UPS CNRS, CastanetTolosan,[email protected] mycorrhizae (AM) are intracellular symbioticassociationsbetweenglomeromycetesand therootsofmost landplants.Itiscurrentlythoughtthatthesewidespreadendosymbiosesare initiated following reciprocal plant/fungal recognition in therhizosphere,activatingaplantsignalingpathwaypartiallysharedwith the rhizobial-legume symbiosis. A central element of thiscommon symbiotic (SYM) pathway is the induction of nuclearCa2+oscillationswithdistinctsignaturesforAMfungiandrhizobia.We showhere that characteristicCa2+ spiking is induced in rootorgan cultures (ROCs) of theAM hostMedicago truncatula bygerminatedsporeexudatesfromglomeromycetesbelongingtobothGigasporaandGlomusgenera,butnotfromthepathogenicfungusColletotrichum.Strikingly,asimilarresponsecanbetriggeredbyshort-chainchitinoligosaccharides(COs),withmaximumactivity

Page 67: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession01-RecognitionandsignalingI/II

65

Poster 01

observedforchitintetramersandpentamers.AlthoughdependentonthecommonSYMpathwaygenesDMI1andDMI2,CO-triggeredspikingisnotalteredinaM. truncatula nfpmutantwhichisdefectivein the receptor for the rhizobial lipochito-oligosaccharide signalsknownasNodfactors.Furthermore,treatmentwithstrigolactone,knowntostimulatepre-infectionAMhyphalramification,inducesamajorincreaseintheconcentrationofCO4/5inGlomusexudates.Structure/function experiments suggest that the addition of Nodfactor-likedecorationstothechitinbackbonesuchasthesulphatemoietyor the lipidchainsignificantly reducesspikingactivity inM. truncatula ROCs. These findings indicate short-chain chitinoligomers as novel fungal signals perceived by a specific hostreceptorandarecapableofactivatinganAM-dependentsignalingpathwayrequiredforsuccessfulfungalcolonization.

PS01-029Arabidopsislysin-motifproteinsLYM1LYM3CERK1mediatebacterial peptidoglycan sensing and immunity to bacterialinfectionRolandWillmann1, HeiniM. Grabherr1, DagmarKolb1,AntonioMolinaro2, Mari-Anne Newman3, Andrea A. Gust1, ThorstenNuernberger11Department of Plant Biochemistry, Center for Plant MolecularBiology, University of Tuebingen, Germany, 2Dipartimento diChimica Organica e Biochimica, Universita di Napoli FedericoII, Napoli 80126, Italy, 3Department of Plant Biology andBiotechnology, University of Copenhagen, 1871 Frederiksberg,[email protected] of microbial patterns by host pattern recognitionreceptors is a key step in immune activation in multicellulareukaryotes. Peptidoglycans (PGNs) are major components ofbacterial cell walls that possess immunity-stimulating activitiesin metazoans and plants. Here we show that PGN sensing andimmunity to bacterial infection inArabidopsis thaliana requiresthree lysin-motif (LysM)domainproteins.LYM1andLYM3areplasmamembraneproteinsthatphysicallyinteractwithPGNsandmediateArabidopsissensitivitytostructurallydifferentPGNsfromgram-negativeandgram-positivebacteria.lym1andlym3mutantslackPGN-inducedchangesintranscriptomeactivitypatterns,butrespond to fungus-derivedchitin, apattern structurally related toPGNs,inawild-typemanner.Notably,lym1,lym3,andlym3 lym1mutant genotypes exhibit supersusceptibility to infection withvirulentPseudomonas syringaepathovartomatoDC3000.Defectsin basal immunity in lym3 lym1 doublemutants resemble thoseobserved in lym1 and lym3 singlemutants, suggesting that bothproteinsarepartofthesamerecognitionsystem.WefurthershowthatdeletionofCERK1,aLysMreceptorkinasethathadpreviouslybeen implicated in chitin perception and immunity to fungalinfectioninArabidopsis,phenocopiesdefectsobservedinlym1andlym3 mutants, such as peptidoglycan insensitivity and enhancedsusceptibilitytobacterialinfection.Altogether,ourfindingssuggestthatplantssharewithmetazoanstheabilitytorecognizebacterialPGNs.InfurtherstudiesweinvestigatethemolecularmechanismofthePGNLYM1/LYM3interaction.TodeepentheunderstandingofPGNasanimmunostimulatoryligandwearealsodeterminingtheminimalPGNepitopeneededforPGNperception.

PS01-030Toxin-mediated release of DAMPs -A novel trigger of plantinnateimmunityHannahBoehm1,IsabellKuefner1,ZanaKikic1,LeilaToliashvili1,ClaudiaOecking1,ThorstenNuernberger11ZMBP Center For Plant Molecular Biology, Eberhard KarlsUniversityTuebingen,Tuebingen,[email protected] activation of innate defense mechanisms of plants againstmicrobial infection is mainly based on two branches: the PRR-mediated recognition of PAMPs (pathogen-associated molecular

patterns), called PAMP-triggered immunity and the recognitionof microbial effectors by receptors encoded by R-genes, calledeffector- triggered immunity. Besides these two mechanisms ofpathogen perception, plants can also sense endogenous patterns,representing stress-associated molecules (damage-associatedmolecularpatterns,DAMPs),whichinduceinnateimmunity.Suchendogenous elicitors so far comprise cell wall fragments, cutinmonomers and peptides like systemin and AtPEP1.Well-knowntriggers of plant immune responses are necrosis and ethylene-inducing peptide 1-like proteins (NLPs). NLPs are virulence-promoting toxins found in phytopathogenic bacteria, oomycetesandfungi.Bydisruptingtheplasmamembraneofdicotyledonousplants, NLPs are inducing cell death and thus contribute to thevirulenceofnecrotrophicandhemibiotrophicplantpathogens.Themechanism of membrane disruption might be similar to that ofstructurallyrelatedpore-formingtoxinsfrommarineinvertebrates,butremainstobeelucidated.HowNLPsinduceimmunity-associatedresponsesindicotyledonousplantsisstillunknown.StudieswithactiveandinactivemutantversionsofNLPsshowed,thatnottheNLPmolecule itself is recognized, but its membrane disruptingactivity.Thus,itisverylikelythattheactivityofNLPsinducestheproduction of breakdown products or the release of intracellularmolecules thataresensedasDAMPs.The identificationof thoseplant-derivedDAMPsandtheircorrespondingreceptorswillhelptoelucidatethisnovelformofplantinnateimmunity.

PS01-031A simple model system for detecting metabolic changes insymbioticNostoc punctiformeDavidA.Richter1,HolgerJenke-Kodama11OkinawaInstituteofScienceandTechnology,Okinawa,[email protected] punctiformeisafilamentous,nitrogenfixingcyanobacterium.Itiscapableofformingsymbioticrelationshipswithdiverseplantsand fungi. It can grow heterotrophically without light. In theabsenceofcombinednitrogenheterocystswill form.Heterocystsarecellscapableoffixingnitrogen.PlantsutilizeN. punctiforme’snitrogen fixing ability, allowing it to fix nitrogen inside the roottissueofplants.Thissymbioticrelationshipfunctionallyresemblesnitrogenfixationbyrhizobia.Sincelightcannotpenetratetherootsystem,N. punctiformemustrelyonorganiccarbonfromthehostfor survival. The cultivation ofN. punctiforme in the dark is asimplemodeltoanalyzeitsmetabolisminthestageofsymbiosis.The light state represents the free living form, whilst the darkstatemimics the symbiotic form.Wehave cultured strains ofN. punctiformewithandwithoutglucose,fructoseandsucroseinthepresenceandabsenceofcombinednitrogen,andinlightanddark.Inbothlightanddark, in theabsenceofcombinednitrogenwitheitherofthethreesugars,samplesshowedfastergrowthandhigherconcentration of heterocysts than non sugar samples. We haveinitiatedmicroarrayexperimentsinordertocompareglobalgeneexpressionpatternsinlightanddarkstates.ThiswillleadtoabetterunderstandingofthemetabolictransitionsofN. punctiformecellsnecessarytoestablishsymbiosis.

PS01-032CharacterizationofricechitinelicitorreceptorcomplexHanae Kaku1, Yosuke Sato1, Kei Sato1, Daisuke Takamizawa1,TomonoriShinya1,MasahiroHayafune1,NaotoShibuya11Department of Life Sciences, School of Agriculture, MeijiUniversity,Kawasaki,[email protected]/pathogen-associatedmolecularpatterns(MAMPs/PAMPs)andinitiatevariousdefenseresponses. Chitin is a major MAMP for various fungi and itsfragments, chitin oligosaccharides, trigger defense responses inawide range of plant species.Recently,we identified two typesof chitin receptors, CEBiP (1) and OsCERK1 (2), which playan important role for chitin elicitor signaling in rice. We also

Page 68: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession01-RecognitionandsignalingI/II

66

Post

er 0

1

showed that both molecules formed a receptor complex in thepresence of chitin oligosaccharide (2). OsCERK1 is a receptor-likekinasewithsingle transmembrane region,whereasCEBiP isaGPI-anchoredproteinandatleastparltypresentinthelipidraftof the plasma membrane. To investigate how these structurallydifferentmoleculescan form thecomplex,weprepared the lipidraftfractionfromplasmamembraneofricecellstreatedwithandwithoutchitinelicitor,andanalyzedthebehaviorofthesereceptors.(1)Kakuet al.,PNAS,103,11086(2006);(2)Shimizuet al.,Plant J.,64,204(2010).

PS01-033Understanding Cf-9 signal activation through moleculargeneticdissectionofanautoactivemutant,M205KevinC.Y.Tee1,ClaireL.Anderson1,DavidA.Jones11Division of Plant Sciences, Research School of Biology, TheAustralianNationalUniversity,ACT,[email protected] tomatoCf-9 gene confers resistance to races of the fungalleafmouldpathogen,Cladosporium fulvum,thatexpresstheAvr9avirulencegene.Cf-9encodesareceptor-likeproteincontainingalarge plasmamembrane-bound extracytosolic leucine-rich repeat(LRR) domain and a short cytosolic tail.An autoactive mutantof Cf-9 designated M205 has been described previously. Thismutant consists of an in-frame fusion encoding the N-terminusof an upstream paralogue, Cf-9A, and the C-terminus of Cf-9.Transient expression of M205 in tobacco causes hypersensitiveresponse(HR)intheabsenceofAvr9.Thisstudyemployeddomainswapping and site-directed mutagenesis to identify regions andaminoacidresiduesrequiredforM205autoactivitybyscoringHRupontransientexpressionof thedomainswaps/mutantconstructsin tobacco.Domain swapping betweenCf-9 andCf-9A revealedthat substitution of Cf-9A sequence into LRRs13-17 of Cf-9 issufficienttoinduceautoactivity.WepostulatethatLRRs13-17areinvolved insignalling repressionnecessary tokeepCf-9 inactivein the absenceofAvr9 and that theCf-9A substitutiondisruptedrepressionandallowedautoactivity.Wearecurrentlyinvestigatingthe contribution of polymorphic residues in LRRs13-17 toautoactivity by site-directed mutagenesis. Interestingly, residuesinvolved inAvr9 recognition overlap the polymorphic residues,suggestingtheoverlappingpositionsmayparticipateinbothAvr9recognitionandsignallingrepression.ByinterchangingCf-9AandCf-9residuesatthesepositionstolookatthelossofautoactivityinM205orgainofautoactivityinCf-9,keyresiduesinvolvedinsignallingrepressionhavebeenidentified.

PS01-034TheN-terminalMAPK-dockingsite in tomatoMAPKkinaseSlMKK2 is required for interaction with a downstreamMAPKtotriggerprogrammedcelldeathassociatedwithplantimmunityChang-SikOh1,Min-SeonChoi1,GregoryB.Martin2,3,41Department of Horticultural Biotechnology, Kyung HeeUniversity, South Korea, 2Boyce Thompson Institute for PlantResearch, Ithaca,NY,USA, 3DepartmentofPlantPathologyandPlant-Microbe Biology, Cornell University, Ithaca, NY, USA,4GenomicsandBiotechnologySection,DepartmentofBiologicalSciences, Faculty of Science, KingAbdulaziz University, [email protected](MAPK)cascadeisoneofthekeysignal transductionpathways regulating immunity-associatedprogrammedcelldeath(PCD)inplants.PreviouslySlMAPKKKα,atomatoMAPKkinasekinaseandSlMKK2,aMAPKkinasewereshown tobe required forelicitationofPCDmediatedby thePtodiseaseresistanceproteinuponrecognitionoftheeffectorproteinsAvrPto or AvrPtoB from Pseudomonas syringae pv. tomato.A 14-3-3 protein,TFT7,was found to interactwith SlMKK2 atits N-terminus in a region overlapping the MAPK-docking site

(orD-site).Here,weexamine the roleof theD-siteofSlMKK2inPCDelicitation.In vivoassaysrevealedthatSlMKK2,butnotTFT7, interactedwith theMAPKSlMPK3 independent of PCDelicitation.TheN-terminalD-siteofSlMKK2wasrequiredforbothinteractionwithSlMPK3andSlMKK2DD-mediatedPCDinplants.Inparticular,twoconservedleucinesintheD-siteofSlMKK2wererequired for interaction with SlMPK3. Consistent with this, co-expressionofSlMPK3withSlMKK2DDenhancedPCDmediatedbySlMKK2DDandPCDmediatedbyaSlMKK2DDderivative, inwhich the two conserved leucineswere substitutedwith alanine.TheseresultsdemonstratethattheD-siteofSlMKK2playsacriticalroleinregulationofsignaltransfertothedownstreamcomponentSlMPK3byregulatingtheirphysicalinteraction.

PS01-035IdentificationandmolecularcharacterizationofnovelPAMPsfromthegram-negativebacteriumRalstonia solanacearum inArabidopsis thalianaEricMelzer11CenterforPlantMolecularBiologyeric.melzer@uni-tuebingen.dePlant innate immunity is activated either upon perception ofpathogen-associated molecular patterns (PAMPs) by patternrecognition receptors (PRRs) or upon resistance (R) protein-mediatedrecognitionofpathogenrace-specificeffectormolecules.PAMP-triggered immunity (PTI) constitutes the primary plantimmuneresponsethathasevolvedtorecognizeinvariantstructuresofmicrobialsurfaces.Althoughseveralcellsurfacecomponentsofbacteria, fungi or oomycetes have been shown to act as PAMPsthat trigger immune responses in various plant species, theenormous non-self recognition capacities of plants are not at allexplored.TofindnewproteinaceousPAMPsweusedcrudeproteinpreparations of the phytopathogenic gram-negative bacteriumRalstonia solanacearum.Wefoundaproteinase-sensitiveandheatstablePAMPactivityinthesecrudeextractswhichtriggersimmuneresponsesinthemodelplantArabidopsis thalianasuchasethyleneproduction,PR1inductionandmediumalkalinization.Wefurtherfractionated the bacterial proteins by different chromatographystrategies such as ion exchange chromatography. In furtherpurificationstepswewillnowaimat isolatingtheprotein that isresponsibleforstimulatingimmunityinArabidopsis.

PS01-036Cysteine-rich receptor like kinase family members aredifferentially activated by powdery mildew infection insusceptibleandmlo-resistantbarleyMichaelLyngkjaer1,DavidB.Collinge1,Cb.GowdaRayapuram1

1DepartmentofPlantBiologyandBiotechnology,FacultyofLifeScience,UniversityofCopenhagen,Frederiksberg,[email protected] receptor-like protein kinases constitute a large and diversegroup of proteins controlling numerous plant physiologicalprocesses, includingdevelopment,hormoneperceptionandstressresponses. Transmembrane-anchored cysteine rich receptor-likeproteinkinases(CRKs)representaprominentsub-familyofRLKsin plants. In barleywe have identified 39members of theCRKfamilythataretranscriptionallyactiveinresponsetovariousbioticand abiotic stresses.Most of theCRKs encode putative proteinswith an N terminal receptor containing two characteristic duf26domains followed by a transmembrane domain. The C terminalpartcomprisesofahighlyconservedproteinkinasedomain.TheCRK genes consist of seven exons and cluster on chromosome2HS and 5HL, but are found on all chromosomes. ExpressionprofilingoftheCRKfamilymembersrevealedatransientincreasedaccumulationofeightCRalKtranscriptsfollowinginoculationofsusceptible barleywith the biotrophic fungusBlumeria graminisf.sp. hordei (Bgh), in contrast these transcripts was not inducedin mlo-resistant barley. Silencing of one of these,HvCRK1, bytransientgenesilencingledtoanenhancedpenetrationresistance

Page 69: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession01-RecognitionandsignalingI/II

67

Poster 01

toBgh,butdidnotaffectR-genemediatedresistance.Interestingly,three otherCRKswere found to accumulate specifically inmlo-resistantbarleyandnotinsusceptiblebarleyafterBghattack.OurresultssuggestthatCRKsinbarleyareinvolvedinseparatingandmediatingsignalsforsusceptibilityandbasalresistanceresponses.AsimplecomparisonofknownpromoterelementsdidnotrevealanyobviousdifferencesbetweentheCRKsactivatedinsusceptibleandmlo-resistantbarley.

PS01-037Functional analysis of BAK1-interacting protein 89 in plantinnateimmunityThierryHalter1,SaraMazzotta1,SandraPostel1,ChristineBeuter1,ChristophBuecherl2,MikeWierzba3,ThorstenNuernberger1,CyrilZipfel4,FranzTax3,SaccodeVries2,BirgitKemmerling11ZMBP Tuebingen Plant Biochemistry department, 2UniversityWageningen, Wageningen, The Netherlands, 3University ofArizona, Tucson, USA, 4The Sainsbury Laboratory, Norwich,[email protected] interactswith thebrassinosteroid receptorBRI1, the flagellin receptor FLS2 and the EF-Tu receptor EFRto control brassinosteroid and MAMP signaling. Furthermore,BAK1-deficientplantsdevelopspreadingnecrosisafterAlternaria brassicicola infection. This phenomenon is independent of thebrassinolid pathway, suggesting a role of BAK1 in pathogeninducedcelldeathcontrol.InordertofindnewBAK1-interactingproteinsthatmightbeinvolvedintheregulationofplantcelldeathcontrol, co-immunoprecipitations of in vivo BAK1 complexesfollowed by MS analyses of the interaction partners have beenperformed.We identified a newRLK, namedBIP89 forBAK1-interacting protein 89. The expression level of BIP89 increasesupon biotrophic pathogen and MAMP treatment pointing to aroleinpathogendefensesignaling.TwoArabidopsismutantlinesaswell as artificialmicroRNA lines have been used in differentassays to decipher the function of BIP89. Interestingly, BIP89-deficient plants exhibit higher sensitivity to the MAMPs flg22andelf18thantherespectivewild-typeplants.Bacterialinfectionexperimentsshowthatmutants limit thegrowthofPseudomonas syringaepv.tomatoDC3000comparedtothewildtypecontrol.Ontheotherhand,thesemutantsshowstrongersymptomdevelopmentthanwildtype andbak1-4mutant plants upon infectionwith thenecrotrophicfungusAlternaria brassicicola.Takentogether,theseresultssuggestafunctionallinkofthisproteintoBAK1regulatedprocesses and provide another layer of complexity in BAK1receptorcomplexformation.Here,wewillpresentcurrentdataonthefunctionofBIP89inmodulationofBAK1regulatedprocesses.

PS01-038Ethylene responsive AP2/ERF transcription factor MACD1participatesinphytotoxin-triggeredprogrammedcelldeathKeisuke Mase1, Nobuaki Ishihama2, Hitoshi Mori1, HidekiTakahashi3,HironoriKaminaka4,MotoichiroKodama4,HirofumiYoshioka11NagoyaUniversity, Nagoya, Japan, 2RIKEN,Kanagawa, Japan,3Tohoku University, Sendai, Japan, 4Tottori University, Tottori,[email protected](PCD),knownashypersensitiveresponsecell death, has an important role in plant defense response.ThesignalingpathwayofPCDremainsunclear.ToanalysisplantPCD,weemployedAAL-toxinandNicotiana umbratica.AAL-toxinisapathogenicityfactorofnecrotrophicpathogenAlternaria alternataf. sp. lycopersici and triggers PCD in AAL-toxin-sensitive N. umbratica.OurrecentworkdemonstratedthatMAPKcascadesandethylene(ET)signalingplaypivotalrolesinAAL-toxin-triggeredcelldeath (ACD).Wealsoshowed thatModulatorofAAL-toxinCell Death 1 (MACD1), which is an AP2/ERF transcriptionfactor,participatesinACD.ThenecroticlesionofACDemerged

more rapidly in MACD1 overexpression (OE) plants comparedwithcontrolplants.TofurtherinvestigaterolesofETsignalinginPCD,weemployedArabidopsis thalianaandstructuralanalogofAAL-toxin,fumonisinB1(FB1).FB1-tirggeredcelldeath(FCD)was compromised in ET signal mutants and Atmacd1 mutants.AtMACD1 is the transcriptional activator and AtMACD1 OEplants also displayed earlier FCD induction than Col-0 plants,suggestingthatAtMACD1positivelyregulatesthefactorsaffectingcell death development. Furthermore, loh2 mutants showedsensitivitytoAAL-toxinandloh2/atmacd1mutantscompromisedACD, indicating thatAtMACD1 also participates inACD inA. thaliana. To investigate the PCD-associated genes regulated byAtMACD1, we identified up-regulated genes inAtMACD1 OEplantsbymicroarrayanalysis.Wecomparedourmicroarraydatawith thedatabaseofup-regulatedgenesbyAAL-toxin treatmentinloh2mutantand,isolatedthegenesundercontrolofAtMACD1inACD.

PS01-039AmossMAP kinase required for PAMP triggered immunityanddefenceagainstnecrotrophicfungiSimon Bressendorf1, Ines P. de Leon2, John Mundy1, MortenPetersen11Department of Biology, Copenhagen University, Copenhagen,Denmark, 2Departamento de Biologa Molecular, Instituto deInvestigaciones Biologicas Clemente Estable, Montevideo,[email protected] mitogen-activated protein kinase (MPK) cascades convertextracellular stimuli into cellular responses, and activation ofMPK signaling is required for the induction of innate immunityin higher plants. Perception of pathogen-associated microbialpatterns(PAMPs)bytrans-membranepatternrecognitionreceptorsinitiateMPK-dependent PAMP-triggered immunity (PTI). In themodel dicotArabidopsis, 3 of some 20 MPKs (MPK3/4/6) areimplicatedinPTIalthoughtheimportanceofthesesingleMPKsisstillunderdebate.ThegenomeofthehaploidmossPhyscomitrellaonly encodes 8MPKs, andwe provide here a primary exampleof a Physcomitrella MPK that is essential for PTI. Morespecifically, we demonstrate that knock-out of PhyscomitrellaPpMPK4 (PpdeltaMPK4) renders the moss more susceptible tothenecrotrophicfungiBotrytuscineraandAlternariabrassisicola.Concordingly,severaldefence-relatedtranscriptsfailtoaccumulatein the PpdeltaMPK4 mutant upon infection or treatment withthe fungal elicitor chitin. While Arabidopsis MPK3/4/6 are allactivatedbydifferrentabioticstresses,wedidnotdetectactivationofPpMPK4oranyotherPhyscomitrellaMPKbyabioticstresses.Signal transduction via PpMPK4 may therefore be specific toPAMPperception.These results demonstrate that Physcomitrellais an appropriatemodel to understand the contribution of singleMPKsinresponsestostimuliincludingPTI.

PS01-040CharacterizationofputativeArabidopsis thalianaMAP-kinasesubstratesrelatedtodefenseresponsesLennartEschen-Lippold1,JuliaLoehr1,LuisMaldonado-Bonilla1,KaiNaumann1,MiederPalm-Forster1,DierkScheel1,JustinLee11LeibnizInstituteofPlantBiochemistry,Halle(Saale),[email protected] protein kinase (MAPK) cascades mediatediverse cellular signal transduction processes. These includegrowth and developmental, as well as stress-related responsesimportantfortheadaptationtoadverseenvironmentalconditions.Inourlab,weconductedyeast-2-hybridandproteinarrayscreensto identify interacting proteins and substrates of the MAPKs,MPK3 and 6.Among the putative substrates, potential signalingcomponents likeacaseinkinase-likeproteinorACC-synthase6,andtranscriptionalregulatorslikeSNF2(SWI/SNF-typeATPase),MYB88oraPlantHomeoDomain(PHD)-containingproteinwere

Page 70: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession01-RecognitionandsignalingI/II

68

Post

er 0

1

identified.Selected candidateswere expressed inE. coli and thepurifiedrecombinantproteinswereusedforin vitrokinaseassaysto confirm phosphorylation by the MAPKs. Phosphopeptideenrichment andmass spectrometrywas employed to identify thephosphorylation sites. In parallel,we also developed an efficientsite-directed mutagenesis strategy to generate individual andhigherorderphospho-sitemutantsofMAPKsubstrates.Transientexpression inArabidopsis protoplasts was then used for in vivocharacterization,aimingatunravellingtheroleofphosphorylationof MAPK substrates in pathogen-associated molecular-pattern-triggeredsignaling.

PS01-041IdentificationandcharacterizationofthenovelfungalMAMPSsE1 and its RLP-based recognition complex in Arabidopsis thalianaWeiguoZhang1,MalouFraiture1,CyrilZipfel2,FredericBrunner1,AndreaGust11CenterforPlantMolecularBiology,Dept.ofPlantBiochemistry,University of Tuebingen,Tuebingen, Germany, 2The SainsburyLaboratory,NorwichResearchPark,NorwichNR47UH,[email protected] plant defence strategies rely on the perception of non-selfdeterminants,so-calledmicrobe-associatedmolecularpatterns(MAMPs),bytransmembranepatternrecognitionreceptors(PRRs)andontheresultinginductionofcorrespondingimmuneresponses.Wesemi-purifiedanovelproteinouselicitorcalledSsE1(Sclerotinia sclerotiorum Elicitor1) from the necrotrophic fungal pathogenSclerotinia sclerotiorumwhichpromotes typicalMAMP-induceddefenceresponsesinthemodelplantArabidopsis thaliana.SsE1-triggereddefenceresponsesrequirethepresenceoftheleucine-richrepeatreceptor-likeproteinSER1(SclerotiniaElicitorReceptor1)andtheleucine-richrepeatreceptor-likekinaseBAK1.Thegeneralobjectivesof this projectwill be to elucidate thenature ofSsE1aswell as to decipher themolecularmechanismsunderlying theperception of SsE1 and the subsequent signal transduction viaSER1-BAK1.Ourworkwilldeepenourmechanisticunderstandingonhowplantsadapttoadetrimentalbioticenvironment.

PS01-042DAMPsignallinginplantinnateimmunityParR.Davidsson1,KarenSims-Huopaniemi1,HanneMikkonen1,MariaPiisila1,TarjaKariola1,TapioPalva11Department of Biosciences, University of Helsinki, Helsinki,[email protected] activation of plant innate immunity involves specificdetectionof pathogen associatedmolecular patterns (PAMPs)bycorrespondinghostencodedpatternrecognitionreceptors(PRRs).PerceptionofPAMPswillsubsequentlytriggersignallingcascadesleadingtoactivationofplantdefences.InadditiontorecognitionofPAMPs,plantshavetheabilitytorecognizemodified-self,includingdamage-associatedmolecularpatterns(DAMPs).AmajorcategoryofDAMPsareplantcell-wallfragmentsreleasedbytheactionofdegradativeenzymessecretedbythepathogenduringtheinfectionprocess.Releaseandrecognitionofsuchfragmentshasalsobeenshowntotriggerinnateimmunityresponsesandresultinenhanceddisease resistance. Our objective is to elucidate the molecularmechanismsinvolvedinDAMPsignallinginArabidopsis thalianausing oligogalacturonides (OGs), released during the infectionby the soft-rot pathogen Pectobacterium carotovora, as themodelDAMPs.WehypothesizethatourgeneticscreensforOG-insensitivemutantswill allow identification and characterizationof central components in the signalling pathways triggered byplant recognition of OGs. From the screen several lines withincreasedsusceptibilitytopathogens,aswellasthosewithaltereddevelopment, have been identified - highlighting the connectionbetweendevelopmentandinnateimmunity.Thepreliminaryresults

wouldseemtoindicatethatwehavebeenabletoisolatepotentialDAMPsignallingcomponents.

PS01-043In plantaidentificationandfunctionalanalysisofEFRcomplexcomponentsYasuhiroKadota1,2,JanSklenar1,KenShirasu2,AlexandraJones1,CyrilZipfel11TheSainsburyLaboratory,UK,2PlantImmunityResearchGroup,RIKENPlantScienceCenter,Japankadota0407@gmail.comPlantsrecognizeconservedmicrobialmolecules,calledpathogen-associated molecular patterns (PAMPs), by pattern-recognitionreceptors(PRRs)andinducedefenseresponsesleadingtoPAMP-triggeredimmunity(PTI).Theleucine-richrepeatreceptorkinases,EFRandFLS2arethePRRsforthebacterialPAMPsflagellin(orthederivedpeptideflg22)andEF-Tu(orthederivedpeptideelf18),respectively.Tounderstand themolecularmechanismunderlyingactivationofPTIfromPRRsattheplasmamembranetodownstreamsignalingevents,wesoughttoidentifyproteinsthatassociatewithEFR in Arabidopsis. For this purpose, we immunoprecipitatedphysiological levels of EFR-GFP using magnetic beads andidentifiedEFR-associatedproteinsbymass-spectrometryanalyses.Thisapproachallowedhigh specificityand the recoveryof largeamountofpreviouslyknownEFRinteractors,butalsoenabledthediscovery of novel EFR complex components. Novel candidatecomplexcomponentsinclude(1)proteinswhosegeneexpressionsare highly activated after PAMP treatment, (2) proteins that areknown to be highly phosphorylated after PAMP treatment, (3)proteinsknowntobeassociatedwithETIcomponents.ThepossiblerolesofthesecandidatesinPTIwillbediscussed.

PS01-044PhosphoproteomicsofMAMP-triggeredimmunityHidenori Matsui1, Yuko Nomura1, Ken Shirasu2, HirofumiNakagami11Plant Proteomics ResearchUnit, Plant Science Center, RIKEN,Japan, 2Plant Immunity Research Group, Plant Science Center,RIKEN,[email protected] is one of the best available tools for studyingposttranslational modifications (PTMs). Therefore, it is wellsuited for dissecting signaling pathways which often utilizePTMs as a means of transmitting signals. Among the severalPTMsdescribedthusfar,phosphorylationisthemostextensivelystudied and has been shown to play an important role in almostall basic cellular processes inplants.Accordingly,wehavebeendeveloping shotgun phosphoproteomics platform to dissect outpoorly characterized signal transduction systems by monitoringphosphorylationdynamics.Wehavesofarreportedthatweenabledto routinely identify thousands of phosphoproteins from plantmaterials (1, 2). Furthermore, we have established methods forquantitativeanalyses.Usingtheestablishedplatform,weexaminedphosphoproteomechangesinArabidopsisuponMAMP(microbe-associatedmolecular pattern) treatment to identify novel playersinvolvedinMAMP-triggeredimmunity.Asaresult,weidentifiedhundreds of proteins whose phosphorylation status significantlychangedinresponsetoMAMPtreatments.TheidentifiedproteinsincludedwellknownMAMPsignalingregulators.However,mostoftheproteinswerenotreportedtotakepartinMAMPsignaling.To verify involvement of the identified proteins in MAMP-triggered responses, we have been isolating T-DNA insertionlines for these proteins and characterizing flg22-induced ROS(reactiveoxygen species)production in the isolatedmutants.Wehave so far identified several negative andpositive regulators ofMAMP-induced ROS production, and are expecting to isolatemoreMAMP-signalingregulatorygeneswithcontinuedscreening.(1) N. Sugiyama et al., Mol Syst Biol. 4: 193 (2008); (2) H.Nakagamietal.,PlantPhysiol.153(3):1161-74(2010).

Page 71: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession01-RecognitionandsignalingI/II

69

Poster 01

PS01-045The ubiquitin ligases PUB22, PUB23 and PUB24 regulatePAMP-triggered responses by targeting a component of theexocyticpathwayMartinStegmann1,RyanG.Anderson2,KazuyaIchimura3,TamaraPecenkova4,PatrickReuter6,ViktorZarsky4,JohnM.McDowell2,KenShirasu5,MarcoTrujillo11Independent Junior Research Group, Leibniz Institute of PlantBiochemistry, Halle (Saale), Germany, 2Virginia Tech, Dept. ofPlantPathology,Physiology,&WeedScience,550LathamHall,Blacksburg,Va 24061-0329,UnitedStates ofAmerica, 3KagawaUniversity, Faculty of Agriculture, Department of AppliedBiologicalScience,ChairofAppliedBioresourceScience,Kagawa761-0795, Japan, 4Institute of Experimental Botany, ASCRRozvojova 263, Prague 6,CZ-165 02,CzechRepublic, 5RIKENPlant Science Center, Tsurumi-ku, Yokohama 230-0045, Japan,6Julius-Maximilans-University of Wurzburg, Julius-von-SachsInstitute,Julius-von-Sachs-Platz2,D-97082Wurzburg,[email protected] typeE3ubiquitin ligases(PUBs)PUB22, PUB23 and PUB24 are involved in the regulation ofinnate immunity signalling. Perception of pathogen-associatedmolecular patterns (PAMPs) is mediated by plasma membranelocalizedreceptorsandactivationresultsinaplethoraofresponses.Thepub22/pub23/pub24 triplemutant displays an increased andprolonged activation of early signalling events after perceptionof various PAMP. This suggests that the PUB triplet modulatesa common cellular process required for the down-regulation ofsignalling mediated by various pattern recognition receptors(PRRs).Toisolateligasetargetsresponsibleforthisphenotype,weperformedayeasttwo-hybridscreenwithPUB22,fromwhichweidentified several candidate interactors.These included a subunitof theexocyst,anoctamericcomplexwhichmediatesearlystepsof exocytosis.We show that the PUB triplet interacts with thissubunit in vivo and that theymediate its turn-over. Furthermore,degradationoftheligasetargetisregulatedbythestabilityoftheligase itself, which displays auto-ubiquitination activity. Mutantanalysis confirmed that the exocyst subunit is required for earlyPAMP-triggered signalling, as evidenced by decreased PAMP-triggered responses and decreased resistance against differentplantpathogens.Insummary,wewillpresentdatathatsupportsamechanisminwhichPUB22,PUB23andPUB24contributetotheregulationofPAMP-triggeredresponsesbytargetingcomponentsofexocyticmachinery.

PS01-046ArtificialevolutionoftheNB-LRR,Rx,toenhanceactivationsensitivityinabroadrecognitionbackgroundCliffordJ.Harris1,ErikSlootweg2,LaurentiuSpiridon3,DavidC.Baulcombe11DepartmentofPlantSciences,CambridgeUniversity,Cambridge,UK, 2Laboratory of Nematodology, Plant Sciences Department,WageningenUniversity,Netherlands,3InstituteofBiochemistryoftheRomanianAcademy,Bucharest17,[email protected] Resistance (R) genes provide protection against a diverserange of pathogens, from nematodes to viruses, with the vastmajority encoding proteins from the nucleotide binding leucine-rich repeat (NB-LRR) class. The C-terminal LRR region isthought to provide recognition specificity, while the N-terminalNBcontainingregionactivatesdownstreamsignallingleadingtoadefenseresponse.Previousresultsfromourlabdemonstratedthat,intheRgene(Rx),theLRRregioncanbeartificiallyevolvedtorecognisevirusesundetectedbythewildtypeRxprotein.However,some of these broad recognition versions suffer from a reducedactivationresponse,withdeleteriousconsequencesonplantfitness.Duringmydoctoralresearch,IperformedrandommutagenesisontheN-terminalactivationdomainsofabroadrecognitionversionof Rx, and screened approximately 1500 clones for increased

activation characteristics. I isolated four Rx mutants that showincreased defense response without constitutively activating theprotein,whileretainingthebroadrecognitionphenotype.Throughhomology modelling, we also revealed that these mutationsconcentrateinafeatureofRxthatisconservedacrossallknownNB-LRRs proteins. This strategy of targeted evolution, whererecognitionandactivationcharacteristicsaresequentiallymodified,could potentially be employed to improve disease resistance incrops.

PS01-047CharacterizationofcalciumsignallingmutantsinArabidopsis thalianainnateimmunityStefanieRanf1,JuliaGrimmer1,DierkScheel1,JustinLee11LeibnizInstituteofPlantBiochemistry,DepartmentofStressandDevelopmentalBiology,D-06120Halle(Saale),[email protected] attempted infection of plants, pathogens are betrayed byconserved “Microbe-Associated Molecular Patterns” (MAMPs)that are recognized by specific host receptors and initiateintracellular signalling cascades leading to MAMP-triggeredimmunity.Endogenous“Damage-AssociatedMolecularPatterns”(DAMPs) similarly elicit receptor-mediated defences. Rapidelevations in the free cytosolic Ca2+ concentration ([Ca2+]cyt) areacorecomponentofMAMPandDAMPsignal transductionandare crucial for establishment of downstream responses, such asreactiveoxygenspecies(ROS)accumulation,activationofproteinkinases, and inductionofdefencegene expression.TheMAMPsflagellin(flg22),elongationfactorTu(elf18)andchitin,aswellastheDAMPAtPep1 provoke generally similar prolonged [Ca2+]cytelevationsinArabidopsis thalianabutwithdistinctlagtimesandamplitudes.MutantanalysisrevealedafeedbackimpactoftheCa2+-dependent ROS accumulation on the [Ca2+]cyt elevation. DespitethepivotalroleofCa2+assecondmessengerinMAMPsignalling,onlyafewparticipatingCa2+channelsandtransportersareknown.Using chemically mutagenised Arabidosis seedlings expressingthe Ca2+-reporter aequorin, we isolated mutants with changed calcium elevation(cce)inresponsetoflg22.Thesecomprisenovelallelesof theflagellin receptorFLS2and the receptor-associatedkinaseBAK1,aswellasotherccemutantswithpartiallyreducedorenhanced[Ca2+]elevationsinresponsetoseveralMAMPsandDAMPs. Thus, theseCCE genes encode components shared bydifferent MAMP/DAMP signalling pathways and will be usefulto unravel early signalling events in plant-microbe interactions.Currently, we are identifying the CCE genes by mapping andgenomesequencingandcharacterisingtheirroleininnateimmunity.

PS01-048Receptors-like kinases go endosomal: a family picture ofdynamic PRR subcellular localization in a ligand-specificmannerFabio Gervasi1, Malick Mbengue1, Sebastian Bartels2, ThomasBoller2,CyrilZipfel1,TakashiUeda3,SilkeRobatzek11The Sainsbury Laboratory, 2Botanical Institute - University ofBasel,3LaboratoryofDevelopmentalCellBiology-Tokyofabio.gervasi@tsl.ac.ukPlants perceive conserved pathogen- or damage-associatedmolecularpatterns (PAMPs/DAMPs) throughplasmamembrane-localized receptors referred to as pattern recognition receptors(PRRs). Signalling events triggered by PRRs result in increasedplantdefencesagainstpotentialinvasivepathogens,aphenomenonknown as PAMP-Triggered Immunity (PTI). Several PRRs havebeen described and among them, FLAGELLIN SENSING 2(FLS2),fromArabidopsisthaliana,isoneofthebestcharacterizedandconfersresistancetobacterialinfectionthroughtherecognitionof bacterial flagellin (flg22). After perception of flg22, FLS2relocates from the plasma membrane and is internalized withinminutes. Using transient expression in Nicotiana benthamianacoupled to live cell confocal imaging, herewe demonstrate that

Page 72: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession01-RecognitionandsignalingI/II

70

Post

er 0

1

four different fluorescent-tagged PRRs including AtFLS2 areinternalized in a ligand-dependent and -specificmanner.Vesicleslabelled with the PRRs after ligand treatments co-localize withRabF2B,areportedmarkeroflateendosomesbutnotwithamarkerofthesecretorypathway.ThisresponsedependsonthefunctionofNbSERK3aandNbSERK3b-twoundistinguishablehomologuesofArabidopsisthalianaBAK1/SERK3knowntoformacomplexwith several receptor-like kinases including FLS2 - as shownby Virus Induced Gene Silencing (VIGS) experiments. TheseresultsareconsistentwithknowledgefromAtFLS2traffickinginArabidopsis and show that PAMP/DAMP-induced endocytosisof PRRs is conserved in N. benthamiana. It also demonstratesthatligand-inducedinternalizationisamechanismpresentamongdifferentPRRs,supportingtheideathatthisplaysacriticalfunctionforplantdefenceresponses.

PS01-049Evasion of host immune recognition of flagellin in plant andhumancellsbybacterialpathogensMichielJ.C.Pel1,BartW.Bardoel2,SjoerdVanderEnt1,MichaelF.Seidl3,JosA.G.VanStrijp2,CorneM.J.Pieterse11Plant-Microbe Interactions, Utrecht University, Utrecht, TheNetherlands, 2Medical Microbiology, University Medical CenterUtrecht, Utrecht, The Netherlands, 3Theoretical Biology &Bioinformatics,UtrechtUniversity,Utrecht,TheNetherlandsm.j.c.pel@uu.nlTheinnateimmunesysteminplantsandanimalsisequippedwithreceptors that recognize pathogen associated molecular patterns(PAMPs) that upon PAMP recognition trigger an arsenal ofdownstreamdefenseresponses.Successfulpathogensprevent theactivationofdefensesby(i)suppressionofhostdefenseresponsesviathereleaseofeffectorproteins,and/or(ii)evasionofrecognitionbyitshost.Here,weshowthatthemammalianandplantpathogensPseudomonas aeruginosaandP. syringae, respectively,displayastrategythatpreventshostimmunedetectionofthePAMPflagellinby the TLR5 receptor in human cells and the FLS2 receptor inplant cells. Inour search for agonistsof theseflagellin receptorswe identified the alkaline protease AprA as signaling inhibitor(Bardoelet al.2011,PLoS Pathog.7:e1002206).AprAspecificallycleavesmonomericflagellinmolecules,whilepolymericflagellinresists degradation.P. aeruginosa aprA mutants induced a 100-fold enhancedactivationofTLR5 signaling inmammaliancells,because they fail to degrade excessmonomeric flagellin in theirenvironment.InArabidopsis,AprAalsopreventsflagellinmediatedresponses, such as growth inhibition and callose deposition.Furthermore, faster stomatal closure after treatment with P. aeruginosa aprA mutants compared to P. aeruginosa wild-typebacteriawasobserved. Inaddition,P. syringae aprAmutantsarelessvirulentandinduceastrongerdefensegeneexpressionintheirhost.Thus, thebacterial proteaseAprAdegrades excessflagellinmonomersand in thiswayenablespathogenicbacteria toescaperecognitionbytheinnateimmunesystemsoftheirhost.

PS01-050The PAMP-triggered immunity response is involved in theplantdefenseresponsetoaphidattackandissuppressedbyanaphideffectorClaireL.Drurey1,DavidPrince1,SaskiaA.Hogenhout11DepartmentofCellandDevelopmentalBiology,TheJohnInnesCentre,Norwich,UKclaire.drurey@jic.ac.ukAphidsareinsectswhichfeedonphloemsapusingtheirstylets.Thiscanleadtosignificantlossesofcropyield,boththroughthedraintoplantresourcesandthevectoringofplantviruses.Duetothesenegativeeffects, itwouldbeexpectedthatplantshavedevelopeddefensesagainst them.Inplant-pathogeninteractions,basalplantdefenseinvolvingpathogenassociatedmolecularpattern(PAMP)triggered immunity (PTI) effectively fends off the majority ofplantpathogens.WehavefoundthataphidscanevoketypicalPTI

responsessuchasROSburstsandcallosedeposition.Inorderforsuccessfulcolonizationbyapathogen,thePTIpathwayistargetedusing effectors, which manipulate plant processes to enhancesusceptibilitytotheinvadingpathogen.Successfulcolonizationofahostbyanaphid isalso thought to involveeffectorswhicharemostlikelysalivaryglandproteinsthatareintroducedintotheplantduringaphidfeeding.PreviouslyasalivaryglandproteinfromtheaphidMyzuspersicae,Mp10,wasidentifiedwhichsuppressestheReactiveOxygenSpecies(ROS)burstelicitedbythePAMPflg22(Bos,Princeetal.,2010.PLoSGenetics6(11):e1001216).FurtherinvestigationofMp10functionrevealedthatitalsosuppressesthecalciumburstthatprecedestheflg22ROSburst,aswellastheROSburstelicitedbycrudeaphidextract.Inconclusion,ourresultssofarindicatethatPTIplaysaroleinplantdefenseresponsetoaphidattackandissuppressedbyanaphideffector.

PS01-051Screening proteins with “VQ”motif: The quest for MAPKsubstratesinvolvedinplantimmunityPascalPecher1,KatjaKuhle1,GeritBethke2,SiskaHerklotz1,DierkScheel1,JustinLee11Leibniz Institute of Plant Biochemistry,Halle, Germany,2Department of Plant Biology, Microbial and Plant GenomicsInstitute,UniversityofMinnesota,1500GortnerAvenue,St.Paul55108,[email protected] recognize potential pathogens by receptor-mediateddetection of conserved microbial structures, so-called pathogen-associated molecular patterns (PAMPs). This initiates signallingpathways, including mitogen activated protein kinase (MAPK/MPK) cascades, which transduce such extracellular PAMPsignals into theappropriatedefence responses.The sameMAPKcomponentoftenparticipatesindiversepathwaysanditisthoughtthat thesignalfidelitymaybeprovidedbyspecific incorporationintodifferentproteincomplexesand/orphosphorylationofdistinctMAPKsubstrates.MAPKsubstratesidentifiedto-dateincludetheMPK4substrate1(MKS1)thatregulatesdefencegeneexpressionvia interaction with the WRKY transcription factor WRKY33.MKS1isamemberof the“VQ”motifcontainingprotein(VQP)family.InayeasttwohybridscreenagainstanArabidopsiscDNAlibrary,weidentifiedthreeadditionalVQPsthat interactwiththePAMP-activatedMPKs,MPK3 andMPK6.Wewill present ourstudiesinvolvingallArabidopsisVQPs,analysedbyin vitrokinaseandyeasttwohybridassays.Here,weidentifiedfurtherVQPsthatinteracted with and were phosphorylated byMPK3 andMPK6,and,therefore,arepossiblyinvolvedinsignallingPAMP-induceddefenceresponses.

PS01-052JAZproteinisacriticalcomponentofstomatalimmunityNisitaObulareddy1,BlaineThompson1,MaeliMelotto11DepartmentofBiology,[email protected] thenaturalopeningsformedbyapairofguardcellspresenton the leaf surface thatclose in response to livebacteriaandbacterialmotifsasapartofinnateimmuneresponses.Stomatalclosure is effective in restricting bacterial penetration into leaftissues; however phytopathogenic bacteria such Pseudomonas syringae pv. tomato (Pst) strain DC3000 produce the virulencefactor coronatine that counteracts stomatal immunity. RecentresearchallowedfortheidentificationofCOI1(theF-boxsubunitoftheSCFCOI1E3ubiquitinligase)andJAZ[anegativeregulatorof thejasmonicacid(JA)pathway]asco-receptorsofcoronatineestablishingthatJAsignalingcontributestocoronatine-dependentdiseaseprogression.Usingacombinationofapproachesincludinggene expression analysis, yeast-two-hybrid system, ectopicexpression of truncated proteins, gene knockouts, and stomatalassays we discovered that JAZ-meditated repression of JAcontributes to stomatal immunity inArabidopsis.Specificallywe

Page 73: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession01-RecognitionandsignalingI/II

71

Poster 01

havedeterminedthatJAZgenesareinducedbycoronatineinguardcells and structural-functional relationship analyses revealed thedomainsofJAZproteinsnecessaryfortheirfunction.Finally,weassessed the roleofnaturallyoccurringsplicevariantsofJAZinArabidopsisstomataldefenseagainstPstDC3000.Thephenotypeoftheseplantsandthebiologicalsignificanceofthesefindingswillbefurtherdiscussed.

PS01-053Evaluation of PAMP-triggered immunity for developingdurablediseasecontrolinbarleyandwheat.Henk-jan Schoonbeek1, Corinna Liller1, Mark Smedley2, EmmaWallington3,CyrilZipfel4,ChrisRidout11Crop Genetics, John Innes Centre, Norwich, United Kingdom,2BRACT,JohnInnesCentre,Norwich,NR47UH,UnitedKingdom,3NIAB,Cambridge,CB30LE,UnitedKingdom, 4TheSainsburyLaboratory,NorwichResearchPark,Norwich,NR47UH,UKhenk-jan.schoonbeek@jic.ac.ukPlantsdetectpathogen-associatedmolecularpatterns(PAMPs)bypatternrecognitionreceptors(PRRs),whichactivatebasalandnon-hostdefenceresponses.PAMPsareimportantconservedmolecules,whose loss or mutation cannot be easily selected for, and thusPRRs could potentially offer broad-spectrum durable resistancetopathogens.Thebest-studiedbacterialPAMPsareflagellinandelongation factor-Tu (EF-Tu), recognised by the Arabidopsisleucine-rich repeat receptor-like kinases (LRR-RLKs) FLS2 andEFR.Chitin,amajorconstituentoffungalcellwalls, is thebest-studied fungal PAMP, and is recognized by the LysM domain-containingreceptor-likeprotein(RLP)CEBiP(inriceandbarley)and the LysM-RLK CERK1 (in rice and Arabidopsis). PAMP-triggered immunity (PTI) may contribute towards quantitative(orpartial)diseaseresistance(QDR),anattractivetargetforcropbreeding.OurobjectivesweretodevelopmethodsforstudyingPTIinwheat and barley, and to define howPTI contributes toQDRasabasisforcropimprovement.Inbarley,wefoundevidenceforinduction of defence genes and resistance to pathogens such asPseudomonas syringaepv.syringaeafter treatmentwithPAMPs.GiventheroleofCEBiPinchitinperception,wearestudyinghowCEBiP expression levels contribute to PTI and QDR. Based onrecentevidencethatPRRscanbetransferredacrossplantfamiliesto confer broad-spectrum resistance, we have also transformedAtEFRandAtCERK1 intowheatandbarley to testwhether theiroverexpression confers elevated PAMP responses and increaseddisease resistance. Our research will enable us to evaluate howPTI can be exploited in agriculture to develop broad-spectrumquantitativediseaseresistance.

PS01-054ThehostcellactincytoskeletonisalteredinplantsinfectedwithPseudomonas syringaeMasaki Shimono1, Jessica L. Henty2, Katie Porter1, William J.Thomas3,JeffChang3,ChristopherJ.Staiger2,BradDay11Department of Plant Pathology, Michigan State University,Michigan, USA, 2Purdue University, IN, USA, 3Oregon StateUniversity,OR,[email protected] to the plant actin cytoskeleton have been observedin responses to infection by fungal and oomycete pathogens.However, similar responses have not been thoroughly described,norinvestigated,inthecaseofphytopathogenicbacteria.Tianet al.(2009)firstreportedevidenceforarelationshipbetweentheactincytoskeletonanddefenseagainstbacterialinfection.Inthisstudy,we investigated quantitatively actin organization in Arabidopsisplants infected withPseudomonas syringae pv. tomato DC3000using laser scanning confocal microscopy. We have establisheda protocol using 10 days-oldArabidopsis seedlings for infectionand confocal microscopy analysis. Transgenic Col-0 seedlingsexpressingtheactinmarker,ABD2fGFP,weredip-inoculatedwithvirulentoravirulentP.syringae.Thediseasephenotypeofseedlings

expressing GFPfABD2 showed the same trend as Col-0 matureplants, showing that seedlings can be used to study host cell-bacteria associations.Weobserved a significant increase in actinfilament bundling and a significant decrease in overall filamentdensity in seedlings inoculated with Pst DC3000 EV comparedwith mock-treated controls at 24-28 hours after inoculation. Incontrast,actinskewnessanddensity inseedlings inoculatedwithDC3000D28EandHrpH-didnotshowanysignificantdifferenceswhen comparedwithmock, suggesting involvement of theTypeIIISecretionSystem(T3SS)ofactindynamics.Insummary, thisworkprovides furtherevidence thatP. syringaeengages thehostactin cytoskeleton during infection, and moreover, supports ourhypothesis that the actin cytoskeleton is involved in both hostresistance,andpathogenvirulence.

PS01-055Defense-related WRKY transcription factors respond tocomponentsoftheplantcellwallinArabidopsisClaricedeAzevedoSouza1,2,ShundaiLi1,2,ShaunaSomerville1,21EnergyBiosciences Institute,UniversityofCalifornia,Berkeley,USA,2DepartmentofPlantandMicrobialBiology,UniversityofCalifornia,Berkeley,USAclaricesouza@berkeley.eduSeveralWRKYtranscriptionsfactorsareassociatedwithdefenseagainst fungal pathogens and response to chitin. Among these,we indentified a subset that also responds to components of theplant cell wall. Recent literature suggests an interplay betweenthegeneticregulationofdefenseresponseandmonitoringofplantcellwallintegrity,analogoustoyeastcellwallintegritysignaling(CWI). We hypothesize that the plant cell monitors cell walldamagecausedbybothmechanicalandbiochemicalchangesthatoccur during pathogen invasion, and that some of the signalingmoleculesinvolvedincellwallsurveillancearecommontothosefound inpattern triggered immunity (PTI).Our survey identifiedcellodextrinsandpectinoligosastriggeringWRKY30andWRKY40transcription,bybothpromoter::GUSfusionlinesandQ-PCR.Intime-courseexperimentsofcellobioseresponse,weobservedthatgeneexpressionpeakedat25minutespost-treatment.WRKY30wasthemoststronglyup-regulated,withexpressionincreasingbyover100 fold.Additionally,WRKY30p::GUS data revealed that everycell type in seedling roots responds to cellobiose treatment.Weare employing a yeast-one hybrid approach using cDNA librarygenerated fromseedling roots treatedwithcellobiose to look forproteins thatbind to theWRKY30promoter.Wealsoperformedamicroarrayexperimentusingseedlingrootstreatedwithvariouscell wall components. We believe that this combined approachwillhelpelucidatethesensing/signalingcascadesinvolvedintheresponsetocellobiose,andmorebroadly,theexistingmechanismsthatmediatesignalsderivedfromperturbationsofthecellwall.

PS01-056Identification of signalling partners and internalizationregulatorsofFLS2bymassspectrometryMalickMbengue1,HeidrunHaweker1, JanSklenar1,Alex Jones1,SilkeRobatzek11TheSainsburyLaboratorymalick.mbengue@tsl.ac.ukPlants perceive conserved pathogen- or damage-associatedmolecularpatterns (PAMPs/DAMPs) throughplasmamembrane-localized receptors referred to as pattern recognition receptors(PRRs). Signalling events triggered by PRRs result in increasedplantdefencesagainstpotentialinvasivepathogens,aphenomenonknown as PAMP-Triggered Immunity (PTI). Several PRRs havebeen described and among them, FLAGELLIN SENSING 2(FLS2),fromArabidopsis thaliana,isoneofthebestcharacterizedandconfersresistancetobacterialinfectionthroughtherecognitionof bacterial flagellin (flg22). After perception of flg22, FLS2relocates from the plasma membrane and is internalized withinminutes.Functionsofthisinternalizationremainpoorlyunderstood.

Page 74: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession01-RecognitionandsignalingI/II

72

Post

er 0

1

To identify new FLS2 partners that participate in internalizationofthereceptorand/orsignalling,weundertooklargescaleFLS2-GFPpull-downassaysbeforeandafterflg22treatmentsfollowedbymassspectrometryanalyses.InadditiontotheknownSERK3and SERK4 co-receptors, this approach allowed us to identifyseveralproteinswithputativefunctionsinsignaltransductionandtrafficking. Taking advantage of Nicotiana benthamiana, wherePRRinternalizationcanbeobservedafter ligandapplication(seeGervasietal.,PosterXVMPMI),functionofselectedcandidatesinFLS2internalizationisnowassessedbytransientexpression.OurgoalistogeneticallyblockFLS2internalizationtohelpdecipheringtheinterceptionbetweenFLS2internalizationandFLS2signalling.

PS01-057Flagellin and the role of the Pseudomonas syringae type IIIsecretionsysteminelicitingandsuppressingimmuneresponsesindependentofeffectorsAlanCollmer1,SumaChakravarthy1,Hai-LeiWei11Department of Plant Pathology and Plant-Microbe Biology,CornellUniversity,Ithaca,USAarc2@cornell.eduBacterialflagellinisperceivedasamicrobe-associatedmolecularpattern(MAMP)bytheextracellularpatternrecognitionreceptors,FLS2 andTLR5, of plants andmammals, respectively. Flagellintranslocated intomammaliancellsbypathogen typeIIIsecretionsystems (T3SSs) inducesanNLRC4-dependent,death-associatedimmuneresponse.WeareinvestigatingtheabilityoftheP. syringaeT3SS to elicit and suppress immune responses in Nicotiana benthamianausingseveralbacteria:Pseudomonas fluorescensPf0-1 expressing aP. syringae T3SS, an effectorlessP. syringae pv.tomatoDC3000polymutant,andavarietyofPf0-1andDC3000derivatives deficient in flagellar biogenesis and T3SS secretion/translocation functions. Flagellin (FliC) was secreted in cultureand translocated into plant cells by the T3SS expressed in Pf0-1 and DC3000 mutants. Pf0-1 and DC3000 fliC mutants werestrongly reduced in functional immunity elicitation as indicatedby the ability of challenge-inoculated bacteria to translocate theAvrPto-Cya effector-reporter hybrid and other assays. Elicitationof immune responses was partially restored to FiC+ flgGHIflagellarpathwaymutantsbywild-typeandtranslocation-deficient(secretion-proficient) T3SSs. Agrobacterium-mediated transientexpressioninN. benthamianaofFliCwithorwithoutaeukaryoticexport signal peptide, coupledwith virus-inducedgene silencingofFLS2,revealednodeathresponseoranyimmuneresponsethatwasnotFLS2dependent.FliCaltersimmuneresponseselicitedbyasubsetoftypeIIIeffectors,andFliC-elicitedimmuneresponsesinN. benthamiana are partially suppressed by a DC3000 T3SScomponent. Our findings reveal interplay between FliC and theT3SSandamajordifferenceintheimmunesystemsofplantsandmammals.

PS01-058RoleoftheHaHOG1MAPkinaseinresponseoftheconiferrootandbutRotpathogen(Heterobasidion annosum)toosmoticandoxidativestressTommasoRaffaello1,SusannaKerio1,FredO.Asiegbu11DepartmentofForestSciences,UniversityofHelsinki,Helsinki,[email protected] basidiomyceteHeterobasidion annosum (Fr.) Bref. s.l. is afilamentouswhiterotfungusconsideredtobethemosteconomicallyimportantpathogenofconifertrees.Despitetheinfectionseverity,verylittle isknownabout themolecularandbiochemicalaspectsrelatedtoadaptationtoabioticstresses.Inthisstudy,theosmoticandoxidativetoleranceandtheroleoftheHaHOG1MitogenActivatedProteinKinase(MAPK)genewasinvestigated.Thetranscriptlevelsofselectedgenesknowntohaveanimportantroleinosmotolerancewerealsoquantifiedunderosmoticconditions.TheHaHOG1genewasused for anheterologous expression and functional study in

theSaccharomyces cerevisiae hog1mutant strain.Moreover, thephosphorylationlevelofHaHog1pwasstudiedunderosmoticandoxidativestress.TheresultsshowedthatH. annosumdisplayedadecreasedgrowthwhenexposedtoanincreasedconcentrationofosmoticandoxidativestressors.Amongthegenesstudied,PMC1washighlyinducedwhenthefunguswasexposedtoCaCl2for60minutes.TheHaHOG1genewasabletorestoretheosmotoleranceand oxidative tolerance in the S. cerevisiae hog1 mutant strain.The HaHog1p was strongly phosphorylated in the presence ofNaCl,KCl, hydrogen peroxide but not in the presence ofCaCl2andMgCl2.Finally,theGFP-HaHog1pfusionproteinaccumulatedinthenucleioftheS. cerevisiae hog1mutantcellswhenexposedto high osmotic conditions.Taken together these results providethefirstinsightsabouttheresponseofH. annosumtoosmoticandoxidativestressandelucidatetheroleoftheHaHOG1geneinsuchconditions.

PS01-059InterplaybetweentwoArabidopsisgenes,NHR1AandNHR1B,regulating stomatal defense and nonhost disease resistanceagainstbacterialpathogensSeongheeLee1,MuthappaSenthil-Kumar1,KirankumarS.Mysore11TheSamuelRobertsNobleFoundation,Ardmore,OK,[email protected](NHR)isthemostcommonformofplantdefensemechanismexhibitedbyallplantstowardsthemajorityofplantpathogens.Wehaveusedavirus-inducedgenesilencing-basedfastforwardgeneticsscreeninNicotiana benthamianatoidentifyplantgenesthatplayaroleinNHR.UsingthisapproachwehaveidentifiedseveralgenesthatplayaroleinNHR.Oneofthesegenesencodes aGTP-binding protein and silencing of this gene inN. benthamianacompromisedNHR.Tofurthercharacterizethegenefunction,weidentifiedtwoArabidopsishomologs,NHR1A(NHR-associatedgene1A)andNHR1B (NHR-associatedgene1B) thatregulate stomatal defense and NHR against bacterial pathogens,respectively. Arabidopsis nhr1a mutant is impaired in stomataclosure in response toABA, flg22, LPS, and nonhost bacterialpathogens, indicating thatNHR1A acts as a positive regulator ofstomataclosureinresponsetobothabioticandbioticstresses.Bycontrast, thedown-regulationofNHR1B usingRNA interference(RNAi)wasnotdisruptedinABA,PAMPs,andnonhostpathogeninduced stomatal closure. However, interestingly, NHR wascompromised in NHR1B RNAi lines. Thus, our findings in thepresent study indicate the complex interplay between two novelArabidopsis genes, NHR1A and NHR1B, in the regulation ofstomatal defense and NHR against bacterial pathogens.WewillfurtherdiscussthepossiblefunctionsandmechanismsofNHR1AandNHR1BinvolvedinNHRagainstbacterialpathogens.

PS01-060DoestheArabidopsisendogenouspeptideelicitor/receptorPep/PEPRpathway act in danger sensing and signalling in plantimmunity?Kohji Yamada1, Misuzu Yamashita-Yamada1, Kazue Kanehara1,NicoTintor1,YusukeSaijo11Department ofPlantMicrobe Interactions,MaxPlanck InstituteforPlantBreedingResearch,Cologne,Germanyyamada@mpipz.mpg.deRecognitionoftheso-calledmicrobe-associatedmolecularpatterns(MAMPs), such as bacterial flagellin or elongation factor Tu,triggersimmuneresponsethatrestrictsmultiplicationofpotentiallyinfectiousmicrobes.InArabidopsis,recognitionoftheendogenouselicitor epitopes Pep1-Pep6 triggers immune response likewise.The conserved Pep epitope is embedded in theC-termini of theprecursors PROPEPs which lack a canonical N-terminal signalpeptideforenteringthesecretorypathway,butisrecognizedbytheextracellulardomainofthetrans-membranereceptorsPEPR1andPEPR2.Thisimpliesamodelinwhichcellulardamages,e.g.uponpathogenchallenges, expose theelicitor-activeepitope toPEPRs

Page 75: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession01-RecognitionandsignalingI/II

73

Poster 01

in theextracellularspaces, thereby triggering immunesignalling.However,howthisrecognitionoccursremainstobeshowninvivo.Of6ArabidopsisPROPEPs,wefocusonPROPEP2andPROPEP3thatarestronglyinduceduponpathogen-derivedmoleculesatthemRNA level.We undertake a biochemical approach to trace theactionsofthetwoPROPEPsattheproteinlevelinvivo.OurdataindicatethatbothPROPEPsaccumulateuponMAMPapplicationand that they generate active ligands that bind to PEPRs andinducetherecruitmentoftheco-receptorBAK1toPEPRs.WearecurrentlytestingwhetherPROPEPprocessingand/ortranslocationcontributestothegenerationofelicitor-activeligand(s)forPEPRsandwhetherthisprocessisinfluenceduponpathogenchallenges.Wewilldiscusswhether,and if so,how thisendogenouselicitorsystem serves in damage sensing and signaling during immuneresponse.

PS01-061A classification tool for calcium dependent protein kinases(CPKs)basedonmotifanalysisKieren R. Arthur1, Gardette Valmonte1,2, Colleen M. Higgins2,RobinMacDiarmid1,31The New Zealand Institute for Plant and Food Research Ltd,2School of Applied Sciences, AUT University, New Zealand,3SchoolofBiologicalSciences,TheUniversityofAuckland,[email protected] dependent protein kinases (CPKs) are a unique genefamilyfoundinplants,algaeandprotists.CPKsrespondtoarangeofabioticandbioticstressors,includinginfectionbyvariousfungal,bacterialandviralpathogens.CPKsarecurrentlyidentifiedeitherindividuallyorfromwhole-genomesequencesandclassifiedintooneofsixevolutionarygroupings.ThisclassificationisbasedoneithersequencehomologywithpreviouslyreportedCPKsorphylogeneticanalysis-usuallywithsequencesfromArabidopsis thaliana.Thisapproach requires time, familiarity with bioinformatics softwareand familiarity with CPK evolutionary groups. Our aim was todevelop a simpler motif-based tool to classify newly identifiedCPKsquicklyintotheircorrespondingevolutionarygroups,whichwill complement phylogenetic analysis.To produce this toolweperformedthreesteps.Firstlywealignedtheproteinsequencesofall34CPKsfromA. thaliana(AtCPKs),andidentified64motifs,11conservedand53thatvarybetweenevolutionarygroups.Secondly,weassessedtheseAtCPKmotifsusingatrainingsetofCPKgenesfrom the rice, potato andgrapegenomes.Thirdly, discriminativemotifswerevalidatedusingCPKsequencesfromthreecompletegenomes (wheat, poplar and sorghum). The utility of the CPK-motifclassificationtoolwasevaluatedwithatestingsetofCPKsfrombothcompleteandincompletegenomes,includingkiwifruit.ThesediscriminativemotifscanfacilitateCPKgenepredictionandmayalsoproveusefulastargetsfordegenerateprimers,allowingfor extensive discovery of CPK orthologues from diverse plantspecies(forwhichgenomesequencesareunavailable)thatrespondtodifferenttypesofpathogenicinfection.

PS01-062Molecularcharacterizationofwound-inducibleMAPKcascadeinriceSeung-JinYoo1, Douck-HeeYang1, Baik Ho Cho1, Kwang-YeolYang11DepartmentofPlantBiotechnology(BK21program),UniversityofChonnam,Gwangju,[email protected] wounding in plants induces dramatic changes ingene expression and protein activation that contribute not onlyrepairing of damaged plant tissue but also participating in theactivation of wound defense signaling pathways. To understandthesignalingpathwayofwounding in rice,wehave investigatedthe involvement of proteinkinase.The rice 48-kDaMBPkinase<named OsSIPK> was rapidly activated within 10 min of

wounding.InordertocharacterizetheupstreamkinaseofOsSIPKinwoundingsignalingpathway,weusedAgrobacterium-mediatedtransient expression system in tobacco. Transiently expressedOsMKK4DD,aconstitutivelyactivemutantofOsMKK4, inducedHR-likecelldeathandshowedhighlevelactivationofendogenousMAPKsintobacco.TheseresultsstronglysuggestthatOsMKK4is the functionally interchangeable with NtMEK2 in tobacco.Furthermore,HisOsMKK4WTandHisOsMKK4DDphosphorylatedHisOsSIPKKRbutnotHisMPK4KRorHisBWMK1KR,twootherriceMAPKs. Phosphorylation of HisOsSIPK by the HisOsMKK4WTandHisOsMKK4DDenhancedtheiractivitiestowardmyelinbasicproteinasasubstrate.ExpressionofOsMKK4DDactivatesOsSIPKafterwounding,suggestingthattheOsMKK4isanupstreamkinaseofOsSIPKinwoundingsignalingpathwayinrice.

PS01-063Different receptor systems regulate chitin signaling inArabidopsisandriceTomonoriShinya1,NorikoMotoyama1,MasahiroHayafune1,KotaKamiya1, Hikaru Shimada1, Takumi Tanimoto1, Hanae Kaku1,NaotoShibuya11DepartmentofLifeSciences,MeijiUniversity,Kanagawa,[email protected] and animals recognize microbe/pathogen-associatedmolecular patterns (MAMPs/PAMPs) for sensing of microbes.Chitin derived from fungal cellwall is a typicalMAMP and itsperceptionleadstoimmuneresponses.CEBiP(rice)andCERK1/OsCERK1 (Arabidopsis/rice) have been identified as criticalcomponents for chitin signaling in these plants (1, 2, 3). Theyare a GPI-anchored protein and a receptor-like kinase (RLK),respectively. To understand whether Arabidopsis requires thepresence of CEBiP-like molecule(s) for chitin signaling, wecharacterized CEBiP homologues in Arabidopsis. One of threeCEBiPhomologues(AtCEBiP)showedahigh-affinitybindingforchitin oligosaccharides using affinity labeling with biotinylatedchitinoligosaccharides(4).ThebindingcharacteristicsofAtCEBiPwereverysimilar toriceCEBiP.However, theknock-outmutantaswellasoverexpressingplantofAtCEBiPshowedchitin-inducedROS generation similar to wild typeArabidopsis. These resultsindicated that AtCEBiP is biochemically functional as a chitinbindingproteinbutdoesnotsignificantlycontribute tosignaling.Inotherwords,onlyAtCERK1seemsenoughforchitinperceptionand signaling in Arabidopsis. Thus, the machinery required forchitinperception/signalinginArabidopsisseemstobesignificantlydifferentfromthatofrice,whichrequiresbothCEBiPandOsCERK1.(1)Kakuetal.,ProcNatlAcadSciUSA.2006,103:11086-91;(2)Miyaetal.,ProcNatlAcadSciUSA.2007,104:19613-8;(3)Shimizuetal.,PlantJ.2010,64:204-14;(4)Shinyaetal.,PlantCellPhysiol.2010,51:262-70.

PS01-064Phosphorylation of Nicotiana benthamiana WRKY8transcriptionfactorbyMAPKfunctionsinthedefenseresponseNobuakiIshihama1,2,HiroakiAdachi2,ReikoYamada2,YuriKatou2,MikiYoshioka2,HirofumiYoshioka21Plant Immunity ResearchGroup, RIKEN Plant Science Center,Yokohama, Japan, 2Laboratory of Defense in Plant-PathogenInteractions,GraduateSchoolofBioagriculturalSciences,NagoyaUniversity,Nagoya,[email protected] protein kinase (MAPK) cascades have pivotalroles in plant innate immunity. However, downstream signalingof plant defense-related MAPKs is not well understood. Herewe provide evidence that Nicotiana benthamiana WRKY8transcription factor is a physiological substrate of SIPK, NTF4,andWIPK.Clusteredproline-directedserines(SPcluster),whichareconservedingroupIWRKYproteins,intheN-terminalregionofWRKY8werephosphorylatedbytheseMAPKsinvitro.Anti-phosphopeptideantibodiesindicatedthatserinesintheSPcluster

Page 76: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession01-RecognitionandsignalingI/II

74

Post

er 0

1

of WRKY8 are phosphorylated by SIPK, NTF4, andWIPK invivo.TheinteractionofWRKY8withMAPKsdependedonitsDdomain,which isaMAPK-interactingmotif,and this interactionwas required for effectivephosphorylationofWRKY8 inplants.Phosphorylation ofWRKY8 increased its DNA-binding activityto the cognateW-box sequence.Thephospho-mimickingmutantofWRKY8showedhighertransactivationactivity,anditsectopicexpression induced defense-related genes, such as 3-hydroxy-3-methylglutaryl CoA reductase 2 (HMGR2) and NADP-malic enzyme (NADP-ME). In contrast, silencing ofWRKY8 decreasedthe expression of defense-related genes and increased diseasesusceptibility to plant pathogens. Thus, MAPK-mediatedphosphorylationofWRKY8hasanimportantrole in thedefenseresponsethroughactivationofdownstreamgenes.

PS01-065Post-translationalmodificationofWRKYtranscriptionfactorsbyMAPKsinducesHR-likecelldeathHiroakiAdachi1,NobuakiIshihama2,MikiYoshioka1,YuriKatou1,TakashiYaeno2,KenShirasu2,HirofumiYoshioka11GraduateSchoolofBioagriculturalSciences,NagoyaUniversity,Japan,2RIKENPlantScienceCenteradachi.hiroaki@h.mbox.nagoya-u.ac.jpMAPKcascadesplaypivotal roles in signalingpathwayofplantdefense.WRKY8,groupIWRKYtranscriptionalfactorinNicotiana benthamiana, is isolated as a substrate of pathogen-responsiveMAPKs, and it has been shown that WRKY8 is specificallyphosphorylatedbySIPK,NTF4andWIPK.Proline-directedserine(SPcluster),whichisexistedinN-terminalregionofWRKY8,istarget of phosphorylation. Phosphorylation ofWRKY8 increasesDNAbindingandtranscriptionalactivities.Additionally,WRKY8contains D domain which is a MAPK-interacting motif, and Ddomain-dependent interactions with MAPKs are required foreffective phosphorylation of WRKY8. Interestingly, SP clusterandDdomainarehighlyconservedinsomemembersofgroupIWRKYs.ToidentifynovelsubstratesofMAPKs,weisolatedsevennovelgroupIWRKYgenesfromcDNAlibraryofN. benthamiana,andtheseWRKYgenescarrySPclusterandDdomain.Transientexpression of four novelWRKY genes induced cell death inN. benthamianaleaves.WRKY-dependentcelldeathwasacceleratedbyphospho-mimickingmutationinputativephosphorylatedserinesof SP cluster.Moreover,MEK2DD-dependent HR-like cell deathwascompromisedinmultipleWRKYgenes-silencedplants.TheseresultssuggestthatWRKYtranscriptionalfactorsareinvolvedintheregulationofcelldeathatthedownstreamofMAPK.

PS01-066IdentificationofflagellinreceptorinriceinvolvedininductionofplantimmuneresponsesYuya Katsuragi1, Akinari Oguri1, Takumi Morimoto1, KohsukeKajiyama1,HirofumiKajimoto1,YukaTanaka1,RyotaTakai1,Fang-SikChe11Graduate School of Biosciences, Nagahama Institute of Bio-ScienceandTechnology,Shiga,[email protected] from rice-avirulent strain of phytopathogenic bacteriaAcidovorax avenue induces several immune responses in rice. InArabidopsis, the most conserved N-terminal domain of flagellinthat consists of a 22-amino acid peptide (flg22) was recognizedby a receptor-like kinase, FlagellinSensing 2 (FLS2).Although,rice possesses FLS2 ortholog (OsFLS2), rice immune responseswerenotinducedbyflg22.Thisindicatesthatricehasadifferentreceptor from FLS2 for recognition of the flagellin from rice-avirulent strain ofA. avenae.To clarify the flagellin recognitionmechanism in rice,we attempted to identify the receptor for theflagellininrice.Geneexpressionprofilinginriceaftertheflagellintreatment showed that expression of several genes encoding thereceptorkinasewereincreased.ThericeT-DNAinsertionmutantofoneidentifiedgene,flagellin-induced receptor kinase 2(flirk2),

lost theabilityof theflagellin recognition.ExpressionofFliRK2in flirk2 mutant was recovered the induction ability of severalimmune responses, suchasH2O2generationand immune relatedgeneexpressionbyflagellintreatment,whiletheexpressionofthekinasedomaindeletedFliRK2inflirk2didnotshowtherecoverysuchinductionabilityofimmuneresponses.Theseresultssuggestthat FliRK2 transduces flagellin recognition signal through theproteinphosphorylationintothecell.

PS01-067Aninteraction-basedidentificationofMKK3upstreamfactorsinArabidopsisMasako Nakamura1, Kaori Takigawa2, Ken Shirasu2, KazuyaIchimura11The agricultural department, University of Kagawa, Kagawa,Japan,2RIKENPlantScienceCenter,Kanagawa,[email protected],mitogen-activatedproteinkinase(MAPK)cascadesareinvolved in various biotic and abiotic stress responses. Recentstudies showed that Arabidopsis MKK3 has multiple functionswith different downstreamMAPKs. The MKK3-MPK6 cascadenegativelyregulatesJAsignaling.TheMKK3-MPK1/2/7cascadeparticipatesnotonlyindefenseresponsesbutalsoinregulationofABAandsaltsignaling.TheMKK3-MPK8cascadehasafunctionin part of regulationROS (reactive oxygen spices) homeostasis.However, upstreamMAPKKKsof these cascades still remain tobe identified. Considering case of existing MAPK cascade, weassumedthatprotein-proteininteractioncouldbeanimportanttoolforidentificationofMKK3upstreamfactors.Withtheconcept,weperformedsystematicyeasttwo-hybridanalysisusingArabidopsis21MAPKKKs, 8MAPKs andMKK3.We found that 4MTKs(MKK3-interacting MAPKKKs) bound to MKK3. Among ofthese, only MTK1interacted with MPK6. We also detectedMKK3-MPK1/2/7 interaction. These results suggest presence oftwo signaling modes, MTK1-MKK3-MPK6 and MTK1/2/3/4-MKK3-MPK1/2/7.Intheformercase,MTK1mayserveascaffoldfunction, not only as aMAPKKK, to establish specific cascade.ThishypotheticalcascadefitstotheJAsignalingmodel.ThelattercasemayhaverolesinABAandsaltsignaling.

PS01-068Functional analysis of LysM motifs in rice chitin receptorCEBiPMasahiro Hayafune1, Sakiko Arima1, Miyu Kayama1, KotaKamiya1,TomonoriShinya1,KazunoriOkada2,HisakazuYamane2,NaotoShibuya1,HanaeKaku11Department of Life Sciences,Meiji University,Kanagawa,Japan,2Biotechnology Research Center,The University ofTokyo,Tokyo,[email protected] are equipped with a sensitive system to detect Microbe/Pathogen-associated molecular patterns (MAMPs/PAMPs) andinitiatevariousdefenseresponses.Chitin(β-1,4-linkedpolymerofN-acetylglucosamine)isacommoncomponentofthecellwallsofvariousfungi.Fragmentsofchitin,N-acetylchitooligosaccharides,areoneofthemajorMAMPsandhavebeenshowntoactasapotentelicitorsignalinwiderangeofplantsystems.RecentlyweidentifiedtwoLysMreceptors,CEBiPandOsCERK1,whichplayanimportantrole for chitin signaling in rice (1, 2).CEBiP is aGPI anchoredproteinandhasseveralLysMmotifs in theextracellulardomain,whichseemtocontributeforchitinbindingactivity.ToinvestigatetheroleoftheseLysMmotifsinsugarbindingspecificityofCEBiP,weappliedtwodifferentapproaches,deletionofeachLysMmotiffromCEBiPandreplacementoftheseLysMmotifswiththoseofCEBiPhomologueswith/withoutchitinbindingactivity.WefoundthatoneofthemotifsplaysacriticalroleforchitinbindinginCEBiP.(1)Kakuetal,PNAS,103,11086(2006);(2)Shimizuetal,Plant J.,64,204(2010).

Page 77: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession01-RecognitionandsignalingI/II

75

Poster 01

PS01-069Identificationand localizationof theNB-LRRgene family inthehotpeppergenome(Capsicum annuum)Seon-InYeom1,SeungillKim1,EunyoungSeo1,Saet-ByulKim1,Shin-YoungKim1,Hyun-AhLee1,Yong-MinKim1,DoilChoi11Department of Plant Science, Plant Genomics and BreedingInstitute,SeoulNationalUniversity,Seoul,[email protected],plantsconstitutivelychallengedwithpathogenshavebeendevelopedvariousstrategiesforprotection,suchasinnateimmune receptors anddisease resistanceRgenes.As the largestandmostvariablegenefamiliesinplantgenomes, thenucleotidebinding and leucine-rich repeat (NB-LRR) encoding resistancesgenesplaykeyrolesindefenseandsurveillanceagainstpathogensand pest. The NB encoding R gene family has been studiedextensively tounravel the roleof their functionandevolution inplants. Here, the diversity of NB-LRR genes was investigatedin the Capsicum annuum CM334 draft genome sequence. WeperformedaconservedNBdomainbasedsearchoftheannotatedpeppergenomeandidentified486NB-LRRtypegenesamongthe34,534peppergenemodels.Basedonourpipeline,23wereTNLtypecontainsanN-terminal toll/interleukin1 receptor (TIR)-likedomain,and463werenon-TNLtypecontainanN-terminalcoiled-coil(CC)domainornot.Thetranscriptlevelsof443NB-LRRgenesweredetectedfromvariabletissues.ThephysicalandgeneticmapcontributionswerepositionedfortheseNB-LRRgenesinpepperpseudo-moleculechromosomes.ComparativegenomicsstudiesonevolutionandfunctionofNB-LRRgenesinSolanaceousgenomesisonprogress.ThesewillprovideamajorsourceofcandidatesforimprovingdefensemechanismandunderstandingRgeneevolutionanddiversityinpepperandotherSolanaceaespecies.

PS01-070DiscoveryofasmallpeptidethatcanactivatetheplantimmunesystemfromcombinatorialrandompeptidelibrariesMasahiroMiyashita1,MasashiOda1,YujiOno1, ErikoKomoda1,HisashiMiyagawa11GraduateSchoolofAgriculture,KyotoUniversity,Kyoto,[email protected] themselvesusingan innate immunesystem,whichis activated in response to a variety of molecules derived frompathogens.Thesemoleculeshaveprovidedprofound insight intomechanisms of pathogen recognition and subsequent signalingpathwaysinplants.Inthepresentstudy,wescreenedacombinatorialrandomhexapeptidelibraryforpeptidesthatcanactivatetheplantimmune system using a cell-based high-throughput screeningsystem,inwhichH2O2generationwasmonitored.Wesuccessfullydiscoveredanovelhexapeptide(YGIHTH-amide,PIP-1)fromtherandom library prepared by split-mix synthesis, which triggeredanoxidativeburstintobaccoandtomatocellsatlowmicromolarconcetrations, but not in Arabidopsis cells. Interestingly, PIP-1 shares no sequence similarity to any known peptide elicitorsderived from pathogens. PIP-1 also induced significant levelsof phytoalexin biosynthesis. From analysis of defense-relatedgene expression in tobacco cells, PIP-1 is likely to activate theimmunesystemviaajasmonicacidpathway.Wealsoinvestigatedthe structural factors important for activity of PIP-1. Alanine-scanningexperimentsrevealedthattheN-terminal4residueswereessentialforinductionofanoxidativeburst.Inaddition,whentheC-terminal amide was converted to acid (PIP-1-OH), an 8-foldincrease in activity as comparedwith PIP-1was observed. ThisindicatesthatthefreeacidstructureattheC-terminusisfavorableforactivity.PIP-1isnotonlyusefulasachemicalprobeforbetterunderstandingtheplantimmunesystem,butalsocanserveasaleadcompoundforthedevelopmentofnewactivatorsofplantdefenses.

PS01-071ArabidopsisubiquitinligaseATL31whichisinvolvedindefenseresponse ubiquitinates 14-3-3 proteins in phosphorylation-dependentmannerShigetaka Yasuda1, Shugo Maekawa1, Takeo Sato1, JunjiYamaguchi11FacultyofScienceandGraduateSchoolofLifeScience,HokkaidoUniversity,Sapporo,[email protected] sense balance of carbon (C) andnitrogen (N)metabolitesto regulate metabolism and development, called C/N response.We previously revealed that ubiquitin ligase ATL31 functionsin the C/N response inArabidopsis (Sato et al., Plant J., 2009).In addition, we demonstrated that the ATL31 is also involvedin defense response (Maekawa et al., Plant Mol. Biol., 2012).However,thesemolecularmechanismsremainunclear.The14-3-3proteinswere identifiedas anubiquitination targetof theATL31byproteomicapproach(Satoetal.,PlantJ.,2011).14-3-3proteinsplay an important role in regulationof key enzymes involved inC and N metabolisms and defense response. Generally, 14-3-3proteinsbindtophosphorylatedmotifsintheirtargetproteins.Fourputative14-3-3bindingsitesonATL31wereidentifiedbyScansitesearch.Wedeterminedwhetherthesesitesarecriticalforthe14-3-3 interactionbysubstitutionanalysis.ThemutatedATL31whichis abolished for phosphorylationwas not able to bind to 14-3-3proteins.Furthermore,phosphorylatedpeptidesgeneratedaftertheATL31proteininhibitedinteractionbetweentheATL31and14-3-3proteins.Taken together, these results indicate that thebindingactivityof14-3-3proteinsdependentonthephosphorylationstatusontheATL31protein.

PS01-072Towards understanding MAPK cascade function in potato-PVYinteractionAnnaColl1,AnaLazar1,PolonaBedina2,GregorAnderluh2, JanaZel1,KristinaGruden11Department of Biotechnology and Systems Biology, NationalInstitute of Biology, Ljubljana, Slovenia, 2Laboratory forBiosynthesis and Biotransformation, National Institute ofChemistry,Ljubljana,[email protected] activation of kinases within the mitogen-activatedprotein (MAP) kinase (MAPK) cascades is a common andevolutionary-conserved mechanism of signal transduction. Inthe last decade numerous reports have provided evidence forthe involvement and importance of MAPKs in regulating plantinnate immune responses. However the mechanisms throughwhichMAPKstransducethesignalsarelargelyunknown.Togaininsight into theirpotential relationshipweareoptimizingayeasttwohybridbasedscreeningsystem.PotatoMAPKsfromeachofthethreesequentiallyphosphorylatingandactivatingcomponents(MAPK, MAPKK and MAPKKK), previously identified to beinvolved in thepotatovirusY response,were selected.Theyaresubjected to screening potato cDNA library. In parallel protein-protein interactionsarebeingverified in planta.Thedata shouldcontribute to better understand the complex network of plantdefensesignalingpathways.

PS01-073TwoU-boxubiquitin ligases positively contribute toMAMP-responsiveMAPkinasecascadeinArabidopsisJunpeiHio1,Kazuya Ichimura1,TsuyoshiMizoguchi2,AlexanderGraf3,FuminoriTakahashi4,KazuoShinozaki4,KenShirasu41Faculty ofAgriculture, University of Kagawa, Kagawa, Japan,2Institute of Biological Sciences, University of Tsukuba, Japan,3TheSainsburyLaboratory, John InnesCentre,UnitedKingdom,4RIKENPlantScienceCenter,Japan

Page 78: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession01-RecognitionandsignalingI/II

76

Post

er 0

1

s11g647@stmail.ag.kagawa-u.ac.jpPlantsprimarilyrecognizemicrobialpathogensthroughperceptionof microbe-associated molecular patterns (MAMPs) by pattern-recognitionreceptors(PRRs)intheplasmamembrane.PerceptionofMAMPsinducesseveralmolecularresponsessuchasdefensegeneexpression, phytoalexin biosynthesis, and cell wall crosslinking,leadingtotheMAMP-triggeredimmunity(MTI).MTIcontributestobroad-spectrumresistance.Thisinnateimmunityisthoughttoberegulatedbymitogen-activatedproteinkinase(MAPK)cascades.Of those, anArabidopsisMAPK cascade consisting ofMEKK1- MKK1/MKK2 - MPK4 regulates innate immunity signaling.Regulatory mechanism of MEKK1, however, remains to beelucidated.Here,weidentifiedtwoU-boxubiquitinligases,PUB25and PUB26, as MEKK1-interacting proteins by the yeast two-hybrid screening. These proteins specifically interacted with theN-terminalregulatorydomainofMEKK1.ToseefunctionofPUB25and PUB26 in theMEKK1-mediatingMAP kinase cascade, weproducedpub25/pub26doublemutantandPUB26overexpressors.WeobservedreducedMPK4andMPK6activationbyflg22inthepub25/pub26doublemutant.Moreover,PAD3 inductionbyflg22wasalsoreducedinthedoublemutant.Bycontrast,PUB26overexpressorsdemonstratedhigherPAD3 expression thanwild type.These results suggest that positive contribution of PUB25 andPUB26toMEKK1functioninArabidopsis.

PS01-074Visualisation of lateral plasma membrane segregation andphosphorylation-dependent dynamics of remorin proteins inArabidopsis thalianaIrisK.Jarsch1,SebastianKonrad1,ThomasOtt11GeneticsInstitute.UniversityofMunich,Munich,[email protected] membranes (PMs) require high levels of plasticity tomodulateperceptionand transductionof signals.While theplantcell wall represents a physical and mostly unspecific barrierfor invading microbes, the PM is at the forefront of microbialrecognition and initiation of defence responses. Accumulatingevidence indicating dynamic compartmentalization of PMs inresponse toenvironmentalcueshasevoked increasing interest initscompositionalheterogeneity.RemorinproteinsarePMlocalisedplantspecificproteinsinvolvedinsignallingduringplantmicrobeinteractions.RecentlysymbiosisspecificremorinsfromMedicago truncatula andLotus japonicus aswellasa remorin frompotatohavebeenshowntointeractwithandbeingphosphorylatedbykeycomponents of plant-microbe signaling pathways. Both proteinsare crucial for thecorrespondingpathwaysand serveasmarkersforsocalledmembranerafts,sterolrichcompartmentsinthePMthatarebelievedhostanumberofsignallingproteinsbutalsoserveaskeycellularentrypoints forpathogenicmicrobesandviruses.In a global approachwedetermined the sub-cellular localizationof15outof16remorinsfromArabidopsis thaliana.Weobservedhighdegreesoflateralsegregationoftheplasmamembrane,withdifferent remorin family members labelling approximately 10discriminativemembrane domains. Some of these compartmentsare highly dynamic, laterally relocalising upon stress treatmentinaphosphorylationdependentmannerandfusingtoformlargerplatforms.

PS01-075TowardstheidentificationofNFBS2:ahighaffinityNodFactorBindingSiteinMedicago truncatulacellsuspensionculturesJudith Fliegmann1,2, Sophie Canova3, Christophe Lachaud1,2,Virginie Gasciolli1,2, Sandra Uhlenbroich4,5, Carole Pichereaux6,Benoit Lefebvre1,2, Eduardo A. Martinez7, Hugues Driguez7,Sylvain Cottaz7, Sébastien Fort7, Frédéric Debellé1,2, CharlesRosenberg1,2, Delphine Pitorre1,2, Clare Gough1,2, Jean-MarieBeau3,BorisVauzeilles3,MichelRossignol6,JulieV.Cullimore1,2,Jean-JacquesBono1,21INRA, Laboratoire des Interactions Plantes-Microorganismes

(LIPM),UMR441, 2CNRS,Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, 3ICMMO, UMR8182,4Université de Toulouse; UPS; UMR 5546, Laboratoire deRecherche en SciencesVégétales (LRSV), 5CNRS; UMR 5546,6FR3450, Plateforme de Protéomique Toulouse Midi-Pyrénées,Institut de Pharmacologie et Biologie Structurale, Université deToulouse,7CentredeRecherchessurlesMacromoléculesVégétales(CERMAV-CNRS)[email protected] factors are lipo-chitooligosaccharides (LCOs) involved inthe specific recognition of the bacteriumby the plant during theestablishment of the legume-Rhizobium symbiosis. By usingradiolabelledNodfactors,wehavebeenabletocharacteriseNodfactor-bindingsites(NFBSs),inMedicago spp.Oneofthesebindingsites, termedNFBS2, isassociated to themicrosomal fractionofMedicago truncatulacellsuspensionculturesandexhibitsahighaffinity for the major Nod factor produced by Sinorhizobium meliloti, the symbiontofM. truncatula.NFBS2,whichdoesnotcorrespondtotheputativeNodfactorreceptorsNFPorLYK3,isspecificfortheLCOstructuresinceitrecognizesrecentlyidentifiedMyc-LCOs as well as Nod factors with a high affinity, but notchitooligosaccharides.NFBS2discriminatesthelengthofthefattyacid,thedegreeofpolymerisationoftheoligochitinbackbone,butnot the sulfategroup that is themaindeterminantof the specificinteractionbetweenS. meliloti andM. truncatula.Becauseof itsinteresting characteristics in terms of LCO recognition we areattemptingtoidentifyNFBS2.WefirstdevelopedLCO-derivativesinordertodetectthebindingproteinbyphotoaffinitylabellinginmicrosomal preparations. Then, by exploiting the difference ofabundanceof thebindingprotein indifferent cell lines,wehavecombined proteomic and transcriptomic approaches to identifyproteins/transcripts thatcouldcorrespondtoNFBS2accordingtotheirrelativeabundanceintheselines.Theon-goingworkwillbepresentedanddiscussed.

PS01-076The binding affinity to viral coat proteins determines therecognition specificity of allelic L tobamovirus resistanceproteinsKen-TaroSekine1,ReikoTomita1,GoAtsumi1,HuiChen2,MasanoriKaido3,NaotoYamaoka2,MasamichiNishiguchi2,TetsuroOkuno3,KappeiKobayashi21IwateBiotechnologyResearchCenter, Iwate, Japan, 2Faculty ofAgriculture,EhimeUniversity,Ehime,Japan,3GraduateSchoolofAgriculture,KyotoUniversity,Kyoto,[email protected],L1,L2,L3,andL4,conferbroadeningspectrumoftobamovirusresistanceaccompaniedbyhypersensitiveresponse(HR).Theirproteinproductsconsistingofthreedomains(coiled-coil, nucleotide-binding and leucine-rich repeat (LRR)domains)recognizetobamoviruscoatproteins(CP)withdifferentspecificitiesdeterminedbytheLRRdomain.TheallelicLproteins,L1,L2,L3,andL4,showedincreasingbindingcapacitytodifferenttobamovirusCPs,suggesting thecorrelationbetween thebindingaffinityandCPrecognitionbyLproteins.Toconfirmthisnotion,we performedmutational analysis and identified some xxLxLxxbeta-sheetmotifsresponsiblefortherecognition.Thesubstitutionto xALALAx of 12th or 32th motifs narrowed the recognitionspectrum and the combination of the mutations narrowed thespectrum further. The single- and double-mutants recognizedTomato mosaic virus(ToMV)CPtodecreasingextentsmanifestedbydelayedHR,andexhibiteddecreasingbindingaffinitytoToMVCP.Theseresultssuggest that thebindingaffinitybetweenLandCP (or the stability of the complex containing these proteins) isimportant for generating resistance signals, although it remainsunknownwhether these proteins interact directly or indirectly toeachother.AlthoughtheaminoacidsequencesoftheLRRdomaindetermine theaffinitybetweenLandCP,either theLRRdomainortheN-terminaldomains,whenexpressedalone,didnotinteractwithCPs.Wewilldiscusstheformationoftherecognitioncomplexbasedon theanalysesof recognition-defectiveLproteinmutants

Page 79: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession01-RecognitionandsignalingI/II

77

Poster 01

andrecentlyidentifiedL-interactingproteins.

PS01-077MolecularanalysisofPia-mediatedresistance,regulatedbyapairofNB-LRRproteinsTadashi Fujiwara1, Yoji Kawano1, Ryohei Terauchi2, TsutomuKawasaki1,3,KoShimamoto11Grad.Sch.ofBio.Sci,NAIST,2IwateBiotech.Res.Center,[email protected],Piadiseaseresistancelocusconfersracespecificresistanceagainst rice blast fungus Magnaporthe oryzea when it containsavrPia.RecentstudydemonstratedthatPialocusconsistsoftwokindsofnucleotide-bindingleucinerichrepeatdomain(NB-LRR)genes, RGA4 and RGA5. They are both necessary to recognizeavrPia. Classical studies hypothesized that relationship betweenone plant disease resistance gene and one pathogen avirulencegene regulate a race specific disease resistance. However, someresearchers reported that a pair of NB-LRR proteins mediaterace specific resistance, although their biochemical relationshipis largelyunknown.We tried to analyze the relationships amongRGA4,RGA5andavrPiatounderstandthemolecularmechanismof Pia-mediated resistance. In transient overexpression inNicotiana benthamiana, RGA4 induced the hypersensitiveresponse(HR)-likecelldeathandROSproduction.Co-expressionof RGA5 and RGA4 suppressed this phenotype. Localizationanalysisoffluorescence-proteintagged-RGA4,-RGA5andavrPiarevealedthattheseproteinsmainlyaccumulatedinthecytoplasmand/or in the cytoplasm and the nucleus in rice protoplasts. Co-immunoprecipitation assay showed that RGA4 and RGA5 forma complex. Taken together, these results suggested that RGA4and RGA5 interact in the cytoplasm and the RGA4 function issuppressedbyRGA5.OnceavrPiaisrecognizedbyRGA4-RGA5complexwithinthecell,Pia-mediatedresistanceisactivated.

PS01-078A new family of endogenous peptide elicitors conserved inFabalesandCucurbitalesYubeYamaguchi1,KaoriIchikawa1,GregoryPearce21Research Faculty ofAgriculture, Hokkaido University, [email protected] endogenous peptide elicitors are newly emergingbioactivepeptidesthatareinvolvedindefenseresponsesagainstpathogensand herbivores. Five different kinds of endogenous peptideelicitors, systemin, hydroxyproline-rich systemin, plant elicitorpeptide(Pep),apeptidederivedfromsubtilase(GmSubPep),andinceptin, have been identified thus far. Recently we isolated anoveleight-aminoacidpeptidefromsoybeanleavesbymonitoringmedium alkalinization activity, and named it GmPep914 basedon its molecular mass. The amino acid sequence of GmPep914iscompletelydifferentfromknownendogenouspeptideelicitors.Soybean genome database analysis revealed a similar peptide,GmPep890.TheadditionofsyntheticGmPep914andGmPep890into soybean suspension cultured cells induced mediumalkalinization and induced the expression of defense-relatedgenes at nanomolar concentrations.The expression levels of theprecursor protein genes, GmPROPEP914 and GmPROPEP890,wereextremelyhighinrootsandwere inducedbysalicylicacid,jasmonicacidandethyleneinleaves.Analysisoftheplantgenomedatabase revealed that other leguminous plants contain similarsequences, and two similar sequences in cucumber. Syntheticcucumber peptides inhibited root growth, another characteristicofdefenseelicitors. Interestingly, theexpressionof theprecursorproteingenesofthecucumberpeptidesisveryhighinroots,similarto the soybean peptides. The data suggest that GmPep914-typeendogenouspeptideelicitorsareconservedwithintheFabalesandCucurbitales.

PS01-079ElucidationofthedefensiveroleofGmPep914andGmpep890insoybeanplantMakiImamura1,YubeYamaguchi11ResearchFacultyofAgriculture,[email protected], an eight-amino acid peptide, GmPep914, was isolatedfrom soybean leaves as a medium alkalinization factor, and itshomolog, GmPep890, was predicted from the soybean genomedatabase. Both GmPep914 and GmPep890 are considered to beendogenouspeptideelicitorsbasedontheirabilitiestoinducetheexpressionofdefense-relatedgenesinsoybeansuspensionculturedcells.However,itisnotclearwhetherGmPep914andGmPep890are involved in defense responses in soybean plants. Here, weelucide the physiological role of GmPep914 and GmPep890 indefenseresponsesinsoybeanleaves.Wedevelopedamethodforsupplyingpeptidestosoybeanleavesthroughcutpetioleswithoutactivating wound responses. Both GmPep914 and GmPep890induced the expression of defense-related genes includingGmCYP93A1,GmChi1b-1,andGmachs1withmaximuminductionafter 8 hours. The precursor protein genes of GmPep914 andGmPep890, GmPROPEP914 and GmPROPEP890, respectively,were also induced byGmPep914,GmPep890 and elicitors frompathogens.A one nM solution of the peptideswas sufficient forinduction: comparable to other endogenous peptide elicitors andpeptide hormones. It has been reported that the transcripts ofGmPROPEP914 and GmPROPEP890 accumulate preferentiallyin roots. We found that root preferential accumulation is notdependent on soybeanvarieties or growing conditions. Promoterregions ofGmPROPEP914 andGmPROPEP890 are rich in cis-elements for defense responses and for root specific expression.CombinedresultssuggestthatGmPep914andGmPep890functionasendogenouspeptideelicitorswithaspecialroleinroots.Furtherexperimentstoconfirmtheseobservationsarecurrentlyinprogress.

PS01-080CharacterisingendosomalproteomesduringdefenceresponsesWillHeard1,JanSklenar1,SilkeRobatzek1,AlexJones11TheSainsburyLaboratoryalex.jones@tsl.ac.ukThefirstactiveinnateimmuneresponseistriggeredaspathogensaccess the plant interior and encounter extracellular surfacereceptors. Subcellular trafficking plays a critical role in severalsteps of receptor function from their biogenesis, glycosylationandinsertionintotheplasmamembrane,totheirspecificlocationthroughconstitutiverecyclingandfinallytotheirdestructionafterendocytosis.Endocytosisofactivereceptorcomplexesislikelytoplayaroleinsignalattenuation,andmayalsocontributetosignalpropagation.Weseektoidentifyproteinsassociatedwithvariousendosomal compartments inArabidopsis thaliana seedlings bothbefore and after elicitation of the Flagellin Sensing 2 receptor(FLS2)andwilldiscussthedifferencesinthesesub-proteomes.

PS01-081QuantitativeproteomicsrevealsdynamicchangesattheplasmamembraneduringArabidopsisimmunesignalingJ.MitchElmore1,JunLiu1,BrettPhinney2,GittaCoaker11DepratmentofPlantPathology,UniversityofCaliforniaatDavis,USA, 2Genome Center Proteomics Core Facility, University ofCaliforniaatDavis,[email protected] classes of plant pathogens remain outside the host cellmembrane during their lifecycle. As a result, the plant plasmamembrane (PM) mediates critical aspects of plant immunityincluding pathogen recognition, signal transduction, anddownstream defense responses. Investigating how the plasma

Page 80: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession01-RecognitionandsignalingI/II

78

Post

er 0

1

membrane proteome changes during these events will lead toa better understanding of plant immune signaling and identifynovelcomponentsofplantdiseaseresistance.Wehaveusedlabel-free shotgun proteomics to examine PM dynamics during plantdefense signaling. TransgenicArabidopsis plants expressing thebacterial effectorAvrRpt2 under the control of a dexamethasone(Dex)-inducible promoterwere used to initiate effector-triggeredimmunity (ETI). Expression of the AvrRpt2 protease results inRIN4 cleavage and activation of the disease resistance proteinRPS2.PMvesicleswereisolated6hourspost-Dextreatmentandsubjected to gel-enhanced liquid chromatography tandem massspectrometry (Gel LC-MS/MS) for protein identifications.Morethan2300proteinswere identified in totaland label-freespectralcounting was employed to quantify relative protein abundance.Over 20% of upregulated proteins have known roles in plantimmune responses. Proteins that are up-regulated during ETIinclude those involved incalciumand lipidsignaling,membranetransport,metabolism,proteinphosphorylation,redoxhomeostasis,andvesicletrafficking.Asimilarapproachisbeingundertakentoexaminepattern-triggeredimmune(PTI)responsesuponactivationof the FLS2 immune receptor. Preliminary data indicate thatactivation of ETI and PTI results in distinct, yet overlapping,patterns of PM protein regulation. These experiments providea framework for understanding global PM proteome dynamicsduringplantimmuneresponses.

PS01-082FLS2/BIK1/BAK1associationanddissociationarenotsufficientto activate Arabidopsis immunity but FLS2 phosphorylationsiteSer-938isrequiredYangrongCao1,AndrewBent11UniversityofWisconsin-Madisonafbent@wisc.eduFLAGELLIN-SENSING 2 (FLS2) is a leucine-rich repeat/transmembrane domain/protein kinase (LRR-RLK) that is theplant receptor forbacterialflagellinor theflagellin-derivedflg22peptide.Previousworkhasshownthatafterflg22binding,FLS2releases BIK1 kinase and homologs, and associates with BAK1kinase,andthatFLS2kinaseactivityiscriticalforFLS2function.However,thedetailedmechanismsforactivationofFLS2signalingremainunclear.ThepresentstudyidentifiedmultipleFLS2invitroautophosphorylationsitesand found thatSerine-938 is importantfor FLS2 function in vivo. FLS2-mediated immune responsesareabolishedin transgenicplantsexpressingFLS2S938A,while theacidic phosphomimic mutantsFLS2S938D andFLS2S938E conferredresponses similar to wild-type FLS2. FLS2-BAK1 associationand FLS2-BIK1 disassociation after flg22 exposure still occurwith FLS2S938A, demonstrating that flg22-induced BIK1 releaseandBAK1 binding are not sufficient for FLS2 activity, and thatphosphorylationofSer-938controlsotheraspectsofFLS2activity.PurifiedBIK1stillphosphorylatedpurifiedFLS2S938AandFLS2S938Dmutant kinase domains in vitro, but FLS2S938A exhibited reducedautophosphorylationactivityinvitroandreducedphosphorylationin vivo. Phosphorylation of BIK1 and homologs after flg22exposure was disrupted in transgenic Arabidopsis thalianaplants expressing FLS2S938A or FLS2D997A (a kinase catalytic sitemutant), but was normally induced in FLS2S938D plants. HenceFLS2-BIK1 dissociation and FLS2-BAK1 association are notsufficient for FLS2-mediated defense activation, but FLS2 Ser-938 phosphorylation and FLS2 kinase activity are needed bothforoveralldefenseactivationandforappropriateflg22-stimulatedphosphorylationofBIK1andhomologs.

PS01-083Heterotrimeric G-proteins participate in MAMP-triggeredimmunityinArabidopsisStaceyA.Lawrence1,NicoleK.Clay11DepartmentofMolecular,CellularDevelopmentalBiology,YaleUniversity,NewHaven,[email protected]

Upon the perception of microbe-associated molecular patterns(MAMPs),activatedpattern recognition receptors (PRRs) triggerthe signaling pathway leading to MAPK3/6 phosphorylationand subsequent defense gene activation. However, it is unclearhowPRRsconveysignals to theMAPKpathwayandhow thesesignals are translated into the activation of appropriate defenseresponses.HeterotrimericGproteinsarewell-establishedsignalingintermediates in eukaryotes that meditate ligand-recognitionsignals from transmembrane receptors. Loss-of-functionmutantstothecanonicalβ-subunit,AGB1,andaputativeβ-subunit,AGB2,displayalteredMAPKsignalingwhenchallengedwithMAMPs(i.e.bacterialflagellinpeptide,flg22,orfungalchitin).ThiscorrespondstodefectsinreceptordynamicsduringMAMPelicitation.Basedonourresults,wecanprovideamechanisminvolvingtheβ-subunitindefensegeneactivationandthatAGB1actsthroughtheMAPKsignaling pathway in bacterial and fungal defense. Our datasuggeststhattheheterotrimericG-proteincomplexparticipatesinsignaltransductionfromPRRstoMAPKs,inordertocommunicatesignalsthatactivateappropriatedownstreamdefenseresponses.

PS01-084IdentificationoftwoArabidopsisglycosyltransferasesinvolvedintheperceptionofMAMPSTeresaCeserani1,NicoleK.Clay11MolecularCellularandDevelopmentalBiology,YaleUniversity,NewHaven,CT,[email protected] the perception of differentmicrobes by pattern recognitionreceptors (PPRs), funneled in conserved MAPK cascade, canleadtopathogen-specifictranscriptionalprofilesremainsanopenquestion. The fine tuning of the dynamics of this linear signaltransduction by post-translational modifications is one of themeanstoachievesuchspecificity.Whilephosphorylationhasbeenextensivelycharacterized,glycosylation,bothO-orN-,catalyzedby glycosyltransferases (GTs), has received little attention. ToinvestigatetheroleofglycosylationinArabidopsisinnateimmuneresponse,wescreenedT-DNAinsertionlinesinthreeGTfamiliesfor an impaired callose response to MAMPS and isolated twomutants, gmp(GT involved in MAMP Perception)1 and gmp2,that are impaired in the response to flagellin peptide, flg22, andchitin.gmp2alsoshowsanalteredresponsetotheEF-TUpeptide,elf26.BothGMP1andGMP2genesareinduceduponperceptionofflg22andtheyarerequiredforflg22mediatedprotectionfromP. syringae infection andflg22 induced transcriptional response.In addition,gmp1 displaysMAPK phosphorylation,whilegmp2abolishesitcompletelyindicatingthatthetwoGTsactatdifferentlevelsinregulatingtheMAMPinducedsignaltransduction.WearecurrentlyinvestigationfurthertheroleofGMP1andGMP2throughbiochemicalcharacterizationoftheirenzymaticactivity,effectsonPPRs localization and biogenesis, and analysis of glycoforms ofkeyproteinsinMAMPsignaltransduction.

PS01-085N-acyl-homoserinelactoneconfersresistancetowardbiotrophicpathogensviaalteredactivationofAtMPK6Adam Schikora1, Sebastian Schenk1, Elke Stein1, Karl-HeinzKogel11JustusLiebigUniversityGiessenadam.schikora@agrar.uni-giessen.dePathogenic and symbiotic bacteria rely on quorum sensing tocoordinate the collective behavior during interactions with theireukaryotic hosts. Many Gram-negative bacteria use N-acyl-homoserine lactones (HSLs) during this communication process.PlantshaveevolvedtoperceiveHSLsandthisperceptiondependson the length of the acyl moiety and the functional group atthe gamma position in the lipid chain of HSLs . Treatment ofArabidopsis roots with the oxo-C14-HSL induces systemicresistance to biotrophic fungi and bacteria Here, we show our

Page 81: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession01-RecognitionandsignalingI/II

79

Poster 01

firstdataon themolecularcomponentsof the signaling involvedintheresponsetoHSLinplants.,Challengingwithflg22ofoxo-C14-HSL-treatedArabidopsisplantsresultsinstrongactivationofmitogen-activatedproteinkinasesAtMPK3andAtMPK6andhighexpression of the defense-related transcription factorsWRKY22andWRKY29 as well as the Pathogenesis related 1 gene. Thisresponsewasnotseeninthempk6mutants.Interestingly,notallHSLsinducetheobservedresponseinplants.SmallerHSLoftheC6toC10-typedonotinducesystemicresistanceinplantsbutincontrastexertgrowthpromotingactivity.

PS01-086Mechanism of CDPK function in local and systemic plantinnateimmuneresponsesTinaRomeis1,WaltraudSchulze2,UlliDubiella1,HeikeSeybold1,GuidoDurian1,EileenKommander1,RomanvanLassig11Dahlem Centre of Plant Sciences, 2Max Planck Institute ofMolecularPlantPhysiology,Golm,[email protected] protein kinases (CDPK) are serine/threonineproteinkinases,whichparticipateintheactivationofenvironmentalbioticandabioticstressresponses.Byapplyinggain-andloss-of-function approaches we characterized distinct CDPK isoformsfromA. thaliana which became rapidly biochemically activatedin response to PAMP-elicitation and trigger the activation ofplant defence responses.We combined both transient expressionassaysandtransgenicplantlinesexpressingwild-typeormodifiedCDPK enzymes. By studying induced responseswith respect toprotein kinase in vivo activation, we could demonstrate CDPK-specifictranscriptionalreadouts,changesinphytohormonelevelsand metabolism, and a functional link between PAMP-inducedCDPK signalling with enhanced pathogen resistance againstinfection with Psydomonas syringae pv. tomato DC3000. Invivo phosphoproteomics combined with enhanced and reducedCDPK signaling not only identified PAMP-induced CDPKphosphorylation targets. Our data also provide evidence howCDPKsaremechanisticallyinvolvedintheonsetofsystemicplantdefenceresponses.

PS01-087DissectionofdiseaseresistanceinlettuceusingRNAiMarilena Christopoulou1, Leah McHale2, Maria J. Truco1, DeanLavelle1, Tadeusz Wroblewski1, Oswaldo Ochoa1, AlexanderKozik1,RichardW.Michelmore11Genome Center, University of California-Davis, Davis, U.S.A.,2DepartmentofHorticulture&CropScience,OhioStateUniversity,ColumbusOH43210,[email protected] than740candidategenes,potentially involvedinpathogenrecognitionandsignalingpathways,havebeenidentifiedinlettuce.Many of these resistance gene candidates (RGCs) have beenmappedrelativeto52diseaseresistancephenotypesusingseveralapproaches. A subset of RGCs, primarily NBS-LRR encodinggenes,wasselected for functionalanalysis.RNAiwasemployedtodemonstratetheinvolvementofcandidategenesindeterminingdifferentdiseaseresistancespecificities.Twenty-sevenRNAilineshavesofarbeengeneratedandtestedfora totalof23resistancephenotypes.Thus far,16 resistancephenotypes in the fourDm3,Dm7,Dm5/8andDm13clustershavebeenabrogatedindifferentRNAi tester lines.Therefore this strategycanefficiently identifygene families involved in elicitation of disease resistance. Inseveral cases,multipleNBS-LRRencodinggeneswere involvedinaresistanceresponse.RNAiwasalsousedtodeterminewhichmajorsignalingpathwaysareutilizedbydifferentresistancegenesin lettuce; a dexamethasone-inducible RNAi vector was usedbecauseconstitutive silencingofEDS1 andNDR1 hasproven tobe lethal in lettuce. In contrast to the expectation based on datafrom other species, the LsNDR1 gene is required for elicitationofresistancetriggeredbyaTIR-NBS-LRRencodinggenefamily

and isalsoessential fordevelopmentalprocesses.Thesefindingsfurtherourunderstandingofthedeterminantsofdiseaseresistanceinlettuceandprovidetoolsforbreedingprograms.

PS01-088AnArabidopsis Integrin-linkedproteinkinase1homologue isinvolvedinstressresponseElizabethK.Brauer1,SorinaC.Popescu11Plant Pathology andPlant-MicrobeBiology,CornellUnivserity,Ithaca,[email protected] plant cell wall and plasmamembrane are the primary siteswhereenvironmentalstimuliandthemodificationstheycauseareperceivedby cells. In animals, integrins aremembrane receptorsthat transduce mechanochemical signals from the extracellularmatrix across the plasma membrane in response to a range ofstimuli.Kinaseproteinsnamedintegrin-linkedkinases(ILKs)bindthe cytosolic domains of integrin receptors and regulate signaltransduction and cytoskeletal dynamics in response to integrinactivation. Several lines of evidence suggest that integrin-likesignaling may exist in plants as well. For example, NDR1 hasstructural homology to integrin and is involved in maintainingplasmamembrane-cellwalladhesionaswellasactivatingresistanceinresponsetoRproteins(Knepperetal.2011).Weareinterestedinanalyzingthefunctionsofafamilyofplantkinaseswithhomologyto animal integrin-linked kinases. We generated homozygousT-DNAinsertionlinesinanILK-like(ILL1)genefromArabidopsiswithafive-foldreductioninILL1transcriptrelativetothewildtypecontrol.Followingsaltstresstreatments,ill1linesdemonstratedahigherpercentageofcotyledonemergenceandsurvivalcomparedtowildtype.Nosignificantdifferencesbetweenlineswerefoundfollowing osmotic stress. Expression of ILL1 is induced inwildtypefollowingsaltstressandflg22treatmentssuggestingthatILL1playsaroleingeneralstressresponse.AworkingmodelofILL1cellularfunctionsduringplantresponsetostresswillbepresented.

PS01-089Map-based cloningofRPS7, anadditional resistancegene inArabidopsis thaliana recognizing the Pseudomonas syringaeeffectorAvrRps4SimonB.Saucet1,KeeHoonSohn1,JonathanD.G.Jones11The Sainsbury Laboratory, John Innes Centre, Norwich,[email protected] recognition of pathogen-secreted effectors is a majorcomponentofplantinnateimmunityandismainlymediatedbyNB-LRR resistance (R)protein.However, themechanismsbywhichNB-LRR proteins recognize effectors and induce downstreamsignalingeventsarepoorlyknown.InArabidopsis,thetwoRgenesRPS4andRRS1are inan invertedhead-to-headarrangementonchromosome5.TheyarebothrequiredforrecognitionofAvrRps4and PopP2, two bacterial effectors, fromPseudomonas syringaeandRalstonia solanacearum respectively. In accessionWs-0, therps4-21mutantandrps4-21/rrs1-1doublemutantfullylosePopP2butnotAvrRps4recognitionsuggestingthatAvrRps4isrecognizedbyatleastanotherR-genewetermRPS7.UsinganF2populationderivedfromacrossbetweenWsrps4-21andRLD(whichdoesnotrecognizeAvrRps4orPopP2),wemappedRPS7~2cMfromRPS4.Inthisregion,weidentifiedapairofRgenesshowingsimilaritiestoRPS4-RRS1.WedemonstratethattheRPS4paraloginthispairisrequiredforfullAvrRps4recognitioninWs-0and,therefore,weassociatethisgenetoRPS7.Theexistenceofpairedhead-to-headRgenecombinationsisbecominganincreasinglyinterestinggeneralphenomenon.

Page 82: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession01-RecognitionandsignalingI/II

80

Post

er 0

1

PS01-090Identificationofnovel componentsof the innate immunity inriceTakahiroUeba1,Masayuki Fujiwara2,Tadashi Fujiwara1, SatoshiHamada1,YojiKawano1,KoShimamoto11LabolatoryofPlantMolecularGenetics,NaraInstituteofscienceand technology, Japan, 2Plant Global Educational Project, NaraInstituteofscienceandtechnology,[email protected] two-branched innate immunesystemscalledmicrobe associated molecular patterns (MAMPs) -triggeredimmunityandeffector-triggeredimmunitytopreventtheinvasionofpathogenicmicrobes.OsCERK1isawell-characterizedMAMPreceptorinricewhichrecognizesakindofMAMPs,chitin.Ontheotherhand,Pitbelongstonucleotidebindingandleucinerichrepeat(NLR)domainfamilyproteinthatrecognizesMagnaportheoryzeaeffector, avr-Pit. In addition, Pia disease resistance gene locusconsistsoftwoNLRencodinggenes,RGA4andRGA5.ThesegenesproductsarenecessarytorecognizeanotherM.oryzeaeffector,avr-Pia.ThroughPitandPiaareknowntoplayimportantrolesinriceinnate immunity, how these receptors regulate several immuneresponsesislargelyunknown.Tofurtherunderstandwhatisgoingon in cells during immune responses,we tried to identify novelcomponents in rice innate immunity using immunoprecipitationassay.WeestablishedricesuspensioncellsexpressingOsCERK1,Pit, an active mutant of Pit, RGA4, RGA5, or avr-Pia anddetectedtheintactbandsoftheseproteinsusingimmunoblotting.We performed immunoprecipitation of some proteins. Now weare analyzing components in each protein complex using massspectrometry.Iwilldiscusstheresultsinthecongress.

PS01-091Chromatin-associatedregulationofplant innate immunitybytheArabidopsisPHD-finger-likeproteinEDM2TokujiTsuchiya1,ThomasEulgem1

1BotanyandPlantSciences,UniversityofCaliforniaatRiverside,Riverside,USAtokujit@ucr.eduOfcentralimportanceforpathogenresistanceofplantsaredisease-resistance(R)-genes.Theyencodeimmunereceptors thatcontaina nucleotide binding site (NB) and leucine-rich repeats (LRRs).Previous studies reported that NB-LRR protein and transcriptlevelsareundertightcontroltoallowmaximalpathogenprotectionwhile avoiding spurious defense activation and detrimentalautoimmunity. While post-translational mechanisms controllingR-proteinfunctionsareat leastpartiallyunderstood,mechanismscontrolling transcription of R-genes are at this point largelyunexplored. The nuclear localizedArabidopsis defense regulatorEDM2elevates transcript levelsof theR-geneRPP7andat leasttwoadditionalrelatedR-genes.BothEDM2andRPP7arerequiredfor race-specific immunityofArabidopsis against thepathogenicoomycete Hyaloperonospora arabidopsidis. EDM2 has typicalfeatures of chromatin-associated epigenetic regulators, suchas nuclear localization signals and PHD finger-like motifs. Bychromatin immunoprecipitationwe foundEDM2 to affect levelsof dimethylated lysine 9 of histone H3. This type of epigeneticmark is known to be associated with transcriptional silencingand predominantly located to transposon loci. Consequently wefound EDM2 to affect levels of this repressive mark in varioustransposons, including aCOPIA-type retrotransposon located inthe1stintronofRPP7.AtMPMI2012,wewillpresentnewdataon a chromatin-associated mechanism linking effects of EDM2on this retrotransposon toRPP7 expression and resistance toH. arabidopsidis.EDM2servesasaparadigmforthetranscriptionalregulation of R-genes in general, providing insight on theinvolvement of chromatin-associated processes in the control ofR-genefunction.

PS01-092RefiningthemodelofRproteinactivationusingtheMflax-rustresistanceproteinEmmadeCourcy-Ireland1,PradeepSornaraj1,SimonJ.Williams2,R.IanMenz1,BostjanKobe2,PeterA.Anderson11School of Biological Sciences, Flinders University, Adelaide,SouthAustralia,Australia, 2School of Chemistry andMolecularBiosciences,UniversityofQueensland,Brisbane,[email protected](R)proteinsplayavitalroleindefendingplantsagainstpathogenicattack.MisaflaxRproteinthatconfersresistanceagainststrainsoftheflaxrustfungus,Melampsora lini,thatexpressandsecretetheeffectorproteinAvrM.Misamemberof the most abundant structural class of R proteins, those thatcontainanucleotidebindingsite(NBS)andadomainofleucine-richrepeats(LRR).ProteinswithinthisclasshavepreviouslybeenshowntopossessthecapacitytobindandhydrolyseATP(Tamelingetal.,2002;Tamelingetal.,2006,Uedaetal.,2006andWilliamsetal.,2011).Togetherwithresearchintorelatedmammalianproteins,this work has led to the formulation of a model to explain Rproteinactivation,wherebypathogeneffectorstriggeranucleotideexchange event in the R protein that leads to defence responsesignalling. Using in planta Agrobacterium-mediated transientexpression and in vitro luciferase-basedATP quantification andhydrolysis assays, this study aimed to link the functionality ofmutant M proteins with the identity of their bound nucleotideand their hydrolysis activity. We have shown that purified MproteinboundwithADPcanbindandhydrolyseATP,althoughanautoactiveMproteinthatpreferentiallybindsATPoverADPhasamuchhigherATPhydrolysisrate.WeanticipatethatthesemethodswillallowustouncoverotherresiduesinandaroundtheNBSthataffectthebinding,nucleotidepreferenceandhydrolysisactivityofthepocketandthustheactivityoftheMprotein.

PS01-093NovelroleforaCBL/CIPKsignalingmoduleanditstargetsinplantimmunityYolandaPareja-Jaime1,Fernandode laTorre1,EmilioGutierrez1,OlgadelPozo11Instituto de Bioquimica Vegetal y Fotosintesis, Universidad deSevilla/CSIC,Seville,[email protected]+cytoplasmicincreaseisanearlyhallmarkinplant innateimmunity and is a necessary event for activationof downstreamresponses. Despite its importance, it is not yet fully understoodhowtheinformationcontainedinCa2+profilesisdecodedbytheplant and transformed into cellular responses leading to immuneresponses.Weidentifiedina largeVirusInducedGeneSilencingscreening(VIGS)inN. benthamiana,twocomponentsofaCa2+-mediated signaling system,NbCbl10 (calcineurinB-like protein)and NbCipk6 (calcineurin B-like interacting protein kinase), astheirsilencinginhibitedProgrammedCellDeath(PCD)associatedwithEffectorTriggeredImmunity(ETI)elicitedbydifferentplantresistancegenesandvirus,oomyceteandnematodeeffectorsandforhostsusceptibilityinresponsetotwoPseudomonaspathogens.The tomato (Solanum lycopersicum) ortholog, SlCIPK6, is anactive kinase and interacts in vivo with SlCBL10. Moreover,SlCIPK6invitrokinaseactivityisgreatlyincreasedinthepresenceofSlCBL10andCa2+.Alltogether,theseresultsdemonstratethatSlCBL10/SlCIPK6constituteasignalingmodule.StrategiesfortheidentificationofSlCIPK6interactingproteins(CIPs)andongoingcharacterization of candidates will be presented. Our findingsrevealanovelfunctionalroleforaCBL/CIPKsignalingmoduleinplantPCDassociatedwithimmunity.

Page 83: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession02-SymbiosisI/II

81

Poster 02

PS02-094In vitrosynthesisofthemycelialaggregate‘shiro’requiredfor‘matsutake’mushroomproductionbetweentheectomycorrhizalfungusTricholoma matsutakeandthearbuscular-mycorrhizalplantCedrela odorataregeneratedfromsomaticembryosHitoshi Murata1, Akiyoshi Yamada2, Kohei Yamamoto2, NaokiEndo2,TsuyoshiMaruyama31Department of Applied Microbiology and Mushroom Science,Forestry and Forest Products Research Institute, 2Department ofBioscience and Biotechnology, Faculty of Agriculture, ShinshuUniversity,3DepartementofMolecularandCellBiology,ForestryandForestProductsResearchInstitutemurmur@ffpri.affrc.go.jpTricholoma matsutakeisanectomycorrhizalfungusthatassociateswith subalpine and subarctic conifers, synthesizes a rhizosphericaggregate of mycelia and soil called ‘shiro’, and produces theprizeduncultivablemushroom‘matsutake’.WeraisedthequestionifT. matsutakecouldassociatewitharborealspeciesnotregardedashostsinnature,especiallythosethatharborarbuscular-mycorrhizalfungiandareadaptabletotherecentwarmclimate.Cedrela odorataisanidealplantforsuchananalysisbecauseitisabroad-leavedtree associated with arbuscular-mycorrhizal fungi in the tropicsand is conveniently regenerated fromsomaticembryos, allowingaxeniccultivationwithoutnaturalsymbionts.Inthepresentstudy,wedocumentthatT. matsutakecaninteractwithsomaticplantsofC. odorata in vitroandcanformwiththesomaticplant‘shiro’withatypicalaromaticodorinagranite-basedsoilsubstratecontainingthe1/4strengthofMSmedium(0.5%sucroseand0.1%glucose)at25oCduringthe194-dayincubationperiod.Theinfectedplantshadrelativelythickepidermaltissuesoutsideoftheoutercortex,whichshouldotherwisebedevelopedintoroothairs.Also,themycelialsheath surrounded the outside of epidermis, and the hyphaepenetrated into intracellular and intercellular spaces, forming ahyphalbundleorcreatingapseudoparenchymatousorganization.In the same system, Tricholoma magnivelare, i.e., American matsutake, also formed ‘shiro’.We present arguments that host-plant specificity ofT. matsutake is not innately determined, andthe somatic plant ofC. odorata could be useful in ‘matsutake’cultivation.

PS02-095Inconsistent role of rhizobial ACC deaminase in the root-nodulesymbiosisValerieMurset1,GabriellaPessi2,HaukeHennecke11InstituteofMicrobiology,ETH,Zurich,Switzerland,2InstituteofPlantBiology,UniversityofZurich,Zurich,[email protected] 1-aminocyclopropane-1-carboxylate (ACC) deaminase isan enzyme largely represented among rhizobia which convertsACC, a precursor of the plant hormone ethylene, into ammoniaand α-ketobutyrate. The ACC deaminase is thought to playa crucial role in protecting the rhizobia against the effects ofethylenewhichinterfereespeciallywiththerhizobialproliferationand the initiation of the infection thread consequently inhibitingthe formation of nodules. The beneficial action of this enzymewas demonstrated in several rhizobia such as Mesorhizobium loti and Rhizobium leguminosarum where mutations in theACC deaminase gene showed nodulation defects (1, 2). Theslow-growing rhizobial species Bradyrhizobium japonicum ispredicted tocode foranACCdeaminase (blr0241).Tostudy theimportance of this enzyme inB. japonicum, an insertionmutantof blr0241was constructed and its phenotype studied. First, theACCdeaminaseactivityofthewild-typeB. japonicumandoftheinsertionmutant was tested in free-living anoxic conditions andinsoybeannodules.Althoughthemutantstraindidnotshowanyenzymatic activity, its ability to infect soybean, cowpea, siratro,mungbean and to fix nitrogen was not impaired. In addition, acompetitionassaybetweenB. japonicumwild-typeandtheblr0241mutant for soybean nodulation revealed that themutant strain is

not affected in its competitiveness comparedwith thewild-type.Theseunexpected results raise questionson the role, importanceandmodeofactionof theACCdeaminase indisparate rhizobia.(1)Uchiumietal.2004.J.Bacteriol.186:2439-2448;(2)Maetal.2003.Appl.Env.Micro.69:4396-4402.

PS02-096Nodule bacteria ofmungbean (Vigna radiata) growing in theCentralAsiaKhojiakbar T. Yadgarov1, Miradham Abzalov1, Zufariddin A.Khojiev1,BakhtiyorR.Umarov2,ShavkatS.Burikhanov2,RustamM.Usmanov11InstituteofGeneticsandExperimentalBiologyofPlants,[email protected](Vigna radiata)isawellknowpulsecropofAsia.Itisshortdurationcropandcanbegrowntwiceinayear.Rhizobiumsspinvadetheroothairsofmungbeanandresultintheformationofnodule,wherefreenitrogenisfixed.Thebacteria,althoughpresentinmost of the soils vary in number, effectiveness in nodulationandN-fixation.Fast-growingRhizobium strainwas isolated fromnoduleofmungbean (Vigna radiata)growed in theexperimentalstationoftheInstitueGenetica.Strainswereinoculatedwithplantsmungbean(Vigna radiata)andanalysedinsterileconditioninglasstesttubeexperiencewithin30days,inthepotsexperienceanalyzedat60days.Inourexperimentsweobservedformationthenoduleonrootsoftheplants,havebeenselectedhighlyeffectivestrains.InthefieldexperiencesattheexperimentalstationoftheInstitutespentexperiencesontheplantsmungbean(Vigna radiata)andplantsofsoya.SeedsoftheseplantswereinoculatedwithRhizobiumsspandgrownonthenaturalconditions.Intheallplants(roots)theSoyaandmungbean(Vigna radiata)hasbeenformednoduleandwerehighproductivity.

PS02-097Identificationofroot-nodulebacteriaisolatedfromdesertzonesofCentralAsiaBakhtiyorR.Umarov11InstituteofMicrobiologyASRUzb.r.umarov@mail.ruFromperennialplantsOnobrychis transcaucasicaandOnobrychis corossanicawhichagrowinginthedesertzonesofCentralAsiawerecollectednodules.Aftertheirisolationthebacteriawereconfirmedas rhizobia by re-nodulating their host legumes.The phenotypiccharacteristicsutilizationofcarbonandnitrogensources,tolerancetosalt,heat,andantibioticresistancetherewereexplored.Geneticdiversity of the Rhizobium isolates were characterized by 16srDNA gene sequences and nodC gene sequences. Biodiversitywere explored with (16s rDNA RFLP), REP, ERIC-BOX PCRsequences.PhylogenetictreewereconstructedbyRDPprogram.Insomeofthestrainswefoundthreemegaplasmids,highacetylenereductionactivity(ARA)andhighsaltstressresistance.Theresultsobtained in this study are interesting for the molecular analysisof Rhizobium sp. which undergo symbiosis with Onobrychis, alegumeplantgrowinginthearidzones.

PS02-098ASNAREproteinexpressedinvasculartissueaffectssymbioticnitrogenfixationinLotus japonicusnodulesTsuneoHakoyama1,2,RyoOi1,KazuyaHazuma1,EriSuga1,YukaAdachi1,MayumiKobayashi1,RieAkai1,ShuseiSato3,EigoFukai3,SatoshiTabata3,SatoshiShibata2,Guo-JiangWu2,YoshihiroHase4,AtsushiTanaka4,MasayoshiKawaguchi5,HiroshiKouchi2,YosukeUmehara2,NorioSuganuma11Department of Life Science, Aichi University of Education,2National Institue of Agrobiological Sciences, 3Kazusa DNAResearch Institute, 4Japan Atomic Energy Agency, 5National

Page 84: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession02-SymbiosisI/II

82

Post

er 0

2

InstituteforBasicBiologynsuganum@auecc.aichi-edu.ac.jpRhizobialsymbioticnitrogenfixationinrootnodulesisregulatedby the host legume genes. Fix-mutants that exhibit lower or nonitrogen-fixation activity are useful to identify host plant genesrequired for symbiotic nitrogen fixation.Here,we show aLotus japonicus novel Fix-mutant defective of a SNAREprotein.Themutant formed nodules that displayed lower nitrogen fixationactivity,andthegrowthofthehostplantwasretarded.Exogenouscombined nitrogen almost recovered the growth of the mutant.Numbersofnodules formedon themutantwere similar to thoseonthewild-typeplant.However,themutantnodulesweresmallerand showedearly senescence.Thecausalgenewas identifiedbymap-based cloning, and the predicted protein was appeared tobehomologous tooneofSNAREproteins found inArabidopsis thaliana. The responsible gene was expressed ubiquitously inshoot,rootsandnodules.Inrootsandnodules,thetranscriptsweredetectedinvascularbundles.TheseresultsindicatedthataSNAREproteinexpressedinvasculartissueisrequiredfornitrogenfixationactivityofrhizobiainnodules.

PS02-099LonproteaseofAzorhizobium caulinodansORS571isrequiredforthesuppressionofrebgenesexpressionAzusaNakajima1,LowelaL.Siarot1, ShuheiTsukada1,TetsuhiroOgawa2,ToshihiroAono1,HiroshiOyaizu11Biotechnology Research Center, The University of Tokyo,Tokyo,Japan,2DepartmentofBiotechnology,GraduateSchoolofAgriculturalandLifeScience,TheUniversityofTokyolowela_siarot@yahoo.comBacterialLonproteaseplayimportantrolesinavarietyofbiologicalprocesses in addition to house keeping function. In this study,we focused on the Lon protease of Azorhizobium caulinodans,a kind of rhizobia, which forms nitrogen fixing nodules on thestemofSesbania rostrata.ThenitrogenfixationactivityofanA. caulinodans lonmutantwerenotsignificantlydifferentfromthatofwild-typestrain.However,thestemnodulesformedbythelonmutantshowedlittleornonitrogenfixationactivity.Bymicroscopicanalyses,twokindsofhostcellswereobservedinthestemnodulesformedby the lonmutant.One is shrunkenhostcellscontaininghighdensitybacteria,andtheotherisovalorelongatedhostcellscontaining low density or no bacteria.This phenotype is similarto apraRmutant highly expressing reb locus gene.QuantitativeRT-PCRanalyses revealed that reb locusgeneswere alsohighlyexpressedinthelon mutant.Furthermore,amutantwithdeletionsoflon andreblocusformedstemnodulesshowinghighernitrogenfixationactivitythanthelonmutant,andshrunkenhostcellswerenotobservedinthesestemnodules.TheseresultssuggestthatLonprotease is required to suppress the expression of the reb locusgenesand thathighexpressionofreb locusgenes inpart causesaberrance inA. caulinodans - S. rostrata symbiosis. In additionto suppressionof reb genes, itwas found thatLonproteasewasinvolved in the regulation of exopolysaccharide production andauto-agglutinationofbacterialcells.

PS02-100Effect of external nitrogen concentration and light intensityonnodulation,nitrogenfixationandgrowthofcowpea(Vigna unguiculataL.Walp.)PapaS.Sarr1,ShunseiFujimoto2,TakeoYamakawa31CenterforAfricanAreaStudies,KyotoUniversity,Kyoto,Japan,2GraduateSchoolofBioresourcesandBioenvironmentalSciences,KyushuUniversity,3DepartmentofBioresourceandBiotechnology,FacultyofAgriculture,[email protected] is a legume crop able to fix atmospheric nitrogenwithsoil rhizobia. The objective of this study was to investigate theconcentrationofexternalnitrogenthatsuppressesnodulation,and

theeffectoflightshieldingonthesymbiosisandcowpeagrowth.Inahydroponiccultureexperiment,nitrogenwassuppliedat0,1,2.5,5, 7.5, 10mMandcowpeawas inoculatedwithBradyrhizobium yuanmingense strains TSC7, DTC8, and TTC9. The nodulationwasstronglyinhibitedoverN7.5mMtreatment,andonlyaslightdifferencewas observedbetween the three strains.However, theapplication of small amounts (2.5 mM) of nitrogen positivelyaffects the nodulation phenotype (nodule number, nitrogenfixation)atlatestage(21DAS).ToassesstheeffectofPhotonfluxdensity on the nodulation phenotype of cowpea associated withnitrogen-fixingrhizobia,0,25,50and75%light intensitieswereset up. Defoliationwas noteworthy in 25% light intensity at 10weeksafterseedling,anddryweightsofpodsandseedswereveryhigh compared to the others.No differencewas observed in thenodulationphenotypebetween the three rhizobial strains.Hence,the variation on cowpea growth may arise from the differencesbetween red (R) and far-red (FR) light ratios of treatments.Thetranslocationofcarbohydratesmighthavebeenacceleratedinthe25%intensity.However,nitrogenconcentrationofpodsandseedsinthis treatmentwasnotsodifferentwithothers.Anappropriateshadingwouldtherefore,greatlyimprovecowpeayields,althoughseedproteincontentmaynotvary.

PS02-101ThericeNPCproteindefinesanewclassofpotentialtransporterwithanessentialroleduringAMsymbiosisMarina Nadal1, Ruairidh Sawers2, Caroline Gutjahr3, JohnArbuckle5,GynheungAn4,KyungsookAn4,UtaPaszkowski11DepartmentofPlantMolecularBiology,UniversityofLausanne,Lausanne,Switzerland,2LaboratorioNacionaldeGenómicaparalaBiodiversidad,Irapuato,Mexico,3InstituteofGenetics,UniversityofMunich,Martinsried,Germany,4NationalResearchLaboratoryofPlantFunctionalGenomics,PohangUniversityofScienceandTechnology,PohangKorea,5PioneerHi-bredInternationalInc.,DesMoines,Iowa,[email protected](AM)symbiosis,therootsofplantsandaspecificgroupoffungiengageinatightlyregulatedliaisontomutuallybenefitfromoneanother.Someofthekeyplantelementsthat compose the intricate genetic network controlling AMdevelopmenthavebeenidentifiedthroughtheanalysisoflegumedeficientmutants.The ricenpc (noperceptioncandidate)mutantis unable to properly establishAM. NPC encodes a previouslyuncharacterizedpotential transporterpresentonly inprokaryotes,plants and fungi.NPC localizes to theplasmamembraneand itstranscriptaccumulatestohighlevelsduringAM.Eitherwildtyperice orMedicago truncatula plants can complement the mutantphenotype in trans. Furthermore, amending thenpcmutantwithexudates extracted from wild type rice also results in full AMdevelopment.These findings strongly suggest the existence of aplantsecretedcompound(s)thatactsuponthefungusortheplanttoallowAMformationwhichismissingfromthenpcmutant.WehypothesizethatNPCisatransporterinvolvedinthesecretionofoneormorecompoundswhosefunctionhasbeenconservedamongdifferent plant species. To identify the chemical nature of thecompound,wearecomparingnpcandwildtypeexudatesusingametabolomicapproach.Inparallel,weareaddressingevolutionaryconservation of this communication mechanism by geneticcomplemenentationofthenpcricemutantwithNPCorthologsfromdifferent plant species, including the early-diverging lycophytaSelaginella moellendorffii and the non-mycorrhizal Arabidopsis thaliana.

PS02-102EvaluationofeffectiveBradyrhizobiumstrainsfromMyanmarandco-inoculationwithendophyticStreptomycessp.KhinM.Soe1,TakeoYamakawa21Graduate School of Biosciences and Bioresources, Faculty ofAgriculture, Kyushu University, Japan, 2Division of MolecularBiosciences,DepartmentofBioscienceandBiotechnology,Faculty

Page 85: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession02-SymbiosisI/II

83

Poster 02

ofAgriculture,KyushuUniversity,[email protected] (Glycinemax L.) is one of the important cash crops inMyanmar.UreaisthemainsourceofnitrogenappliedtoallcropsgrowninMyanmarbutitisveryexpensiveandnotreadilyavailable.Rhizobial inoculants can be used to substitute the nitrogenousfertilizers in food legume crops. Indigenous forty-eight rootnodulesbacteria(MAS1toMAS48,whereMASmeansMyanmarAgriculture Service) were collected from different agro-climaticregionsofMyanmarinordertoevaluatetheirnitrogenfixingabilityforsoybeanproduction.Afterpurification,forty-threeisolatesgavepure colonies and were authenticated for nodule formation onhost soybeans in sterilized vermiculite pots in Phytotron (25oC).Based on morphological characteristic, they were identifiedas Bradyrhizobium strains. These forty-three Bradyrhizobiumstrainswere investigated insymbiosisassociationwithMyanmarrecommended soybean, Yezin-6. After inoculation, ten strainswerepre-screenedbasedonnitrogenfixationpotentialdeterminedby using acetylene reduction assay method. When selected tenstrainswereexaminedinplantgrowthandnitrogenfixationwithtwoMyanmarsoybeans(Yezin-3andYezin-6),MAS23wasfoundbeingthemosteffectivestrain.ThesymbioticrelationshipbetweensixBradyrhizobium strains (MAS23,MAS33,MAS34,MAS43,MAS48andUSDA110)andselectedendophyticStreptomycessp.strain (P4)were evaluatedwith fourMyanmar soybeanvarieties(Yezin-3,Yezin-6,HinthadaandShanSein)inpotexperimentbyusingsterilizedvermiculitepotsinPhytotron(25oC).ItwasfoundthatdualinoculationsofP4wereeffectivelyrespondedinmostofthesoybeanvarieties.

PS02-103Bradyrhizobium japonicum characterpredicted fromgenomiccomparisonoftwostrainsTakakazu Kaneko1, Nobukazu Uchiike1, Hiroko Maita2, HidekiHirakawa2,KiwamuMinamisawa3,AkikoWatanabe2,ShuseiSato21Faculty of Life Sciences, Kyoto Sangyo University, Kyoto,Japan,2KazusaDNAResearchInstitute,3GraduateSchoolofLifeSciences,[email protected] genome sequences of twoBradyrhizobium japonicum strainUSDA6andUSDA110havebeendetermined.Fortheclassificationof B. japonicum, USDA6 has been selected as the type strainfor this bacterial species.However, for various researchdirectedtowards investigating soybean symbionts,USDA110 isgenerallyused.Comparisonofthewhole-genomesequencesofUSDA6andUSDA110showedcolinearityofmajorregionsinthetwogenomes.Notably, a significantly high level of sequence conservationwasdetected in three regions, approximately 734 kb in total size, oneach genome. The gene constitution in these indicates that theywere derived from a symbiosis island. The USDA110 genomecarries14genomicislandsasthespecificDNAsegmentsinsertedinto tRNA genes in addition to the putative symbiosis island.Suchstrain-specificislandswerefoundat tenloci intheUSDA6genome.Thegenesencodingenzymesintheuptakeofhydrogenexpressedduringnitrogenfixation formagenecluster (hup-hyp-hox),whichhavebeenidentifiedontheUSDA110.However,someB. japonicumstrains,includingUSDA6,lacksuchfunction.Sincethehup-hyp-hoxisfoundinsideagenomicislandinsertedinatrnMgene,itispossiblethathighnitrogenfixationbyUSDA110mightbeacquiredthroughthehorizontaltransfer.ThisgenomicislandismissingfromtheUSDA6genome.InUSDA6,however,thetrnMgenecorresponding to theone targetedby the trnM-island in theUSDA110 genome, was detected. The conservation of the trnMgeneshowsthatB. japonicumhasthepotentialtogaintheabilitytotakeupthehydrogen.

PS02-104Arbuscular collapse regulates carbon release by hosts inmycorrhizalsymbiosis

Yoshihiro Kobae1, Caroline Gutjahr2,3, Uta Paszkowski2, ShingoHata11GraduateSchoolofAgriculturalandLifeSciences,UniversityofTokyo, Tokyo, Japan, 2Department of Plant Molecular Biology,UniversityofLausanne,1015Lausanne,Switzerland,3Universityof Munich (LMU), Faculty of Biology, Institute of Genetics,GrosshadernerStr.2-4,D-82152Martinsried,[email protected] terrestrial plant species invest substantial amounts ofphotosynthetically fixed carbon in arbuscular mycorrhizal (AM)symbiosis,oneofthemostancientandwidespreadplantinteraction.AM fungi are obligate root symbionts that form mutualisticassociationswithplantsandimprovetheirmineralnutrientuptakefromthesoil.Phosphatetransfertoplantsoccurswithinrootcellsthrough highly branched symbiotic fungal structures known asarbuscules.However,themechanismbywhichcarbonisreleasedtothefungusremainsunknown.Inthisstudy,throughvitalstainingof fungal structures and selective lipid staining, we discoveredthat “lipid bursts” occur in the senescent fungal mycelia withinthe plant roots. Live imaging demonstrated that the appearanceof lipids coincided with the collapse of arbuscular branches,suggestingthatarbusculedegenerationandreleaseof lipidsfromitsstructuralconstituentsareassociatedprocesses. Importantly,astunted arbusculemutant of rice failed to produce lipids, whichabolished the formation of new fungal spores. Therefore, lipidburstsare requiredfor thefungus tocomplete its lifecycle.Thisstudy demonstrates the existence of novelmechanism of carbonutilization by AM fungi and furthermore illustrates a cellularmechanismforundergroundcarboncyclingthatissharedbymostterrestrialplantspecies.

PS02-105Analysis of common symbiosis system reveals infectionmechanismofarbuscularmycorrhizalfungiinLotus japonicusNaoya Takeda1,2,3, Takaki Maekawa2, Makoto Hayashi3, MartinParniske2,MasayoshiKawaguchi11National Instutite for Basic Biology/SOKENDAI, Aich,Japan, 2LMU Munich, Munich, Germany, 3National Institute ofAgrobiologicalSciences,Tsukuba,[email protected] mycorrhizal symbiosis (AMS) and root nodulesymbiosis(RNS)aremutualisticplant-microbeinteraction,whichconfersgreatadvantages forplantgrowthbynutrientexchanges.RNSisknowntohaveevolvedbysharingapartofAMSsysteminleguminousplants.Thesharedsymbiosisfactorsconstitutethecore of symbiosis signaling pathway, called the Common SymPathway(CSP).RecentRNSstudiesrevealedvariousCSPfactorsandthesignalingmechanism.TheseCSPfactorsbecomeimportantcuestoanalyzeAMSsystem.Calciumandcalmodulin-dependentproteinkinase (CCaMK)playsacrucial role forcontrollingCSPsignaling.We found that the gain-of-function (GOF) variants ofCCaMKwithouttheregulatorydomainsactivatedbothAMSandRNS signaling pathways in the absence of symbiotic partners.Furthermore, the GOF-CCaMK variant triggered formation ofthe pre-penetration apparatus, which is important for hyphalpenetrationandelongationofAMfungi in thehostcell.WealsofoundanovelAMSmutant thatshowedlowcolonizationofAMfungi from RNS mutants. In this novel CSP mutant,AM fungienterintothehostroot,neverthelesselongationofthehyphaewasdelayedorarrested,suggestingthemutantdefectedinthehyphalelongation mechanism. We are currently investigating detailedphenotypesduringAMfungalinfectionandwilldiscussthegenefunctioninrelationtoinfectionofthesymbionts.

PS02-106Identificationofanovelnodule inception (nin)mutant,daphnethat displays a non-nodulation but dramatically increasednumberofinfectionthreadsEmikoYoro1,2,TakuyaSuzaki1,2,MasayoshiKawaguchi1,2

Page 86: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession02-SymbiosisI/II

84

Post

er 0

2

1Division of Symbiotic Systems, National Institute for BasicBiology,Aichi,Japan,2DepartmentofBasicBiology,TheGraduateUniversityforAdvancedStudies,Kanagawa,Japane-yoro@nibb.ac.jpThesymbiosisbetweenlegumeandrhizobiaoccursinspecializedroot organ called nodules. In order to establish the symbiosis,two major genetically-controlled events need to be undertaken.The first is bacterial infection with the epidermis of the root.Bacteria penetrate the root tissue from curled root hair celland progress toward the channels called infection thread (IT).The second is the organogenesis in the root cortex. For properestablishmentofsymbiosis,itisessentialthatthetwophenomenaproceedsynchronously indifferent root tissues.Althoughseveralsymbioticgeneshavebeenidentifiedbygeneticscreeningofnon-symbiotic mutants, most of them have defects in both infectionand organogenesis. The results suggest that it is experimentallydifficult to examine the molecular mechanisms of the twophenomena independently. Here we isolated daphne, a novelnon-symbiotic mutant in Lotus japonicus. daphne is completelydefectiveinnodulation,buthasincreasednumberofITs.Bymap-based cloning and inversePCR, the reciprocal translocationwasidentified between chromosome II and III on daphne genome.Furthermore, the translocation point locates in upstream of theNODULE INCEPTION (NIN)geneencodingputativetranscriptionfactorthatregulatesbothITformationandnoduleorganogenesis.Allelismtestsindicatethatdaphneisanewalleleofnin.Incontrastto daphne, it is known that IT formation never occur in otherreportedninalleles.Thus,furtheranalysisondaphnemayuncoverdistinct regulatory mechanism of rhizobial infection and noduleorganogenesiscontrolledbyNIN.

PS02-107Lotus japonicus AMP1andHAR1actsynergisticallytoregulaterootarchitectureChongS.Kim1,2,MarkHeld1,2,TakuyaSuzaki3,BogumilKaras1,2,ShuseiSato4, SatoshiTabata3,MasayoshiKawaguchi3,KrzysztofSzczyglowski1,21Southern Crop Protection and Food Research, Agriculture andAgri-Food Canada, London, Canada, 2Department of Biology,University ofWestern Ontario, London, ON, N6A5B7, Canada,3Division of Symbiotic Systems, National Institute for BasicBiology,Aichi444-8585,Japan,4KazusaDNAResearchInstitute,Kisarazu,Chiba292-0812,[email protected] in theL. japonicus HYPERNODULATION ABERRANT ROOT FORMATION 1 (HAR1) locus lead tohypernodulation and hypermycorrhization phenotypes but alsorestrictrootlengthandsignificantlyincreaserootbranchingofun-inoculatedhar1-1mutantplants.TheseobservationsindicatethatHAR1 is acentral regulatorof symbioticandnon-symbiotic rootdevelopment inL. japonicus.Asearchforgeneticsuppressorsofthehar1-1phenotypeleadtotheidentificationofarootbranchinghypermorph,calledL. japonicus cluster root-like1(crl1;sonamedforitssuperficialresemblancetogenuineclusterroots).Insteadofwild-type root architecture,crl1 forms one large cluster of shortrootletswithlimitedgrowthcapacity.Geneticanalyseshaveshownthat thecrl1 rootphenotype isdeterminedby two independentlysegregating recessivemutations,har1-1 andLjamp1-1.WeshowthattheL. japonicas AMP1geneencodesapredictedhomologueoftheArabidopsisALTEREDMERISTEMPROGRAM1protein.AsinArabidopsis,theLjamp1-1mutationhasapleiotropiceffectonL. japonicus as reflectedby increasedcotyledonnumber, lowfertilityandshortandhighlybranchedshootsandroots.AlthoughtheLjamp1 singlemutant root phenotype resembles har1-1, theLjamp1 mutation does not affect the symbiotic properties of L. japonicus Gifu,whichisunlikeapresumedallelicLjamp1mutationinL. japonicusMG20(seeanaccompaniedabstractbyT.Suzakietal).Rootarchitecture,however,isregulatedbyasynergisticactionbetweenHAR1andLjAMP1andthesimultaneousimpairmentofthesetwogenesresultsindeterminaterootgrowth.

PS02-108TherootregulatorTOO MUCH LOVE functions in theCLE-RS1/RS2-mediatedlongdistancecontrolofnodulationMasahiro Takahara1,2, Shimpei Magori3, Satoru Okamoto2, ChieYoshida4, Koji Yano2, Shusei Sato5, Satoshi Tabata5, KatsushiYamaguchi2,ShujiShigenobu1,2,NaoyaTakeda1,2,TakuyaSuzaki1,2,MasayoshiKawaguchi1,21Department of Basic Biology in the School of Life Science ofthe Graduate University for Advanced Studies, Aichi, Japan,2NationalInstituteforBasicBiology,Aichi,Japan,3DepartmentofBiochemistryandCellBiology,StateUniversityofNewYorkatStonyBrook,StonyBrook,NY,USA,4DepartmentofBiologicalScience, Graduate School of Science,The University of Tokyo,Tokyo,Japan,5KazusaDNAResearchInstitute,Chiba,[email protected] interaction of legumes with N2-fixing bacteria collectivelycalled rhizobia, results in the root nodule development. Thenumber of nodules is tightly restricted through the negativefeedback control by hosts. The fact that the HAR1-mediatedcontrol of nodule number needs the HAR1 expression in theshoots exibits a long distance communication between the shootand the root.However, the large part of themechanism remainsto be elucidated. Previously,we have shown that too much love(tml), a hypernodulatingmutant inLotus japonicus, has a defectinthenegativefeedbackregulationandthatTMLfunctionsintherootsdownstreamofHAR1.Tobetterunderstand themechanismby which legume plants control nodule number, we conductedmolecular biological and genetic analyses using tml mutants.The systemic suppression of nodule formation byCLE-RS1/RS2overexpressionwas not observed in the tmlmutant background.ThisresultindicatesthatTMLactsdownstreamofCLE-RS1/RS2.Inourgeneticanalysesusinganotherroot-regulatedhypernodulationmutantplenty,thetmlplentydoublemutantshowedadditiveeffectson nodule number, suggesting thatTML andPLENTY act in thedifferentgeneticpathways.Togetherwiththefinemappingofthetml-4anddeterminationofthedeletedregionsinthelargedeletionallelestml-1/-2/-3,thecandidatesforthegeneresponsibleforthehypernodulatingphenotypewerenarroweddownto21genes.OurnextgenerationsequencinganalysisidentifiedSNPsintheregion.As the gene knockdown of a candidate drastically increased thenumberofnodules,weconcluded that it shouldbe thecausativegene.

PS02-109Mutation of class 1 hemoglobin affects the infection ofMesorhizobium lotitoitshostplantLotus japonicusTomohiroKado1,Ken-ichiOsuki1,Ken-ichiKucho1,MikikoAbe1,ShiroHigashi1,ToshikiUchiumi11DepartmentofChemistryandBioscience,KagoshimaUniversity,Kagoshima,[email protected] hemoglobins (Hbs) have been divided into three distinctgroups: class 1, class2, and class 3 (truncated)Hbs.The class 2Hbof leguminous plants is known as leghemoglobin in the rootnodules and regulates oxygen concentrations to create suitablemicroaerobic environment for the nitrogenase activity of themicrosymbiont rhizobia.Class 1Hbs possess an extremely highaffinitytooxygenandthevariousphysiologicalfunctionsofclass1Hbincludeitsroleasamodulatorofnitricoxide(NO)levelinplants.TheexpressionofLjHb1,aclass1HbofLotus japonicus,and production of NO are induced transiently in the roots byinoculationofsymbioticMesorhizobium loti.FivemutantlinesofLjHb1were screenedand inoculatedwithM. lotiMAFF303099.Theplantgrowthandnodulationofthemutantlineswereinhibitedcomparedwithwildtype(WT).Totalnumbersofinfectionthreadsandofinfectiondropswereestimatedastheinfectioneventat14daysafterinoculation.ComparisonofthesenumbersbetweenWTandtwomutantlinesofaminoacidsubstitutionrevealedthattheinfection event was inhibited in these mutant lines. Absorption

Page 87: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession02-SymbiosisI/II

85

Poster 02

spectrumoftherecombinantproteinofthemutantLjHb1showedthat themutation affected on the affinity toNO, suggesting thatloweredNOscavengingactivityofLjHb1influencedtheinfectionprocessofM. loti-L. japonicussymbiosis.

PS02-110Localization of polyphosphate in arbuscular mycorrhizalfunguscolonizinginLotus japonicusKatsuharu Saito1, Yasuyuki Osada1, Kousuke Nakiri1, AoiNishimura1,ChutaMatsumoto1,MasanoriSaito2,TatsuhiroEzawa31Faculty of Agriculture, Shinshu University, Nagano, Japan,2Graduate School of Agricultural Science, Tohoku University,Miyagi, Japan, 3Graduate School of Agriculture, HokkaidoUniversity,Hokkaido,[email protected] mycorrhiza is a symbiotic association between plantroots and arbuscular mycorrhizal fungi (AMF) which promoteplantgrowthbyprovidingmineralnutrients,especiallyphosphate.TheAMF form the highly branched hyphal terminus arbusculein plant cortical cell. Arbuscules are thought to be a site ofnutrient exchange between the host and the fungi.However, themechanismofphosphate transfer fromarbuscules toplantcell ispoorly understood. Subcellular localizations of polyphosphate, astorage formofphosphate, andaplantphosphatase in theplant-AMF interface were observed using a transmission electronmicroscopy to elucidate a mechanism of phosphate transport inmycorrhiza.Lotus japonicasB-129(wildtype)anditsRNAilineofthemycorrhiza-induciblepurpleacidphosphataseLjPAP3wereinoculatedwithGlomus irregulareDAOM197198.Themycorrhizalroots were cryo-fixed, embedded in resin, and sectioned withan ultramicrotome. Polyphosphate on the sections was labeledimmunocytochemicalywiththepolyphosphatebindingproteinofE. coli and observed using a transmission electron microscopy.Localization of LjPAP3 was detected by immunocytochemistrywith an anti-LjPAP3 antibody. Polyphosphate distributed infungal cellwalls and vacuoles of intraradical hyphae and trunksof arbuscule both in thewild type andLjPAP3-RNAi line ofL. japonicus.Polyphosphatewasabsentinthearbuscularbranchesinthewildtype,butwaspresentinthoseintheLjPAP3-RNAiline.LjPAP3wasmainly localized in the periarbuscular space.Theseobservations suggest thatpolyphosphatehydrolysis inarbusculesmight be regulated indirectly by the plant phosphatase LjPAP3secretedintheperiarbuscularspace.

PS02-111ExpressionanalysisofSWEETtransportersinLotus japonicusYuka Saida1, Akifumi Sugiyama1, Kojiro Takanashi1, KazufumiYazaki11RISH,KyotoUniversity,Japanyuka_saida@rish.kyoto-u.ac.jpSymbioticnitrogenfixationinlegumestakesplaceinnodules.Ininfectedcellsofnodules,Rhizobiumexistsasbacteroidswhicharecapableof reducingatmosphericN2 toNH3,whereashostplantcells provide photosynthates in forms of dicarboxylates. In thisprocess, various transporters are involved at differentmembranesystems;however,littleisknownabouttheflowofcarbonsourcefrom theplant cell to the rhizobia at themolecular level. In thisstudy,we have attempted to reveal themolecularmechanism ofcarbonsourcetransporttobacteroidsbyanalyzingaputativesugartransporter expressed in nodules of Lotus japonicus.We focusedon thegenehomologsof a sugar transporter family (AtSWEET)recentlyidentifiedinArabidopsistoidentifythegenesinvolvedinsugartransporterinnodules.BLASTsearchongenomicdatabaseofLotus japonicusrevealedthatatleast13homologsofSWEETexistinthegenomeofLotus japonicus.Wethenperformedsemi-quantitative RT-PCR and found that only LjSWEET4 is highlyexpressedinthenodule.Real-timePCRanalysisshowedthattheLjSWEET4expressionlevelinthenodulewasabout10-and3-foldhigherthanthoseoftheleavesandtheroottissue,respectively.It

wasalsoshownthatitsexpressionslowlyincreasedafterrhizobiuminfectionupto3weeks.Wealsoinvestigatedthecell-typespecificityin the LjSWEET4 expression using promoter::β-glucuronidasereportergene(GUS) transformants.Membrane localizationstudyusingGFPfusionproteinandelucidationofphysiologicalfunctionsbyuseofRNAiknockdowntransformantsareunderway.

PS02-112AMATE-typetransporterresponsibleforironsupplytonoduleinfectionzoneofLotus japonicusKojiro Takanashi1, Kengo Yokosho2, Hirokazu Takahashi3,Kazuhiko Saeki4, Akifumi Sugiyama1, Shusei Sato5, SatoshiTabata5,MikioNakazono3,JianFengMa2,KazufumiYazaki11Research Institute for Sustainable Humanosphere, KyotoUniversity, Uji, Japan, 2Research Institute for Bioresources,Okayama University, Kurashiki, Japan, 3Graduate School ofBioagricultural Sciences, Nagoya University, Nagoya, Japan,4Department of Biological Sciences, Faculty of Science, NaraWomen’sUniversity,Nara,Japan,5KazusaDNAResearchInstitute,Kisarazu,[email protected] plants can establish symbiotic nitrogen fixation withrhizobia in root nodules,where the nutrients between host plantcells and their resident bacteria are actively exchanged. Whilethesemoleculesimplynitrogencompounds,carbohydrate,andalsovarious minerals, knowledge about the molecular basis of planttransporters thatmediate thosemetaboliteexchanges is stillverylimited.Inthisstudy,usingthetissue-specificmicroarrayanalysisinLotus japonicusnodule,wehavedemonstratedthatamultidrugand toxic compound extrusion (MATE) protein, LjMATE1,was specifically induced in the infection zone of nodules. Tocharacterize the transport functionofLjMATE1,weconductedabiochemicalanalysisusingaheterologousexpressionsystemwithXenopus oocyte, and found thatLjMATE1 is a specific outwardtransporterforcitrate.ThephysiologicalrolesofLjMATE1wereanalyzed with a gene knockdown line using RNA interference(RNAi)method,which revealed limitedgrowthunderanitrogendeficiencycondition in thepresenceof rhizobiacompared to thecontrolplants,whereassuchagrowthdefectwasnotobservedunderahighnitrogencondition.WealsofoundthatFeconcentrationwassignificantlyreducedinthenoduleoftheRNAiline.TheseresultssuggestthatLjMATE1mediatesapartoftheFetranslocationfromroottonodules.

PS02-113KLAVIERisareceptor-likekinasenecessaryforlong-distancenegative regulation of nodulation mediated by CLE-RS1/2-signalinginLotus japonicusHikotaMiyazawa1, Takuya Suzaki1,2, Tatsuya Sakai3,MasayoshiKawaguchi1,21Division of Symbiotic Systems, National Institute for BasicBiology,Aichi,Japan,2DepartmentofBasicBiology,SchoolofLifeScience,GraduateUniversityforAdvancedStudies(SOKENDAI),3GraduateSchoolofScienceandTechnology,NiigataUniversityhikota@nibb.ac.jpLegumeplantsdeveloprootnodulestoestablishtheendosymbiosiswith nitrogen-fixing bacteria. We have identified a novel gene,KLAVIER (KLV), encoding a leucine-rich repeat receptor-likekinase (LRR-RLK), as a responsible gene for a hypernodulatingmutant of Lotus japonicus. Grafting between shoot and rootdemonstrated that hypernodulating phenotype of klv mutantwas controlled by shoot genotype, indicating KLV negativelycontrolled the number of nodules via long-distance signaling. Inleaf,KLVwaspredominantlyexpressedinthevasculartissues,aswithanotherLRR-RLKgene,HAR1,whichalsoregulatesnodulenumber.Geneticanalyses indicated thatKLVandHAR1 functionin the same genetic pathway to govern the negative regulationof nodulation. CLE-RS1 and CLE-RS2 genes encode secretotypeptides and their expressions are upregulated due to rhizobial

Page 88: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession02-SymbiosisI/II

86

Post

er 0

2

infection.OverexpressionofCLE-RS1/2 inhairy root suppressesnodulation depending on HAR1. In klv mutant, the effects ofoverexpression ofCLE-RS1/2 on nodulation were not observed,as is the case of har1 mutant, indicating that not only HAR1but alsoKLV is required for suppression of nodulation byCLE-RS1/2. Transient expression analysis in Nicotiana benthamianaindicatedthephysicalinteractionofKLVandHAR1.Theseresultsadvocated a model that KLV-HAR1 receptor complex functionsin long-distance negative regulation of nodulation mediated byCLE-RS1/2 signals. In this congress, we will also report thephenotypesofanotheralleleofklvmutantthatwasrecentlyisolatedand supposed to be a null allele, andKLV-overexpressing plant.Reference:Miyazawaetal.Development137:4317-25(2010).

PS02-114Soybean phosphate transporter geneGmPT7 is expressed inmycorrhizasandsenescentleavesYukiInoue1,YoshihiroKobae2,ShokoTakai1,YosukeTamura1,AyaHirose3,KunihikoKomatsu3,MasaoIshimoto3,4,ShingoHata11Laboratory of Crop Science,Graduate School of BioagricultualSciences,NagoyaUniversity,Aichi464-8601,Japan,2LaboratoryofPlantNutritionandFertilizers,GraduateSchoolofAgriculturalandLifeSciences,UniversityofTokyo,Tokyo113-8657, Japan,3National Agricultural Research Center for Hokkaido Region,Hokkaido 062-8555, Japan, 4National Institute ofAgrobiologicalSciences,Ibaraki305-8602,[email protected] phosphate transporter gene GmPT7 is expressed inarbuscularmycorrhizas (Tamura et al., 2012 Biosci. Biotechnol.Biochem. 76: 309-313). Here we analyzed GmPT7 expressionin roots at regular time intervals by RT-PCR and confirmedthat the gene was induced differently from other mycorrhiza-inducible GmPT10 and GmPT11. Transformed hairy roots withGmPT7promoter-GUS showed that GUS activity is localized incorticalcellscontainingmaturearbuscules.Furthermore,wefoundhigh expression ofGmPT7 in senescent leaves (yellow leaves).To investigate the expression in leaves, we generated stableGmPT7promoter-GUS transgenic lines of soybean and detectedlocalizedGUSactivityatthephloemandveinending.Insoybean,leaf senescence occurs dramatically at the end of reproductionstage.When leaves become senescent, the living components oforganellesincludingchloroplastsarebrokendownandphosphorusis recycled togrowingorgansandseeds (Limetal.,2007Annu.Rev.PlantBiol.58:115-136).Therefore,GmPT7maybeinvolvedinphosphatetranslocationfromleavestoseeds.

PS02-115Differential expression of arbuscular mycorrhiza-inducibleacyltransferaseandesterasegenesofrice(Oryza sativa)ThongkhounSisaphaithong1,YoshihiroKobae2,ShingoHata11LaboratoryofCropScience,GraduateSchoolofBioagriculturalSciences,NagoyaUniversity,Aichi464-860,Japan,2LaboratoryofPlantNutritionandFertilizers,GraduateSchoolofAgriculturalandLifeSciences,UniversityofTokyo,Tokyo113-8657,[email protected] (AM) fungi are found in almost all soilecosystems,morethaneightypercentofplantspeciesestablishingsymbiosiswiththem.AMfungiimprovetheabsorptionofwaterandmineralnutrients,suchasphosphorus,nitrogen,zincandcopper,fromsoil toplants.Inreturn,plantssupplyphotosynthatestothefungi.Periarbuscularmembranesinplantcorticalcellsaccumulateorganicandinorganic transporterproteins,beingthemainsiteofthenutrientexchangebetweenAMfungiandhostplants. In thiswork, we found that an acyltransferase (OsAcyl) gene and anesterase(OsEst)genewerehighly inducedduringAMsymbiosisofriceplants.RT-PCRanalysisshowedthatthetranscriptofOsEstwasdetectedslightlyearlierthanthatofOsAcylduringarbusculeformation.Promoter-GUStransgenicriceplantswereproducedtoinvestigatetheirlocalizedexpression.Bothgeneswereexpressed

incellscontainingarbuscules.GUSandWGA-AlexaFluordoublestainingindicatedthatOsAcylandsymbioticphosphatetransportergene (OsPT11)weremainly expressed in cells containingyoungandmaturearbuscules.Ontheotherhand,OsEstwasalsoexpressedinplantcellsnearbythepenetratingintercellularhyphaeatearlierdevelopmentalstagesofAMsymbiosis.Inaddition,thetranscriptlevels ofOsAcyl andOsEst were quite contrasting in a mutantricearbusculedevelopmentofwhichwasimpaired.TheseresultssuggestthatOsEstandOsAcylgenesmaybeinvolvedindifferentfunctionsincorticalcells.WewilldiscussmembranedynamicsandthemolecularmechanismofmembranerecyclinginAMsymbiosis.

PS02-116Non-redundant control of rice arbuscular mycorrhizalsymbiosisbytwophosphatetransportersShu-YiYang1,IverJakobsen2,DorisRentsch3,HirohikoHirochika4,Venkatesan Sundaresan5, Nicolas Salamin6, Sigrid Heuer7,JacquelineGheyselinck1,UtaPaszkowski11DepartmentofPlantMolecularBiology,UniversityofLausanne,CH-1015 Lausanne, Switzerland., 2Department of Chemical andBiochemical Engineering, Technical University of Denmark,DK-4000 Roskilde, Denmark., 3University of Bern, Institute ofPlant Sciences, CH-3013, Switzerland, 4National Institute ofAgrobiologicalSciences,AgronomicsResearchCenter,Tsukuba,Ibaraki 305-8602, Japan, 5University of California Davis,Department of Plant Biology and Plant Sciences, Davis, CA95616, USA, 6University of Lausanne, Department of EcologyandEvolution,CH-1015Lausanne,Switzerland,7PlantBreeding,GeneticsandBiotechnologyDivision,InternationalRiceResearchInstitute,DAPObox7777,MetroManila,[email protected] (Pi) acquisition of crops via arbuscular mycorrhizal(AM)symbiosisgainsincreasingimportanceduetolimitedhigh-graderockPireservesanddemandforenvironmentallysustainableagriculture.Wefoundthat70%oftheoverallPiacquiredbyriceisdeliveredviathesymbioticroute.Tobetterunderstandthispathwaywecombinedgenetic,molecularandphysiologicalapproachestodeterminethespecificfunctionsoftwosymbiosis-specificricePitransporters,PT11andPT13.ThePT11 lineageofproteins frommono-anddicotyledonsismostcloselyrelatedtoPi transportersfromtheancientmoss,indicatinganearlyevolutionaryorigin.Incontrast,PT13,aroseinthePoaceae,suggestingthatgrasseshaveacquired a particular genetic redundancy to secure symbiotic Piacquisition.Surprisingly,mutationsineitherPT11orPT13affecteddevelopmentof thesymbiosis,demonstrating thatbothgenesareessential forAM symbiosis. For symbiotic Pi uptake, however,only PT11 is necessary and sufficient. Consequently, our resultsdemonstratethatmycorrhizalricedependsontheAMsymbiosistosatisfyitsPidemands,whichismediatedbyasinglefunctionalPitransporter,PT11.

PS02-117Deciphering the ethylene-signaling pathway during earlysymbiosisinMedicago truncatulaEstibalizLarrainzar1,AlexGreenspan1, JongMinBaek1,BrendanK.Riely1,Hyun-JuHwang2,MijinOh2,Sang-CheolKim3,Jeong-HwanMun2,DouglasR.Cook11Department of Plant Pathology, University of California-Davis, Davis, USA, 2Department ofAgricultural Biotechnology,National Academy of Agricultural Science, Rural DevelopmentAdministration, 150 Suin-ro, Gwonseon-gu, Suwon 441-707,Korea, 3Korean Bioinformation Center, KRIBB, Yuseong-gu,Daejeon,305-806,Koreaelarrainzar@ucdavis.eduLegumesareabletoestablishnitrogen-fixingendosymbiosiswithrhizobiumbacteria.This interaction isahighly-regulatedprocessthatinvolvescomplexdevelopmentalchangesinroots.Ethylenehasbeenshowntoplayakeyroleintheearlystagesoftheinteraction,beinganegativeregulatorofsymbioticdevelopment.Inthiswork,

Page 89: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession02-SymbiosisI/II

87

Poster 02

wehaveappliednext-generationsequencingtechniques(RNAseq)toanalyzethechangesonthetranscriptomeofMedicago truncatularootsinveryearlysymbioticstages(8timepointsrangingfrom30minto48hafterinoculation).TodiscriminatebetweenNod-factorandethylenesignaling,weanalyzedfourplantgenotypes:wildtypeM. truncatula A17 Jemalong, mutants in Nod-factor perceptionnfpandlyk3,andamutantinethyleneperception,skl.Intotal,wehaveidentifiedalmost11,000differentially-expressedgenes,withmorethan8,000differentiallyregulatedbetweenwildtypeandsklsamples.Among those,numerousgenesare involved inethyleneperception, signal transduction and ethylene biosynthesis. Ofparticularinterest,wehavefoundanumberofnoveltranscriptionfactors of theAP2/ethylene-responsive factor (ERF) superfamilyinvolved in very early responses (i.e., 6h) upon inoculation.Weselected six candidate transcripts, based on the strength of theirtranscriptionalresponse,theirdependenceonethyleneand/orNod-factor signaling, and theirpredicted impacton transcription (i.e.,positiveornegative).Wearecurrentlygeneratingpromoter::GUSfusions, RNAi and overexpression constructs, along withtranslationalfusionstoGFPusinghairyrootstofurtherinvestigatethe tissue specificity, subcellular localization and functionalconsequencesofalteredgeneexpressionduringsymbiosis.

PS02-118RhizobialinfectiondecidesnoduleidentityDian Guan1, Nicola Stacey1, Giles E. D. Oldroyd1, Jeremy [email protected] truncatula forms a root symbiosis with the nitrogenfixingbacteriacalledrhizobia.Duringnodulation,rhizobia infectthe root by forming infection pockets at the tip of growing roothairs after which they induce special tube-like structures calledinfection threads which contain the rhizobia and guide theirinvasion into the inner root tissues. We have identified a M. truncatula mutant, called knocks but can’t enter (kce), that canform infection pockets but cannot form infection threads. kce isunable to form normal nodules but surprisingly develops shortnodule-likelateralgrowthsassociatedwithinfectionfoci.Howeverthevascularbundlesinthosestructuresarecentrallylocalisedsuchas in lateral roots,whereas they are peripherally localised in thewild type nodules.The absence of root-tip specificmarkers andthe expressionof nodulemarkers suggest that theseorganshavea nodule identity. Interestingly, several other infection mutantsthat forminfectionsblockedatasimilarstage, theM. truncatula vapyrin, lin,Lotus japonicas alb1andtheSinorhizobium meliloti exoYmutantallformnoduleswithacentralvascularbundle.Thisfindingsuggeststhattheabortionofrhizobialinfectionintheroothaircurlaffectstheproperdevelopmentofthenodule.Iamtestingthishypothesisbybypassingrhizobialinfection,toobservewhetherthe gain-of-function CCaMK can induce peripheral-vascular-bundlespontaneousnodulesinkce.Iamalsocurrentlytestingthehypothesis that premature abortion of infection leads to changesinauxinandcytokininbalancewhichhasdirectconsequencesfornoduledevelopment.

PS02-119Analysis of flavonoid secretion from the root of hydroponiccultureofsoybeanKazuaki Yamashita1, Akifumi Sugiyama1, Kojiro Takanashi1,KazufumiYazaki11Research Institute for SustainableHumanosphere,University ofKyoto,Kyoto,[email protected] plants establish symbiosis with rhizobium to fixatmosphericnitrogenasnutrients.Thefirstbiologicaleventofthisprocess is the secretion of signalingmolecules (e.g., flavonoids)fromrootstosoil,andthissignalactivatesthetranscriptionfactorofrhizobium NodD,leadingtothesynthesisofNodfactors.Asthe

signalingmoleculesinsoybean,genistein,daidzein,andcoumestrolhavebeensofaridentified.Thetransportactivityofgenisteinhasbeen measured with membrane vesicles prepared from soybeanrootsandtheATP-dependentisoflavon-specifictransporthasbeenreported (Sugiyama,2007). Inorder tounderstand themolecularmechanisms in movement of signal molecule on the onset ofsymbiosis, we have characterized the root exudates in soybean.Root exudatesof soybeanalsocontainflavonoidglycosides, andthe occurrence of β-glucosidase at apoplastwas reported,whichsuggests the existence of an efflux transporter for flavonoidglycosides at plasma membrane of soybean roots. However, notransportersresponsibleforthesecretionofflavonoids,regardlessof aglycons or glycosides, have been identified thus far. In thisstudywehaveanalysedflavonoidsecretionduringthedevelopmentofsoybeanplants tocharacterize theeffectofnutrientdeficiencyontheflavonoidsecretion.UsingPDA-HPLC,wehaveanalyzedroot exudates of soybean grown in hydroponic medium withvariousnutrientconditions.Highlevelofsecretionwasobservedin genistin (a genistein glucoside), daidzein, and genistein in−Nmedium.To identify aflavonoid transporter in soybean root,surveyoftranscriptionallyup-regulatedtransportergenesintheseconditionsisunderway.

PS02-120Uncovering the infectome: single-cell type transcriptomicstudiesofMedicago truncatularoothairsduringSinorhizobium melilotiinfectionrevealsnewcommonsymbioticgenesAndy Breakspear1, Dian Guan1, Chengwu Liu1, Nicola Stacey1,ChristianRogers1,JeremyD.Murray11JohnInnesCentre,Norwich,UnitedKingdomjeremy.murray@jic.ac.ukThelastdecadeofgeneticstudiesinmodellegumeshasrevealedthat thesignallingpathwayof theancientarbuscularmycorrhizal(AM)symbiosiswasincorporatedintothemorerecentlyevolvedlegume-rhizobia symbiosis. This shared pathway includes anLRR-receptor kinase and ion-channels that are required forNodfactor-inducednuclearassociatedcalciumspiking,andacalciumcalmodulin kinase (CCaMK) which is essential for triggeringthe transcriptionof themajorityofgeneexpressionchanges thatoccur during nodulation. The fact that the recently discoveredvapyrinmutant,whichisimpededinintracellularinfectionbyAMand rhizobia, has intact calcium spiking responses and requiresCCaMK for its transcriptional induction suggests that elementsshared between AM and nodulation are not restricted to thesignalling pathway.A comparison of gene expression studies ofroothairsisolatedfromMedicagoseedlingsinfectedbyS. melilotito AM-infected roots suggest that the symbioses share somehormonerelatedresponsesincludingtheinductionofstrigolactonebiosynthesisandanenhancementofauxinsignalling.Incontrast,expressionofgenesinvolvedincytokininsignallingwasmarkedlyenhancedbyrhizobialinfectionbutnotinducedinAMinteractions.As expected, the known infection-related genes, includingNIN,NSP1,RPG, andFLOT4were found to be induced in root hairsduring infection. Interestingly, numerous genes were found thatwere induced in root hairs from rhizobially infected plants, butwerenotexpressedinnodulesatanystage,indicatingtheenhancedsensitivityof theapproachandsuggestingdifferent requirementsforepidermalandcorticalinfection.

PS02-121TheendophyteEpichloe festucaerequiresvelvetforasuccessfulinteractionwithitshostgrassDamien Fleetwood1,2, ChristineVoisey1,Wayne Simpson1,WadeMace1,MostafaRahnama2,ShaunLott1,2,RichardJohnson11Forage Improvement, AgResearch, Palmerston North, NewZealand,2SchoolofBiologicalSciences,UniversityofAuckland,[email protected], one of four conserved velvet-domain proteins, is required

Page 90: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession02-SymbiosisI/II

88

Post

er 0

2

for regulation of sexual development and secondarymetabolismin diverse fungi.We aimed to determine the role ofVelA in themutualisticgrassendophyteEpichloe festucae.Ourresultsshowedthat VelA has only a moderate role in regulating secondarymetabolism in E. festucae compared with other fungi. Alsounlike studies in related species, therewas no obvious effect onmorphology, conidiation, surface hydrophobicity or the abilitytogrowoncellwall disruptingagents.ThevelA gene is stonglyupregulatedinplantaversusinaxenicculture.Inplantinteractionexperiments,infectionwithvelAmutantsledtorapiddeathin65%ofseedlings,butanearwildtypeinteractioninremainingplants,suggesting a strong effect from host plant genotype. However,experiments utilising clonal host plant lines suggest this is not atypicalgene-for-geneinteraction.OverallourresultspaintapictureofVelAregulationevolvingtoadapttoanendophyticlifestyle.

PS02-122Identification of novel arbuscular mycorrhizal-specific genesregulated by gain-of-function CCaMK, a key regulator ofendosymbiosisHaruko Imaizumi-Anraku1, Miwa Nagae1, Yoshikazu Shimoda1,NaoyaTakeda2,MakotoHayashi11National Institute ofAgrobiological Sciences (NIAS), [email protected] symbiosis pathway (CSP) in legumes mediates twodistinct symbioses, rootnodule (RN)andarbuscularmycorrhizal(AM) symbiosis. Among CSP genes, calcium calmodulin-dependent protein kinase (CCaMK) acts as a decoder of Ca2+signalselicitedbyinfectionsignalmoleculesderivedfrommicro-symbionts. Based on detailed functional analyses with variouskinds of mutated CCaMKs, we demonstrated dual regulation ofCCaMKbyCa2+andCaM,anddifferentialregulationofCCaMKbyCaMbindingbetweenRNandAMsymbioses (1).Anumberof gain-of-funcion CCaMKs have been reported so far.Amongthem, nuclear-localizaed and deregulatedCCaMK,which retainskinase domain only with T265D mutation (CCaMK1-314T265D-NLS), has been shown to induce the expression of root noduleand AM-related genes strongly without infections of rhizobialbacteriaorAMfungi(2).ToidentifynovelgenesrequiredforAMsymbiosisatanearlystageof infection,weuseddexamethasone(DEX)-inducible promoter by which expression of CCaMK1-314T265D-NLS is transiently induced.Basedoncomparisonof thegene-expression profiles in CCaMK1-314T265D-NLS transgenichairy roots ofLotus japonicus,we identified 24 candidate geneswhich are also expressed in response to AM fungi infection.These genes are expected to be involved in AM symbiosis.(1)Shimodaetal.PlantCell201224:304-321;(2)Takedaetal.PlantCell201224:810-822.

PS02-123RNA-seqanalysisofrootnodulesandarbuscularmycorrhizain Lotus japonicus and de novo transcriptome assembly ofGlomus intraradicesYoshihiro Handa1, Naoya Takeda1, Yutaka Suzuki3, MasayoshiKawaguchi1,KatsuharuSaito21DivisionofSymbioticSystems,NationalInstituteforBasicBiology,Aichi,Japan,2FacultyofAgriculture,ShinshuUniversity,Nagano,Japan,3DepartmentofMedicalGenomeSciences,GraduateSchoolofFrontierSciences,theUniversityofTokyo,[email protected] japonicuswasperformedtoidentifydifferentially expressed genes (DEGs) in arbuscularmycorrhizalrootsorrootnodulescomparedtonon-inoculatedrootsusingnextgeneration sequencing (NGS) technologies. Paired-end sequencereads (2x101bp)weregeneratedbyan IlluminaHiSeq2000fromRNA-seqlibraries.Wedetected280genesasDEGatanearlystageofmycorrhizalformation(15daysafterinoculation,DAI)and6,427genesatalatestage(27DAI)whencontrollingthefalsediscovery

rate (FDR)below0.001. In rootnodule formation,59and1,497genesweredifferentiallyexpressedatanearly(3DAI)andlate(12DAI)stage,respectively(FDR<0.001).DEGssharedbythebothsymbiosesatthelatestagewere537genes.De novotranscriptomeassembly was conducted to gain a gene expression profile ofarbuscularmycorrhizalfungusGlomus intraradicesDAOM197198usingRNA-seqdataofmycorrhizalroots.Totalof23,937contigs(meansize=559bp,median size=376bp)wereassembledbyde novotranscriptomeassemblyusingreadsunmappedagainstL. japonicusgenomesequence.17,076contigs(71.3%)hadsignificantmatches in a nucleotide BLAST against EST sequences in aG. intraradicesdatabase.Theunmatchedcontigswereannotatedwithgenedescriptions andGeneOntology (GO). In all 1,204 contigsweresuccessfullyannotated.OurdatasuggestthatexpressionofalargenumberofgenesdramaticallychangeduringmycorrhizationandnodulationandthattranscriptomeanalysisofG. intraradicesinrootsisfeasiblebyde novotranscriptomeassemblyofshortreads.

PS02-124Auxotrophic and anaplerotic amino acid metabolism inMesorhizobium lotiShigeyuki Tajima1, Mika Nomura1, NanthipakThapanapongworakul2,AyaoEnoki1,HiroyukiMatsuura11Dept. Applied Life Sci., Kagawa University, Japan, 2Dept.EntomologyandPlantPathology,FacultyofAgriculture,ChiangMaiUniversity,50200ChiangMai,Thailandtajima@ag.kagawa-u.ac.jpCurrentbreakthroughsonsignaltransductionpathwayforsymbioticorganogenesissuggestedthepossibilitytotransferthecapabilityofsymbioticnitrogenfixation tomajorcropplants, like riceplants.Toestablishmetabolicfunctioninthepseudo-nodules,theprofilesof plant control to symbionts should be revealed andmimic themolecular mechanism. The soil bacterium Mesorhizobium lotiis able to induce the formationofnitrogen-fixingnoduleson theroot of a determinate-type legume plant, Lotus japonicus, andcanbeamodelsystemforelucidating themolecularbackgroundof thesymbioticmetabolismbecausegenomicresourcesarewellorganizedinthissystem.Usingthesignature-taggedmutagenesis(STM)technique,thefunctionsoftheup-regulatedproteinsintheM. loti bacteroids, especially of amino acid metabolisms, weresurveyed. Since characteristics of transporters on symbiosomeand on bacteroidmembraneswould be different in each legumesystems,theprofilesofmetaboliteexchangebetweenplantcellandbacteroidmightbeuniqueineachsystems.Inthisreportweexplainthe data of phosphoglycerate dehydrogenase (STM5), glutaminesynthetase I (STM30), ABC transporter, amino acid bindingprotein (STM42), argininosuccinate lyase (STM103), alaninedehydrogenase(STM95,125)anddihydroxy-aciddehydrogenase(STM130)genesinnodulesofM. loti/L. japonicus.

PS02-125Novelarbuscularmycorrhiza-induciblephosphatetransportersofbarley(Hordeum vulgare)andwheat(Triticum aestivum)ShingoHata1,ThongkhounSisaphaithong11LaboratoryofCropScience,GraduateSchoolofBioagriculturalSciences,NagoyaUniversity,Nagoya,[email protected] isknownthatbothmonocotsanddicotsaccumulatearbuscularmycorrhiza (AM)-inducible phosphate transporters (PTs) onperiarbuscularmembranes in infected rootcorticalcells, inordertoabsorbphosphatefromAMfungi.GenesencodingsubfamilyIPTsofthePht1family,suchasOsPT11andLjPT4ofrice(Oryza sativa) and Lotus japonicus, are usually expressed much higherthanthoseforsubfamiliesIIandIIIPTslikeOsPT13andLjPT3.Barley and wheat often show negative growth response againstAMfungi,incontrasttopositivelyrespondingmaizeandsorghum.AM-induciblePTgenesofbarley,HvPT8, andwheat,TaPTmyc,that encode subfamily II PTs have been reported. However, theexistenceofsubfamilyIPTsinbarleyorwheatremainselucidated.

Page 91: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession02-SymbiosisI/II

89

Poster 02

Because the genome information of these crops is limited, weconstructed full-length cDNA libraries from their AM roots.We also designed subfamily I-specific PCR primers, based onan alignmentofDNAsequences for cerealPTs.So far,wehaveidentifiedonebarleyand threewheatgenes for subfamily IPTs.TheirexpressionlevelswereapparentlyhigherthanthoseofHvPT8and TaPTmyc. Historically, the negative growth response wasinterpreted as a result of unbalancebetween cost (carbon supplyto fungi) and benefit (phosphate transfer from fungi). Recently,however,itisoftenarguedinrelationtotheinteractingcontrolsofphosphateuptakebymycorrhizalpathwaythroughAMfungianddirectpathwayviaroothairsandepidermalcells.Thenovelgenesmayprovideinsightsintothemechanismofmycorrhizalpathwayinbarleyandwheat.

PS02-126StudyofvesicletraffickinginLotus japonicus nodulesMika Nomura1, Takahiko Miyoshi1, Hiroki Yamasaki1, AoiSogawa1, Sirinapa Chungopast1, Keisuke Yokota2, MakotoHayashi2,ShigeyukiTajima11FacultyofAgricultureKagawaUniversity,Kagawa,Japan,2NIAS,Tsukuba,Japannomura@ag.kagawa-u.ac.jpExocytosisandendocytosisarefundamentalinplantdevelopment,homeostasis and interaction with the environment. These arehighly dynamic processed that, even in otherwise static planttissue,engagearapidturnoveroflargeareasofmembranesurface.SNAREs (solubleN-ethylmaleimide sensitive factor attachmentprotein receptors)proteinsdrivemembrane andprotein targetinganddeliveryineukaryoticcells.SinceaspecificSNAREcomplexisinvolvesinmembranefusionineachvesiculartransportpathway,specificorganellesaremarkedbythepresenceofspecificresidentSNAREproteins.WehavescreeningSNAREgeneswhichinteractwithnoduledevelopment.ThesuppressionofGen06genebytheRNAicouldformnodulebutthemostofthenoduleswerewhiteinthehairlyrootnodule.WhenweinfectedLacZ-labeledM. loti ,bluestainedM. loti couldseeat thenodule.GFPfusedgen06proteinrevealedthatgen06proteinwaslocatedontheplasmamembraneorendosomeintheArabidopsis culturedcell.Thesedatasuggestthat gen06 SNARE plays a vital role in the turnover of integralmembraneproteinsinsignalingand(or)nutritioninthenodule.

PS02-127ComparativegenomeanalysisofMesorhizobium lotistrainsHiroko Maita1,2, Hideki Hirakawa1, Yasukazu Nakamura1,3,TakakazuKaneko4,SatoshiTabata1,KazuhikoSaeki5,ShuseiSato1,21Lab.ofAppliedPlantGenomics,KazusaDNARes.Inst.,2GraduateSchoolofLifeSciences,TohokuUniv.,3CenterforInfo.Biol.andDDBJ,NationalInst.ofGenetics,4FacultyofEngineering,KyotoSangyoUniv.,5FacultyofScience,NaraWomen’[email protected] loti is amemberof rhizobiawhichcanassociatewithlegumeplants(e.g.Lotus japonicus).M. lotistrainNZP2037posseseswiderhostrangecomparedtootherM. lotistrains,suchasMAFF303099 and R7A. In order to analyze the componentsthatcontributetothewiderhostrange,wehavebeencarryingoutcomparativegenomeanalysisofM. lotistrains.Asaninitialstepofthecomparativeanalysis,wedeterminedthecompletesequenceofthesymbioticislandofNZP2037byusingconventionalSangermethod,andconducteddetailedcomparativeanalysisagainsttwostrains, MAFF303099 and R7A.As a result, in the determinedsymbioticislandofNZP2037withapproximately650kbpinsize,the regions of highly conserved among three strains, on whichsymbiosis related genes (e.g. nodulation genes, nitrogen fixationgenes,conjugativetransfergenes)areencoded,madeuptoabout30%of total size.On the other hand, the region that specific toNZP2037 was identified in the 20% portion of 3’ end of thesymbioticisland.ThegenesencodingthecomponentsoftypeIVsecretionsystem(e.g.virB1~B11,virA,virGetc.)wereconserved

betweenNZP2037andR7A(cf.MAFF303099possessestypeIIIsecretionsystemrelatedgenes),butthegenesforputativeeffectorproteins were not conserved. In addition, two of the nodulationrelatedgenes,nodOandnodUwereidentifiedonlyinthesymbiosisislandofNZP2037.ThesedifferencescouldbethecauseofwiderhostrangeofthestrainNZP2037.

PS02-128Doesironinfluencethenatureofthesymbioticinteractionofafunguswithitshostgrass?NatashaT.Forester1,2,GeoffreyA.Lane1,IainL.Lamont2,LindaJ.Johnson11AgresearchLtd,PalmerstonNorth,NewZealand, 2UniversityofOtago,Dunedin,[email protected] are lowmolecularweight ferric iron chelators thataremadebymicroorganismstocompeteforandtosequesteriron,anessentialbutpotentiallytoxicmicronutrient.Epichloe festucae,a fungal endosymbiont of Lolium perenne (perennial ryegrass),synthesises two siderophores, epichloënin and desferricrocin toharvest ironfromitshostgrass.Previousworkbyourgrouphasimplicatedepichloënin,andbyassociation,ironinthemaintenanceofthismutualisticinteraction.Toexploretheeffectofironavailabilityon thegrass-endophyte relationshipwehavecreatedacollectionofironmutantsandcharacterisedtheeffectsofthemutationsbothin cultureandin planta.Theironmutantsincludeddisruptionsofthreecomponentsofthesiderophorebiosyntheticpathwaysandoftwo major iron-responsive transcription factors, including SreAthatcoordinatescellular responses to ironconcentrationchanges.Iron-dependent phenotypic deviations from wild type fungalgrowthwereobservedforallfungalgenedisruptionsin cultureandin planta.Overproductionofsiderophores,relativetothewild-typefunguswasdetectedbyLCMSMSinΔsreAmyceliagrowninthepresenceofiron.ControlofplantironsupplytotheendophyteusinghydroponicgrowthconditionsindicatedthatΔsreAcancompeteforironwithitshost.Ourresultssuggestthatwild-typeE. festucaehasa tightly regulated ironmanagement system forniche adaptationand sets limits on ironwithdrawal from the host, presumably topreventcompetitionwith itshost inorder topromotemutualism.Mutations that interfere with fungal iron acquisition, either bypreventing or deregulating siderophore synthesis, can destabilisethefungal-plantsymbiosis.

PS02-129The expression of defense-related genes is attenuated bysymbioticsignalcascadesTomomi Nakagawa1, Hanae Kaku1, Hiroshi Kouchi2, NaotoShibuya11Department of Life Sciences, Faculty of Agriculture, MeijiUniversity,Kawasaki,Japan,[email protected] are continuously exposed to a huge variety of microbes,including potential pathogens. To prevent the infection of thesemicrobe, plants have evolved the sophisticated innate immunesystems.Incontrast,leguminousplantsestablishedthemutualisticsymbiosiswithsoilbacteriathatarecollectivelytermedrhizobia.Themechanisms that enable the leguminousplants to accept thesymbiotic microbe with preventing the invasion of pathogenicmicrobe are largely unclear. In the legume-rhizobia symbiosis,recognition of bacterial symbiotic signal molecules, termedNod factors (NFs), by host plants is the key step for initiatingthe plant symbiotic processes. NFs are perceived by the LysM-type receptor kinases, NFR1 and NFR5. The kinase domainof NFR1 is the critical importance to activate the symbioticcascades because the kinase domain of NFR5 lack its activity.Interestingly, the amino acid sequences of the kinase domainsof NFR1 show very high similarity to that of CERK1 that isessential for recognition of chitin elicitors.Recently,we showedthatonlythreeaminoacidsubstitutionsinCERK1kinasedomain

Page 92: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession02-SymbiosisI/II

90

Post

er 0

2

confer the ability to drive the symbiotic signaling cascades (1).These results suggested that NFR1 have evolved from ancientchitinreceptor.Here,weshowedthatapplicationofNFsnotonlyactivate symbiosis genes but also activate defense-related genesthrough the NFR1. After 7h of NF treatment, the expressionlevels of defense-related genes are attenuated. We will reportthis geneticmechanism and discuss the role of symbiotic genes.(1)Nakagawaetal.,PlantJ.65,169-180(2011).

PS02-130GeneexpressionprofilingofEpichloeendophytesinprogenitorversusmoderncerealsLinda J. Johnson1,MilanGagic1,Wayne Simpson1,AnarKhan1,ChristineVoisey1,RichardJohnson11AgResearch Limited, Grasslands Research Centre, PalmerstonNorth,[email protected] programme aims to infect modern day wheat cultivars(Triticum spp.) with epichloae endophytes, sourced from wildrelativesofcereals.Systemic infectionsofaNewZealandwheatcultivarwithtwogeneticallydistinctEpichloëstrains(derivedfromdifferent Elymus spp.) were obtained, however the associationswere not normal.Wheat plants infectedwith S18were severelystunted and eventually died, whereas S60 infection resulted instunted plants that were capable of the full endophyte lifecycle.Weareusingthissystemtoinvestigatethemolecularmechanismsthat underlie compatibility versus incompatibility using thetranscriptomic technologiesSOLiDTMandAffymetrix61kWheatGeneChip analyses. Significant gene ontology (GO) categoriesweredeterminedfordifferentiallyexpressed(DE)plantandfungalgenesobtainedfromeightcomparisonsderivedfromcombinationsofplanthosts(Elymusspp.orwheat)withendophytesS18orS60or endophyte free. Host genes perturbed in the artificial wheat-endophyteassociationsincludedgibberillinbiosynthesisandplantdefence responsessuggesting theseprocessesare involved in thesymbiosiswithwheat.Fungalgenesthatshowedalteredexpressioninwheatassociations,comparedtothenaturalhost,includedthoseinvolvedinstressresponse,chromatinremodellingandcellularcellwallorganisation.Peptidase/endopeptidaseactivities,cellularironhomeostasisandothergeneontologycategorieswereidentifiedasprocesses setting the incompatiblewheat associations apart fromthe compatible wheat associations. Elucidation of the processesunderlying compatibility will assist us in developing desiredcombinationsofendophytewithmoderndaycerealhosts.

PS02-131Synthesisandsymbiosis-relatedgene-inducingactivityofMyc-LCOsandtheirN-acylchain-modifiedderivativesKohkiAkiyama1,ChiharuKawahara1,HideoHayashi11Graduate School of Life and Environmental Sciences, OsakaPrefectureUniversity,Osaka,[email protected] mycorrhizas formed between more than 80% ofland plants and arbuscular mycorrhizal (AM) fungi belongingto the Glomeromycota are the most common and widespreadsymbiosis on our planet. The plant-AM-fungus interaction isinitiated by mutual signal exchange between the two partnersduring preinfection stages. Host roots release strigolactones thatinduce hyphal branching, a host recognition response, in AMfungi. AM fungi have long been postulated to produce signalmolecules called “Myc factors” (MFs) that induce themolecularand cellular responses leading to successful root colonizationby AM fungi. Recently, lipochitooligosaccharides (Myc-LCOs)were identifiedasanMF from thegerminated sporeexudatesofanAM fungusGlomus intraradices (Maillet et al., 2011).Myc-LCOs were characterized as sulfated or non-sulfated tetramericchitooligosaccharides,N-acylated with a C16 or C18 fatty acidmoietyeithersaturatedorhavingoneortwounsaturations.Inthisstudy, we chemoenzymatically synthesized sulfated/non-sulfated

Myc-LCOs and their N-acyl chain-modified derivatives, andtestedtheiractivityforsymbiosis-relatedgeneinductioninLotus japonicuswild-typeandsymbioticmutants,nfr1,nfr5andnfr1/nfr5plants.Non-sulfatedMyc-LCOsstronglyinducedtheexpressionofthesymbiosis-relatedgenes,SbtS,SbtM1andNIN,inthewildtype.Thedatawill be presentedon the gene expressionprofiles ofL. japonicus rootsupon treatmentwithMyc-LCOsand theirN-acylchain-modifiedderivatives incomparison to thoseobtainedupontreatmentwithNFandchitinoligosaccharides.

PS02-132Phagocytic incorporation of PCC6803 cells in Paramacium bursariaandRAW264.7cellsAtsukoNoriyasu1,ShinichiMochizuki1,KazuoSakurai1,TomonoriKawano11GraduateSchoolofEnvironmentalEngineering,TheUniversityofKitakyushu,Fukuoka,Japan,2ShinichiMochizuki,3KazuoSakurai,4TomonoriKawanot2mab015@eng.kitakyu-u.ac.jpAvarietyofphotosyntheticorganismscanbe foundon theearthnot only within the kingdom Plantae but also in the kingdomsMonera, Protista, Fungi and Animalia. Origins and diversitiesof photosynthetic organisms could be possibly attributed to theendosymbiotic theory of evolution which suggests the origin ofchloroplaststobeanarchetypalphotosyntheticbacteria.Inthelastdecade,wehavebeen engaged in the studyof endosymbiosis ingreenparamecia (Paramecium bursaria) inwhich somehundredcells ofChlorella-like green algae can be foundwithin a singlehostcells.Todate,greenparameciaistheonlymodelwhichallowsdirect observation of the very first events in the evolutionaryemergence/diversificationofphotosymbioticorganisms.Basedonthismodel,wehaverecentlydemonstratedthatfreelivingcellsofSynechocystisspp.PCC6803canbeintroducedintoapo-symbioticcellsofP. bursaria.Byanalogy to theparameciummodel, therewould be three criteria for novel model hosts, namely, (1) thehosting cellsmust be freely cultured in vitro, (2) the cellsmustbephagocytic for allowing theexperimental loadingof thealgalsymbionts,and(3)hostingcellsmusttoleratetheoxidativestressaccompanying the photosynthetic reactions by green symbionts.Interestingly,abovecriteriacanbesatisfiedbytheuseofcelllinesofRAW264.7murinemacrophages.Here,wereportonourprimaryattemptsforintroducingandmaintainingthecellsofPCC6803inthe RAW264.7 cells under the light condition.A very first steptowardsthecreationofgreenmammaliancellswasinitiated.

PS02-133RoleofvitaminB6metabolicpathwayinsymbioticrootnodulesofLotus japonicusAkiyoshiTominaga1,2,AikoIde2,ToshiharuYagi3,SayaIwamoto3,SusumuArima1,2,AkihiroSuzuki1,21United Graduate School of Agricultural Sciences, KagoshimaUniversity, Kagoshima, Japan, 2Department of EnvironmentalSciences, Faculty of Agriculture, Saga University, Saga, Japan,3Department of Bioresources Science, Faculty of Agriculture,KochiUniversity,Kochi,Japan10974003@edu.cc.saga-u.ac.jpLeguminousplantsformnitrogen-fixingrootnodules.Recentlyitwas reported thatMesorhizobium loti contained the all genes ofvitaminB6<VB6>degradationpathwaythatwaslargelysimilartoPathwayAofVB6degradationknowninPseudomonassp.MA-1.However, It isunknownwhy rhizobiahavesuchapathway.Thegrowth rateofLotus japonicus plants treatedwith0.5or10μMVB6werepromoted,thoughthatofplantstreatedwith100or1000μMVB6wereinhibited.PlantsinoculatedSTMstrains,whichhaveretrotransposoninsertionatgenesmll6785<pyridoxine-4-oxidase>andmlr6806<aspartateaminotransferase>encodingtheenzymeoffirstandsecondstepofVB6degradationpathway,showeddecreasedgrowthofrootsandshootscomparedwiththoseofplantsinoculatedwildtypeM. lotiMAFF303099.Interestingly,totalVB6andfree

Page 93: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession02-SymbiosisI/II

91

Poster 02

VB6<pyridoxine,pyridoxal,andpyridoxamine>levels inshootsofplantsinoculatedSTMstrainswerelargelydecreasedcomparedwiththoseofthecaseofwildtypeM. loti.InrootnodulesformedbySTMstrains,expressionlevelofbacterialVB6degradationandbiosynthetic pathway genes were decreased compared with thecaseofrootnodulesformedbyM. loti.Moreover,expressionlevelofVB6 degradation pathway andde novo pathways geneswereincreasedinnodulesformedbyM. loticomparedwiththoseinfreelivingM. loti, but not in nodules formedbySTMstrains.Theseresults suggest that symbioticnodulesplayan important role forVB6metabolismofL. japonicusplants.

PS02-134Development of tools for the biochemical characterization ofthesymbioticreceptor-likekinaseDMI2BrendanK.Riely1,EstibalizLarrainzar1,Jeong-HwanMun2,ErenaGil-Quintana3, EstherM.Gonzalez3, DavidTricoli4, Hee-JuYu5,DouglasR.Cook11Department of Plant Pathology, University of California-Davis,Davis, CA, U.S.A., 2Department of Agricultural Biotechnology,National Academy of Agricultural Science, Rural DevelopmentAdministration, Gwonseon-gu, Suwon, Korea, 3DepartamentodeCienciasdelMedioNatural,UniversidadPublicadeNavarra,Pamplona, Navarra, Spain, 4RalphM. Parsons Foundation PlantTransformation Facility, University of California-Davis, Davis,CA,U.S.A.,5DepartmentofLifeSciences,TheCatholicUniversityofKorea,Wonmi-gu,Bucheon,[email protected] Medicago truncatula DMI2 gene encodes a leucine rich-repeat receptor-like kinase that is essential for symbiosis withnitrogen-fixingrhizobia.Whilephenotypicanalyseshaveprovidedadescriptionfor thehostsresponses thataremediatedbyDMI2,the biochemicalmechanismbywhichDMI2mediates symbioticsignaling remains enigmatic. If we are to elucidate how DMI2mediates symbiotic signal transduction, it is essential that wedeveloptoolswithwhichwecanmonitorandpurifyDMI2fromits native root and root nodule environment.We have generatedstably-transformed M. truncatula lines that express a genomicDMI2 construct that is fused to a dual affinity tag containingthreecopiesofthehemagglutininepitopeandasinglecopyoftheStrepII tag (gDMI2:HAST). We demonstrate that gDMI2:HASTfullycomplementsthedmi2-1mutationandthattransgenicplantsexpressingthisconstructbehavesimilarlytowild-typeplants.WeshowthattheexpressionpatternsofgDMI2:HASTrecapitulatethoseofendogenousDMI2expressionandthatwecanroutinelydetectandpurifyDMI2:HASTfrommicrosomalrootandnoduleextracts.To facilitate DMI2 purification and characterization from rootnodules,wehavecrossedgDMI2:HAST into thesupernodulatingsunnbackground.These toolswillbeavaluableresourcefor theMedicagocommunitytodissectthebiochemicalfunctionofDMI2.

PS02-135CharacterizationofNO-inducinglipidAfromMesorhizobium lotilipopolysaccharideMasahito Hashimoto1, Youhei Tanishita1, Yasuo Suda1, Ei-ichiMurakami2,MakiNagata2,Ken-ichiKucho2,MikikoAbe2,ToshikiUchiumi21Deptepartment of Chemistry, Biotechnology, and ChemicalEngineering,KagoshimaUniversity,2DepartmentofChemistry&Bioscience,[email protected][Bachground] Mesorhizobium loti is a member of rhizobia andforms nitrogen-fixing symbioses with several Lotus species.Recently, it was reported that M. loti bacterial cells and theirextracts induced nitric oxide (NO) in the root of L. japonicus.We further found that, lipopolysaccharide (LPS), a bacterialsurface component, is a responsible compound for the NOinduction. In this study, we characterized the chemical structureresponsibleforNO-inducingactivityoflipidAfromM. lotiLPS.

[Methods] M. loti MAFF303099 was grown in mannitolbroth. LPS was separated by phenol-hot water extractionfollowed by hydrophobic interaction chromatography. LPSwas partially hydrolyzed with hydrazine or aq HF to obtainO-deacylated or dephosphorylated LPS. LipidA, a lipid anchorof LPS, was separated by weak acid hydrolysis followedby chromatographic separation. NO-induction in root wasdetected by fluorescence microscopy using DAF-FM diacetate.[Results] Compositional analysis showed that lipid A consistedof diamino glucose (GlcNN), galacturonic acid (GalA), andphosphate, and fatty acidswhich included 3-OH fatty acids andlong chain 27-OH C28:0 or 27-oxo C28:0. MALDI-TOF MSand tandemMS spectrademonstrated that structureof lipidA istwoGlcNN,oneGalA,onephosphate and six fatty acids.NMRspectraindicatedthatthebackbonestructureisP-4-β-GlcNN(1-6)α-GlcNN(1-1)α-GalA.AlllipidAfractionsinducedNOintherootofL. japonicus,butdephosphorylatedoneshowedloweractivity.TheseresultssuggeststhattheanionicchargemaycontributetotheNOinductioninL. japonicus.

PS02-136NewregulatorypeptidesthatthataffectrootnoduleformationandlateralrootinitiationinMedicago truncatulaNijat Imin1, NadiatulA.Mohd Radzman1, Elizabeth H. Scholl2,PeterDiGennaro2,MarieOakes1,DavidMcK.Bird2,3,MichaelA.Djordjevic11PlantScienceDivision,ResearchSchoolofBiology,CollegeofMedicine, Biology and Environment, The Australian NationalUniversity, Canberra, ACT, Australia., 2Department of PlantPathology ,NorthCarolinaStateUniversity,Raleigh,NC27695,USA, 3Bioinformatics Research Center, North Carolina StateUniversity,Raleigh,NC27695,[email protected] plant root architecture is an important agronomicgoal.Rootdevelopment is regulatedbyenvironmental influencesandsmall regulatorypeptides thatconstitute importantpositionalsignals.Wehavediscoveredarootdevelopmentalroleforapeptideencoded by MtRAR1 (Medicago truncatula Root ArchitectureRegulator1).MtRAR1ispartofamultigenefamilywithauniquephylogeneticdistributionbeingexclusivetohigherplantsandrootknot nematodes (RKN) but not other nematodes. Environmentalinfluences dictate expression of MtRAR genes. MtRAR1, forexample, is up-regulated by elevated CO2 and by nitrogenstarvationandlimitation.AddingtheMtRAR1peptidetorootsoroverexpressing MtRAR1 in transgenic roots leads to prolongedphenotypic changes including reduced lateral root numbersand increased root nodulation upon Sinorhizobium inoculation.Notably,uniqueperiodicrootswellingstypifiedbycircumferentialbut limited cortical, epidermal and pericycle cell divisions andelevated root hair numbers are induced which resemble RKNgalls.Asubsetoftheserootswellingshousearrestedlateralorganslikelytobedevelopmentallyarrestedlateralrootsbutthemajorityshownoobservablesignsoflateralorganformation.Sinohizobiuminoculation leads to enhanced nodulation responses on plantsoverexpressing MtRAR1 or exposed to RAR1 peptide underconditions that normally suppress nodulation.We postulate thatMtRAR1 regulates root architecture in accordance with nitrogenandcarbonavailabilityanditsoverexpressionoroverpresentationaffects lateral root initiation at an early developmental pointenabling sinorhizobia to highjack root development to formnodules.TheexpressionofRKNRARgenesduringRKNinfectionsuggestsaroleingallformation.

PS02-137Theuseofphosphate-solubilizingrhizobacteriaasbiofertilizertoenhancesoybeanplantgrowthSitiMeliah1,NitaR.Sari1,ArisT.Wahyudi1,AbdjadA.Nawangsih2,EdiHusen31Departement of Biology, Faculty of Mathematics and NaturalSciences, BogorAgricultural University, Indonesia, 2Department

Page 94: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession03-Pathogenicfungi

92

Post

er 0

3

of Plant Protection, Faculty of Agriculture, Bogor AgriculturalUniversity, Indonesia, 3Indonesian Soil Research Institute,[email protected] Growth Promoting Rhizobacteria (PGPR) known for theirability to enhance plant growth inmany different ways such asconvert insoluble formofphosphorus toaccesible form.Theuseof rhizobacteria as biofertilizers is one of the most promisingbiotechnologies to improve plant production. This study wasconducted to evaluate phosphate solublizing bacteria (Cr andCrb) under in vitro condition and formulate them coinoculatedwith Bradyrhizobium japonicum (Bj) to determine effectivenesson soybean growth. Pikovskaya medium containing tricalciumphosphate at concentration of 0.5% was used to measureP-solubilizingabilityof testedstrains.ResultsrevealedthatCrb1isthemostpowerfulP-solublizer.Basedonsequenceof16SrRNAgenes,CrandCrbisolatessharehighersimilaritywithBacillusspandPseudomonasspstrains,respectively.Skimmilkandmolasesmediawasusedtocultureisolates(Cr,Crb,Bj)priorformulationin peat as a carrier material. The combination of three strainsproduced 10 packages of inoculants. Each packages was testedfor their viability and effectiveness on soybeans in greenhouse.The number of bacterial population after 12 months of storagewas about 107-108 cells/gram of peats. Green house experimentshowed that inoculantsdesignedasF1,F2,F3,F6,F7,andF10,were significantly increased soybean plant growth. KeyWords:Rhizobacteria,phosphatesolubilization,16SrRNA,plantgrowth,formulation,soybean.

PS02-138SymbioticnitrogenfixationtriggersglobalchangesinbacterialandplantsulphurmetabolismChrysanthiKalloniati1, PanagiotisKrompas1,GeorgiosKaralias1,CorneliaHerschbach2,HeinzRennenberg2,EmmanouilFlemetakis11DepartmentofAgriculturalBiotechnology,AgriculturalUniversityofAthens,Athens, Greece, 2Institute of Forest Botany and TreePhysiology, Chair of Tree Physiology, University of Freiburg,Georges-Kohler-Allee53,79110Freiburg,[email protected] Nitrogen Fixation (SNF) takes place in legume rootnodules that develop after inoculation by rhizobia and involvesthereductionofatmosphericnitrogentoammoniabynitrogenase.Littleisknownaboutthemolecularandbiochemicalmechanismsgoverning sulphate uptake andmetabolismduringSNF. In ordertogaininsightinthesulfurmetabolismduringSNF,weidentifiedMesorhizobium loti and Lotus japonicus genes involved insulphate uptake, transport, reduction and assimilation.Transcriptaccumulation of these genes using Real Time qRT-PCR wasstudied in symbiotic or free-living M. loti strain R7A or themutantstrainsNifAandNifH;bothmutantstrainsformdefectivenoduleswithnonitrogenaseactivity. Incontrast toM. loti::nifH,nodules harbouringM. loti::nifA strain contain no differentiatedbacteroids. Furthermore,we studied the relative transcript levelsof theL. japonicusgenes insymbioticandnon-symbioticorgansof plants either non-inoculated or inoculated withM. loti strainR7A,NifAandNifH.SulphateandthiolscontentinadditionwithAPR activity weremeasured in nodules and other plant organs.Finally,sulphatefluxintodifferentsulphurpoolssuchascysteine,glutathione, homoglutathione and proteins was monitored byfeedingexternal35S-sulphatetoL. japonicusrootsandnodulesofplants non-inoculated or inoculatedwithM. loti strain R7A andNifH. Moreover, external 35S-sulphate was supplied to the rootsystemofintactplantsinordertoanalyzethesulphateuptakeanditsdistributionintothedifferentplantorgans.TheseresultssuggestthatSNFtriggersaglobalreprogrammingofsulphurmetabolism,onawholeplantlevel.

PS02-139Characterization of transcription factors of Medicago truncatulainvolvedinthearbuscularmycorrhizalsymbiosisJuliaTeply1,ArminReinert1,EmanuelDevers1,FranziskaKrajinski11Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm,[email protected] arbuscular mycorrhizal (AM) symbiosis is a mutualisticinteractionestablishedbetweenthehyphalnetworkofamycorrhizalfungusandtherootsystemofahostplant.Here, theAMfungus(AMF) penetrates into the root cortex and develops intracellulartree-like structures, called arbuscules. These are the site of amutualisticnutrientexchange,inwhichcarbohydratesareprovidedby theplant, andmineralnutrients,predominantlyphosphate,bythefungus.Tosustainafunctionalsymbiosis,thecellsofcolonizedroots have to constantlymodulate their subcellular organization,their metabolism, and their growth. Therefore, a mycorrhiza-specific transcriptional machinery is essential for the regulationoftheseprocesses.Togainabetterunderstandingofthisprocess,a transcription factor (TF) transcript profiling of mycorrhizalMedicago rootsandnon-mycorrhizal rootswascarriedout.FourTFs from the Ethylene Responsive Factor, the basic helix-loop-helix,andthehistone-foldTFfamiliescouldbeidentifiedtoshowasignificantupregulationinmycorrhizalroots,withthepromoteractivity colocalizing to fungal structures. When downregulatedin mycorrhizal roots by an artificial microRNA approach, theabundanceofarbusculessignificantlydecreasedintherootsystem.ThisandtogetherwiththefactthatfluorescentfusionproteinsoftheseTFslocalizetothenucleussuggesttheirroleinmycorrhiza-specificgeneregulationmachinery.

PS03-140Identification of Fusarium graminearum secreted proteinsinvolvedintheinteractionwithbarleyandwheatFenYang11Department of Plant Biology and Biotechnology, University ofCopenhagen,[email protected] graminearum is a phytopathogenic fungus primarilyinfectingsmallgraincereals,includingbarleyandwheat.Secretedenzymesplayimportantrolesinthepathogenicityofmanyfungi.In order to access the secretome ofF. graminearum, the funguswasgrowninliquidculturewithbarleyorwheatflourasthesolenutrient source to mimic the host-pathogen interaction. A gel-basedproteomicsapproachwasemployedtoidentifytheproteinssecretedintotheculturemedium.Sixty-nineuniquefungalproteinswereidentifiedin154proteinspots,includingenzymesinvolvedinthedegradationofcellwalls,starchandproteins.Oftheseproteins,35%hadnotbeenidentifiedinpreviousinplantaorinvitrostudies,70%werepredictedtocontainsignalpeptidesandafurther16%maybesecretedinanonclassicalmanner.Proteinsidentifiedinthe72spotsshowingdifferentialappearancebetweenwheatandbarleyflourmediumweremainlyinvolvedinfungalcellwallremodellingand the degradation of plant cellwalls, starch and proteins.TheinplantaexpressionofcorrespondingF. graminearumgeneswasconfirmedbyquantitative reverse transcriptasepolymerase chainreactioninbarleyandwheatspikeletsharvestedat2-6daysafterinoculation.Inaddition,acleardifferenceintheaccumulationoffungal biomass and the extent of fungal-induced proteolysis ofplantbeta-amylasewasobservedinbarleyandwheat.ThepresentstudyconsiderablyexpandsthecurrentdatabaseofF. graminearumsecretedproteinswhichmaybeinvolvedinFusariumheadblight.

PS03-141Genetic diversity and PCR-based identification of potentialfumonisin-producingFusarium verticillioides isolatesinfectingcorninthePhilippines

Page 95: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession03-Pathogenicfungi

93

Poster 03

NicoleJohnF.Magculia1,ChristianJosephR.Cumagun21International Rice Research Institute, Los Banos, Laguna,Philippines, 2University of the Philippines Los Banos, College,Laguna,Philippinesikoy_sept10@yahoo.comGeneticdiversityandidentificationoffumonisin-producingisolatesofFusarium verticillioidesfromtwoprovincesinthePhilippineswere analyzed using molecular techniques. Using a PolymeraseChainReaction(PCR)-basedtechnique,49ofthe54isolateswereidentifiedasF. verticillioides,withanamplifiedproductof800bpusingVERT-1andVERT-2primers.Ofthese,VERTF-1/VERTF-2primersdetected38fumonisin-producingF. verticillioidesisolatesproducing a single fragment of 400 bp. The other five isolates,which had previously been identified as F. verticillioides byTEF sequences, morphology and sexual crosses, were negativeusing this method. Using Universally Primed-PCR (UP-PCR)markersforF. verticillioides,nogroupingwasobservedbasedongeographicaloriginandspecies,butintermediate(53.8%)tohigh(99.6%) bootstrap values and high genotypic diversity (H=0.99)were generated, suggesting that all isolates clearly belonged toF. verticilliodes.UnweightedPairGroupMethodwithArithmeticMean(UPGMA)clusteranalysiswithJaccard’scoefficientshowedthatsimilaritiesamongF. verticillioidesisolateswereintermediateat71%similaritylevel.

PS03-142Transient and multivariate system for transformation of afungalplantpathogen,Rosellinia necatrix,usingautonomouslyreplicatingvectorsTakeoShimizu1,TsutaeIto1,SatokoKanematsu11AppleResearchStation,InstituteofFruitTreeScience,NationalAgricultureandFoodResearchOrganization,Iwate,[email protected] necatrix is a fungus that infects awide range of hostplantsandruinsavarietyofcommerciallyimportantcrops.DNAfragments can be introduced intoR. necatrix using conventionalprotoplast-PEG transformation and genome-integrating vectors;however, the transformation efficiencywith this strategy is quitelow.Therefore,toestablishamoreeffectivetransformationsystemforstudiesofR. necatrix,anautonomouslyreplicatingvectorwasconstructed using AMA1 sequences derived from Aspergillus nidulans, which is distantly related to R. necatrix. Use of thisAMA1 sequence-containing vector increased the transformationefficiency in R. necatrix, and the vector was maintained as aplasmidinthetransformants.Transientandmultivariatefunctionalanalyses inR. necatrix were performed using co-transformationof multiple pAMA-H vectors, each of which carried either anexpressioncassetteforeGFP,mOrange2,orageneticinresistancegene. Furthermore, fluorescent proteins expressed from theautonomouslyreplicatingvectorsweredispersedthroughoutfungalcolonies even though the vectors themselves were restricted tothe centerof eachcolony.This intriguingphenomenon indicatedthatgeneproductscouldmovefromthecentertothemargininacolonyofthefilamentousfungiviaacell-to-celltransportsystem.RNAi-mediated gene silencing was also performed successfullyby introducingapAMA-HvectorcarryingsequencesfordsRNAproduction into fungal cells. However, the effect of RNAi wasnotequallydistributedthroughoutthecolony,suggestingthat theRNAisignalmaynotbetransducedsystemicallyviaacell-to-celltransportsysteminR. necatrixcolonies.

PS03-143ArabidopsisGNOMARF-GEFandbarleyARFA1b/1cGTPaselink multivesicular bodies to syntaxin-regulated penetrationresistanceHansThordal-Christensen1,MadsE.Nielsen1,HenrikBoehlenius11Dept. of Agriculture and Ecology, University of Copenhagen,[email protected]

Basal defence against powdery mildew fungi is manifested aspenetration resistance in the outer cell wall of epidermal cells,whereacallose-containingpapilla is formedat thesiteof fungalpenetration.Theorthologousplasmamembrane syntaxins,PEN1andROR2,ofArabidopsisandbarleyhavepreviouslybeimplicatedinpenetrationresistance.Thesesyntaxinsaccumulateatthesiteofattackas theybecomeembedded in thepapilla, andweconsidertheseasmarkersforexosomessecretedfrommultivesicularbodiesduring thebuild-upof thecellwallapposition.Syntaxinsbelongto the SNARE proteins involved in vesicle fusion. Meanwhile,vesiclebudding is regulatedbyAFRGTPases,which in turnareactivated by ARF guanine nucleotide exchange factors (ARF-GEFs).WefoundthatBFA,thattargetscertainARF-GEF,inhibitspenetrationresistanceinArabidopsisinaPEN1-dependentmanner.Furthermore,BFA inhibitsdepositionof calloseandGFP-PEN1-labelled exosomes in papillae. By introducing different mutantversions of GNOM into our plant material, we where able todemonstrate that this BFA-sensitive ARF-GEF is involved inpenetration resistance, andwe confirmed thatPEN1andGNOMfunctiononthesamepathway.Inaparallelstudyinbarley,weusedtransientsinglecellRNAi-basedgenesilencingtoscreenforARFGTPasesinvolvedinpenetrationresistance.Thereby,weidentifiedHvARFA1b/1c to be essential for this type of basal defence.Subsequent analysesusingover-expressionof dominant-negativeversions of thisHvARFA1b/1c demonstrated that it is importantfor ROR2-regulated penetration resistance and deposition ofcallose andYFP-ROR2 in papillae. Confocal studies associatedHvARFA1b/1c-GFPwithmultivesicularbodies.

PS03-144Isolation of plant and powderymildew components definingandcontrollingformationoftheextrahaustorialmembraneMark Kwaaitaal1, Geziel Aguilar1, Susanne Hanisch1, HansThordal-Christensen11DefenceGeneticsgroup,DepartmentofAgricultureandEcology,FacultyofLifeSciences,UniversityofCopenhagen,[email protected] mildew diseases are caused by obligate biotrophicAscomycetefungioftheorderErysiphalesthatcompletelyadaptedtheirmolecularmachinerytomodulatehostdefencesandcellulartrafficking.Fornutrientandeffectorexchangethehostcellistrickedtoallowaspecializedintracellularfeedingstructure,thehaustoriumto be formed. The membrane surrounding the haustorium, theextrahaustorialmembrane(EHM), isplantderived.However, thesubcellularorigin,molecularmechanismsandthefungaleffectorsredirecting the plantmolecularmachinery to form the EHM areunknown.Themodelsystemusedistheinteractionbetweenbarley(Hordeum vulgare) and the powdery mildew fungus, Blumeria graminisf.sp.hordei(Bgh).WeusethreeapproachestostudyEHMformation.Firstly,byparticlebombardment,fluorescentlylabelledorganellemarker constructs and sequences for transient inducedgenesilencingareco-expressedinbarleyepidermalcells.Wewillspecifically interfere with or silence components of the vesicletraffickingmachinery.Subsequently,pathogeningressandmarkerlocalizationcanbefollowedatsinglecelllevelusingfluorescencemicroscopy. Secondly, the EHM proteome will be analysed byMS-MS using an optimized haustoria isolation protocol. HerespecialcareistakentomaintaintheEHM,inordertoidentifyplantcomponentsdefiningtheidentityandcontrollingtheformationofthismembrane.Finally,aBghfungalcDNAlibrarywillbestablyexpressedinArabidopsisafteren massetransformationtoidentifyfungal components that modulate plant vesicle trafficking andsecretion.We foresee adrastic effectormediatedmodificationoftheplantsecretorypathway.

PS03-145ApH-responsivetranscriptionalfactorisinvolvedintheentrymodeselectionofColletotrichum orbiculareatwoundedsitesofArabidopsisleaves

Page 96: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession03-Pathogenicfungi

94

Post

er 0

3

KaeYoshino1,TetsuroOkuno1,YoshitakaTakano11DivisionofAppliedBioscience,GraduateSchoolofAgriculture,KyotoUniversity,Kyoto,[email protected] orbiculare (Co) is the causal agent of cucumberanthracnose disease. To infect host plants,Co forms melanizedappressoriathatenablethefungustoinvadetheplants.However,wehaverecentlyreportedthatCoexhibitshyphaltip-basedentry(HTE), uncoupled with formation of melanized appressoria, atwoundedsitesofnonhostArabidopsis leaves.Hereweshow theinvolvementofapH-responsivefactorintheentry-modeswitchingto HTE inCo. The transudate collected from wounded sites ofArabidopsisleavesinducesHTE-likemorphogenesisofCoonanartificial hydrophobic surface. Interestingly, its activity severelydecreasedwhen the transudatepHwasshifted, implying the linkofextracellularpHconditiontoHTE.Consistently,wefoundthatappressoriumdevelopmentofCoonthehydrophobicsurfacewassuppressed when ambient pH was shifted to alkaline condition.PacCisknownasapH-responsivetranscriptionalfactorinseveralfilamentous fungi. To assess the potential involvement of PacCin theswitching toHTE,we identified thePacChomologofCo(CoPacC) and generatedCopacC null mutants.As a result, thetransudateinducedHTE-likemorphogenesisofCointheCoPacC-dependentmanner.Furthermore,atwoundedsitesofArabidopsisleaves, the ratio of melanized appressorium formation in theCopacC mutants significantly increased in comparisonwith thatofthewildtype,indicatingtherolesofCoPacCforHTEatplantwounded sites. Thus, these results strongly suggest that theCoswitchestoHTEviaCoPacC-dependentregulationinresponsetoenvironmentalchanges.

PS03-146Tracking of esca causal agents, Phaemoniella chlamydosporaandPhaeoacremonium aleophilum,inyoungvineplantsJérôme Pouzoulet1, Romain Pierron1,2, Stéphane Compant2,NathalieMailhac1,AlbanJacques11Université de Toulouse, Equipe Vins Viticulture et OEnologie,Départementdessciencesagronomiquesetagroalimentaires,INP-EIPurpan,2UniversitédeToulouse,LGCUMR5503(CNRS/UPS/INPT),DeptBIOSYM, INP-ENSAT, 1 avenue de lAgrobiopole,31326Castanet-Tolosan,Francealban.jacques@purpan.frGrapevinesaresensitivetoawiderangeoffungalpathogens.Amongthemtheprogressionofgrapevinetrunkdiseases(GTD)representsa real threat forviticulture.Esca,aparticularGTD, iscausedbytracheomycosis induced by Phaeomoniella chlamydospora andPhaeoacremonium aleophilum. Here we have tracked microbe-plant interactions in vine wood via different approaches. Firstlywedevelopeda3-plexreal-timequantitativePCRmethodtodetectand quantify these microorganisms in grapevine wood samplesfromexperimentallyinfectedvinesaswellasyoungvinesfromthenursery.Wehave shownwith inoculatedcuttings thatboth fungicolonizedthewoodwell,evenintheabsenceofvisualphenotypefor Phaeoacremonium aleophilum. The analysis of samples ofyoungvinesfromthenurseryshowedthatmostofthepositivecaseswerefoundatthebaseoftheplantsratherthanatthegraftpoint.Wereproducedsimilarquantitativeresults inconfinedconditionsforPhaeomoniella chlamydosporausinglowinoculumdensityinsoil (100 conidia per gram). Secondlywe analyzed during earlyinfection events how thewood develops defensemechanisms atmolecular level. Using RT-qPCR techniques on RNA extractedfromwoodaftertreatmentwithdifferentpathogens,expressionsofdefensegeneswithinhourspost-inoculationwillbepresented(i.e.STS,Chitinases,Lox,PAL).Theseresultswouldrevealhowfastwoodytissuesareabletodetectandreacttothepresenceofthesefungi. Finallywe have begun development of histology analysistoolstocharacterizefungilocalization(FISHmethodologies)andplanttissueresponsetotheattackofescaassociatedfungi.

PS03-147ApossiblealternativetargetofRoxithromycininfungiAkiraIshii1,MayuKumasaka1,YuukiKoizumi1,TakashiKamakura11FacultyofScienceandTechnology,TokyoUniversityofScience,[email protected] oryzaeisthecausalagentofrice-blastdisease.Itisconsideredtobeimportanttorevealitsinfectionmechanismtohost-plant.M. oryzaeentersitshostplantusingaspecializedinfectionstructureknownasanappressorium.Thedevelopmentalstageofappressorium is sensitive tovarious chemical inhibitors, becauselarge numbers of genes are involved in cellular differentiation.Since appressorium formation byM. oryzae can be observed onartificialsurfaces,itcanbeausefultooltosearchnewactivityofvariouschemicals.Wesearchednovelmoleculartargetsofauthenticchemicalsbyusingthisfungus.TheRoxithromycin(RXM),whichwas originally active against prokaryote, inhibited appressoriumformationofM. oryzae.RXMhasbeneficial sideeffectssuchasanti-inflammatory activities were reported and actually appliedtohuman.However, themechanismsunderlyingtheseeffectsareunclear.These results suggest that therearealternative targets inbroad eukaryotic organisms and it is interesting to identify themoleculartargetofthesecondaryeffectonhumanusingM. oryzae.Weperformedphagedisplaytosearchnovelmoleculartarget(s)oftheantibiotic.Candidategene32-11mutants,expressionof32-11genewaslowerthanwildtypeduringdevelopinginfectionstructure,werelessaffectedbyRXM,althoughgerminateandformationofappressoriawerenormal.Overexpressionof32-11causednoeffecttoRXMactivity,germinationorappressoriumformationcomparetothewildtype.Theseresultspossiblysuggestthatthecomplexof32-11productandRXMaffectsanothermoleculewhichplaysanimportantroleinappressoriumformationatM. oryzae.

PS03-148A Plant-microbe interaction between strawberry cultivarEcchiesu-138andthecausalAlternariapathogenishomologouswith that between cultivar Morioka-16 and the strawberrypathotypeofA. alternataMikihiroYamamoto1,MaiAsano11FacultyofAgriculture,OkayamaUniversity,Okayama,Japanmyama@cc.okayama-u.ac.jpTheAlternariablackspotofstrawberryiscausedbythestrawberrypathotype of Alternaria alternata, which produces host-specifictoxins,calledAF-toxins,andaffectsonlyoneJapanesestrawberrycultivar,Morioka-16.Under laboratoryconditions the strawberrypathotype is also pathogenic to a narrow range of the Japanesepear cultivars susceptible to the Japanese pear pathotype of A. alternata. In 2009, the occurrence of black spot on the recentlybredstrawberrycultivarEcchiesu-138(HS-138)andthetaxonomicexamination of the causalAlternaria pathogenwere reported byMisawaet al.Followingthereport, theplant-microbeinteractionbetweenHS-138andthecausalpathogenwascomparedwiththatbetweenMorioka-16andthestrawberrypathotypeofA. alternata.Thepathogenic isolateE11 fromHS-138wasconfirmed tohavepathogenicity not only to Morioka-16 strawberry but also toNijisseiki,which is a Japanesepear typically susceptible toboththe strawberry and the JapanesepearpathotypesofA. alternata.Isolate NAF8 of the strawberry pathotype A. alternata showedpathogenicitytoHS-138.ProductionofAF-toxinsbytheisolateE11wasfoundbychromatographicanalysisandbioassayontheleavesofMorioka-16 andNijisseiki.On the other hand,HS-138plantswere affected by isolateNAF8by spore inoculation and byAF-toxinItothesamedegreeasMorioka-16.TheseresultssuggestthatHS-138plantsaresusceptibletothestrawberrypathotypebecauseoftheirsensitivitytohost-specificAF-toxin.AcomparisonofCDchromosomeswhichhavegeneclustersforAF-toxinbiosynthesisamongtheisolateswillbediscussedinthisreport.

Page 97: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession03-Pathogenicfungi

95

Poster 03

PS03-149Switching between pathogenicity and saprophytic phase inHeterobasidion annosumHsiao-CheKuo1,JariP.T.Valkonen2,FrederickO.Asiegbu1,YongHwanLee1,31DepartmentofForestSciences,UniversityofHelsinki,Helsinki,Finland, 2Department of Agricultural Sciences, Universityof Helsinki, Helsinki, Finland, 3Department of AgriculturalBiotechnology,SeoulNationalUniversity,Seoul,Koreahkuo@mappi.helsinki.fiInitialcolonizationofafungalphytopathogentohostdeadtissueinvolvesexpressionofagroupofpathogenicityfactors,cellwalldegrading enzymes (CWDEs) which provide nutrients for itsgrowthandabilitytoinfecthealthytissue.Thisactionboundsthepathogenicityphase tosaprophyticphase.The transitionof thesetwophasesiseffectedbythelevelsofcAMPandglucose.DecliningcAMPlevelsandglucosebecomesavailablecancauserepressionofhydrolyticenzymesynthesis.Lowglucose(highcAMP)levelsinduce CWDEs synthesis and tissue necrosis. in vivo resultsshowedthathighlevelofglucosecaninducethepathogenicityofHeterobasidion annosum germinating spore. But when constantglucose was supplied to the mycelium, the pathogenicity phasewasmuchdelay.Tounderstandthemechanismbehindthisprocess(Switching between pathogenicity phase and saprophytic phase),we have developed a transformation system forHeterobasidion annosumandshowedthepotentialabilitytobeausefulgenetictool.Furtheridentificationofthekeygenesinvolvedwillbepresented.

PS03-150Global expression profiling of transcription factor genesprovidesnewinsightsonpathogenicityandstressresponsesinthericeblastfungusSook-Young Park1, Jaeyoung Choi1, Se-Eun Lim1, Gilwon Lee1,JongsunPark1,YangKim2,SunghyungKong1,SeryunKim1,Hee-Sool Rho1, Junhyun Jeon1, Myung-Hwan Chi1, Soonok Kim1,ChangHyunKhang3,SeogchanKang4,Yong-HwanLee11Dept. of Agricultural Biotechnology, Fungal BioinformaticsLaboratory,CenterforFungalGeneticResources,andCenterforFungalPathogenesis,SeoulNationalUniversity,Seoul,2CenterforAgriculturalBiomaterials,SeoulNationalUniversity,Seoul 151-921,Korea,3Dept.ofPlantBiology,UniversityofGeorgia,Athens,GA30602,USA,4Dept.ofPlantPathology,ThePennsylvaniaStateUniversity,UniversityPark,PA16802,[email protected] efforts to understand the molecular mechanisms ofpathogenicity in fungi have focused on studying the role ofindividualgenes,andlittleisknownabouthowtheexpressionofpathogenicitygenesisregulatedandcoordinatedinawholegenomescale.Rapidincreaseinfungalgenomesequencingandavailabilityofefficienttoolsforglobalgeneexpressionanalysishelpaddressthisdeficiency.Hereweanalyzedexpressionpatternsof206genesencodingtranscriptionfactors(TFs)inthericeblastfungusunder32conditionsincludinginfection-relateddevelopmentsandvariousabioticstressesusingqRT-PCR.Resultingdata,whichispubliclyavailableviaanonlineplatform,helpedunderstandtheregulationand potential interactions of these TFs in controlling responsestoadiversearrayofstimuli.Highlevelofdifferentialexpressionwas observed during fungal developmental and abiotic stressesconditions.Morethan50%ofTFgeneswereup-regulatedduringconidiation.Bothinsertionanddeletionmutantsofcorrespondingconidiation-specificTFsshoweddefectsinconidiation,suggestingthe accuracy of the expression data to predict their function.Large overlaps of expression patterns were found between in plantaandoxidativestress-responsiveTFs.PhenotypeanalysisofcorrespondingT-DNAinsertionmutantsshowednotonlysensitiveto oxidative stresses but also failed to infection in the host.Theproposed regulatory network via the TFs analyzed in this studywillfacilitatestudiesonthefunctionandpotentialinteractionsofindividualTFs in regulatingpathogenicity inM. oryzae andwill

alsoserveasareferenceinstudyingthemechanismunderpinningevolutionaryfine-tuningoftranscriptionalregulationinfungi.

PS03-151Investigating the role of deduced polarity establishmentfactors,CoCDC42andCoBEM1,ininfectiousmorphogenesisofColletotrichum orbiculareTakumasa Nomura1, Midori Kawashimo1, Daigo Takemoto2,YasuyukiKubo1,GentoTsuji11Graduate School of Life and Environmental Sciences, KyotoPrefectural University, Kyoto, Japan, 2Graduate School ofBioagriculturalSciences,NagoyaUniversity,Nagoya,[email protected] orbiculare is the causal agent of anthracnose ofcucumber. The infection process involves a series of cellulardifferentiation;conidiaofthisfungusgerminate,elongatethegermtubes, and the tipsofgerm tubes thenproducedarklymelanizedappressoriawhichdevelopapenetrationpegtopenetrateandcolonizethe host plant tissues. Previous investigation in our laboratoryrevealedthatCoKEL2,ahomologofSchizosaccharomyces pombe TEA1 encoding a cell-end marker protein for cell polarity, wasrequiredforappressoriumdevelopmentinC. orbiculare.However,theroleofpolarityestablishmentfactorsinthisprocesshaspoorlyunderstood.Cdc42,aRho-typesmallGTPase,isknowntobeacentralpolarity-establishmentfactorinavarietyofeukaryoticorganismsthatorganizesvariousprocessesnecessaryforpolarization,suchasactinorganizationandmembranetrafficking.Bem1isknowntobethescaffoldproteinthatisrequiredforproperCdc42pactivationinSaccharomyces cerevisiae.Inthisstudy,deletionanalysisrevealedthatCoCDC42 andCoBEM1, homologsofS. cerevisiae CDC42andBEM1,respectively,arebothrequiredforthefullvirulenceofC. orbiculare.Thecocdc42mutantsexhibitedpleiotropicdefectsincluding delayed growth, decreased conidiation, abnormallyshapedconidia,andalteredgerminationpatterns,butstillformedappressoria thatretain theability topenetrate thehostplants.Ontheotherhand, thecobem1mutantsexhibitedphenotypicdefectsthat partially overlap with those observed in cocdc42 deletionmutants.Furtherexperimentsarebeingcarriedout to investigatetheprecisefunctionofCoCDC42andCoBEM1duringinfection-relatedmorphogenesisofC. orbiculare.

PS03-152MoERR1encodinganERretentionproteinreceptorisrequiredfor asexual development and pathogenicity in the rice blastfungusJaedukGoh1,MihwaYi1,2,Sook-YoungPark11Department of Agricultural Biotechnology, Center for FungalResources,Center forFungalPathogenesis,Agriculture andLifeScience,SeoulNationalUniversity,Seoul,Korea,2DepartmentofPlantPathology,KansasStateUniversity,Manhattan,[email protected](ER)isknownasakeyorganelleforposttranslation process and secretion in eukaryotes. Magnaporthe oryzaehastwoERD2othologsofSaccharomyces cerevisiae,whichfunctionasproteinretainingreceptorsinERandGolgimembrane.MoERR1, one of ERD2 orthologs, was identified from thetransformantobtained fromAgrobacterium tumefaciens-mediatedtransformation library as a pathogenicity defective mutant.Additionally, we did targeted gene disruption of bothMoERR1andMoERR2. GFP tagging of MoERR1 and MoERR2 showedthat MoERRs were localized to ER membrane. moerr1 mutantshoweddefectsinexpressionofER-relatedgenesunderERstressconditions.moerr1mutantformedsmallandround-shapedconidiaandwasalsodefectiveinmycelialgrowthandconidiation.moerr1mutantwasunabletopenetratetheplantsurfaceduetodefectonturgorgenerationinmatureappressoria.However,moerr1mutantincitedblastlesionswhenwound-inoculated,indicatingthatmoerr1mutant has the ability to grow in planta.Unlikemoerr1mutant,moerr2mutantshowednosignificantphenotypescomparedtothe

Page 98: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession03-Pathogenicfungi

96

Post

er 0

3

wild type.These results demonstrate thatMoERR1-mediatedERfunctionsarerequiredforasexualdevelopmentandappressorium-mediatedplantinfectioninthericeblastfungus.

PS03-153Cellular dynamics of Magnaporthe oryzae during infectionprocess both on hydrophobic (leaf) and hydrophilic (root)surfacesKanakoInoue1,2,PyoyunPark1,2,KenichiIkeda1,21Laboratory of StressCytology,Graduate School ofAgriculturalScience,KobeUniversity,Kobe,Japan,2Bio-orientedTechnologyResearchAdvancementInstitutioni-kana@people.kobe-u.ac.jpMagnaporthe oryzae isknownas a causal agentofblastdiseasein cultivated gramineous crops. This fungus takes variousdifferentiationpatternsdependingontheenvironmentalcondition.Ontheleafsurfaces,thesporeselongategermtubesanddifferentiateappressoria.However,ontherootsurfaces,immatureappressoriaknown as hyphopodiawere differentiated at the tip of the germtubes.Recentmolecularbiologicalstudiessuggestedthatautophagyinductionandmetabolismofstoragesubstanceinthesporeswereimportantforfunctionalappressoria.Althoughcytologicalanalyseswereexamined,thesestudiesweretargetedtonotsporebuthyphaebecauseoftechnicaldifficultyandnevercapturedautophagosomethat was typical features of macroautophagy. Cytological reportof hyphopodia differentiation was also rare. In this study, weevaluatedcellulardynamicsby transmissionelectronmicroscopy(TEM) during infection process both on hydrophobic (leaf) andhydrophilic (root) surfaces, especially focused on autophagymachinery. Furthermore, we examined the correlation betweenthe autophagy and metabolism of the storage substance in thespores.TEMobservationinthesporesproducingappressoriaat12hours post inoculation (hpi) revealed thatmany autophagosome-likevesicleswereaccumulatedattheadjacentregionsofenlargedvacuoles.At24hpi,mostoftheorganellainthesporesdisappeared.Incontrast,ontherootsurfaces,suchvesicleshadneverobservedduringtheinfectionprocess.Moreover,wefoundthat transferofstoragesubstanceinsporeshardlyoccurredtowardthehyphopodia.These results suggested that autophagic machinery and relevantmetabolic pathways is important switching determining organspecificpathogenicityinM. oryzae.

PS03-154AputativelipidphosphatephosphataseisrequiredfordefenseresponsesinArabidopsis thalianatoadaptedandnon-adaptedpathogensShinichi Oide1, Vera Montiel1, Hanneke Peele1, Jenny LindbergYilmaz2,MattiasPersson3,NaGuan1,ChristinaDixelius11Department of Plant biology and Forest Genetics, SwedishUniversityofAgriculture,2ScanBiResAB,JennyLindbergYilmaz,2,3DepartmentofBotany,StockholmUniversity,[email protected] in theLeptosphaeria maculans susceptible1 (LMS1)gene encoding a putative plastid-localized phosphatidic acidphosphatase-like protein is involved in glycerolipid metabolismthatinducesprematuresenescenceandimpairsresistancetodiversefungalandoomycetepathogensinArabidopsis thaliana.Increasedaccumulation of oleyl-acyl carrier protein, the starting substrateof glycerolipidmetabolism,was observed for lms1 under the nobioticstresscondition,whileenhancedactivationoftheprokaryoticpathway-dependent lipid synthesis was suggested for lms1during pathogen challenge. The acyltransferase (act1) mutationretarding the first committed step of the prokaryotic pathway orthe sulfoquinovosyldiacylglycerol (sqd2) mutation that hampersSQDG synthesis suppressed the lms1 disease susceptibility andthe accelerated senescence phenotype. The salicylic acid (SA)induction deficient (sid2)mutation blocking pathogen-responsiveSA synthesis also suppressed the lms1 disease susceptibility inthesid2 lms1doublemutant.ApplicationofSArestored the lms1

phenotype in sid2 lms1, highlighting the role of SA signaling inthe lms1-conditioned disease susceptibility. SA, however, didnot affect the phenotype ofact1 lms1 and sqd2 lms1, indicatingthat SA signaling alone does not fully account for the lms1phenotype. We propose that the lms1mutation involves SQDGuponpathogenattack,resultinginover-activationofSAsignaling,whichcollaborateswithayetunidentifiedsignaltotriggerthelms1diseasesusceptibility.

PS03-155Putative components of a protein complex for processing ofACR-toxinSensitivitygene(ACRS)mRNAKouheiOhtani1, ShinsukeYasuda1, SatoshiNishimura1, ChikakoMiyake1,SatoshiTatano1,YukikoOno1,SoshiNishida1,YasuomiTada1,KazuyaIchimura1,KenjiGomi1,KazuyaAkimitsu11FacultyofAgriculture,KagawaUniversity,Kagawa,[email protected] alternata rough lemon pathotype (A. alternata RLP)causesAlternarialeafspotdiseaseofroughlemon(Citrus jambhiriLush.). A. alternata RLP produces a polyketide host-selectivetoxin,calledACR-toxin.ThesiteofactionofACR-toxinhasbeenestablishedtobethemitochondrion.Thehost-selectivityofACR-toxinisextremelyhighandonlyroughlemonamongcommerciallyavailable citrus cultivars is sensitive to this toxin and thereforesusceptible to A. alternata RLP. We identified a rough lemonmitochondrial DNA sequence, designated ACRS (ACR-toxinSensitivity). Expression of this gene confers toxin sensitivity toEscherichia coli.ACRS is located in thegroupII intronofcitrusmitochondrial tRNA-Ala. Sensitivity to ACR-toxin is due todifferentialpost-transcriptionalprocessingofACRSmRNA.ACRSistranslatedintoaSDS-resistantoligomericproteininroughlemonmitochondria but not in the toxin-insensitive mitochondria. Weidentified ACRSmRNA-binding 30kDa protein (AmBP30) fromtoxin-insensitive citrusmitochondria.However,AmBP30proteinalone was not sufficient to make a processing of ACRSmRNA.Multiple steps by a protein complex with subunit proteins withdifferent functions are usually required for RNA processing. ToisolatetheproteinsconsistingAmBP30complex,toxin-insensitivecitruscDNAlibrarywasscreenedbyyeasttwohybrid(Y2H)usingAmBP30proteinasthebait.Immunoprecipitation(IP)usinganti-polyclonal antibodies for AmBP30 and Y2H-identified proteinsfollowing TOF-MS analysis identified two component subunitproteinsinteractingwithAmBP30.

PS03-156DissectionofgenesinvolvedintrichothecenebiosynthesisandvirulenceinFusarium graminearumYu-CaiLiao1,2,3,He-PingLi3,4,Jing-BoZhang1,2,TaoHuang1,4,Xiu-ShiSong1,Jian-HuaWang1,2,BoSong1,Xiao-YuWang1,Xiao-MinDu1,BoQu1,21Molecular Biotechnology Laboratory of Triticeae Crops,Huazhong Agricultural University, Wuhan, China, 2College ofPlantScienceandTechnology,HuazhongAgriculturalUniversity,Wuhan430070,PRChina,3NationalCenterofPlantGeneResearch(Wuhan),Wuhan430070,PRChina,4CollegeofLifeScienceandTechnology, Huazhong Agricultural University, Wuhan 430070,[email protected] graminearumspeciescauseFusariumheadblight(FHB)of wheat and other small grain cereals worldwide, producingvarioustypesoftrichothecenemycotoxinsthataretoxictohuman,domestic animals, plants and yeast. Trichothecene mycotoxinsincludingdeoxynivalenol,nivalenolandtheiracetylatedderivativesare the principal mycotoxins produced by F. graminearum andareconsideredthepredominantmycotoxincontaminants infood/feed stuffs in China and many other countries. Paired isogenicisolates differing in single-specific genes can be generated andused for the comprehensive investigations of gene functionsthrough combined genetic and molecular characterization, and

Page 99: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession03-Pathogenicfungi

97

Poster 03

metabolicanalysisbyNMRspectroscopy.Thisisessentialforthedevelopment of novel strategies for effectively controlling FHBand the associated mycotoxins in food/feed chains. Metabolicanalysisenabledidentificationofalimitednumberofmetaboliteswithassignedchemicalstructures,incontrasttoahugemagnitudeof gene transcripts derived from transcriptome analysis,most ofwhichareingeneralnoteasilyassignedfortheirnatureandroles.Manymetabolicchangesduetolossofasinglegene,suchasTri5-deletion,inaFHBpathogenidentifiedbythecombinedmetaboliteand transcript analyses display distinctly altered patterns ofcarbonandnitrogenmetabolisms,asbothprimaryandsecondarymetabolic compounds, as well as transportation regulations andnucleic acid biosynthesis, in addition to its defined function.Therefore, the combination of genetic, molecular and metabolicanalyseswouldbeapowerfulwaytorevealthesystemicmolecularandmetabolicrolesofindividualgenesinamycotoxin-producingfungalorganism.

PS03-157Functionalanalysisofgerm tubeexpressingcDNA libraryofMagnaporthe oryzaeKengo Sasaki1, Yuki Koizumi1, Kanako Amano1, TakashiKamakura11Department ofAppliedBiologicalScience,TokyoUniversity ofScience,Chiba,[email protected] filamentous fungus Magnaporthe oryzae causes rice blast,the most serious disease that affects global rice production. Onthe surface of host plant, a specialized infection structure calledappressorium is formed on tip of germ tube. Induction of thedevelopmentofappressoriumrequiresseveralexternalstimulantsandacompletecycleofcelldivision.AlthoughmanystudieshaverevealedsomeofprocessofappressoriumformationinM. oryzae,thecompletemechanismisstillobscure.WeselectedB51genefromgermtubeexpressingcDNAlibraryandmadeB51genedisruptants.The cDNA librarymainly contains the genes that express in theperiodofgermtubedevelopmentand/orappressoriumformation.B51geneispresumedtohaveforkheadassociated(FHA)domain,which is contained in many proteins that are involved in DNArepairandcellcycle.Inourpreviousstudy,B51genedisruptantsdemonstrated pleiotropic effects. Although Neurospora crassaknock-outmutantsofrcaA,whichsharesequencesimilaritieswithB51 gene, showed similar phenotypes to B51 disruptants, rcaAdid not seem to contain FHA domain. Toward further study ofthefunctionofB51gene,weinducedaplasmidcarryinganrcaA(pNB51)intoB51genedisruptants.Consequently,pNB51wasabletopartiallycomplementphenotypesofB51genedisruptants.ThisresultsuggestedthatrcaAhasat leastpartialsimilarfunctionsofB51geneinN. crassa.

PS03-158Transcriptionalregulatorycircuitsnecessaryforappressorium-mediateplantinfectionbyM. oryzaeMiriamOses-Ruiz1,DarrenSoanes1,NicholasJ.Talbot11SchoolofBiosciences,UniversityofExeter,Exeter,[email protected] cause rice blast disease, the fungus Magnaporthe oryzaeelaboratesaspecializedinfectionstructurecalledanappressorium,whichuseenormousturgortorupturethetoughoutercuticleofariceleafandallowthefungustoinvadelivingplanttissue.TheM. oryzaePmk1MAPkinasepathway is essential forpathogenicityand regulates appressorium morphogenesis. The Pmk1 MAPkinasepathwayleadstoactivationofphysiologicalchanges,suchas lipid body mobilization and cellular differentiation essentialfor plant infection.TheM. oryzaepmk1 nullmutant forms longundifferentiatedgermtubesbutdoesnotelaborateappressoriaandis consequently non-pathogenic.Moreover theM. oryzaeMst12transcription factor,which is phosphorylated byPmk1, regulatespenetration peg emergence andmst12 mutants are consequently

unable to penetrate the plant. We have recently carried outgenome-wide comparative transcriptional profiling analysis forbothnullmutantsusingRNA-seqandHiSeq2000sequencing.Acomparativetranscriptionalprofileanalysishasbeencompletedinboth Pmk1 andMst12mutants and in a range of novelmutantsaffectedinappressoriumfunction.Inthisway,weaimtodefinethetranscriptionalsignatureassociatedwithappressoriumdevelopmentinthericeblastfungusanddefinetheregulatorycircuitsnecessaryfor appressorium-mediated plant infection by plant pathogenicfungi.

PS03-159TranscriptomeanalysisofsixwheatleafrustracesMyron A. Bruce1,2, Kerri Neugebauer2, Shichen Wang2, EduardAkhunov2,JohnFellers11USDA-ARS, HWWGRU,Manhattan, Kansas, United States ofAmerica,2KansasStateUniversity,DepartmentofPlantPathology,Manhattan,Kansas,[email protected],causedbythebasidiomycetePuccinia triticina,cancauseyieldlossesupto20%inwheatproducingregions.Duringinfection, the fungus forms an extracellular feeding structurecalledthehaustoria.Proteinssecretedfromthehaustoriaentertheplant cell and effect changes in plant transcription, metabolismanddefense.Racestructure inP. triticina isdefinedby infectiontypeonwheat lines containingdifferent resistancegenes. In thisexperiment,RNAwasextracted fromwheat leaves infectedwithsixdifferentrustracesatsixdayspostinoculation.IlluminaSolexasequencing reads were assembled using Inchworm. To separatesequences by species of origin, contigswere BLAST aligned toeither a wheat EST database or aP. triticina reference genomesequence.Atotalof222,571rustcontigswereassembledfromatotal of 165million reads,with an average contig length of 744bases.Translatedsecretedproteinsequenceswereexaminedforthepresence of SNPs resulting in amino acid changes and temporalexpressionprofilesweredevelopedforthecorrespondinggenes.

PS03-160Transcriptional factor(s) and the regulatory region on the5’-upstream of the CBP1 gene specifically expressed duringappressoriumdifferentiationofMagnaporthe oryzaeSatokoHarashima1,KeizoKusunoki1,Ken-ichiroSaitoh1,KeiichiIzumikawa1, Michio Takeuchi1, Takashi Kamakura2, TsutomuArie1,TohruTeraoka11Tokyo University of Agriculture and Technology, 2Faculty ofScienceandTechnology,[email protected],differentiatesaspecializedinfectionstructurecalledanappressorium,whichisessentialtopenetrateintothehostplant.FromourdifferentialcDNAlibraryincludingESTsstronglyexpressedinappressoriumformationbysubtractingthecDNAinvegetative mycelia,CBP1 (Chitin Binding Protein 1) gene wasfound to be the genewhich specifically expresses at early stageoftheappressoriumdifferentiation.TheCBP15’-upstreamregionwasanalyzedusingtheeGFPreportergene.Andtheregionaround-854to-696bpofthe5’-upstream,CUR159,wasassignedtobeimportant to regulate the expression. ProbablyCBP1 expressionisrepressedinvegetativegrowthbyatranscriptionalfactor(TF).Here,theTF(s)oftheCBP1genewassearchedfromthenuclearfractionofvegetativemyceliabyusinganelectrophoreticmobilityshiftassay(EMSA).ThecandidateTFstoshifttheCUR159UupinEMSAwerefractionatedbyheparinaffinitychromatographyfromthenuclearfraction,butstillcontaminatedbymanyotherproteins.When the CUR159 was divided into smaller parts, the regionfrom-854to-806bpand-829to-782bphadtheshift-upabilityinEMSA.Intheoverlappingregion,someknownmotifstobindTFswere found.As themotifswere substituted to the nonsensesequences,theregionfrom-832to-817bp,CUR16TF,wasfoundtobethekeyregion.Nowusingstreptavidinmagneticbeadsand

Page 100: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession03-Pathogenicfungi

98

Post

er 0

3

thebiotin-labeledDNAprobeincludingCUR16TF,theproteinstobindspecificallywiththeregionarepurifiedandidentifiedbyLC-MS/MSafterelectrophoreticanalyses.

PS03-161TranscriptionalchangesmediatedbychitosaninColletotrichum gloeosporioidesElizabeth L. Ortiz-Vazquez1, David Chan-Rodriguez1, GabrielLizama-Uc1,GildaPacheco-Trejo1,JesusRamon-Sierra11Division de Estudios de Posgrado e Investigacion, [email protected] caused by Colletotrichum gloeosporioides Penz isconsideredthemostimportantpostharvestdiseaseoftropicalandsubtropicalregionsoftheworld,beingthemainphytopathologicalagent of papaya fruit postharvest worldwide. In Mexico, thisdiseaseisfoundinallregions,causinglossesthatrangefrom15to50%.Currently,fungicidesareusedtocontrolthisdisease,whichcanbeharmfulandexpensive.Ontheotherhand,chitosanhasbeenstudiedasapotentialantifungalagentandcouldbeusedtocontrolplantdiseases.TheeffectsofchitosaninthefungusColletotrichum gloeosporioides grown on PDA, PDA-chitosan, papaya andpapaya-chitosanweremeasuredbymolecular responses, throughchanges ingeneexpressionbydifferentialdisplay technique; thedifferentialfragmentsobtainedwerethensequencedandcomparedwiththeNCBIdatabase.TheMICofchitosanwas1600ppmwhichonly allowed 42.3% fungal growth compared with the controlgroup.Afterthistest,weevaluatedthischitosanconcentrationinpapayamediaandobtainedan inhibitionof29.4%.Wefound21differentialfragments,sequencingandsubsequentalignmentoftheDNAdifferentialfragmentsshowed4proteins:hypotheticalproteinVerticillium alboatrum , RegionATPase of topoisomerase II ofSaccharomyces cerevisiae ,Proteintyrosine-serinephosphataseofNacamureya multipartite andthetranscriptionalMediatorofRNApolymeraseII.ThechitosaniseffectiveasantifungalagentagainstC. gloeosporioides becauseitrepresseskeyfactorsforreplicationandtranscriptionprocessofthisfungus,whichcouldhaveeffectsontheregulationofmetabolismitself.

PS03-162Genome rearrangements abolishing the ability of Rosellinia necatrix megabirnavirus1toconferhypovirulencetothewhiterootrotfungusSatoko Kanematsu1, Takeo Shimizu1, Hajime Yaegashi1, AtsukoSasaki1,TsutaeIto1,NobuhiroSuzuki21InstituteofFruitTreeScience,NARO,2InstituteofPlantScienceandResources,[email protected] necatrix megabirnavirus1(RnMBV1),anovelbipartitedouble-strandedRNAmycovirusisolatedfromtheascomyceteR. necatrix,isadestructivepathogenofperennialplants.Itssphericalvirions of ~50 nm in diameter consist of two dsRNA segments(dsRNA1,8,931bpanddsRNA2,7180bp).DsRNA1iscomposedof open reading frame (ORF)1 and ORF2 that encode capsidproteins and RNA-dependent RNA polymerase, while dsRNA2hastwoORFsthatmaycodeforproteinswithunknownfunctions.Importantly,RnMBV1 reduces thevirulenceofR. necatrix, thusmakingRnMBV1apotentialvirocontrolagent.Inthelaboratory,we isolated mutant strains of RnMBV1 (RnMBV1-M), aftertransfection with wild-type RnMBV1, that retained two dsRNAsegments, dsRNA1 and newly emerging dsRNA3, but notdsRNA2.SequencingandNorthernhybridizationanalysesoftwovariantsofdsRNA3(3aand3b)revealedthattheybothoriginatedfromdsRNA1byalmostcompleteduplicationofORF2,tandemlyarranged.ThedifferencebetweendsRNA3aand3bwasthelengthofORF2retained.PurifiedvirionsofRnMBV1andRnMBV1-Mweresimilar insizeand in infectivityofR. necatrixwhen testedby transfection intohostprotoplasts.However, transfectantswithRnMBV-M showed restored colony growth, melanization, and

virulenceonappletreerootscomparedtotransfectantswithwild-typeRnMBV1.ThedifferentreactionsofR. necatrixtoinfectionswithwild-typeandmutantRnMBV1strains couldprovide somecluestoelucidatethemechanismofvirulenceinR. necatrix.

PS03-163Characterization of CoIRA1 of Colletotrichum orbiculare,requiredforinfection-relatedmorphogenesisandpathogenicityKenHarata1,YasuyukiKubo11Laboratory of Plant Pathology,Graduate school of Life andEnviromentalscience,KyotoPrefecturalUniversity,Kyoto,[email protected] Agrobacterium tumefaciens-mediated transformation(AtMT)ofColletotrichum orbicularestrain104-T(MAFF240422),an anthracnose disease fungus of cucumber, a mutant namedAA4510,whichshowedabnormalinfection-relatedmorphogenesisandattenuatedpathogenicitywaspreviouslyisolated.Analysisofthemutationconfirmedan insertion intoagenewhichputativelyencodes2255-aminoacidproteinwithapredictedRASGTPase-activating protein (RASGAP) domain.Andwe named this geneasCoIRA1. In human, the neurofibromatosis type 1 (NF1) geneencodes the GTPase-activating protein (GAP) neurofibromin,whichnegativelyregulatesRasactivity.Saccharomyces cerevisiaehas two neurofibromin homologs, Ira1 and Ira2. Targeted genedeletion mutants of CoIRA1 indicated that CoIRA1 is involvedin proper appressorium development and penetration hyphaedevelopment.Appressoriaproducedbycoira1disruptionmutantsshowedirregularshapeofappressoriaonglassslides.Andcoira1disruption mutants develop bulb shape penetration hyphae intocellulosemembrane unlike tubular form of thewild type. SinceCoIRA1 is involved in infection-related morphogenesis, weinvestigated whetherCoIRA1 is required for pathogenicity. Thecoira1 mutants showed reduced pathogenicity on the cucumberleaves compared with the wild type. However, the CoIRA1complementedcoira1mutantsrestoredtheirabilitytoformproperappressoria, penetration hyphae and pathogenicity. In conclusionCoIRA1 is involved inabnormal infection-relatedmorphogenesisandreductionofpathogenicityinColletotrichum orbiculare.

PS03-164Functional characterization of genes encoding forkheadtranscriptionfactorsinMagnaporthe oryzaeJaejinPark1,Sook-YoungPark1,SunghyungKong1,JongsunPark1,Yong-HwanLee11Department of Agricultural Biotechnology, Center for FungalGenetic Resources, and Center for Fungal Pathogenesis, SeoulNationalUniversity,Seoul151-921,[email protected](TF)playingcriticalrolesinabroadspectrumofcellularprocesses.InSaccharomyces cerevisiae, 4 forkhead TFs, named FKH1, FKH2, HCM1, andFHL1, control cell cycle progression and rRNA processing. Infilamentousfungi,however,littleisknownaboutfunctionalrolesofforkheadTFs.Weidentified4forkheadTFsfromthegenomeofthericeblastfungus,Magnaporthe oryzae.Phylogeneticanalysisrevealed that among 4 putative forkheadTFs ofM. oryzae, twowereyeast-related(MoFKH1andMoHCM1)andtheotherswerefilamentous fungi-specific (MoFOX1 and MoFOX2). ΔMofkh1showed abnormal septation both in conidia and mycelia. Theincreased number of septa and nucleus in conidia implied theuncontrolled cell division. Furthermore,ΔMofkh1 exhibited lowfrequencyofconidialgerminationandwasmoresensitivetoseveralstress conditions, resulting in reduced virulence.ΔMohcm1 wassensitive to spindle poison, benomyl, analogous to yeastΔhcm1indicating the possible role in chromosome segregation. On theotherhand,ΔMofox1wasindistinguishableinseveralphenotypesincludingpathogenicityfromthoseofwild-type.MoFOX2seemedtobeanessentialgenesincenoΔMofox2wasnotgeneratedfromrepeatedattemptsoftargetedgenedeletion.Theseresultssuggest

Page 101: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession03-Pathogenicfungi

99

Poster 03

thatyeast-relatedforkheadTFsinM. oryzaefunctionincellcycleregulationdemonstrating theirsimilarities toyeasthomologsandMoFKH1alsoplaysanimportantroleonfungalpathogenicity.

PS03-165Colletotrichum orbiculare CoBUB2, the homolog ofSaccharomyces cerevisiae BUB2,isinvolvedinpropernucleardistribution,morphogenesis,andpathogenesisFumiFukada1,AyumuSakaguchi2,YasuyukiKubo11Laboratory of Plant Pathology, Graduate School of Life andEnvironmental Science, Kyoto Prefectual University, 2Presentaddress,NationalInstituteofAgrobiologicalSciencesddswb383@yahoo.co.jpPositioning of the mitotic spindle with respect to the polarityaxis becomes important to complete proper nuclear division inSaccharomyces cerevisiae. A surveillance mechanism namedspindlepositioncheckpoint(SPOC),monitorstheorientationofthemitoticspindleandpreventscellsfromexitingmitosisinresponsetospindleorientationdefects.Agrobacterium tumefaciens-mediatedtransformation (AtMT) was used to generate morphogenesisdeficientmutantsinColletotrichum orbiculare.FromamutantcoQ-1T-DNAinsertedgeneregionwasidentifiedandsequenced,andthepredictedcodedaminoacidsequenceshowedhighconservationtothatofBUB2inS. cerevisiae,acomponentofSPOC.Wenamedthis geneCoBUB2, and gene knock-outmutantswere generatedby AtMT and observed infection related morphogenesis. Theconidial shape of cobub2mutantswasmore spherical comparedwithwild-type.Theappressoriaformingconidiaofcobub2mutantsdevelopedgerminatedhyphae fromconidiawithhigh frequency.The penetration hyphae of cobub2 mutants showed abnormalmorphology and crept on the surface of cellulose membranesusedasamodelsubstrate.Thecobub2mutantsshowedattenuatepathogenesis to cucumber leaves, indicating that CoBUB2 isrequired for full pathogenesis. Since BUB2 is a component ofSPOC,we observed the nuclear behavior of cobub2mutants byDAPI.Whilewild-typecontainedsinglenuclearinsinglecell,thecobub2mutantsfrequentlycontainedtwonucleiinsinglecellinaprocessofappressoriumdevelopment. Inconclusion, therecouldbe amechanisms controlled by SPOC that regulates coordinatesprocessing of nuclear division and appressoriumdevelopment inC. orbiculare.

PS03-166FunctionalanalysisofthebZIPtranscriptionfactorfamilyinMagnaporthe oryzaeSunghyungKong1,Sook-YoungPark1,Yong-HwanLee11Department of Agricultural Biotechnology, Center for FungalGenetic Resources, and Center for Fungal Pathogenesis, SeoulNationalUniversity,Seoul151-921,[email protected] of fungi depends largely on their adaptability inenvironments.Itisthereforecrucialtoelucidatethetranscriptionalprogramsoperatingunderdifferentenvironmentalconditionssuchasphysicalandchemicalstresses,andhost-dependentconstraints.Regulatory roles of the basic leucine zipper (bZIP) transcriptionfactors (TFs) in fungi have been identified in diverse cellularprocesses such as nitrogen metabolite repression, iron supply,sulfur metabolism, and other various stress responses. In thisstudy,genesencodingbZIP(MoZIPs)TFfamily in thericeblastfungus,Magnaporthe oryzaehasbeensystemicallycharacterized.bZIP TF sequences from 36 fungal species were identified andanalyzed for their phylogenetic relationship. In total, 12 cladesencompassing MoZIPs and conserved orthologs were identifiedonlyinphylumAscomycota.QuantitativeRT-PCRanalysisforallMoZIPs on 32 different conditions showed dynamic expressionprofiles, suggesting their involvement invarious stress responsesand during pathogenesis. To link phylogenetic and expressiondata to phenotypes, gene deletion mutants were generated for9 MoZIPs having orthologs, and 4 Magnaporthe-specific ones.

Amongtotal13deletionmutants,3showfunctionalconservationwith their characterized orthologs and detectable phenotypechangesongrowthinseveralstressconditions,developmentsand/or pathogenicity were observed from other 6 mutants. Deletionof other 4 genes does not make any distinguishable changescompared to thewild-type.Taken together,MoZIPs play criticalrolesinadaptingenvironmentalchanges,fungaldevelopmentandpathogenicity,especiallyhighlyconservedmembersreflectingtheirfunctionalimportance.

PS03-167Identity and distribution of ORFs from non-tox commonregionsofACT-andAF-toxinToxchromosomesamongvariousisolatesofAlternaria alternataYuki Mizobuchi1,2,3, Kouhei Ohtani1, Yuriko Izumi1, YokoMiyamoto1,AkiraMasunaka1,Takeshi Fukumoto1,KenjiGomi1,Yasuomi Tada1, Kazuya Ichimura1, Takashi Tsuge2, MikihiroYamamoto3,KazuyaAkimitsu11FacultyofAgriculture,KagawaUniversity, 2GraduateSchoolofBioagricultural Sciences, Nagoya University, Nagoya 464-8601,Japan, 3College of Agriculture, Okayama University, Okayama700-8530,[email protected] tangerine pathotype of A. alternata produces host-selectiveACT-toxinandcausesAlternariabrownspotdiseaseoftangerinesand mandarins.AK- andAF-toxins are also HSTs produced bythe Japanese pear and strawberry pathotypes of A. alternata.AstructuralpartofACT-,AK-andAF-toxinssharesacommonmoietyof9,10-epoxy-8-hydroxy-9-methyl-decatrienoicacid.Homologuesof 6 genes responsible for the biosynthesis of decatrienoic acidmoietyinthetangerinepathotypewerealsofoundintheJapanesepear and strawberry pathotypes.We identified total of 10ACT-toxin biosynthesis genes and characterized their functions inACT-toxinproduction.ThesegenesarelocatedinACT-toxinTox(ACTT)clusterinthesmallchromosomewiththesizeof1.9Mb.Masssequencingofthe1.9MbchromosomeusingRoche454GS-FLXSystemidentified49contigsincludingthelargestcontinuoussequenceof618,946bp.Weanalyzedsimilarityofthesesequencesagainstthatofthe1.05MbchromosomecontainingAF-toxinTox(AFT)clusterofthestrawberrypathotype.AdditiontothesimilarityfoundintheToxclustersofbothpathotypes,about200kbregioncontaining 43 ORFs apart from the Tox clusters also showedsimilarity andmore than 80% sequence identitywas found in 9ORFs.Distributionand identityanalysisof these9ORFsamongvariousisolatesoftangerinepathotypeaswellasotherpathotypesofA. alternataidentifiedthatsomeoftheORFsmightbeusedasmonitoringsequencesforidentificationofToxchromosomeamongHST-producingA. alternata.

PS03-168Isolation and characterization of soil microorganisms withanti-GanodermapropertiesPekChinLoh1,KokHoongChiang1,HannLingWong21Dept.ofBiomedicalScience,FacultyofScience,UniversitiTunkuAbdul Rahman, Kampar, Perak, Malaysia, 2Dept. of BiologicalScience, Faculty of Science, Universiti Tunku Abdul Rahman,31900Kampar,Perak,[email protected] boninense is a pathogenic fungus of economicallyimportant crops, such as oil palm, coconut, rubber and betelnut.InSouth-EastAsia,itisthemaincausativeagentofbasalstemrot(BSR)diseaseofoilpalm.ThedevastatingeffectofBSRdiseasehas ledto theoilpalmindustriesdemandforanimmediatecure.Among the Ganoderma spesies, G. boninense is known to bethemostaggressive.Recent statistics show that theBSRdiseaseincidents are increasing at the younger and productive stage ofoil palm, especially in replanted area, and coconut or oil palmareasunderplantedwithyoungoilpalm.Inthisstudy,thefruitingbodies of G. boninense were collected from infected oil palm

Page 102: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession03-Pathogenicfungi

100

Post

er 0

3

trees,atKulai,Johor,Malaysia.Toisolatebacteriaandfungithatcan be used as potential biocontrol agent for BSR disease, soilmicroorganisms were isolated and screened for anti-Ganodermaactivity.GrowthinhibitiontestagainstG. boninensewasconducted.VariousmicroorganismsweredirectinoculatedonMuellerHintonagarpre-swabbedwithliquidcultureofG. boninensegrowingatthevegetativestage.Threebacterialisolateswerefoundtoantagonizethe growth ofG. boninense that formed clear inhibition zones.UsingAPIbiochemicalkits,thesebacterialisolateswereidentifiedas Bacillus subtilis, Actinomyces israelii, and Staphylococcus saccharolyticus.Furthermicroscopicexaminationandbiochemicalactivityanalysisoftheisolateswereconducted.

PS03-169Genetic studies of the sugarcane smut fungus Sporisorium scitamineumGislaine V. Reis1, Filipe S. R. Nunes1, Daniel P. Longatto1,Alessandra Palhares1, Leonardo C. B. Carvalho1, SilvanaA. C.Souza2, Maria L. C. Vieira1, Luis E. A. Camargo3, Claudia B.Monteiro-Vitorello11Department of Genetics, University of Sao Paulo, Sao Paulo,Brazil, 2CentrodeCana,InstitutoAgronomicodeCampinas,SaoPaulo,Brazil, 3DepartmentofPhytopathology,UniversityofSaoPaulo,SaoPaulo,[email protected] of Sporisorium scitamineum, the fungus that causessugarcanesmut,wereobtainedfrominfectedplantsofvarietiesofsugarcanegrownindifferentareasinBrazil.Whipsfrom38plantswere collected and teliospore-derived mycelial colonies wereobtained. Single haploid yeast-like cells were randomly isolatedfrom each teliospore-derived colony. Plate mating experimentsfordeterminationofplusorminusmating-typewereperformed.Acombinationof lightandscanningelectronmicroscopywasusedto examine teliospores and teliospore germination, confirmingthe presence of the characteristic scattered echinulations.Chromosome characterizationwas achieved based on pulsefieldgel electrophoresis indicating the presence of 20 chromosomesranging from 144 to 2200 Kbp, resulting in an estimate of thegenomesizeofapproximately20Mbp.AFLPandtelomere-basedRFLPrevealedpolymorphismsamonghaploidcellsderivedbothfromthesameteliosporeaswellasfromdistinctteliospores.

PS03-170DenovopartialgenomeassemblyofthebiotrophiceucalyptusrustpathogenPuccinia psidiiMaria C. Quecine1, David H. Moon1, Livia M. Franceschini1,AndressaBini1,ThiagoF.Leite1,MonicaT.V.Labate1,CarlosA.Labate11Department ofGenetic,University of SaoPaulo, Piracicaba-SP,[email protected] isconsideredtocontainthemostdestructivegeneraofbiotrophicfungi.P. psidiiwhichcauses theEucalyptus rust (up to60%losses inyoungplants).Despiteof itseconomicimportance,littleisknownaboutthebiologyofthefungusanditsmolecularinteractionwiththehost.WesequencedP. psidiigenomicDNAobtainingmorethan90,000randomgenomiccontigs(averagesize1500bp).Thelargest19,500contigswereannotatedusingtheBlast2GO tools and almost 50%of the sequences are associatedwith DNAmetabolism, which includes retro-transposons, whicharehighlyrepresentedwithinthefungalgenome.Thesecondmostabundant GO term was associated with catabolism, includes alarge proportion of glycoside hydrolases from different families,some ofwhich are related to pathogenic processes (for instanceGH3, GH5, GH16, GH18, GH61).We also found siderophoresandsomeinterestingsecondarymetabolites.Othersequenceswereassociatedwithreproduction,cellcycleanddifferentiation,signaltransduction, responses to stress and other classes thatwill helptoimproveourknowledgeoffungalbiology.Currently,justthree

Pucciniagenomesare in theprocessofbeingsequencedandarepubliclyavailable:P. graminis,P. triticinaandP. striiformis,thusour data is the first set of useful genomic sequence informationfromP. psidii.Althoughthesequenceassemblyisonlyofadraftquality,itisavaluableresourceforgeneratingworkinghypothesisaboutthefungalbiologyandtheinteractionbetweeneucalyptus-P. psidiiaimingatthedevelopmentofstrategiestocontrolEucalyptusrustinthiscrop.

PS03-171Roles of rice transcription factorOsWRKY76 in response tothericeblastfungusNaoki Yokotani1, Yuko Sato1, Shigeru Tanabe1, Tetsuya Chujo2,TakafumiShimizu2,KazunoriOkada2,HisakazuYamane2,3,MasakiShimono1, Shoji Sugano1, Hiroshi Takatsuji1, Hisatoshi Kaku4,YokoNishizawa1,EiichiMinami11NationalInstituteofAgrobiologicalSciences,2TokyoUniversity,3TeikyoUniversity,[email protected], a rice WRKY transcription factor respondsto infection by the blast fungus Magnaporthe oryzae at atranscriptionallevel.WehavecharacterizedtheroleofOsWRKY76in disease responses. OsWRKY76 belongs to theWRKY groupIIa.GFP-fusedOsWRKY76waslocalizedtothenucleusinonionepidermalcells.OsWRKY76hadtranscriptionalrepressoractivityin rice cultured cells.Gelmobility shift assay demonstrated thatpurified recombinant OsWRKY76 protein bound to W-boxelementsinvitro.Real-timePCRanalysisshowedthatexpressionofOsWRKY76 was induced bywounding, low-temperature, andapplicationofBTHandABA.TransgenicriceplantsoverexpressingOsWRKY76 increased susceptibility to the compatible rice blastfungalraces.Thetransgenicplantsalsoshowedreducedtolerancetoanincompatiblerace.Incontrast,thetransgenicplantsshowedslightly improved tolerance to low-temperature stress.Therefore,OsWRKY76issuggestedtobeinvolvedinbioticandabioticstressresponses.ToidentifytargetgenesofOsWRKY76,wecomparedgene expression profiles between wild-type and OsWRKY76-overexpressing transgenic plants in response to inoculation ofblastfungusbymicroarrayanalysis.Thetransgenicplantsshowedimpaired transcriptional inductionofseveralpathogenesis-related(PR) genes such as PR1s, PR2s, PR5s, PR9s, and PR10s. Inaddition,overexpressionofOsWRKY76causedreducedexpressionof genes encoding enzymes responsible for the synthesis ofditerpenoidphytoalexins.ThesegenescontainW-box-likeelementsintheirpromoterregion.TheseresultssuggestedthatOsWRKY76suppressesdiseaseresistanceviadown-regulationofthesedefense-associatedgenes.

PS03-172NovelMAPkinasesignalingcascadeinArabidopsisresistancetomycotoxigenicfungiTomoyaAsano1,TakumiNishiuchi11Advanced Science Research Center, Kanazawa University,Ishikawa,[email protected] protein kinase cascades play important rolesof immune response in animals and plants. Many MAPKs andMAPKKswereknowntobeinvolvedindefensesystemofplant,whereas functionsofmostMAPKKKswere largelyunknown.Aphytopathogenic fungus, Fusarium sporotrichioides produced alethalmycotoxin,T-2toxininhostplants.T-2toxinalsoactsasaphytotoxinandinducedcelldeathsthroughprolongedactivationofsomeMAPKsinArabidopsis thaliana.However,itwasunknownthataMAPkinasecascade regulatingaphytotoxin responseanddisease resistance to F. sporotrichioides. Here we show that anovel MAPKKK, MKD1 was identified as one of subunits ofAtNFXL1 complex and positively regulated disease resistanceto F. sporotrichioides. MKD1 directly interacted with MKK1andMKK5 in vivo and phosphorylated theseMKKs in vivo. In

Page 103: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession04-Plant-oomycete/fungalinteractions

101

Poster 04

addition, the activation of MPK3 and MPK6 by T-2 toxin wasapparently decreased inmkd1 mutant compared with wild type.Correspondingly,RNAi:MKK5transgenicplantsandmkk1mutantshowedenhancedsusceptibilityphenotype toF. sporotrichioides.Finally,quantitativeproteomicsofphosphorylatedproteinsrevealedthatphosphorylationofdefense-relatedproteinssuchasSUMOs,adisease resistance protein, and amycotoxin-detoxifying enzyme,werecontrolledbytheMKD1-dependentsignalingcascade.Thus,we revealed that the MKD1 phospho-signaling pathway playimportantrolesinthediseaseresistanceagainstmycotoxigenicF. sporotrichioides.

PS03-173Characterizationof isolatesofAlternariaspp.recoveredfromappleinItalyFrancescaRoondo1,BarryM.Pryor1,AgostinoBrunelli21PlantSciencesDepartment,UniversityofArizona,Tucson,USA,2UniversityofBologna,DiProValdepartment,[email protected] 1999, a disease of apple caused by anAlternaria sp.wasreported in North Italy (Trentino Alto Adige region). By 2002the disease broadened to other regions and nderstanding thegenetic diversity and the distribution ofAlternaria spp. becameafundamentalstep incontrollingthedisease.AcomparisonwithAlternaria alternata mali pathotype strains has been carried outtoinvestigatetherelationshipoftheItalianpathogentothecausalagentoftheAppleBlotchdisease.Amorphologicalcharacterizationwas conducted, describing the 3-dimensional sporulation patternandthecolonymorphologyofeachstrainincludeunthisstudy.ToassessthegeneticdiversitywithintheItalianAlternariapopulation,sequence characterization of one protein coding gene and threenon-codingregionsandgeneticfingerprintingbasedonAFLPandISSRmarkerswereperformed.Thepathogenicitywastestedwiththreebioassays and showeddifferential capabilityof the isolatesforcausingdisease,whichdidnotcorrelatewiththemorphologicalgroupingsor togroupingsdefinedbymolecular approaches.TenpathogenicisolateswerepositivefortheAMTtoxingene,aspecificpathogenicityfactor,baseduponPCRamplificationusingspecificprimersfortheAMTgene.ThissuggeststhattheproductionofthehostspecificAMTtoxinmaybeinvolvedinpathogenesisbysomeof the Italian isolates ofA. alternata from apple. This researchsuggests that a number of different Alternaria genotypes andmorphotypesmayberesponsiblefortheItalianapplespotdiseaseandthatasingletaxoncannotbedefinedasthesolecausalagent.

PS03-174Genome-wideanalysisofPoxgenesinfungiJaeyoungChoi1,NicolasDétry21Fungal Bioinformatics Laboratory, Seoul National University,Seoul, Korea, 2Department of Forest Science, University ofHelsinki,Helsinki,[email protected] (Pox) genes are known to play key roles in cellsignaling and transduction, production/detoxification of reactiveoxygen species (ROS) and also in the pathogenicity of fungi.Usingbioinformaticapproachesweconductedacomparisonof20differentPoxgenefamiliesgenome-wideon30differentspecies,includingplant/animalfungalpathogens,modelandforestryfungi.OurresultsshowthatespeciallythecopynumberoftheancestralNADPHoxidasegenefamilyisinmostpathogens10±3whileinmostnon-pathogens6±3.ThiscouldindicatethatmostpathogensrequireanefficientdetoxificationsystemforhostgeneratedROS.Toourknowledgethisisthefirstattemptofagenome-wideanalysisofPoxgenesbetween30differentfungalspecies.InthefuturethisdatawillbeusedforfurtherinvestigationofspecificPoxgenesinwet-labexperiments.

PS03-175TranscriptomeSofBotrytis cinereaAdeline Simon1, JaniKelloniemi2,AgnesCimerman1, BerengereDalmais1, Guillaume Morgant1, Julia Schumacher3, Jean-MarcPradier1,PascalLePecheur1,JeanRoudet4,MarcFermaud4,BettinaTudzynski3,PaulTudzynski3,BenoitPoinssot2,MurielViaud11INRA,2INRA-U.deBourgogne,Dijon,France,3U.ofMuenster,Germany,4INRA,Bordeaux,[email protected] cinerea is a polyphageous and necrotrophic ascomyceteresponsibleforgreymouldongrapevineandmorethan200otherplant hosts.The complete sequencingof its genome allowed theannotationof approx.14000genes and thedesignofNimblegenarrays dedicated to transcriptomics studies (Amselem et al.,PLoS Genetics, 2011). We used this approach to compare thetranscriptomes ofB. cinerea in distinct physiological conditionsincluding in planta development (different hosts) and in vitrogrowth (differentmedia).Clusteringall theexperiments togetherhighlightedthesimilaritiesbetweensomephysiologicalconditionse.g.growthonasolidgrapejuicemediumandlateinfectionstageson grape berries. Comparing the different transcriptomes alsoallowed the identification of genes that are specifically inducedduring the infection process such as the clusters responsible forthe biosynthesis of the phytotoxins botrydial and botcinic acid(Dalmais et al., MPP, 2011).Additional unknown sesquiterpensand polyketides were identified as putative virulence factors.Other functional categories of genes related to oxidative stress,carbohydrate-active enzymes and transcriptional regulation werehighlighted.Functionalcharacterizationsofseveralputativefungalvirulencefactorsareinprogress.NB:ApartofthepresenteddataweregeneratedthroughtheSafeGrapeprojectfoundedbytheANR(French NationalAgency for Research) and the CNIV (ComiteNationaldesInterprofessionsdesVinsaA.O.).NimblegenarrayshybridizationswereperformedbyPartnerChip(Evry,France).

PS04-176The trans-Golgi network/early endosome is a criticalendomembrane organelle for the execution of plant stressresponsesYangnanGu1,RogerInnes11DepartmentofBiology,IndianaUniversity,Bloomington,[email protected],thetrans-Golginetwork(TGN)includesearlyendosomes(EE)andfunctionsasasophisticatedsortingsystemfordirectingvesiclesandassociatedproteinscomingfromtheGolgiorplasmamembranetovacuolesorbacktotheplasmamembrane.OurstudyonseveralmolecularcomponentsoftheTGN/EEindicatesthatthisorganelle plays an essential role in regulating response to bioticandabiotic stress.Wedetermined thatKEG(Keep On Going) isanintegralcomponentofTGN/EEsandplaysanimportantroleinregulatingsecretorytraffickingandvacuolartargetingofmembraneproteins.MutationsinKEGsuppressedmin7(HopM1 interactor 7)-andedr1(Enhanced Disease Resistance 1)-mediatedprogrammedcell death under various stress conditions. Consistent with thisgenetic interaction,we found thatKEGco-localizeswithMIN7,whichisanADPribosylationfactor-guaninenucleotideexchangefactor(ARF-GEF)thatactsatmultiplestepsofthesecretoryandvacuolartraffickingpathways.Inaddition,wedeterminedthatKEGrecruitsEDR1totheTGN/EEthroughitsC-terminusHERC2-likerepeats.OverexpressionofKEGenhancedresistancetothebacterialpathogenPseudomonas syringaepv. tomato.However,KEGwasdegraded specifically in cells infected by the virulent powderymildewpathogenGolovinomyces cichoracearum, suggesting thatthispathogenmaytargetKEGfordegradationtosuppresssecretionofdefenseproteins.Collectively,thesedataprovideevidenceforanimportant linkbetweenendomembrane trafficking regulatorsandplantstressresponses.

Page 104: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession04-Plant-oomycete/fungalinteractions

102

Post

er 0

4

PS04-177TheuseofthesoilsfungusPenicillium canescensintheincreasetheharvesttoSoybeanplantsKhurshedeM.Khamidova1,BakhtiyorR.Umarov11InstituteofMicrobiologyASRUzb.omar@mail.ruAtsymbiosisoftheplantwithsoilfungusreceiveadditionalfeedinginthemannerofelements.AsoilfungiPenicilliumsp.capableofsolubilizing of Phosphorus components from difficult-availableformtotheeasyformthephosphates.Thefungusgifespenetrateinsidefabricrootsystemofthehighplantsandactuatetheinfluxmineralmaterialinroot.Theplantinturndeliversthefungusreadyorganicnutrients.Theplantsofsoyaenterinsymbiosiswithnodulebacteria Bradyrhizobium japonicum and for in their own rootnoduleandprovidethemwithnitricfeeding.Thesebothprocesses- the assimilation of the nitrogen and phosphorus are checkedcontrolledbyhostplants.TheexperimentswereconductedintheGreenhousecondition.SeedsweresurfacesterilizedandinoculatedwithBradyrhizobium japonicum andgrowing specialpotswhichcontained (sterile) sandwithNPK components contained fungusinoculume. Plantswere cultivated 30-45 day.The conducted theobservationontheplantsbycomparingandcheckedtheexperiencevariants with the control variants was studied. The dry weightsshootandrootofplants in theexperimentsvariants.Wereabovethanwithcontrolvariants.ThetwotypesofmicroorganismsdonotappeartocompetefornutrientsintherhizosphereoflegumesandthePenicilliumsspprovidesasourceofavailablephosphorusforuseby theplantwithoutadverselyaffecting thenitrogenfixationabilityoftheRhizobiumspp.andindeedsuchabilityisenhanced.

PS04-178AbarleyRAC/ROPinteractingROPbindingkinase(HvRBK1)influences microtubule stability and is involved in pathogenresponsetothebarleypowderymildewfungusTina Reiner1, Christina Huesmann1, Caroline Hoefle1, JuttaPreuss1,ManuelaE.Jurca2,MonikaDomoki2,AttilaFeher2,RalphHueckelhoven11Lehrstuhl fuer Phytopathologie, Technische UniversitaetMuenchen, Freising-Weihenstephan, Germany, 2Laboratory ofFunctional Cell Biology, Institute of Plant Biology, BiologicalResearchCentre,HungarianAcademyofSciences,P.O.Box521,Temesvarikrt.62,H-6726Szeged,HungaryTina.Reiner@wzw.tum.deSmallmonomericGproteinsoftheplantspecificRhofamily,calledRhoofplants(RAC/ROPs)areinvolvedinavarietyofsignalingprocesses like plant development, cytoskeleton remodeling andpathogendefense.Amongstothers,activeRAC/ROPsinteractwithreceptor-likecytoplasmickinases(RLCKsorROPbindingkinases,RBKs) in planta and regulate their activity in vitro. Althoughdownstreamkinasesareprominentmodulatorsinpathogensignaltransductionmechanisms,thefunctionofRBKsinplantimmunityisnotyetunderstood.Here,wereporttheidentificationofabarleyRAC/ROPinteractingROPbindingkinase(HvRBK1)inyeastandin planta.HvRBK1showsbasalkinaseactivitywhichisincreasedin the presence of HvRACB and HvRAC1. We demonstratedthatGFP-taggedHvRBK1 is located in the cytoplasm of barleyepidermalcellsandgets recruited to theplasmamembraneuponco-expression of activated HvRACB or HvRAC1 respectively.Furthermore, transient induced gene silencing of HvRBK1influencesstabilityofmicrotubules(MT)inbarleyepidermalcellsandenhancespenetrationsuccessoftheparasiticfungusBlumeria graminis f.sp. hordei.Insummary,ourresultssuggestafunctionofbarleyRBK1inbasalresistancetopowderymildew.

PS04-179SecretionofeffectorproteinsinriceblastfungusMagnaporthe oryzae

YogeshK.Gupta1,YasinDagdas1,MarthaC.Giraldo2,HiromasaSaitoh3,RyoheiTerauchi3,BarbaraValent2,NicholasJ.Talbot11School of Biosciences, University of Exeter, EX4 4QD, UK,2Department of Plant Pathology, Kansas State University,Manhattan,Kansas 66506,USA, 3IwateBiotechnologyResearchCenter,Kitakami,Iwate,[email protected] oryzae is a devastating plant pathogenic funguswhichcausesblastdiseaseinabroadrangeofcerealsandgrasses.M. oryzae secretes a repertoireof effectormoleculeswhichalterhost plant metabolism and suppress defence responses. It isknown that exocytosis in polarized filamentous fungi happensthroughthehyphaltipandthesecretionofmostproteinsrequiresthe conventional Endoplasmic Reticulum (ER)-Golgi pathway.Ithadbeenthoughtthatthesecretionofeffectorswillfollowthesame mechanism. Recent studies in M. oryzae have, however,shown that effectors accumulate in a novel structure called theBiotrophic Interfacial Complex (BIC). This is a membrane richstructure at the interface between the host plant cell and fungalinvasivehyphae.ThestructureandfunctionofBICs isunknownand theunderlying secretory apparatus is alsounidentified inM. oryzae.WearecurrentlycharacterizingcomponentsofexocystandSNAREcomplex thatmaybenecessary for secretionofeffectormolecules.Furthermore,ourresultssuggestthateffectorsecretionmaynot necessarily require the conventionalER-Golgi pathway.Weaimtodefinetheinvolvementof theexocystandfunctionofconventional secretory mechanism in effector delivery and thendeterminewhethernovelsecretoryprocessesmighthaveevolvedin the fungus toallowdeliveryofeffectorsdirectly into thehostplantcells.

PS04-180Surface-mediatedresponsetoelicitinsisprovidinganovellayerofresistancetoPhytophthora infestansinpotatoJuan Du1, Gerard Bijsterbosch1, Evert Jacobsen1, Richard G. F.Visser1,VivianneG.A.A.Vleeshouwers11Wageningen UR Plant Breeding, Wageningen University,Wageningen,TheNetherlandsjuan2.du@wur.nlSurface-mediatedresponseisbasedonpatternrecognitionreceptors(PRR) that recognize pathogen-associated molecular patterns(PAMPs).Incontrasttoresistancegenesthatarecommonlyusedin resistance breeding and generally quickly defeated, PRR arereportedtoconferabroadertypeofrecognition.Recently, itwasshownthatPAMP-triggeredimmunitycanconferabroad-spectrumdiseaseresistanceincropplants.ThissuggeststhatPRRhavegreatpromiseforengineeringeffectiveanddurablediseaseresistance.Inthisproject,westudytheELR1gene,whichencodesthefirstpotatoPRR that recognizes elicitins of the potato late blight pathogenPhytophthora infestans. Since elicitins arewidely conserved andrecognized as oomycete PAMPs, a defense response targetedto elicitins is expected to be generally broad spectrum. Thishypothesisisconfirmedbyourresults.Wetested16elicitinsfrom8differentoomycetespeciesincludingP. infestans,andfoundthatmostelicitinswere recognizedbyELR1.Besides,weare testingwhetherexpressionofELR1 inpotatocanenhancetheresistancetoP. infestans isolates.We will report on these data during theconference and discuss whetherELR1 can potentially confer anenhancedbroad-spectrumresistancetolateblight.

PS04-181Identificationof ahiddenresistancegene in tetraploidwheatusing laboratory strains ofMagnaporthe oryzae produced bybackcrossesChristian JosephR.Cumagun1,VuVanAnh2,TrinhThi PhuongVy2,YukioTosa21CropProtectionCluster,CollegeofAgriculture,UniversityofthePhilippinesLosBanos,College,Laguna,Philippines,2Laboratoryof Plant Pathology, Graduate School of Agricultural Sciences,

Page 105: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession04-Plant-oomycete/fungalinteractions

103

Poster 04

KobeUniversity,Nada,Kobe657-8501,Japanchristian_cumagun@yahoo.comPWT3isageneinvolvedintheavirulencereactionofAvenaisolateBr58ofMagnaporthe oryzaeonwheat.MolecularmappingusingBC1F1populationderivedfromthebackcross73Q2andthewheatisolateBr48revealedthatPWT3locusislocatedonchromosome6andcompletelylinkedtoanSSRmarkerMoSSR6-1.Whiteandblack colonies segregated in a 1:1 ratio usingBC3F1 population,suggesting that colony color is controlled by a single gene.Theprogeny are considered color mutants because both parentalculturesareblack.ColonycolorisperfectlylinkedwithvirulenceoftheBC3F1populationonwheatcultivarNorin4.Acrossbetweena moderately resistant tetraploid cultivar Tat4 and susceptibletetraploidcultivarTat14 to thewhiteBC3F1culturesproducedF2seedlings which segregated 3:1 ratio, suggesting that resistanceis also controlledby a singlegene.This genewasdesignated asRmgTat4andisconsideredahiddenresistancegenebecauseitwasnotdetectedwithBr58,F1,BC1F1andBC2F1 isolates.Molecularmapping using F3 lines derived from the cross Tat4 and Tat14revealedthatRmgTat4islocatedonchromosome7B.Cytologicalanalysis showed that Tat4 produced hypersensitive reaction ofmesophyllcellsuponinoculationwithaBC3F1isolate.

PS04-182ExpressionofthelateblightresistancegeneRpi-phu1afterthepathogenchallengeMariuszSwiatek1,IgaTomczynska1,MarcinChmielarz1,JadwigaSliwka11PlantBreedingandAcclimatizationInstitute-NationalResearchInstitute,MlochowResearchCentre,Mlochow,[email protected],whenelevenresistancegenes (R1-11) against Phytophthora infestans from Solanum demissum were discovered, a lot of new R-genes have beenidentified inwild species ofSolanum genus.Among them, therewasalso theRpi-phu1gene, identified inS. phurejaandmappedtopotatochromosomeIX.TheRpi-phu1genewastransferredintocultivatedpotatogenepoolusingaseriesofinterspecificcrosses,firstatthediploid,andthentetraploidlevel.PlantswithRpi-phu1are used as differential in characterizing the Polish P. infestanspopulation. Later, its sequence was shown to be identical withRpi-vnt1.1sequence.Theaimoftheongoingexperimentswastoinvestigate expression pattern of theRpi-phu1 gene in the non-infected and infected plants of different diploid and tetraploidgenotypes.InfluenceofplantageonRpi-phu1geneexpressionwasalsoinvestigated.SpecificPCRmarkerlocatedwithinthesequenceoftheRpi-phu1genewasdesignedandoptimized.α-tubulinwaschosenasareferencegene.Samplesweretakenfromplantsbeforeinoculationand1,3,5daysafter.RelativeexpressionofRpi-phu1wasmeasured in five biological and three technical replications.ThegeneticbackgroundandplantsploidyhadsignificanteffectontheRpi-phu1expressionlevel.Young,3-week-oldplantsdifferedsignificantly in theirRpi-phu1 expression pattern from 6, 9 and12-week-oldplants.TheresearchisfoundedbyPolishNCBiRgrantLIDER/06/82/L-1/09/NCBiR/2010andPW3-1-06-0-01.

PS04-183TranscriptomeanalysisofhexaploidwheatintheearlystagesoffloralcolonisationbytheergotfungusClaviceps purpureaAnnaGordon1,PaulGrant2,GaryL.A.Barker3,VickyFanstone1,RosemaryBayles1,DonalOSullivan11National Institute of Agricultural Botany, 2The University ofCambridge,[email protected] ergot fungus, Claviceps purpurea , is a broad host rangepathogenwhich readily infects grass flowers around anthesis byadheringtostigmahairsandfollowingapathwaytothebaseoftheovule.Thiscloselymimics thepenetrationof thepollen tubebut

insteadofformingagrain,atoxicsclerotiaisproduced.Wehaveperformed Illumina transcriptome sequencing of dissectedwheatcarpeltissuefrom10minutesto7daysafterinoculation(DAI),andwillpresent themostcomprehensivewheatfloral transcriptomicsresults to date.We shall be askingwhat is the extent of PAMP-triggeredimmunityinthissusceptibleinteraction?At3DAIgeneslike theCEBiP are up-regulated, butwhat otherswillmatch theexpression pattern? We have found that genes regulating planthormoneshavebeenamongst themostdifferentially regulatedat3DAIandwill thereforepiecetogether thewider implicationsifthis.Wehaveincludedseverallibrariestrackingtherouteofpollentubes,toascertainanysimilaritiesoftheplantresponsetopollenandhyphae.UsingtheClaviceps genomesequencesasreferencewehavealsoisolatedthefungaltranscriptsandwillpresentexpressionchanges thatoccuratkeypoints in the fungal lifecycle from thegermination of conidia to the rapid branching and colonisationthat occurs at 3-4DAI, and subsequent productionof conidia inhoneydew,andfinallythetimeatwhichthealkaloidbiosynthesisgenesareturnedon.

PS04-184Identification of flagellar mastigoneme proteins fromPhytophthoraLeila M. Blackman1, Wil Hee1, Mikihiko Arikawa3, ShuyeiYamada2,ToshinobuSuzaki2,AdrienneR.Hardham1

1Research School of Biology, Australian National University,Canberra, ACT, 2Department of Biology, Graduate School ofSciences,KobeUniversity,Nada-ku,Kobe,Japan,3DepartmentofCardiovascularControl,KochiMedicalSchool,Nankoku,Kochi,[email protected],flagellatezoosporesofPhytophthoraandPythiumspeciesplay a key role in pathogen dissemination and the initiation ofinfection of host plants. The diseases these pathogens cause arehighly destructive and result in extensive losses in agricultureand natural ecosystems worldwide. Tripartite tubular hairscalled mastigonemes on the anterior flagellum of Phytophthoraand Pythium and other protists in the Stramenopile taxon areresponsible for reversing the thrust of flagellar beat and for cellmotility. Immunoprecipitation experiments using antibodiesdirected towards mastigonemes on the flagella of zoospores ofPhytophthora nicotianaehavefacilitatedtheidentificationofthreesimilarproteins.Ageneforoneoftheseproteinshasbeenclonedandencodesamastigonemeshaftprotein.Expressionofthegene,designatedPnMas2, isup-regulatedduringasexualsporulation,aperiodduringwhichmanyzoosporecomponentsaresynthesized.Analysis of the sequence of the PnMas2 protein has revealedthat, like other Stramenopilemastigonemeproteins, PnMas2 hasan N-terminal secretion signal and contains four cysteine-richepidermalgrowthfactor(EGF)-likedomains.Evidencefromnon-denaturing gels indicates that PnMas2 forms large oligomericcomplexes,mostlikelythroughdisulphidebridging.Bioinformaticanalysis has revealed that Phytophthora species typically havethree or four putative mastigoneme proteins containing fourEGF-like domains. These proteins are similar in sequence tomastigoneme proteins in other Stramenopile protists includingthealgaeOchromonas danica,Aureococcus anophagefferensandScytosiphon lomentariaandthediatomsThalassiosira pseudonanaandT. weissflogii.

PS04-185In vivo expression system for effectorvalidation inhexaploidwheat(Triticum aestivumL.)usingprotoplastelectroporationVanesaSegovia1,CristobalUauy1,21John Innes Centre, 2National Institute of Agricultural Botany,CambridgeCB30LE,[email protected](Triticum aestivumL.)isseverelyaffectedbycerealrusts.Rust effectors secretedduring the infection induce theuptakeof

Page 106: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession04-Plant-oomycete/fungalinteractions

104

Post

er 0

4

nutrientsandneutralizethehostdefenseresponses.MajorRgenescanrecognizespecificpathogeneffectors(Avr)inagene-for-genemanner and trigger a hypersensitive response.AlthoughR genesare used in breeding programs to develop resistant varieties, thefungustendstoovercomethesenewresistancesourcesshortlyafterdeployment.IdentificationandcharacterizationofAvrgenesfromcerealrustsiscriticaltofullyunderstandpathogenicityandgeneratenewstrategies fordiseasemanagement.Despite their importancenoAvr gene from cereal rusts has been cloned due in part to acomplexbiotrophicnatureofthepathogen.Althoughprogresshasbeenachievedincomputationalpredictionofpotentialcandidates,functional validation of effectors is still critical to identify theirrole during infection. Here we report protoplast isolation fromwheatetiolatedseedlingandthetransientexpressionofluciferaseafter electroporation.We evaluated differentwheat varieties anddifferent conditions (temperature, time after electroporation,culturemedia)toimprovetheefficiencyofthetransformationandprovide a reliablemethod for a rapid characterization of a largenumberofeffectors.Resultsoftheseapproachesandthevalidationofthemethodwithapositivecontrolwillbediscussed

PS04-186Development of gel and LC-MS/MS based method forproteomicsanalysisofpathogeninducedresponseinMalussp.Danas Baniulis1, Perttu Haimi1, Sidona Sikorskaite1, AlgirdasKaupinis2, Marija Ger2, Mindaugas Valius2, Grazina Staniene1,DaliaGelvonauskiene1,VidmantasStanys11Institute of Horticulture, Lithuanian Research Centre forAgriculture and Forestry, Babtai, Kaunas reg., Lithuania,2ProteomicsCentre,VilniusUniversity Institute ofBiochemistry,Mokslininkust.12,VilniusLT-08662,Lithuaniadanas.baniulis@gmail.comResearchoninteractionofMalussp.andV. inaequalis,thecausalagentoftheapplescabdisease,presentsacomprehensiveknowledgeonbiologyandgeneticsofresistancetofungalpathogensinapple.However,understandingofmechanisticbasisof the resistance toapplescabandotherfungalpathogensremainsscarce.Malus sp.hasbeendesignatedasoneofthreemodelspeciesoftheRosaceaefamily and extensive genome information became available forgenomicsanalysisofplantresponce,recently.Proteomicshasbeenprovenaneffectiveapproachinstudiesonregulationofbiologicalprocessesatpost-translationallevel.However,differentialanalysisof expression of proteins involved in plant defense responsepathwaysrequireshighlysensitiveandrobusttechnique.Therefore,the aim of this study was to develop a proteomics method foranalysisofpathogeninducedresponseinMalussp.Appletreeleafand in vitrogrownapplemicroshoottissuesampleswereusedinthe study. We pre-fractionated the tissue into soluble cytosolic,microsomal, nuclear and organellar protein fractions to reducecomplexityofthesampleandtoenhancesensitivity.Applicationofsaturatinglabelingwithrhodamine-basedfluorescentdyesprovidedsensitive detection of proteins using 2DE technique. Membraneproteinsofmicrosomalfractionwereseparatedby1D-PAGEandtrypticpeptideswereanalyzedusingLC-MS/MSfollowingin-geldigestion. Sensitivity and specificity of themethod for detectionofproteinsinvolvedinstressresponsepathwaysisbeingassessedusing samples prepared from apple leaves treated with salicylicacidorV. inaequalisculturefiltrate.

PS04-187Alternative splicing of a multi-drug transporter fromPseudoperonospora cubensis generates an RXLR effectorproteinthatelicitsarapidcelldeathElizabethA.Savory1,ChengZou1,BishwoN.Adhikari1, JohnP.Hamilton1,C.RobinBuell1,Shin-hanShiu1,BradDay11MichiganStateUniversitysavoryel@msu.eduPseudoperonospora cubensis,anoomycetepathogen,isthecausalagentofcucurbitdownymildew.Similartootheroomyceteplant

pathogens, Ps. cubensis has a suite of RXLR and RXLR-likeeffectorproteinswhich likely functionasvirulenceoravirulencedeterminants during the course of host infection. We identified271 candidate effector proteins within thePs. cubensis genomewith variable RXLR motifs. We also present the functionalcharacterization of one Ps. cubensis effector protein, RXLRprotein 1 (PscRXLR1), and itsPhytophthora infestans ortholog,PITG_17484, a member of the Drug/Metabolite Transporter(DMT) superfamily.To assess if such effector-non-effector pairsarecommonamongoomyceteplantpathogens,weexamined therelationship(s)amongputativeorthologpairs inPs. cubensisandP. infestans.Of271predictedPs. cubensiseffectorproteins,109(41%) had a putative ortholog in P. infestans and evolutionaryrate analysis of these orthologs shows that they are evolvingsignificantly faster thanmostothergenes.PscRXLR1expressionwas up-regulated during the early stages of infection of plants,and,moreover,thatheterologousexpressionofPscRXLR1elicitsa rapid necrosis. More interestingly, we also demonstrate thatPscRXLR1arisesasaproductofalternativesplicing,makingthisthefirstexampleofanalternativesplicingeventinplantpathogenicoomycetestransforminganon-effectorgenetoafunctionaleffectorprotein.Takentogether,thesedatasuggestaroleforPscRXLR1inpathogenicity,and,intotal,ourdataprovideabasisforcomparativeanalysis of candidate effector proteins and their non-effectororthologs as ameansof understanding function and evolutionaryhistoryofpathogeneffectors.

PS04-188CharacterizationofregulatedproteinsecretioninPhytophthorazoosporesWeiweiZhang1,LeilaM.Blackman1,AdrienneR.Hardham1

1Research School ofBiology,College ofMedicine,Biology andEnvironment, The Australian National University, Canberra,[email protected] many species of Phytophthora and other oomycetes, motilebiflagellatezoosporesinitiateplantinfection.Withinthezoosporecytoplasm,organelles,includingthreetypesofcorticalvesicles,aredistributedwithadistinctpolarity.Rapidexocytosisormigrationof these vesicles during zoospore encystment indicates that thecorticalvesiclesmayplay important rolesduringearly infection.Within the first 2 minutes of zoospore encystment, the contentsof ventral and dorsal cortical vesicles are secreted, deliveringadhesivesandaputativeprotectivecoatingontothesurfaceofthecysts.Bycontrast,thethirdcategoryofcorticalvesicles,thelargeperipheralvesicles,moveawayfromtheplasmamembrane,becomerandomly distributed within the cyst cytoplasm and ultimatelydegraded.Unexpectedly,we found thatPnCcp,a12kDaproteincomponentofthelargeperipheralvesiclesissomehowselectivelysecretedduringencystment.Doubleimmunolabellingstudieshaveshown that in sporangia and zoospores, PnCcp colocalises withPnLpv,ahighmolecularweightglycoproteinalsoresident in thelargeperipheralvesicles.However,inhyphae,thelargeperipheralvesicles sometimescontainonlyPnLpvandquantitativeanalysissuggeststhatduringvesicledevelopment,PnCcpisaddedtolargeperipheral vesicles after PnLpv. Quantitative, real-time RT-PCRshows thatexpressionofPnLpvprecedes thatofPnCcpand thatPnCcpbutnotPnLpvisexpressedinzoospores.PnCcpandPnLpvwerealsofoundtobedifferentiallycompartmentalisedwithinthevesicles.ThedifferentialsynthesisandsecretionoflargeperipheralvesicleproteinsinPhytophthorazoosporesprovidesanovelsysteminwhichtostudyselectiveproteinsecretionineukaryotes.

PS04-189CharacterisationofgenefamiliesencodingcellwalldegradingenzymesinPhytophthoraAdrienneR.Hardham1,DarrenCullerne2,PernelynTorrena1,LeilaM.Blackman1,JenTaylor21Plant Science Division, Research School of Biology, CMBE,Australian National University, Canberra, ACT 2601, Australia,

Page 107: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession04-Plant-oomycete/fungalinteractions

105

Poster 04

2CSIROPlantIndustryComputationalBiology,DivisionofPlantIndustry,CSIRO,Australia,2601Adrienne.Hardham@anu.edu.auApoplasticeffectorsproducedbyplantpathogenicbacteria,fungiandOomycetesincludeabroadspectrumofenzymesthatdegradetheplantcellwallduringplant infectionandcolonization.Manypathogenshavemultiplegenesencodingparticularclassesofcellwall degrading enzyme (CWDE). Species of highly destructiveplantpathogensinthegenusPhytophthoracontainespeciallylargeCWDEmultigenefamilies.Contrarytoearlysuggestions,thelargesizeofCWDEgenefamiliesisnotassociatedwithabroadhostrangeasPhytophthora specieswithbothbroadandnarrowhost rangeshavesimilarly largenumbersgenesencodingdifferentclassesofCWDEs.Theprevailinghypothesisisthatlargemultigenefamiliesreflecttheneedforarangeofsubstratespecificitieswithinanoverallenzymeclass.ThegenomesofsixPhytophthoraspecieshavenowbeen sequenced.We have conducted an extensive bioinformaticanalysis of the gene families encoding endopolygalacturonases,pectin methyl esterases and cellulases in these organisms. Theanalysis has contributed to refinement of genome annotationand identification of putative paralogous and orthologous genes.Documentation of the composition of the CWDE multigenefamiliesformsthebasisforadetailedanalysisoftheirexpressionduringplant infection.Levelsofexpressionofmembersof thesegenefamiliesarebeinganalysedusingquantitativereal-timePCR(qPCR)andRNAseq.

PS04-190GeneticanalysisoftheincompatibilitybetweenLoliumisolatesofMagnaporthe oryzaeandwheatTrinhT.P.Vy1,YoshihiroInoue1,Gang-SuHyon1,YukioTosa11GraduateSchoolofAgriculturalScience,[email protected] isolates of Magnaporthe oryzae, causal agent of grayleaf spot of perennial ryegrass (Lolium perenne), are virulent onperennial ryegrass but avirulent on wheat cultivars. To revealgenetic mechanisms of this specific parasitism, Lolium isolateTP2wascrossedwithTriticumisolateBr48.SegregationanalysisoftheirF1progeniesrevealedthattheavirulenceofTP2onwheatcultivar Norin4 and Chinese Spring was conditioned by twounlinked aviruelence genes. One (tentatively designated as A1)washighlyeffectivewhile theother (A2)was lesseffective.Theresistanceof thewheatcultivars toTP2wasalsoconditionedbytwogenes,onecorresponding toA1 and theothercorrespondingtoA2.TheyweretentativelydesignatedasR1andR2,respectively.TheincompatibilitybetweentheLoliumisolateandwheatcultivarswas conditioned by gene-for-gene interactions. R1 was locatedon chromosome7Aby using chromosome substitution lines anddesignatedRmg6.Interestingly,Rwt3,aresistancegeneincommonwheat against Avena isolates of M. oryzae was also locatedon chromosome 7A. Furthermore, molecular mapping of theavirulencegenesrevealedthatA1waslocatedonagenomicregionon chromosome 6 that containedPWT3 corresponding toRwt3.TheseresultssuggestthatthePWT3maybecommonlyinvolvedintheavirulenceoftwodistinctsubgroupsofM. oryzae(LoliumandAvenaisolates)onwheat.

PS04-191Appressorium-localized NADPH oxidase B is essentialfor aggressiveness and pathogenicity in host specific toxinproducingfungusAlternaria alternataJapanesepearpathotypeYuuichi Morita1, Gang-Su Hyon2, Naoki Hosogi1, KyokoMorikawa3, Masatoshi Kusaka3, Hitoshi Nakayashiki2, NorikoInada4,TakashiTsuge5,PyoyunPark1,KenichiIkeda11Laboratory of StressCytology,Graduate School ofAgriculturalScience,KobeUniversity,2LaboratoryofPlantPathology,GraduateSchool of Agricultural Science, Kobe University, 3Faculty ofAgriculture, Kobe University, 4Plant Global Education Project,DepartmentofBiologicalSciences,NaraInstituteofScienceand

Technology,5GraduateSchoolofBioagriculturalSciences,[email protected] alternataJapanesepearpathotypeisthecausalfungusof black spot disease in Japanese pear.The spores germinate onpearleaves,extendtheirhyphaehorizontally,formappressoria,anddescendintohostcells.Thisdramaticshiftofcellularpolarityattheapicalhyphaeiscrucialtounderstandthepathogenicity.WehaveseenthatReactiveOxygenSpecies(ROS)weregeneratedatplant-microbe interaction sites using transmission electronmicroscopy(TEM).Additionally,wefoundsuppressionoftheROSproductionusing inhibitors (e.g., ascorbic acid and diphenyleneiodoniumchloride) stopped pathogenicity. We also cloned two NADPHoxidasegenes(NoxAandNoxB),presumableROSgenerators,andfoundthatonlythenoxBdisruptionmutantlostpenetrationability,increasedhyphalbranchingratios,andlostpathogenicityregardlessofAK-toxinproduction.ExpressionpatternsofNoxAandNoxBdidnotvarygreatlyinanyaspectofthelifecycleasmeasuredbyquantitativeRT-PCR.WealsoconstructedNoxA/NoxB-mCherry-fusionproteinandrevealedthatNoxBwerelocalizedatappressoriaduringinfectionprocess.QuantitativeanalysisofROSproductionat plant surface-appressorium interaction sites by TEM showedthatROSwere producedmainly on the pear leaves but little onthecellulosemembranesalthoughthefungusretainedpenetrationability,suggestingthenecessityforsomeplantsignal.Theseresultsindicate that appressorium-localized NoxB has an undiscoveredroleinthepenetrationotherthanROSproduction.

PS04-192TheroleofNoxcomplexcomponentsduringpathogenicityofC. purpureaJanineSchuermann1,DagmarButtermann1,PaulTudzynski11Institute ofBiology andBiotechnology of Plants,WestfaelischeWilhelms-UniversitaetMuenster,Muenster,[email protected] purpureaisabiotrophicphytopathogenicfunguswithabroadhostrangeincludingeconomicallyimportantcrops likewheat, rye,andbarley. Its infectionbehavior ishighlyorgan specific as only ovaries of flowering grasses are infected.DuringtheearlyinfectionstagesC. purpureashowspolargrowthmimicking the pollen tube. This behavior changes dramaticallyin the later stages where the whole ovarian tissue is colonizedby frequentlybranchedhyphae,finallyproducing thesclerotium.We are interested in the highly regulated differentiation processofC. purpurea in planta aswell as in the signalingmechanismstomaintain this biotrophic interaction. Onemajor aspect withinthis context is the NADPH-oxidase (Nox) complex.C. purpureaencodes two homologues of the mammalian gp91phox, cpnox1andcpnox2.Thedeletionofcpnox1leadstoreducedinfectionrateswith retarded honeydew production and immature sclerotia. Incontrast,thedeletionofcpnox2doesnotaffectearlycolonizationstages. However, Δcpnox2 shows enhanced and prolongedproductionofhoneydewcomparedtothewildtypeandsclerotiaareevenlessdevelopedthaninΔcpnox1.Weareinvestigatingfurtherputativecomplexcomponents:theregulatorysubunitCpNoxRaswell as CpPls1, a tetraspanin often connected with CpNox2. InpathogenicityassaysonryeΔcpnoxRshowsstrongproductionofhoneydewwhereasΔcppls1hasalowinfectionrate.Bothmutantsproduce small, not fully mature sclerotia. Taken together thesedata indicate that a homeostasis of ROS production is of majorimportancefortheearlyinfectionstagesandthemetabolicswitchleadingtodevelopmentofsclerotia.

PS04-193Fumonisin B1 alters mitochondrial function and actincytoskeletonduringcelldeathinductioninArabidopsisNanYao1,CeFang1,JuanLi1,Xue-liXi1,Fang-chengBi11StateKeyLaboratoryofBiocontrol,GuangdongKeyLaboratoryofPlantResource,SchoolofLifeSciences,SunYat-senUniversity,

Page 108: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession04-Plant-oomycete/fungalinteractions

106

Post

er 0

4

Guangzhou,[email protected](FB1),producedbyFusariumverticiloides, isa sphinganine analog mycotoxin and initiates programmed celldeath(PCD)inbothanimalsandplants.DespitethemechanismsofFB1toxicityhavebeenresearchfordecades,signalsandtargetsites duringFB1-inducedPCDare still largely unknown. In thiswork,we focused onmitochondrial behavior and signals duringFB1-inducedArabidopsiscelldeath.Bymeasuringandanalyzingthree (xyz) and four (xyzt) dimensional confocal micrographsin protoplasts and leaves, we found a dramatic increase in thesize of individual mitochondrion and a concomitant decrease inthe number of mitochondria per cell after FB1 treatments. FB1inducedmitochondrialoxidativeburstandsignificantdecreaseofthevelocityandcomplexityofmitochondrialmovement.Further,FB1-induced mitochondrial morphological changes were highlyassociated with actin filaments. In addition, FB1 triggered PR2expression and dramatic cell wall appositions with the presenceof hydrogen peroxide. Our data demonstrated that the toxicmechanismsofFB1inArabidopsisiscomplexandinvolveseveraltargetsincludingcellwall,actincytoskeletonandmitochondria.

PS04-194Oxidative stressandaminoacidbalanceareessential for theinteractionoftheplant-pathogenVerticillium longisporumanditshostBrassica napusSusannaA.Braus-Stromeyer1,ChristianTimpner1,Van-TuanTran1,ClaraE.Hoppenau1,SeemaSingh1,AnikaKuehn1,HaraldKusch1,OliverValerius1,GerhardH.Braus11MolecularMicrobiologyandGenetics,UniversityofGoettingen,Goettingen,[email protected] longisporumisadevastatingsoil-bornefungalpathogenoftheBrassicaceaefamily,includingoilseedrape(Brassica napus)as the economically most important crop. Infection is initiatedby hyphae from germinating microsclerotia which invade theplant vascular system through penetration of the fine roots.Weinvestigatedthereactionofthefungustoxylemsapofthehost-plantbytwo-dimensionalgelelectrophoresis.Identificationof10proteinsby mass spectrometry revealed that all upregulated proteins areinvolvedinoxidativestressresponse.TheV. longisporumcatalaseperoxidase(CpeA)wasthemostupregulatedproteinandisencodedby two isogenes,cpeA-1andcpeA-2[1].Theproteinexpressioninknockdownsofthecatalase-peroxidaseofV. longisporumwerereducedby80%andresultedinsensitivityagainstreactiveoxygenspecies.In planta,knockdownswereinhibitedinthelatephaseofdiseasedevelopment.Duringinfectionofthehostplant,Verticilliuminducesthecross-pathwaycontroltocopewithimbalancedaminoacid supplies [2]. Knockdowns of the transcriptional activatorCpc1 (CpcA/GCN4) were strongly reduced in pathogenicity.We suggest that oxidative stress and amino acid balance playmajor roles for the survival of Verticillium in the host-plant.(1) Singh S, Braus-Stromeyer SA, Timpner C, Valerius O, vonTiedemannA,KarlovskyP,DruebertC,PolleA,BrausGH(2012)Mol Plant Microbe Interact. 25: 569-81; (2) Singh S, Braus-Stromeyer SA, Timpner C, Tran VT, Lohaus G, Reusche M,KnueferJ,TeichmannT,vonTiedemannA,BrausGH(2010)ApplMicrobiolBiotechnol.85:1961-76.

PS04-195SWEETsugar transporters identifiedwith thehelpofFRETsensorsarehighjackedfornutritionofpathogensLi-QingChen1,Bi-HueiHou1,MaraL.Hartung1,Xiao-QingQu1,5,Sylvie Lalonde1, Jung-Gun Kim2, William Underwood4, GinnyAntony3, Frank F. White3, Shauna C. Somerville4, Mary BethMudgett2,WolfB.Frommer11Department of Plant Biology, Carnegie Institution for Science,Stanford, California, USA, 2Department of Biology, StanfordUniversity, 228A Gilbert Bioscience Building, 371 Serra Mall,

Stanford,California94305,USA,3DepartmentofPlantPathology,Kansas State University, Manhattan, Kansas 66506, USA,4EnergyBioscienceInstitute,130CalvinHall,MC5230,Berkeley,California 94720, USA, 52Key Laboratory of Plant and SoilInteractions, College of Resources and Environmental Sciences,ChinaAgriculturalUniversity,100193Beijing,[email protected] intimate association between pathogen and host is oftendescribed in termsofan“armsrace“, inwhichstrongselectivepressures over time result in diverse competing mechanisms ofimmunityandpathogenicity.Attherootofsucharmsracesistheparasitism of fixed-carbon,water and nutrients by the pathogen.Whiletransferofsugarsfromplanttopathogeniswellestablished,themolecularmechanismsofsuchtransferhadremainedunclear.Weuncover insight into this question through identification of anovelclassof sugar transporter,SWEET,usingFRETsensors inamammalianexpressionsystem.FRETnanosensorscanbeusedto monitor sugar flux, reported as ratio change, in living cellsin a minimally invasive manner. FRET sensors can be targetedto measure subcellular compartmentation. SWEETs functionas sugar uptake and efflux carriers.A SWEET homolog in rice(OsSWEET11) is encoded by the resistance locus XA13, whichisasusceptibilityfactorforXanthomonas oryzaeinfection(1,2).Both OsSWEET11/Xa13/Os8N3 and OsSWEET14/Os11N3 areco-optedbyX. oryzae;specificeffectorssecretedbyX. oryzaecanbind to specificSWEETpromoters and activate transcription (1,3). Interestingly, different pathogens induce different SWEETsin Arabidopsis, indicating that many pathogens depend onSWEET activity.The identification of SWEETs as susceptibilityfactors opens new perspectives on the role of bacterial effectorsand provides new tools to study plant pathogen interactions.(1)ChuZ.et al.Gene Dev.20,1250-1255(2006);(2)YangB.et al.PNAS103,10503-10508(2006);(3)AntonyG.et al.Plant cell22,3863(2010).

PS04-196Magnaporthe oryzaeevadesMAMP-triggeredimmunityofthehostplantswithsurface-accumulatedα-1,3-glucanonthecellwallMarie Nishimura1, Takashi Fujikawa1,Ayumu Sakaguchi1,YokoNishizawa1,EiichiMinami1,ShigekazuYano21National institute of Agrobiological Sciences, 2RitsumeikanUniversitymarie@affrc.go.jpPlantsevokeinnateimmunedefensesagainstfungalchallengesuponrecognitionofMAMPssuchaschitin,amajorcellwallcomponentoffungi.Nevertheless,fungalpathogenssomehowcircumventtheinnate immunity of host plants.We previously reported that thericeblastfungusMagnaporthe oryzaemaskscellwallsurfacewithα-1,3-glucan,anundegradablepolysaccharidesformanyplants,inresponsetoaplantwaxcomponentviaactivationofMps1MAPKsignaling (Fujikawa et al., 2009).We further elucidated role ofα-1,3-glucan inM. oryzae-rice interactions.AM. oryzaemutantlacking α-1,3-glucan normally produced infectious structures.However, the inoculation of themutant rapidly induced defenseresponsesinthesusceptiblericeplantsand,asaresult,thefungalinfection was completely blocked. Moreover, a transgenic riceexpressingabacterialα-1,3-glucanaseshowedstrongresistancetothe fungal infection.Overall, our results suggest that the surfaceα-1,3-glucanplaysindispensablerolesinescapingthehostinnateimmunity inM. oryzae.Wewill discuss role of α-1,3-glucan ininnateimmuneevasionmechanismsinfungalplantpathogensandpotentialityofnovelplantprotectionapproachesthattargetsfungalα-1,3-glucan.

PS04-197Enhancement of chitin elicitor responses by engineering thechitin elicitor receptor CEBiP improves disease resistanceagainstriceblastfungus

Page 109: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession04-Plant-oomycete/fungalinteractions

107

Poster 04

Yusuke Kouzai1, Kyutaro Kishimoto2, Hanae Kaku3, NaotoShibuya3,EiichiMinami1,YokoNishizawa11GeneticallyModifiedOrganismResearchCenter,NationalInstituteofAgrobiological Sciences, Ibaraki, Japan, 2National Institute ofFloricultural Science, National Agriculture and Food ResearchOrganization,Ibaraki,Japan,3DepartmentofLifeSciences,FacultyofAgriculture,MeijiUniversity,Kanagawa,[email protected] oligosaccharides are derived from fungal cell walls andelicit various immune responses in plants, which contributes toinnate immunityagainst fungaldiseases.Thechitinelicitor (CE)is recognized by receptors localized to the plasma membrane,thus, enhancement of CE-triggered responses by engineeringthe CE receptor is expected to bring aboutmore fungal diseasetolerancetoplants.ToenhanceCE-triggeredresponsesinrice,weconstructedtwotypesofchimericreceptorsusingriceCEreceptor,CEBiP,andreceptor-likeproteinkinasesinrice.CRXAsarefusionproteins between CEBiP and the intracellular region of Xa21,whichconfersresistancetoricebacterialblight,connectedwithatransmembranedomain(TM).CRPisarefusionproteinsbetweenCEBiPandtheintracellularregionofPi-d2,atrueresistancegeneagainstMagnaporthe oryzae carrying AvrPi-d2. Transgenic riceexpressingCRXAshowedincreasedcellularresponsestoCE(e.g.ROS generation, RNS generation, and cell death induction) andmoretolerancetoM. oryzae.TransgenicriceexpressingCRPialsoshowedincreasedcellularresponsestoCEandmoretolerancetoM. oryzae, but those phenotypes depended on the TM structureused. The intracellular protein kinase region of the chimericreceptors was required for the enhanced responses to CE anddiseaseresistance.TheseresultsstronglysuggestthattheCEBiP-basedchimericreceptorsactasfunctionalreceptorsforCEinricecellsandfungaldiseaseresistanceisimprovedbytheenhancementofCE-triggeredresponses.

PS04-198Molecular and genetic approaches to explore the melon-FusariuminteractionMichael Normantovich1, Ran Herman1, Zvi Zvirin1, NastaciaStobvun1,OhadYogev1,TzachiGoldenberg1,YarivBrotman1,IrinaKovalski1,RafaelPerl-Treves11FacultyofLifeSciences,BarIlanUniversity,RamatGan,[email protected] races of Fusarium oxysporum f.sp. melonis (FOM) exist,thatcauseseveredamagetomelon(Cucumis meloL.)worldwide.Awhole rangeof interactions, from fully susceptible to tolerant,quantitatively resistant and fully resistant, have been describedbetween different melon genotypes and specific FOM races.Dominantmonogenic resistances against FOM races 0, 1 and 2havebeenmapped.Ofthese,theFom-2genehasbeencloned,andatransgenicrootsystem(“CompositePlants”)servedtoexamineR-genepromoterandprotein function inmelon roots.RegardingFOMrace1.2, aquantitativemodeof inheritancewasproposed,and we have characterized it as a recessive trait, controlled bytwo major recessive genes, when severe artificial inoculation isapplied,butinthefielditappearedasadominanttrait.AmappingpopulationthatsegregatesforFOM1.2resistancewasusedforQTLanalysis.TheinfectionprocessofaFOM1.2strainthatexpressestheGFP reporterproteinwasmonitored in vivo in infected rootsand stems, indicating the time points and sites in which fungalprogressiondifferedbetweenresistantandsusceptiblegenotypes.Constitutive and induced expression patterns of defense geneswere compared between resistant and susceptible genotypes,usingreal-timePCR.Both theconstitutiveandinducibledefenseresponsescouldcontributetothereducedvascularcolonizationoftheresistantgenotype.

PS04-199IdentificationandfunctionalcharacterizationofPhytophthora infestans RXLR effectors suppressing flg22-triggered earlysignallinginbothArabidopsisandTomatoXiangziZheng1,MalouFraiture1,LiuXiaoyu1,HazelMcLellan2,Miles Armstrong2, Eleanor M. Gilroy3, Ying Chen1, Paul R. J.Birch2,3,FredericBrunner11DepartmentofBiochemistry,CentreforPlantMolecularBiology,EberhardKarlsUniversity,Tuebingen,Germany,2DivisionofPlantSciences,UniversityofDundee(atJamesHuttonInstitute),ErrolRd, Invergowrie, Dundee DD2 5DA, UK, 3Cell and MolecularSciences,TheJamesHuttonInstitute,UniversityofDundee,ErrolRd,Invergowrie,DundeeDD25DA,[email protected] genome of Phytophthora infestans, the causal agent ofpotato and tomato late blight, is encoding several hundreds ofso-called RXLR effectors which are thought to be translocatedinside the host cells during infection (1). In order to elucidatethe biological function ofRXLReffectors (PiRXLRs) in planta,we used a protoplast-based system to assess their potential forsubverting plant immunity by manipulating MAMP-triggeredearly signalling pathways (2, 3). Fourty-five PiRXLR effectorsweretestedfortheirabilitytosuppresstheactivationbyflg22ofareportergeneundercontrolofatypicalMAMP-induciblepromoter(pFRK1::Luc). Nine PiRXLR effectors blocked significantlyreporter gene activation by flg22 in tomato protoplasts. Further,three of themaffected post-translationalMAPKinase activation,suggestinganinterferencewithMAMPsignallingat-orupstreamoftheMAPkinasecascade.AsMAMP-signallingpathwaysappearto be conserved across the plant kingdom,we hypothesized thatsome of our PiRXLR effector candidates may target proteins/mechanisms that arehighlyconserved inbothhost andnon-hostplants.FromtheaforementionedninecandidatePiRXLReffectors,fivewereconfirmedtostronglyinhibitflg22-inducedpFRK1::Lucreporter gene activitywhen transiently expressed inArabidopsis thaliana protoplasts. However, none of them was able to affectpost-translationalMAPkinaseactivation.ThreePiRXLReffectorsappearedtosharesimilarfunctionsinbothArabidopsisandtomatobysuppressingtranscriptionalactivationofMAMP-markergenes.(1)Haas,B.J.etal.(2009)Nature461,393-398;(2)Yoo,S.D.etal.(2007)Natureprotocols2,1565-1572;(3)Nguyen,H.P.etal.(2010)MPMI23,991-999.

PS04-200The TritNONHOST consortium: Integrative genomic andgeneticanalysisofnonhostresistanceacrossTriticeaespeciesFrancesca L. Stefanato1, Rhoda Delventhal2, Rients E. Niks4,JeyaramanRajaraman3,SajidRehman4,UlrichSchaffrath2,PatrickSchweizer3,LesleyBoyd11John Innes Centre, 2University of Aachen, Germany, 3IPK,Gatersleben,Germany,4WageningenUniversity,Wageningen,[email protected] are constantly exposed to potentially pathogenic micro-organisms. Each plant species, however, is a host for only avery limited number of pathogens.Whereas host plants possessvariabledegreesofresistancetoadaptedpathogenstheyarehighlyresistant to non-adapted pathogens.Therefore nonhost resistanceis of significant interest for contemporary plant breeding andsustainable crop production. The aim of TritNONHOST is tojoin expertise in nonhost resistance in theTriticeae cropswheatand barley, and the economically important pathogensBlumeria graminis, Puccinia spp, and Magnaporthe in order to exploitnonhost-resistance for sustainable control of fungal diseases.We addressed these main questions:- What are the commonalities and differences in geneexpression between wheat and barley when comparing hostand nonhost interactions? We have performed a large-scaletranscript profiling experiment in six host and nonhost systems

Page 110: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession04-Plant-oomycete/fungalinteractions

108

Post

er 0

4

in wheat and barley using the Agilent gene-expression arrays.- What effect do candidate genes have on the resistancephenotype in different cereal-pathogen interactions?We areperforming transient and stable gene silencing experimentsin both wheat and barley, targeting selected candidate genes.-Canwelinktheresultsfromfunctionalgenomicstogeneticlocicontrollingnonhostresistance?Wewilldeterminethehaplotypesofallrelevantcandidategenesinbarleyandperformnonhost-QTLco-localization studies in mapping populations segregating forattenuatednonhostresistance.

PS04-201How does vesicle-mediated exocytosis contribute to fungaldefenseinArabidopsis thaliana?Hyeran Kim1, Sabine Haigis1, Makoto M. Yoshikawa1, ChianKwon2,MiguelA.Botella3,PaulSchulze-Lefert11Department of Plant-Microbe Interactions,MaxPlanck InstituteforPlantBreedingResearch,Cologne,Germany,2DeptartmentofMolecular Biology, Dankook University, Yongin,Korea(South),3Instituto de Hortofruticultura Subtropical y Mediterranea,UniversidaddeMalaga,Malaga,[email protected] employ multiple defense mechanisms against microbialpathogens.Previouslyweidentifiedamolecularmechanismbasedon vesicle-mediated secretion in Arabidopsis. This exocytosismechanism depends on a ternary protein complex consisting ofthevesicle-residentVAMP721/722,PEN1syntaxin,andSNAP33(Kwon et al., 2008). Here we examined how this complex isregulated both in the absence and in the presence of pathogens.Torevealregulatorycomponents,wescreenedforproteinsthatco-localizewithVAMP721/722and identifiedoneofRABGTPase,RABA1e. RAB GTPases are key mediators of endomembranetrafficking.Of note,RABA1a andRABA1e are transcriptionallyup-regulateduponbacterialinfection.WetestedbothRABGTPasesusingT-DNAmutantsforapossibleroleinplantdefenseagainstthehost-adaptedpowderymildewGolovinomyces orontiiandthenon-hostfungalpathogenErysiphe pisi.BothmutantsrevealanalteredinfectionphenotypenottoG. orontii,buttoE. pisi.Additionally,we tested the synaptotagmins (SYTs) for a possible role inimmunity.TheArabidopsissyt1mutants,identifiedinascreenforsalthypersensitivity,functioninplasmamembranerepair.Plasmamembraneintegrityhasnotbeendescribedinbioticstressinplants.Wefoundthatsyt1plantsexhibitenhanceddiseaseresistancenottoE. pisibuttoG. orontii.SofarweknowArabidopsishastwopre-invasive resistance pathways against powderymildew fungi thatareeitherPEN1-dependent-orPEN2/PEN3-dependent.Therefore,wearefurtherdissectingtheroleofSYT1-dependentdefensesinthecontextofknownpre-invasivediseaseresistancecomponentsagainstmicrobialpathogensbycombinedgeneinteractionstudiesandcellbiologicalapproaches.

PS04-202IdentificationofanArabidopsis thalianamutantsusceptibletoBotrytis cinereainfectionHongyuYang1,JiaWu21College of Life Sciences andTechnology,KunmingUniversity,Kunming, China, 2College of BasicMedical Sciences,KunmingMedicalUniversity,Kunming,[email protected] cinerea is a necrotrophic fungus which causes severedisease in both field and postharvest situations, resulting inenormouseconomiclosses.Seekingforresistantgenesandgrowingdiseaseresistantcropsareeffectiveenvironment-friendlystrategyforprotecting thecropsfromdisease.Wescreenedmutants fromaT-DNAinsertion-mutagenizedArabidopsispopulation.Amutantwith enhanced susceptibility toB. cinerea, named esb1(enhancesusceptibility botrytis1) was identified. Symptoms of infectionin esb1 leaves inoculatedwith pathogen conidiospores appeared2days after inoculation,which is oneday earlier thanwild-type

leaves.Thedifferencesinrateofdiseaseanddiseaseindexbetweenmutantandwild-typeplantsduring1-8daysafterpathogeninfectionare significant.The trypan-blue staining revealed that dead cellsappeared inmutant leaves about 24 hours after inoculationwithpathogen,whilenodeadcellwasfoundinwildtypeleaves.Furtherassaydemonstrated that theactivitiesofguaiacolperoxidaseandcatalase were no significant differences between the esb1 andwild type plans.The content ofmalondialdehyde in esb1 leaveswas obviously higher than that in wild type. Additionally, theesb1 plantdisplayednotonly susceptibility toBotrytis infection,butalsoimpairedtolerancetowaterdeficitandincreasedsalinity.TheresultsindicatthatESB1geneprobablyisinvolvedinasignaltransduction of plant response to stress. The genetic analysisshowedthatsusceptibilitywasinheritedasasinglerecessivelocus.TAIL-PCRassayshowedthattheT-DNAwasinsertedintothegeneAt4g39690.Anddatabaseinformationrevealsthatthefunctionofthisparticulargeneremainsunknown.

PS04-203Unraveling plant regulatory networks by studying a NACtranscriptionfactor’sroletowardsbioticandabioticstressYan-JunChen1,DavidB.Collinge1,MichaelF.Lyngkjaer11Department of Plant Biology and Biotechnology, University ofCopenhagen,[email protected] is aNAC family transcription factor gene that plays akeyroleinpenetrationresistancetowardspowderymildewfungus,Blumeria graminis f.sp. hordei (Bgh) in barley (Jensen et al.,PMB 65(1):137-150, 2007), but its underlying mechanisms arenot known. Therefore we generated stableHvNAC6 knockdowntransformation lines to investigate its function in biotic andabiotic stress and regulatory mechanisms. Transgenic barleyplantsharbouringanHvNAC6RNAinterference(RNAi)constructdisplayed lower levels of HvNAC6 transcripts and were moresusceptible to powderymildew thanwild-type plants.Moreover,HvNAC6 knockdown plants exhibit dosage-dependent ABAhyposensitivity during seedling development, which impliesHvNAC6 modulates ABA-associated phenotypes in seedlingdevelopmental processes. Interestingly, spaying ABA on leavesbefore inoculation with Bgh reduced penetration in wild-typeplantsbutnotinHvNAC6knockdownplants.Anotherapproachisto investigate the transcriptionalregulationof theHvNAC6gene.In silico analysis of this promoter demonstrates the presence ofsimilarputative regulatoryelements includingWbox,GCCbox,MYC,MYBandABRE,whichsuggeststhatHvNAC6alsoplaysanimportantroleinabioticstressresponses.Wehavegeneratedstablytransformed barley plants withHvNAC6 promoter linked to thereportergenesGUSandGFPtoanalyzetemporalandspatialgeneexpressionpatternsoccurringatatissueandorganlevelfollowingbioticandabioticstress.

PS04-204Peroxisomal and mitochondrial β-oxidation contributes tovirulenceinUstilago maydisMatthiasKretschmer1,JanaKlose1,JimKronstad11MSL,UBC,Vancouver,Canadakretschm@interchange.ubc.caThebiotrophicbasidiomyceteUstilago maydiscausessmutdiseaseoncorn.Duringinfectiontheavailabilityofglucoseislimitedandcarbon sources such as lipids could be important. Filamentousgrowth ismandatory for pathogenicity ofU. maydis and can betriggered by lipids.U. maydis posses peroxisomal,Mfe2Mfe2b,and mitochondrial, Had1Had2, β-oxidation and expression ofβ-oxidation genes is induced during infection. Deletion of thethirdstepofmitochondrialβ-oxidationorperoxisomalβ-oxidationledtonogrowthonshortchainfattyacidsoronfattyacids>C6,respectively.Whenevermutantswereunabletoutilizefattyacidsfilamentationwas also abolished. Further growth on acetatewasreduced probably by interference with the glyoxylate pathway.

Page 111: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession04-Plant-oomycete/fungalinteractions

109

Poster 04

ShortchainfattyacidsinduceapoptosisinU. maydisandblockageofβ-oxidationleadstoaccumulationoftoxicintermediates.Matingof themutantswasunaffected except for themfe2mfe2bmutant.However, virulence was drastically reduced for both pathwaymutants. β-oxidation could be a fungicide target because of theinability tousefattyacids,acetateand theaccumulationof toxicβ-oxidation intermediates. Anti-inflammatory drugs inhibit thehuman Mfe2. In U. maydis they reduce growth on fatty acids,reduce filamentation and induce apoptosis. One single dose ofDiclofenac reduces the virulence ofU. maydis.We showed theimportanceofβ-oxidationforvirulenceoffungianditspotentialasafungicidetarget.

PS04-205Two secretory proteins are regulated by ProA in Epichloë festucae,amutualisticsymbiontofperennialryegrassAiko Tanaka1, Sanjay Saikia2, Gemma Cartwright2, DaigoTakemoto1,Masashi Kato3, Takashi Tsuge1, ShingoHata1, BarryScott21Graduate School of BioAgricultural Sciences, NagoyaUniversity, Nagoya, Japan, 2Institute of Molecular BioSciences,MasseyUniversity, PalmerstonNorth,NewZealand, 3Faculty ofAgriculture,MeijoUniversity,Nagoya,[email protected] fungal endophyte, Epichloë festucae, forms a symbioticassociationwithperennialryegrass,Lolium perenne.Inwild-typeassociations, E. festucae grows systemically in the intercellularspaces of the leaves as infrequently branched hyphae parallel tothe leaf axis. proA encodes a Zn(II)2Cys6 transcription factorthat has homology to Pro1/NosA, positive regulators of sexualdevelopmentinotherascomycetes.AproAdeletionmutantcausesseverestuntingofthegrasshost,ahostinteractionphenotypeverysimilartothatobservedforanoxAdeletionmutant.ToidentifythegenetargetsforProA,weanalyzedapubliclyavailableSordaria macrosporamicroarraydatasetforgenesdifferentiallyexpressedinapro1mutant.Onegene,esdC,significantlydown-regulatedinS. macrospora pro1mutantwasalsodown-regulatedintheE. festucae proA mutant/ryegrass interaction. esdC encodes a glycogen-binding domain protein and has been showed to be involved insexualdevelopmentinAspergillus nidulans.TodeterminewhetherProAregulatesesdCexpressionbydirectlybindingtoitspromoter,wepreparedafusionproteinofProAandmaltosebindingprotein(MBP-ProA1-120) andcarriedout electrophoreticmobility shiftassays(EMSA).Mobilityshiftswereobservedfortwofragmentsof 36-bp and 38-bp from the esdC promoter. Analysis of thesequence upstreamof esdC revealed the presence of divergentlytranscribed gene, EF320.QuantitativeRT-PCR analysis revealedthattheexpressionofEF320wasdramaticallyreducedintheproAmutant/ryegrassinteraction.AnalysesoftheaminoacidsequencesofEsdC andEF320predict signal peptides at theN-terminus oftheseproteins.

PS04-206Functional genomic approaches to study nonhost resistanceofMedicago truncatula againstAsian soybean rust pathogen,Phakopsora pachyrhiziYasuhiroIshiga1,SrinivasaR.Uppalapati1,ShipraMittal1,VanthanaDoraiswamy1,MohamedBedair1,JianghuaChen1,JinNakashima1,RujinChen1,HolgerSchultheiss2,KirankumarS.Mysore11TheSamuelRobertsNobleFoundation,[email protected] soybean rust (ASR) caused by Phakopsora pachyrhiziis a devastating foliar disease affecting soybean productionworldwide.Identificationofgenesinanotherlegumespeciesthatconfer nonhost resistance (NHR) against ASR will provide anavenue to engineer soybean for durable resistance againstASR.We found thatMedicago truncatula, amodel legume, conferredNHR against ASR. Although the urediniospores formed germ-tube with appresorium and penetrated into epidermal cells, P.

pachyrhizifailedtosporulateonM. truncatula.TranscriptomeandmetabolomeanalysesidentifiedaroleforphytoalexinsandsaponinsduringNHRresponseagainstASR.ToidentifyM. truncatulagenesthatconferNHRagainstASR,weestablishedaforward-geneticsscreen using Tnt1 retrotransposon insertion lines and identifiedseveral mutants that show altered response upon infection withASR. One of these mutants, irg1 (inhibitor of rust germ-tube differentation1), inhibited pre-infection structure differentiationof P. pachyrhizi and a non-adapted switchgrass rust pathogen,Puccinia emaculata.Cytological and chemical analyses revealedthat inhibition of rust pre-infection structures in irg1 mutants isassociatedwiththecomplete lossof theabaxialepicuticularwaxcrystalsandsurfacehydrophobicity.IRG1encodedaCys(2)His(2)zincfingertranscriptionfactor,PALM1,thatalsocontrolsdissectedleafmorphologyinM. truncatula.Transcriptomeanalysisfurtherrevealed down-regulation of genes involved inwax biosynthesisandsecretionintheirg1mutant.

PS04-207Inheritance of Phytophthora infestans effector-inducedhypersensitivecelldeathinhotpepperShin-YoungKim1,Hyun-AhLee1,Seon-InYeom1,Saet-ByulKim1,Myung-ShinKim1

1Department of Plant Science, Plant Genomics and BreedingInstitute,SeoulNationalUniversiry,Seoul,Koreacynthia222@hanmail.netNon-hostresistanceismostcommonresistancedefinedasastrongand durable resistance in a plant species against most potentialmicrobialpathogens.Non-hostresistanceconsistsofvariousstepssuchasbasaldefense,preformedresistance,induceddefenseandresistance gene-mediated defense. In most cases, true resistanceismediatedbyinteractionofresistancegenesandeffectorsinthecytoplasm.Forelucidatingthemolecularmechanismsofnon-hostresistance,4accessionsofCapsicum spp.09-11,09-186,09-202and09-226weresubjectedtoin plantainteractionwith54RXLReffectorsfrompotatoblightpathogenPhytophthora infestansusingPVX-mediated transientexpression.Asresults,someofeffectorstriggerhypersensitive response (HR)-like cell death inpepper asthatoftheHRinhostplant.TodeterminetheinheritanceofRXLReffector-induced cell death in pepper accessions, two accessions(09-202 and 09-226) were crossed and the resulting F1 and F2populationswerescreenedagainstfourRXLReffectors(PexRD8,PexRD24, PexRD41 and PexRD92-4). Among them, PexRD8-inducedcelldeathinF2siblingsofpepperaccession(09-226)weresegregatedas15:1.TheseresultmayindicatedthattwodominantgenesinthataccessionareinvolvedinPexRD8-inducedcelldeath.The rest of RXLR-induced cell deaths also are shown obvioussegregation ratio which have a genetic meaning. These resultsmay suggest that non-host resistance could be correlated withthepresenceofmultiplegenes interactedspecificRXLReffectorfacilitatingdurableresistanceforminplants.

PS04-208NbPDR1,aPDR-typeABCtransporter,conferspre-andpost-invasion resistances ofNicotiana benthamiana against potatolateblightpathogen,Phytophthora infestansYusuke Shibata1, Makoto Ojika1, Kazuhito Kawakita1, DaigoTakemoto11GraduateSchoolofBioagriculturalSciences,NagoyaUniversity,Aichi,[email protected] Nicotiana benthamiana shows strong resistance toPhytophthora infestans. We previously showed that virus-induced gene silencing (VIGS) of NbEAS (5-epi-aristolochenesynthase),encodeanenzymefortheproductionofsesquiterpenoidphytoalexin,capsidiol,compromisedtheresistance.ByscreeningusingVIGSforessentialgenesfordiseaseresistance,weisolatedgenesforexpectedterpenoidstransporter,NbPDR1,andenzymesfor mevalonate pathway, the upstream pathway of terpenoids

Page 112: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession04-Plant-oomycete/fungalinteractions

110

Post

er 0

4

biosynthesis, including NbMVD (mevalonate diphosphatedecarboxylase) and NbFPPS (farnesyl pyrophosphate synthase).Both NbEAS- and NbPDR1-silenced plants showed decreasedaccumulation of capsidiol, however, NbPDR1-silenced plantshowed severer disease symptom by P. infestans than NbEAS-silencedplant.Detectionofpathogenpenetrationsitesbyanilineblue staining revealed that NbPDR1-silenced plant impairedpenetrated resistance, whereas NbEAS-silenced plant retainedpenetration resistance as control plant, indicating that NbPDR1is involved in the export of antifungal compounds, other thancapsidiol, for penetration resistance.Productionof capsidiolwasdecreased in both NbMVD- and NbFPPS-silenced plants, butpenetrationresistancewascompromisedonlyinNbMVD-silencedplant.GivensynthesisofditerpenoidsismediatedbyMVDbutdoesnotrequiretheactivityofFPPS,diterpenoids,suchasscrareol,wasexpectedascompoundsforthepenetrationresistance.Consistently,N. benthamiana with silencing of a gene for a key enzyme ofditerpenoidsbiosynthesis,NbGPPS(Geranylgeranylpyrophosphatesynthase) showed significantly reduced penetration resistance.Furthermore, treatment with a diterpenoid, scrareol, suppressedthegerminationofzoosporangiaofP. infestans.Altogether,theseresultsindicatedthatN. benthamianaPDR1contributestheexportof the antifungal diterpenoids and sesquiterpenoids for pre- andpost-invasionresistanceagainstP. infestans.

PS04-209Arabidopsis mutants displaying aberrant localization of thePEN3 ABC transporter have altered responses to powderymildewfungiWilliamUnderwood1,ShaunaSomerville11EnergyBiosciences Institute,UniversityofCalifornia,Berkeley,Berkeley,[email protected] thaliana PEN3ABC transporter is recruited tosites of attempted penetration by powdery mildew fungi, whereit contributes to pathogen defense. Perception of pathogen-associated molecular patterns such as fungal chitin or bacterialflagellin is sufficient to initiate focal accumulation of PEN3within theplasmamembrane, suggesting thatpattern recognitionreceptors initiate the recruitment of the transporter to sites ofpathogendetectionatthecellsurface.TargetingofPEN3tositesof pathogen detection requires intact actin filaments, but is notaccomplished through de novo protein synthesis, BFA-sensitivevesicle trafficking events, or constitutive endocytic cycling. Thespecificmechanismsunderlying polar targeting ofPEN3 to sitesofpathogendetectionanditsretentionatsuchsitesremainunclear.To identify cellular components required for proper subcellulartargeting of PEN3, we performed a genetic screen for mutantsdisplaying aberrant localization of PEN3-GFP (alp). Screeningof 10,000M2 individuals by confocalmicroscopy yielded 9alp mutants with various PEN3 localization defects, including onemutantwith spontaneouspolar targetingofPEN3 in theabsenceof pathogen stimulus. Initial characterization has revealed thatseveralmutantshavealteredresponsestopowderymildewfungalinfection.Mappingand furthercharacterizationofalpmutants iscurrentlyunderway.

PS04-210ScreeningforcandidatesofPWT4,ageneforavirulenceofanAvena isolate ofMagnaporthe oryzae on wheat, using whole-genomesequencingYoshihiro Inoue1,KentaroYoshida2,ChikakoMitsuoka2,HokutoAsano1,RyoheiTerauchi2,YukioTosa11GraduateSchoolofAgriculturalScience,KobeUniversity,Kobe,Japan,2IwateBiotechnologyResearchCenter,Kitakami,[email protected] is a locus conditioning the avirulence of anAvena isolateofMagnaporthe oryzaeonwheat.Avena isolateBr58carries theavirulence allele PWT4 while Triticum isolate Br48 carries the

virulenceallelepwt4.Here,wereport theidentificationofPWT4candidatesbythewhole-genomesequencingofpooledDNAfromaPWT4-segregatingpopulation.AnF1culturecarryingPWT4waschosenfromanF1populationderivedfromageneticcrossbetweenBr58andBr48,andbackcrossedwithBr48fourtimestoproduceaBC4F1populationinwhichPWT4segregated.DNAswereextractedfrom 8 BC1F1 and 40 BC4F1 cultures carrying PWT4, pooled,and seqeuenced.Byaligning the resulting sequence readson thegenomic sequence of Br58, we could identify a 580kb genomicregionofBr58sharedbythePWT4carriers.Geneswithasecretionsignalinthe580kbgenomicregionwerepredictedbyusinggenepredictionsoftwarefgeneshandsignalpeptidepredictionsoftwaresignalP.Then,predictedgeneswerefurtherscreenedbasedonthepolymorphismsbetweenthetwoparentalisolates.Consequently,3genesencodingputativesecretedproteinswereselectedasPWT4candidates.Amongthe139genespredictedbyfgenesh,morethan60% (86 genes)were present in the genome of Br58 but not inBr48,suggestingthatPWT4islocatedonoraroundaBr58-specificgenomicregion.

PS04-211Involvement of S-nitrosylated StRanBP1 in plant defenseresponseHiroakiKato1,DaigoTakemoto1,KazuhitoKawakita11GraduateSchoolofBioagriculturalSciences,NagoyaUniversity,Nagoya,[email protected](NO)hasvariousfunctionsinphysiologicalresponsesof plant, such as development, hormone signaling, and defense.ThemechanismofhowNOregulatesphysiologicalresponseshasnotbeenunderstoodwell.ProteinS-nitrosylation,aredox-relatedmodification of cysteine thiol by NO, is known as one of theimportant post translationalmodification to regulate activity andinteractionsofproteins.Byusingbiotinswitchmethod,changesinS-nitrosylatedproteinsinpotato(Solanum tuberosum)challengedwithPhytophthora infestans were detected. From the proteomicapproach, approximately 80 S-nitrosylated candidate proteinswereidentifiedinpotatoleavesandtubertreatedwithNOdonor.Small GTPase Ran binding protein (StRanBP1) was identifiedas S-nitrosylated candidate protein. RanBP1-silenced Nicotiana benthamiana plant showed stunted growth and constantlyexpresseddefense-relatedgenes.ToanalyzefunctionofRanBP1,StRanBP1were fused toHA tag and expressed transiently inN. benthamiana leavesbyAgrobacterium infiltration.ExpressionofStRanBP1inleavescausedcelldeathunderthedarkconditionandimpaired the resistance againstP. infestans.Moreover, inductionofcelldeathandreductionofresistancebyStRanBP1expressionwere not observed when a mutation in expected S-nitrosylated127thcysteine(C127A)wasintroducedinStRanBP1.Inaddition,StRanBP1wasS-nitrosylatedinN. benthamianaleavesinoculatedwithP. infestans.Thus,redox-mediatedS-nitrosylationofRanBP1wouldhaveanimportantroleinthedefenseresponse.

PS04-212EvolutionaryandworkingmodelsforthecoupledgenesofthePik-hencodingblastresistanceofriceQinghuaPan1,C.Zhai1,L.Hua1,N.Yao2,F.Lin1,Y.Zhang1,Z.Liu2,Z.Dong1,LiWang1,LingWang11SouthChinaAgriculturalUniversity,[email protected], which is an allele of Pik, confers resistance againstcertain races of rice blast. Its positional cloning showed thatit comprises a pair ofNBS-LRR genes,Pikh-1 andPikh-2. Theallele is distinguishable fromother knownblast resistancegenesonthebasisofkeyvariablenucleotides,andSNPdiagnosisamongthe five rice populations implies that it appears to be the mostrecently evolved of the set ofPik alleles. Comparisons betweenthe sequences of Pik-h and other Pik alleles showed that thefunctionalKhaplotypeexistsas twosub-haplotypes,whichboth

Page 113: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession04-Plant-oomycete/fungalinteractions

111

Poster 04

evolvedprior to thedomesticationof rice.WhilePikh-1 appearstobeconstitutivelytranscribed,thetranscriptabundanceofPikh-2respondstopathogenchallenge,suggestingthatwhilePikh-1maywellbeinvolvedinelicitorrecognition,Pikh-2ismorelikelytoberesponsiblefordownstreamsignalling.Invitro,theCCdomainofPikh-1wasshowninteractdirectlywithbothAvrPik-handPikh-2.TransientexpressionassaysdemonstratedthatPikh-2mediatestheinitiationofthedefenceresponse.IntheproposedPik-hresistancepathway, it is suggested that Pikh-1 acts as an adaptor betweenAvrPik-handPikh-2,whilePikh-2transducesthesignaltotriggerPik-h-specificresistance.

PS04-213SequencingandanalysisofthePi50(t),anovelbroad-spectrumresistancegenesinriceJingSu1,Jing-luanHan1,ShenChen1,Lie-xianZeng1,Xiao-yuanZhu11Plant Protection Research Institute, Guangdong Academy ofAgriculturalSciences,Guangzhou,[email protected],causedbyMagnaportheoryzae,isoneofthedevastatingricediseases in theworldwide, andexcavationandutilizationofbroad-spectrumresistancegenesisanimportantavenuetocontrolthisdisease.Wehaveidentifiedabroad-spectrumblastresistancegene Pi50(t), a new member of Pi2/9 multigene family, from aresistance donor Er-ba-zhan (EBZ) in South China. To identifythe candidate genes of Pi50(t) locus,we sequencing the Pi2/Pi9locusofEBZbyusingthegenomicwalkingsequencingstrategy.Annotationofthesequencesindicatedthatthereare7NBStypeRgenecandidateswerelocatedinthemappingregionofPi50(t)locus,andthededucedaminoacidsequenceidentityofthese7Rgenesrangedfrom75%to100%comparedwiththelistedOryzasativaNBSRgenesfromGenbank.WefurtherrevealedthattheresistancespectrumandracespecificityofPi50(t)alleleweredifferentfromtheotherknownPi2/Pi9carriers.Forinquiringthemolecularbasisofbroad-spectrumresistance,thescreeningofthekeyvariationofPi50(t)-NBSRgenesand itsmultipleallelesby target regionre-sequencingwereperformed.CladisticanalysisbasedontheproteinsequenceofthesePi2/9NBSparalogousgenesfurtherrevealedthat2ofPi50-NBSaregroupedintothesamephylogeneticcladewhichcontainPi2andPi9.However, theysharedavery lowsimilarity,indicated the variationof themare very high.May thus indicatethatthese2specificNBSRgenesinthePi50(t)locuswerethemainfunctionalcandidatesinEBZricecultivar.

PS04-214IdentificationofanovelFusariumwilt-resistanceproteinfromtomatoAnn-MareeCatanzariti1,GinnyT.Lim1,DavidA.Jones11Division of Plant Sciences, Research School of Biology, TheAustralianNationalUniversity,Canberra,[email protected] wilt disease in tomato is the result of vascular tissuecolonisationbythesoil-bornefungalpathogenFusarium oxysporumf.sp.lycopersici(Fol).TheresistancegenesI,I-2andI-3havebeenincorporatedintocultivatedtomato(Solanum lycopersicum)fromwildtomatospeciestoconferresistanceagainstFolraces1,2and3, respectively.Work towards the isolationof I-3 over anumberof years has discovered I-3 to be a member of an S receptor-like kinase (SRLK) gene family.Three closely related candidateSRLKgeneswere tested todetermine the identityofI-3.Oneofthesegeneshasbeen shown to confer full resistance toFol race3while a second gene confers partial resistance.Two pathogen-derivedproteinshavebeenfoundtoinfluenceI-3resistance,eitheractivating(Avr3)orsuppressing(Avr1)resistance.Botharesmalldisulphide-bonded proteins secreted into the xylem sap duringinfectionwheretheycouldinteractwiththemembraneboundI-3.Interestingly,Avr1alsosuppressesI-2resistancewhichisconferredbyacytoplasmicNB-LRRprotein.The identificationof I-3 asa

newtypeofplantresistanceproteinsuggeststhatanovelsignalingpathway and downstream response genes have been recruited inthe defence againstFol. To investigate this possibility, we haveusedIlluminasequencingtocomparethetranscriptionprofilesofresistant and susceptible tomato challengedwithFol race 3 anduninfectedtomato.Analysisofthisthisdataiscurrentlyunderway.

PS04-215PEN and jasmonic acid mediate resistance in ArabidopsisagainstAlternaria alternatainfectionMayumi Egusa1, Takuya Miwa1, Hironori Kaminaka1, AtsushiIshikawa2,YoshitakaTakano3,MotoichiroKodama41Laboratory of PlantMolecular Biology, Faculty ofAgriculture,Tottori University, Tottori, Japan, 2Department of Bioscience,FukuiPrefecturalUniversity,Fukui,Japan,3DepartmentofPlant-Microbe Interactions, Graduate School of Agriculture, KyotoUniversity,Kyoto,Japan,4LaboratoryofPlantPathology,FacultyofAgriculture,TottoriUniversity,Tottori,[email protected] tomato pathotype of Alternaria alternata causesAlternariastemcankerontomatodependingupontheproductionofthehost-specificAAL-toxin.DefensemechanismsinhostandnonhostplanttoA. alternata,however,arelargelyunknown.Theobjectiveofthisstudyistoelucidatethemechanismsofnonhostresistancetotoxin-dependent necrotrophic pathogenA. alternata usingArabidopsismutants.Arabidopsis ecotypeColumbiawas insensitive toAAL-toxinandshowedeithernosymptomsorahypersensitivereaction(HR)wheninoculatedwithA. alternata.Yet,whentheArabidopsis penetration(pen)mutants,pen2-1,pen2-2andpen3-1whichwereidentifiedasfactorsofpre-invasionresistanceagainstnonadaptedpowdery mildew pathogens, were challenged with A. alternata,fungalpenetrationwasevidentandHR-likecelldeathconcomitantwithH2O2accumulationandcallosedepositionoccurredatthesiteof attempted fungal invasion.However, conidiationwere limitedon thesemutants.Meanwhile,AAL-toxin-producingA. alternatacould invade loh2 mutant, which have a defect in the toxinresistancegene,subsequentlyallowingthefungustocompleteitslife cycle. Jasmonic acid (JA) signalingmarker gene expressionwasenhancedinpenmutantsanddecreasedinloh2mutantduringfungal infection.Moreover, disease symptomswere increased indouble mutant combinations of pen2 with JA signaling. Theseresults indicate that the nonhost resistance ofArabidopsis toA. alternata consists of sequential defense systems that includepre-invasion resistance via PEN2 and PEN3 and JA signaling-dependent post-invasion resistance. These findings suggest thattoxin-dependentnecrotrophicA. alternataisrequiredtoovercomemultilayered defense mechanisms to establish a full compatibleinteractiononplants.

PS04-216A nuclear pore complex protein, Nup75, is involved inethylenebiosynthesis forphytoalexinproductionofNicotiana benthamianainthedefenseresponsesagainstP. infestansMina Ohtsu1, Yusuke Shibata1, Makoto Ojika1, Hitoshi Mori1,KazuhitoKawakita1,DaigoTakemoto11Graduate School of Bioagricultural Sciences,University ofNagoya,Aichi,[email protected] benthamiana showsstrongresistance topotatolate blight pathogenPhytophthora infestans. By screening usingvirus-inducedgenesilencing,weisolatedageneforanuclearporecomplexprotein,Nup75(nucleoporin75),asa requiredgenefordiseaseresistanceofN. benthamianaagainstP. infestans.NbNup75-silencedplantshowednodetectablegrowthdefect,butresistancetoP. infestanswassignificantlycompromised.DefenseresponsesofNbNup75-silencedN. benthamianainducedbytreatmentwithINF1,anelicitorproteinderivedfromP. infestans,suchasproductionofreactiveoxygenspecies, inductionofhypersensitivereaction-likecell death and accumulation of phytoalexin were suppressed as

Page 114: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession04-Plant-oomycete/fungalinteractions

112

Post

er 0

4

compared to control non-silenced plant. Previously, we reportedthat expression of genes for phytoalexin biosynthesis, NbEAS(5-epi-aristolochene synthase) and NbEAH (5-epi-aristolochene1,3-dihydroxylase), were induced by treatment of ethylene, andINF1-inducedexpressionofNbEAS wassuppressedbysilencingofNbEIN2,ageneforethylenesignaling.Productionofphytoalexininduced by INF1 treatment was impaired in NbEIN2-silencedplant, indicatingthatphytoalexinbiosynthesisofN. benthamianais regulated via ethylene signaling. In NbNup75-silenced plant,induction of NbEAS expression by ethylene treatment wascomparable to non-silenced plant,whereas ethylene biosynthesisinduced by INF1 treatmentwasmarkedly reduced.Additionally,the expression of a gene for ethylene biosynthesis, NbACS(1-aminocyclopropane-1-carboxylate synthase) was significantlydecreased inNup75-silenced plant as compared to control plant.Collectively, these results suggest thatNup75 is involved in thetranscriptionalup-regulationofNbACS forethylenebiosynthesis,whichisessentialforthephytoalexinproductionofN. benthamianaduringthedefenseresponseagainstP. infestans.

PS04-217Large-scale gene disruption inMagnaporthe oryzae identifiesMC69, a secreted protein required for infection bymonocotanddicotfungalpathogensHiromasa Saitoh1,ChikakoMitsuoka1,AkikoHirabuchi1,KyokoIkeda2,HirokiIrieda2,KaeYoshino2,KentaroYoshida3,JoeWin3,SophienKamoun3,YoshitakaTakano2,RyoheiTerauchi11IwateBiotechnologyResearchCenter, Iwate,Japan, 2Laboratoryof Plant Pathology, Graduate School of Agriculture, KyotoUniversity,Kyoto, Japan, 3TheSainsburyLaboratory, John InnesCentre,Norwich,[email protected] search for virulence effector genes of the rice blast fungus,Magnaporthe oryzae,wecarriedoutalarge-scaletargeteddisruptionofgenesfor78putativesecretedproteinsthatareexpressedduringtheearlystagesofinfectionofM. oryzae.Disruptionofthemajorityof genes did not affect growth, conidiation, or pathogenicity ofM. oryzae.OneexceptionwasthegeneMC69.Themc69mutantshowedasevere reduction inblastsymptomsonriceandbarley,indicatingtheimportanceofMC69forpathogenicityofM. oryzae.Themc69mutant did not exhibit changes in saprophytic growthandconidiation.Microscopicanalysisofinfectionbehaviorinthemc69mutantrevealedthatMC69isdispensableforappressoriumformation. However, mc69 mutant failed to develop invasivehyphaeafterappressoriumformationinriceleafsheath,indicatingacriticalroleofMC69ininteractionwithhostplants.MC69encodesahypothetical54aminoacidsproteinwithasignalpeptide.Live-cell imaging suggested that fluorescently labeledMC69was nottranslocatedintoricecytoplasm.Site-directedmutagenesisoftwoconservedcysteineresiduesinthematureMC69impairedfunctionofMC69withoutaffectingitssecretion,suggestingtheimportanceofthedisulfidebondinMC69pathogenicityfunction.Furthermore,deletionof theMC69orthologousgene reducedpathogenicityofthe cucumber anthracnose fungus Colletotrichum orbiculare onboth cucumber andNicotiana benthamiana leaves.We concludethatMC69isasecretedpathogenicityproteincommonlyrequiredforinfectionoftwodifferentplantpathogenicfungi,M. oryzaeandC. orbicularepathogeniconmonocotanddicotplants,respectively.

PS04-218BiochemicalanalysisofaMagnaporthe oryzaeavirulencefactor,AVR-PiiKoki Fujisaki1,Akiko Ito1, KentaroYoshida1, Hiromasa Saitoh1,SophienKamoun2,RyoheiTerauchi11Departmentofgeneticsandgenomics,IwateBiologicalResearchCenter,2SainsburyLaboratoryk-fujisaki@ibrc.or.jpWehavepreviouslyisolatedAVR-PiifromMagnaporthee oryzae(Yoshidaetal.2009).Currentlywearestudyingeffectorfunction

ofAVR-Pii.LivecellimagingshowedthatAVR-Piiistranslocatedto inside of rice cells during early infection stage ofM. oryzae.When AVR-Pii was expressed in rice cells, it accumulated insoluble fraction of cell lysate, and gel filtration analysis showedthatAVR-Piiformedtwodifferentcomplexesinthelysate.Basedontheresultsofgelfiltrationandco-immunoprecipitation,itwassuggested that one form of the complexes was homo-multimerof AVR-Pii, and the other was AVR-Pii-host protein complex.Immunoprecipitaion assay and mass-spectrometry analysisidentified two rice Exo70 proteins (OsExo70-1 and OsExo70-2)ascandidateinteractorsofAVR-Piiinricecells.Exo70isknownasamemberofexocystcomplexregulatingexocytosispathwayinyeastandmammals. In rice,more than40membersofOsExo70family are known, although only two of them, OsExo70-1 andOsExo70-2, were identified in this study. We hypothesize thatAVR-PiispecificallytargetsOsExo70-1andOsExo70-2.

PS04-219Identification of novel non-host resistance genes in theArabidopsissoybeanrustinteractionCasparJ.G.Langenbach1,RuthCampe1,NadineTresch2,HolgerSchultheiss2,UweConrath1,KatharinaGoellner11InstituteofPlantPhysiology,RWTH-AachenUniversity,Aachen,Germany, 2BASFPlantScienceCompanyGmbH,Limburgerhof,[email protected] causal agent of Asian soybean rust (ASR), Phakopsora pachyrhizi, represents one of the most important pathogens ofsoybean and other leguminous plants. Until now, control of thepestcanonlybeachievedbyexpensivefungicidetreatments.Sincecommercially available soybean varieties with stable resistanceto different isolates of P. pachyrhizi are not yet available, newstrategiesareneededtocounteractASRspreadandestablishment.WeaimatelucidatingthemolecularbasisofArabidopsis’non-hostresistancetoASRtoexploittheseresistancetraitsforengineeringof durably resistant soybean varieties. Employing a global geneexpression approach we have identified genes which putativelyantagonize the establishment of fungal haustoria in infectedplant tissue. By applying dsRNAi-mediated gene silencing, wehaveanalyzedmostofthesecandidategeneswithrespecttotheirfunctionintheArabidopsisASRinteraction.Inacomplementaryapproachthesegeneshavebeenstablyoverexpressedinsoybean.Here, we present genes which are contributing to Arabidopsis’postpenetrationresistancetoP. pachyrhiziand/orwhicharecapableofenhancingsoybeanresistancetotherustfungus.

PS04-220Molecular cloning and analysis of a gene family encodingxylanaseinPhytophthora parasiticaMingWeiLai1,RueyFenLiou11DepartmentofPlantPathologyandMicrobiology,NationalTaiwanUniversity,Taipei,[email protected] parasitica is an oomyceteous plant pathogenwitha wide host range. To investigate the role of genes encodingxylanase in this pathogen, we cloned 4 genes encoding endo-β-1,4-xylanase fromP. parasitica, namedppxyn1,ppxyn2,ppxyn3,and ppxyn4, respectively. Analysis of the deduced amino acidsequencesindicatedthatallthesegenescontainasignalpeptideattheN-terminusandanactivesitesignatureofxylanase.Moreover,allof thembelongtoglycosylhydrolasefamily10.Phylogeneticanalysisrevealedthatppxyngenesformaclusterwhichisdistinctfromxylanasegenesoffungalpathogens.Heterologousexpressionof recombinantproteinsbyPichia pastoris followedbyreducingsugar assay confirmed that each of these proteins have xylanaseactivitytowardbrichwoodxylan.Analysisbyquantitativereversetranscriptase-PCR demonstrated ppxyn1 and ppxyn2 were up-regulated at the early stage ofP. parasitica infection on tomatoleaves. The expression of ppxyn3 and ppxyn4, in contrast, were

Page 115: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession04-Plant-oomycete/fungalinteractions

113

Poster 04

detected predominantly at the stage of cyst and germinated cystofP. parasitica,butonlyslightlyinducedintheinfectionprocess.To investigate their role in thepathogenicityofP. parasitica,wesilencedtheexpressionofppxyn1andppxyn2inP. parasiticaandperformed inoculation experiments on Nicotiana benthamiana.It was found that the transformants, which showed reducedexpressionofppxyn1andppxyn2,couldstillinfectplants,althoughtheresultingdiseasesymptomwasonlyslightlyseverecomparedtothatcausedbythewild-typestrain.

PS04-221Formation of highly branched hyphae by Colletotrichum acutatumwithinthefruitcuticlesofCapsicumspp.Chein-YaoLiao1,Miin-HueyLee11DepartmentofPlantPathology,NationalChung-HsingUniversity,Taichung,[email protected] pathogenic fungi have evolved sophisticated strategies topenetrateplantcellwalls.Colletotrichumspeciesarewellknownfortheirabilitytopenetratethehostcuticlewithpenetrationpegs.This study reports thatC. acutatum penetrates the cuticle layerofCapsicum spp. fruitsby formingapreviouslyuncharacterizedstructure from appressoria. This unusual structure was localizedin the cuticle layer. The structure, formed within 24 h post-inoculation (hpi), is highly branched, well-differentiated hyphawhichpenetratesintoepidermalcellat72hpi.Thenovelstructure,composedofabnormallythickwalls(about250nm),oftenformedmultiple branches in the affected chili pepper. This dendroidstructure, likely requiredforpenetration,was formedexclusivelyin the cuticle layer of chili pepper fruits andnot foundwhenC. acutatumwasinoculatedonpepperpetals,mangoleaves,orfruitsof tomato and eggplant.C. acutatum produced similar dendroidstructurewithin the resistantchilipepper fruitbuteventually thestructure turned into dark brown and no further infection in theepidermal cell occurred, implicating the presence of inhibitorsfor the formation and development of the dendroid penetrationstructure in the resistant line.Taken together, the results indicatethat a unique structure was formed by C. acutatum during thepenetrationofchilipepperfruit.

PS04-222Functionalanalysisofanoxidativestress-regulatedgene MfAP1fromMonilinia fructicolaPei-LingYu1,Pei-YinChen1,Miin-HueyLee11DepartmentofPlantPathology,NationalChungHsingUniversity,Taichung,[email protected] control in fungal development and pathogenicity is anemergingareaofresearchinplant-microbeinteractions.Thefungalpathogen Monilinia fructicola causes brown rot blossom blightand fruit rot in many species of Prunus and remains quiescentonstageIIfruit,whichcontainhighlevelsofchlorogenicacid,aquinateesterofcaffeicacid(CA).Ourpreviousstudyhasshownthat the influence ofCA onM. fructicola virulence is related toredox status and the yeastAP-1-like transcription factor (YAP1)maybeinvolvedintheredoxregulation.YAP1isactivatedunderoxidativestressandhasacrucialroleinfungaldevelopmentandpathogenicityinmanyfungalpathogens.WehaveclonedaYAP1gene from M. fructicola (MfAP1) and have found that MfAP1expression is regulated by CA and H2O2. To investigate thefunctionoftheMfAP1inthedevelopmentandpathogenicityofM. fructicola,MfAP1 silencedstrainswerecreatedusingasilencingvector pSilent- Dual1 carrying a 500-bpMfAP1 fragment. FourMfAP1 silenced strains were obtained. These MfAP1 silencedmutantsdisplayedhighersensitivitytoH2O2thanwildtypestrain.FungalpathogenicityassayrevealsthatMfAP1isrequiredforthefull virulence ofM. fructicola. However, theseMfAP1 silencedstrainswereheterokaryoticandareunabletomaintainthesilencingconstruct in their genome consistently. Therefore, functional

analysesofMfAP1usingMfAP1overexpressionstrainsareunderwayandtheresultswillbepresentedanddiscussed.

PS04-223Induction and regulation of highly branched penetrationstructureofColletotrichum acutatumMei-YaChen1,Miin-HueyLee21DepartmentofPlantPathology,NationalChungHsingUniversity,Taichung,Taiwan,[email protected] pepper anthracnose caused by Colletotrichum acutatumresults in severe losses in yield and fruit quality inTaiwan.Ourpreviousstudy(Liaoetal.,2011,PlantPathology)hasshownthatC. acutatum penetrates the cuticle layer ofCapsicum spp. fruitsbyformingahighlybranchedpenetrationstructure(HBPS)whichwas not previously characterized in any Colletotrichum-plantinteractions. Here we reported the results on the induction andregulation of HBPS. Pepper fruits cuticle layer PC1, PC2, PC3andPC4wereisolated.C. acuttaumformsthehighestfrequencyofHBPSinPC2.Therefore,PC2wasusedtostudyHBPSinductionandregulation.Environmentalfactorshavebeenshowntoregulatehyphal branching in Neurospora crassa. Our Data showed thatHBPS formation can be regulated by light, temperature andosmotic stress. Light has highly significant impact on HBPSformation,thelongerexposuretimethelowerproportionofHBPSformation. Signal transduction pathwayswhichmaybe involvedin HBPS formation, including cAMP dependent protein kinasenA, calicium/calmodulin, MAP kinase pathway, were studiedusing pharmacological effectors. HBPS formation was found tobeinhibitedbythestimulatorsofcAMPdependentproteinkinaseAandbytheinhibitorsofphospholipaseCandMAPkinase.TheimbalanceofcellularcalciumlevelseemsalsohavearoleonHBPSformation.

PS04-224Heterochromatic marks regulate secondary metabolitebiosynthesisinEpichloe festucaeandthesymbioticinteractionofthisfungalendophytewithperennialryegrassTetsuyaChujo1,BarryScott11InstituteofMolecularBioSciences,MasseyUniversity,PalmerstonNorth,[email protected] fungal endophyte Epichloe festucae systemically colonizesperennial ryegrass (Lolium perenne), and produces a range ofsecondary metabolites, including lolitrems, that protect the hostfrommammalianherbivory.Wehaveshownthatthetenltmgenesrequiredforlolitrembiosynthesisarenotexpressedinculturebuthighly expressed in planta. Recentwork showed that disruptionofgenesencodingeitherheterochromatinprotein-1(HepA)ortheH3K9 methyltransferase (ClrD) in Aspergillus nidulans resultedin enhanced expression of secondary metabolite gene clusters,demonstrating that heterochromatic marks are involved in therepressionoftheseclusters.Thus,weproposethatthethreecloselylinkedE. festucae ltm gene clusters have a repressive chromatinstructure in culture, and chromatin remodeling is required foractivation in planta.To test this hypothesiswe have deleted thehepA and clrD homologues from E. festucae by targeted genereplacement. Deletion of hepA resulted in a slight reduction incultureradialgrowthwhereasdeletionofclrDresultedinaseverereduction.ExpressionlevelsofltmM(cluster1)andltmP(cluster2),asmeasuredbyqRT-PCR,increasedintheδhepAmutantgrowninadefinedmedium.Inaddition,theδhepAmutanthasadramatichostinteractionphenotype,inducingseverestuntingandprematuresenescenceoftheryegrasshost.Introductionofawild-typealleleof hepA complemented both δhepA mutant phenotypes. Theseresults suggest thatheterochromaticmarks regulateboth lolitremgene expression and the mutualistic symbiotic interaction of E. festucaewithitshostperennialryegrass.PhenotypeanalysisoftheδclrDmutantisinprogress.

Page 116: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession04-Plant-oomycete/fungalinteractions

114

Post

er 0

4

PS04-225Thedirectprotein-proteininteractionresultsinthearmsraceco-evolutionbetweenMagnaporthe oryzae AVR-PikandricePikHiroyukiKanzaki1, KentaroYoshida1,2, Hiromasa Saitoh1,AkikoHirabuchi1,LudovicAlaux3,4,ElisabethFournier3,DidierTharreau4,RyoheiTerauchi11IwateBiotechnologyResearchCenter,2TheSainsburyLaboratory,JohnInnesCenter,3UMR-BGPI,INRA,4UMR-BGPI,[email protected],antagonisticinteractionsimposestrongreciprocalselectiononeachorganism,leadingtothedevelopmentofarmsraceevolutionarydynamics.However,studiesonspecificrecognition and co-evolution between resistance (R-) gene andavirulence(AVR-)genearestilllimited.HereweshowthatAVR-PikofMagnaporthe oryzae, thericeblastpathogen,andcognatericeR-genePikexhibithighlevelsofDNApolymorphismscausingaminoacidchanges.WefoundatightrecognitionspecificityofAVR-PikallelesbydifferentPikalleles.PikiscomposedoftwokindsofCC-NBS-LRR,Pik1andPik2.WefoundthatAVR-Pikphysicallyinteractswith theN-terminalcoiled-coildomainofPik1 inyeast2-hybrid assay as well as in in-planta co-immunoprecipitationassay. Furthermore, this binding specificity corresponds to therecognition specificity betweenAVR-Pik and Pik alleles. Thesedatasuggestthatthedirectprotein-proteininteractionresultsinthearmsraceco-evolutionbetweenAVR-PikandPik.

PS04-226ArabidopsisWRKY18-andWRKY40-regulatedhostresponsesinplantimmunityRainer P. Birkenbihl1, Moritz Schoen1, Charlotte Roth2, ArminToeller1,ImreE.Somssich11Plant Microbe Interactions, Max Planck Institute for PlantBreedingResearch,Cologne,Germany,2Dept.PlantCellBiology,Georg-AugustUniversityGoettigen,[email protected] reprogramming represents a vital componentof the overall host defense machinery triggered in response tophytopathogenchallenge.Recently,weshowedthatsimultaneousmutationoftwoWRKY-typetranscriptionfactors,WRKY18andWRKY40, renderedotherwise susceptiblewild typeArabidopsisplantsresistanttowardsthebiotrophicpowderymildewpathogenGolovinomyces orontii. This resistance was accompanied by animbalance in JA/SA signaling, exaggerated expression of certaindefensegenes,andelevatedcamalexin levels (Pandeyetal.,TPJ64, 912, 2010). Our current studies are focused on determiningthe signaling pathways in which WRKY18 and WRKY40 act,andinidentifyingdirecttargetsofthesetwotranscriptionfactors.DatawillbepresentedshowingthatSAisessentialforresistancetowards G. orontii in the wrky18 wrky40 background but thatadditional biochemical pathways are also required. Moreover,whereas WRKY18 and WRKY40 act as negative regulatorsofbasaldefense towardsG. orontii this isnot the case forothertested powdery mildews. Thus, their loss-of-functions do notconfer broad-spectrum resistance towards thesepowderymildewfungi. Interestingly,WRKY18andWRKY40alsoactaspositiveregulators of RPS4-mediated resistance as wrky18 wrky40double mutants were found to be strongly susceptible towardsPseudomonas syringaeDC3000bacteriaexpressing theavrRPS4effectorgene.Thisresponseappearstobehighlyspecificsinceitwasnotobservedwithbacteriaexpressingotheravrgenes.

PS04-227Necrosis and ethylene-inducing peptide-like proteins of theobligatebiotrophicoomyceteHyaloperonospora arabidopsidis;ContradictioinTerminis?StanOome1,AdrianaCabral1,GuidovandenAckerveken11Plant-Microbe Interactions, Department of Biology, Utrecht

University,Utrecht,TheNetherlandss.oome@uu.nlTheobligatebiotrophicpathogenHyaloperonospora arabidopsidisexpressesseveralNecrosisandethylene-inducingpeptide(Nep1)-Like Proteins (NLPs) during infection ofArabidopsis. In theH. arabidopsidis genome, we found that 12 of a total of 14 NLPgenes form a species-specific clusterwhen comparedwith otheroomyceteNLPgenes,suggestingthisclassofeffectorshasrecentlyexpanded.As NLPs are best known for their phytotoxicity it issurprisingthatthisobligatebiotrophicpathogenhasanexpandedNLPgenefamily.ContrarytomostofthestudiedNLPgenes,noneof theHaNLPs causes necrosiswhen expressed in planta. EvenHaNLP3,whichismostsimilartonecrosis-inducingNLPproteinsof other oomycetes andwhich contains all amino acids that arecritical for necrosis-inducing activity, did not induce necrosis.ChimerasconstructedbetweenHaNLP3andthenecrosis-inducingPsojNIPproteindemonstratedthatmostoftheHaNLP3proteinisfunctionallyequivalenttoPsojNIP,exceptforanexposeddomainthatprevents the inductionofnecrosis.Theearlyexpressionandspecies-specificexpansionoftheHaNLPgenesissuggestiveofanalternativefunctionofnoncytolyticNLPproteinsduringbiotrophicinfection of plants.Wewill report on our advances in analyzingArabidopsislinesexpressingdifferentHaNLPs.AstheArabidopsisplantsconstutitivelyexpressingHaNLPsshowaseverephenotype,wehavealsocreatedinducibleHaNLP3linestostudytheeffectsoftheseproteinsonhostcellprocesses.

PS04-228Verticillium manipulates RNA silencing to suppress hostimmunityMireille van Damme1, Emilie Fradin1, Ursula Ellendorff1, BartThomma11Phytopathology,WUR,Wageningen,[email protected] is the regulationofgeneexpressionbasedon theaccumulationofsequence-specificsmallRNAs(sRNAs)thattargetmessengerRNAs(mRNAs)resultingintheirdegradation.Severalgenes controlling RNA silencing in plants have been identified.TheplantRNAsilencingpathwaymediatesplantimmunityagainstvirusesandbacteria.PreviousdatafromourlaboratoryindicatethatfungusVerticillium dahliae also targets the plant RNA silencingpathway,presumablybysecretedeffectors,tosuppresshostdefence(1).HowVerticilliummanipulates theRNAsilencingpathway tosuppresshostimmunityisstillunknown.WeareusingthemodelplantArabidopsisthatisahostofVerticilliumtounraveltheroleofRNAsilencinginVerticilliumwiltdisease.WeplantoidentifythesecretedVerticilliumeffectorsandtheArabidopsiscomponentsthatplayaroleinRNAsilencingandareessentialforVerticilliumwiltdisease.WearecurrentlyidentifyingVerticilliumregulatedmRNAsandsRNAsof thehost,andVerticilliumeffectors that targethostRNA silencing by combining transcriptomics, sRNA profiling,and effector screening. The obtained results will be presented.(1)EllendorffU,FradinEF,deJongeR,ThommaBP.(2009)RNAsilencing is required forArabidopsisdefenceagainstVerticilliumwiltdisease.J Exp Bot.;60(2):591-602.

PS04-229COM1encodesanovelcomponentofthespliceosometoregulateconidiumdevelopmentandvirulenceinMagnaporthe oryzaeJunYang1,2,JingSun1,LinganKong1,DaweiWang1,YushanZuo1,Xiaolin Chen1, Shengli Ding3, Wensheng Zhao1, Jin-Rong Xu3,XingzhongLiu2,You-LiangPeng11State Key Laboratory of Agrobiotechnology and MOA KeyLaboratory of Plant Pathology, China Agricultural University,Beijing 100193, China, 2State Key Laboratory of Mycology,InstituteofMicrobiology,ChineseAcademyofSciences,Beijing100101,China,3DepartmentofBotanyandPlantPathology,PurdueUniversity,WestLafayette,IN47907,[email protected]

Page 117: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession04-Plant-oomycete/fungalinteractions

115

Poster 04

Rice blast caused by Magnaporthe oryzae is one of the mostdestructive diseases of rice worldwide. The rice blast fungusproduces pyriform conidia as the primary inocula and the mainsource for dissemination in the field.We previously identified anovel geneCOM1 that is required formaintaining the conidiummorphology and full virulence of the rice blast fungus.We hereshowthatCOM1encodesanovelcomponentofthespliceosome.Com1isanuclearproteincontainingtwoC-terminalregions,onelysine-proline-rich region and two nuclear localization signalsthatarerequiredfor functions.With thepull-downtechnique,49nuclear proteins were identified to co-immunoprecipitate withCom1-3FLAGfusion.Twenty-fiveoftheproteinsshowedhighestsimilaritytocomponentsofthespliceosome.Notably,Com1directlyinteractwiththreeSmsnRNPproteins,andtheC-terminalregionswere essential for the interactions. Transcriptome comparisonshowed that alternative splicings of pre-mRNAs for hundreds ofgeneswasimpairedintheδcom1mutant.Severalofthegenesweredemonstrated to be important for conidiogenesis, the conidiummorphology and plant infection. Similarly,FgCOM1, theCOM1orthologinFusarium graminearumisalsorequiredforthenormalconidiummorphologyandfullvirulencetowardwheatandcouldrescuethedefectsoftheδcom1mutant.TheseresultsthusindicatethatCom1anditsorthologsinfilamentousascomycetousfungiareanimportantcomponentofthespliceosomeforaccuratesplicing.

PS04-230AT-boxasanovelcis-elementforabHLHproteinandaJAZproteintoregulateexpressionofricedefensegenesWenshengZhao1,XinranXu1,YanpingLi1,WeiZhang1,JinguangHuang1,JunFan1,MinfengXue1,ZejianGuo2,You-LiangPeng11StateKeyLaboratory ofAgrobiotechnology andDepartment ofPlant Pathology, ChinaAgricultural University, Beijing 100193,China, 2Department of Plant Pathology, China AgriculturalUniversity,Beijing100193,[email protected] of cis-elements in a gene promoter and theircorresponding binding proteins contributes to understandingregulatory mechanisms of gene expression. We isolated a ricegenenamedOsPinA,whichcouldbe induced inrice in responseto the infection ofMagnaporthe oryzae and exogenous salicylicacidorjasmonicacid.Multiplecis-elementsinthegenepromoterwere identifiedtobe importantfor theresponse to thebioticandabioticstimuli,includinga50-bpfragment,whichwaspositivelyinvolved in the induction.With the one hybrid screening usingthis 50-bp fragment as bait, two proteins, named OsbHLH140and OsJAZ11, respectively, were isolated and confirmed to beable to bind to the fragment.Deletion analysis revealed a 10-bpmotifinthefragmentdesignatedasAT-boxthatwasessentialforthebinding.BioinformaticsanalysisandqRT-PCRassaysrevealedthat118ricegeneshave theAT-boxwithin1-kbupstreamof theprotein translation start site andmost of them could be inducedtogetherwithOsbHLH140 by infection of the rice blast fungus.Furthermore, OsbHLH140 and OsJAZ11 were demonstrated tobe nuclear proteins, and could interact with each other in yeastand tobacco cells. Besides, OsbHLH140was confirmed to havetranscription activation activity. These results indicate that theAT-box is a novel cis-element forOsbHLH140 andOsJAZ11 toregulateexpressionofricedefensegenes.

PS04-231MoPacCactsasatranscriptionrepressorandanactivatorinMagnaporthe oryzaeviadistinctprocessedformsXiaolinChen1,YangJun1,DaweiWang1,JingguangHuang1,JingSun1,MinfengXue1,WenshengZhao1,You-LiangPeng11State Key Laboratory of Agrobiotechnology and MOA KeyLaboratory of Plant Pathology, China Agricultural University,Beijing100193,[email protected]

PacC pathway named after the PacC transcription factor is aconserved pH signaling pathway that allows fungi to survive indifferent pH environment. In this study, we show that deletionofMoPacC, the PacC ortholog ofMagnaporthe oryzae, resultedin compact anddarker colony, less conidiation and less virulent,notablyarrestedbiotrophicgrowth.MoPacCexistsin vivoinfourforms, MoPacC559, the full-length form with three truncatedforms, MoPacC266, MoPacC222 andMoPacC80. Under acidic andneutral pH,MoPacC existsmainly asMoPacC559 andMoPacC80thatwere localized in cytoplasm. In contrast, under alkalinepH,MoPacC266 andMoPacC222 occurred and localized innucleiwithsomeamountofMoPacC559andMoPacC80.ExceptMoPacC80,alltheotherthreeformscouldbindtothecis-element5’-GCCAAG-3’.Bioinformatics analysis revealed that thousands of genes in thericeblast fungusgenomehave thecis-element in theirpromoter.Microarray analysis showed that 156 and190of thegeneswereup or down regulated, respectively, in the MoPacC deletionmutant, suggesting thatMoPacC is a transcription repressor anda transcription activator. To determine which form is responsefor the transcription activation and the transcription repression,transcription activation assay was performed. Only MoPacC222was confirmed to exhibit the transcription activation activity.Besides, four transcription factorsweredemonstrated to functiondownstream of the MoPacC to control the vegetative hyphalgrowth, vegetativemelanin biosynthesis and conidiation and thebiotrophicgrowth.

PS04-232Fungal smallRNAsactaseffectors to suppresshost immuneresponsesArneWeiberg1,MingWang1,HailingJin11Department of Plant Pathology & Microbiology, Institute forIntegrativeGenomeBiology,UniversityofCalifornia,Riverside,CA,[email protected] (sRNAs) are a classof short non-coding regulatorsthat mediate gene silencing in a sequence-specific manner byloading intoArgonaute protein (AGO) to target complementarygenes.Infungi,althoughRNAihasbeenappliedasagenetictooltosuppresstargetgeneexpression,thenaturalroleofendogenoussRNAs remains enigmatic. Studies in the fission yeast andNeurosporacrassarevealedfunctionsofsRNAsingenomedefense,heterochromatin formation, andgene regulation.However, it hasnever been shown that sRNAs orRNAi are directly involved inpathogenicity.We have identified several sRNAs of Botrytiscinerea that can potentially target important regulatory genesin plant hosts, includingArabidopsis and tomato.Amajority ofthesepredictedtargetsweredown-regulatedbyBotrytisinfection.Transient co-expressionofBotrytis sRNAsandhost targetswithwild type ormutated target sites confirmed that the suppressionof the targets was Botrytis sRNA-specific. Transgenic plantsexpressingBotrytissRNAsdown-regulatethesetargetsanddisplayenhancedsusceptibility.Wehypothesizethatthesefungal-derivedsRNAssilencehosttargetsbyassociatingwithhostAGOs.IntheArabidopsis AGO1 immunoprecipitation fraction, we detecteda21ntBotrytissRNAthattargetstwohostMAPKgenes,whichsupportsourhypothesisthatBotrytissRNAsfunctionthroughhostRISCduringinfection.Pathogensdelivereffectorproteinsintohostcelltohamperhostimmuneresponsesandachievepathogenicity.Here,wediscoveredthatsomefungalsRNAsfunctionaseffectorsto silence regulatory genes of host immunity and contribute tofungalpathogenicity.

PS04-233FunctionalanalysisofAsiansoybeanrustresistancepathwaysKerry F. Pedley1, Ajay K. Pandey2, Chunling Yang2, ChunquanZhang2, Mandy D. Kendrick2, Michelle A. Graham1, YeunsookLee2,JohnH.Hill2,StevenA.Whitham2

1USDA-AgriculturalResearchService,[email protected]

Page 118: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession04-Plant-oomycete/fungalinteractions

116

Post

er 0

4

Historically, thecapacity toperformhigh-throughputgeneticandmolecular analyses of the crop species Glycine max (soybean)hasbeenhinderedby the lackof genomic information and toolstoassessgenefunction.Thedevelopmentofavirus-inducedgenesilencing (VIGS) system for use in soybean coupled with thecompletedgenomesequencehasmade itpossible to functionallyanalyzegenesinvolvedinawidearrayofphysiologicalresponses,includingdefense.Weareinterestedinthesignalingpathwaysthatenable resistant soybean lines to defend themselves against thehighly-virulentobligatebiotrophicfungusPhakopsora pachyrhizi,thecausalagentofAsiansoybeanrust.Todate,fivegenes,includingRpp2,thatconferresistancetospecificisolatesofP. pachyrhizihavebeenidentified.Rpp2-mediatedresistancelimitsthegrowthofthepathogenand ischaracterizedby theformationof reddish-brownlesionsontheleafsurfaceandlimitedurediniaproduction.UsingVIGSwescreened140candidategenestoidentifythosethatplayaroleinRpp2-mediatedresistancetowardP. pachyrhizi.Candidategenes included putative orthologs to known defense-signalinggenes, transcription factors, and genes previously found to beupregulatedduringtheRpp2resistanceresponse.Weidentified11genesthatcompromisedRpp2-mediatedresistancewhensilenced,includingGmEDS1,GmNPR1,GmPAD4,GmPAL1,fivepredictedtranscription factors, anO-methyl transferase, and a cytochromeP450monooxygenase.Together, our results provide new insightintothesignalingandbiochemicalpathwaysrequiredforresistanceagainstP. pachyrhizi.We are currently assessing the function ofthese11genesinsoybeanaccessionscontainingtheotherknownRppgenes.

PS04-234AcomplexgeneticsystemunderliesthewheatpowderymildewPm3 - AvrPm3interactionFrancisParlange1,RoiBenDavid1,DanielStirnweis1,TinaJordan1,LisaHaldemann1,SimoneOberhaensli1,ThomasWicker1,GabrieleBuesing1,EtienneClaverie1,BeatKeller11InstituteofPlantBiology,UniversityofZurich,Zurich,[email protected] are studying the interaction of the wheat Pm3 resistancealleleswith thecorrespondingAvr genes in thepowderymildew(Blumeria graminisf.sp.tritici)pathogen.Whileonthehostside,asetof17 functionalPm3 alleleshasbeenmolecularly isolated,none of the corresponding Avr genes has yet been cloned. Wehave constructed two genetic mapping populations for a map-basedcloningapproachof severalAvrPm3 genes.Bothmappingpopulations share a common parent, isolate 96224, which wassequencedby454andacompletephysicalmapconsistingofBACclones is available.Mapping results for severalAvr genes revealahighlycomplexgeneticmechanism.ThefiveanalyzedAvrPm3genesbehavegeneticallydifferent,althoughtherearegeneticlociwhich are common to avirulence of severalAvrPm3 genes. TheAvrPm3-f gene segregated as a single locus in the firstmappingpopulationandwaspreviouslylocalizedinagenomicintervalof30kb.However,noneoftheAvrPm3-fcandidatesequencescouldbefunctionallyvalidated.Thiscouldbeexplainedwiththerecentlyobtainedmapping resultsof the secondpopulation, showing thattwogenesareinvolvedinAvrPm3-favirulence.Weconcludethatthemechanismofavirulenceismorecomplexthanexpectedbasedonthegene-for-genehypothesisandthatmorethanonegenecanbe required for avirulence.Sequencingof theother twoparentalisolates by Illumina will now allow the development of highthroughput SNP-based genetic maps to perform the map-basedcloningofseverallociandbetterunderstandthemolecularbasisofthesegeneticobservations.

PS04-235IdentificationofgenesrequiredforCf-dependenthypersensitivecelldeathQiu-FangXu1,Wei-ShunCheng1,Shuang-ShengLi1,WenLi1,Zhi-XinZhang1,You-PingXu2,Xue-PingZhou1,3,Xin-ZhongCai1,3

1Institute of Biotechnology, Zhejiang University, 2Center ofAnalysisandmeasurement,ZhejiangUniversity,866YuHangTangRoad, Hangzhou 310058, China, 3Key Laboratory of MolecularBiologyofCropPathogens and Insects,Ministry ofAgriculture,866YuHangTangRoad,Hangzhou310058,[email protected] of hypersensitive cell death (HCD) regulators isessential to dissect the molecular mechanisms underlying plantdisease resistance. In this study, combined proteomics andRNAinterferinganalyseswereemployedtoidentifygenesrequiredforthe HCD conferred by the tomato resistance geneCf-4 and theCladosporium fulvum avirulence geneAvr4. Forty nine proteinsdifferentially expressed in the tomato seedlings mounting andthosenotmountingtheCf-4/Avr4-dependentHCDwereidentifiedthrough proteomics analyses. Among them were a variety ofdefence-related proteins including a cysteine protease Pip1, anoperative targetofanotherC. fulvumeffectorAvr2.Additionally,glutathione-mediatedantioxidationisamajorresponsetotheCf-4/Avr4-dependentHCD.FunctionalanalysisthroughTobacco rattle virus-induced gene silencing and transient RNAi assays of thechosensixteendifferentiallyexpressedproteinsrevealedthatsevengenes, which encode Pip1 homolog NbPip1, a SIPK typeMAPkinaseNbf4,anasparaginesynthetaseNbAsn,a trypsininhibitorLeMir-like protein NbMir, a small GTP-binding protein, a lateembryogenesis-likeproteinandanASR4-likeprotein,wererequiredfor theCf-4/Avr4-dependentHCD.Furthermore, the former fourgeneswereessential for theCf-9/Avr9-dependentHCD;NbPip1,NbAsn andNbMir but notNbf4 affected a nonadaptive bacterialpathogenXanthomonas oryzae pv. oryzae-inducedHCD as wellinNicotiana benthamiana.Thesedatademonstrate thatPip1andLeMirmayplayageneral role inHCDandplant immunity,andapplicationofcombinedproteomicsandRNAinterferinganalysesisanefficientstrategytoidentifygenesrequiredforHCD,diseaseresistanceandprobablyotherbiologicalprocessesinplants.

PS04-236Innate immunity elicitors from ascomycete Leptosphaeria maculansinduceresistanceinoilseedrapeLenka Burketova1, Miroslava Novakova1,2, Vladimir Sasek1,PhuongKimDinh2,OlgaVelentova21Institute ofExperimentalBotanyASCR, 2Institute [email protected] innate immunity system can be stimulated by variouselicitors,which could be either integral constituents of pathogenbody(PAMPs)orsecretedduringpathogenesisprocess,e.g.toxins,peptides, effector molecules, etc.A number of such compoundsare referred togeneralelicitorsactivatinghostdefenceresponseseffective against the vast majority of invading microbes. OurworkwasaimedatsearchingforelicitorsproducedbyascomyceteLeptosphaeria maculans as well as for possible PAMPs derivedfrom cell walls of this pathogen, inducing resistance in oilseedrape. L. maculans was cultivated in vitro in a liquid medium.Both cultivation medium and mycelium was used as a sourceof elicitors. Application of the medium on cotyledons elevatedtranscriptional level of genes associatedwith the biosynthesis ofhormones implicated in defence signalling (ICS1, ACS2, AOS)that were previously found expressed in L. maculans infectedplants,aswellasinducedresistancetoL. maculansoncotyledons.Following fractionation of the medium using IEF indicates thehighestabundanceofproteinaceouselicitorsinrangepH4.2-4.4.PossiblePAMPswereseparatedfromL. maculansmyceliumusinghomogenization,ion-exchangechromatographyandcharacterizedby enzymatic digestion. Mycelial elicitor both increasedexpression of defence genes (PR1, ICS1) and induced resistanceto L. maculans on cotyledons of oilseed rape. Elicitor cleavagebyα/β-glucosidases resulted in a significant decrease in elicitingcapacity,which indicates that the elicitors are prevalently of thepolysaccharidenature.

Page 119: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession04-Plant-oomycete/fungalinteractions

117

Poster 04

PS04-237CharacterizationofanammoniumtransporterPiAMT1fromtherootendophyticsymbiontPiriformospora indicaYiDing11Department ofOrganismic Interaction,MaxPlanck Institute forterrestrialmicrobiology,Marburg,Germanyyi.ding@mpi-marburg.mpg.deNitrogenplaysanimportantroleduringplantcolonizationinbothmutualistic and phytopathogenic fungi. Whereas it is believedthat ammonium is the potential nitrogen source delivered to thehost by the mycorrhizal fungi during symbiosis, ammoniumlimitationhasbeenproposed toactasakeysignal to trigger theinplanta expressionofvirulencegenes inpathogenic fungi.TherootendophytePiriformospora indicadisplaysabiphasiclifestyleduringcolonizationofbarleyrootswithanearlybiotrophicphasefollowedbyacelldeathassociatedphase.Wholegenomeanalysesof P. indica revealed the presence of two different ammoniumtransporters(PiAMT1andPiAMT2).Nosequencesrelatedtonitratetransporters(NRT)couldbefoundinthedraftgenome.PiAMT1provedtobehighlyup-regulatedduringcolonizationofbarleyrootsinplantaunderammoniumlimitationcondition.Weproposethatinresponse to nitrogen starvation PiAMT1 senses the environmentandinducesignalinginthesymbioticinteractionbetweenP. indicaanditsplanthosts.Inordertoprovethishypothesiswehavestartedastudyonclarificationof theammoniumtransporterPiAMT1inP. indica.

PS04-238ACRTS1andACRTS2genesrequiredforbiosynthesisofhost-selectiveACR-toxinintheroughlemonpathotypeofAlternaria alternataYurikoIzumi1,KouheiOhtani1,YokoMiyamoto1,AkiraMasunaka1,Takeshi Fukumoto1, Kenji Gomi1, Yasuomi Tada1, KazuyaIchimura1,KazuyaAkimitsu11Laboratory of Plant Pathology, Faculty ofAgriculture, KagawaUniversitykazuya@ag.kagawa-u.ac.jpHost-selectiveACR-toxinisproducedbytheroughlemonpathtypeofAlternaria alternata and the HST-producing pathogen causesAlternarialeafspotdiseasetocommonrootstocksofroughlemonandahybridofroughlemonandacidmandarin,rangpurlime.ThechemicalstructureofthemajorformofACR-toxin(ACR-toxinI)isa19carbonpolyalcoholwithaα-dihydropyronering,astructuralfeatureoftypicalpolyketides.WeidentifiedACR-toxinbiosynthesisgenecluster(ACRT)carryinginasinglesmallchromosomewiththesizeof1.5MbinthegenomeoftheroughlemonpathotypeofA. alternata.Usingmasssequencing,weisolatedtwogenes;onenamedACRTS1encodingaputativehydroxylaseandothernamedACRTS2 encoding a putative polyketide synthase. FunctionalroleofbothACRTS1andACRTS2 inACR-toxinproductionwasexaminedbytargetgenedisruptionsandRNAsilencing.Althoughbothgeneshavemultipleparalogs,oneortwocopydisruptionofthesegenesreducedtranscriptionandACR-toxinproduction,andRNA silencing-oriented knock-down mutants did not show anytranscriptofthesegenes,ACR-toxinproductionandpathogenicitytoroughlemon.TheseresultsindicatedthatACRTS1andACRTS2are the essential genes forACR-toxin biosynthesis in the roughlemonpathotypeofA. alternataandisrequiredforfullvirulenceofthisfungus.

PS04-239GeneticcharacterizationofanovelinhibitorgeneinCapsicum annuum that represses host specific disease resistance forPhytophthora capsiciGregoryP.Reeves1,AriadnaL.Monroy-Barbosa1,PaulW.Bosland11Department of Plant andEnvironmental Sciences,NewMexicoStateUniversity,LasCruces,NewMexico,USA

[email protected](I)foundintheCapsicum annuumaccessionNMCA10399inhibitsresistancetoPhytophthora capsici.When P. capsici resistant material was hybridized withNMCA10399, the resultant F1 populationwas 100% susceptibletoP. capsiciforbothrootrotandfoliarblightdiseasesyndromes.The F2 population displayed a 3:13 (resistant:susceptible) ratio.Thebackcrosspopulationusing the resistantparentdisplayedan1:1 ratio, and a backcross population with NMCA10399 as thebackcross parent displayed 100% susceptibility. These resultsdemonstrate the presence of a single dominant inhibitor geneaffecting the expression of P. capsici resistance in C. annuum.Moreover, NMCA10399 was tested for its effect on non-host resistance against different Phytophthora species. WhenNMCA10399 was challenged against seven Phytophthoraspecies, the I genewasonly functional againstP. capsici.TheseresultsindicatethatIisinterferingwiththeexpressionofspecificresistance, but not the expression of nonhost resistance. Furtherstudy of I should reveal the molecular characteristics of thisphenomenonthat inhibits resistanceagainstP. capsici.ThestudyofNMCA10399atamolecularlevelwillprovidenewinsightsintotheC. annuum-P. capsicipathosystemandprovideinformationtoexplaintheresistance(defense)mechanism,whichcouldleadtoagreaterunderstandingofhostresistance.

PS04-240The wound induced AP2/ERF domain transcription factorWRERF50 confers resistance to necrotrophic fungi,independent of salicylate, ethylene and jasmonate signalingpathwaysinArabidopsisChenggangWang1,JunyanHuang1,RongZhou1,ShengyiLiu11OilCropsResearchInstituteofCAAS,KeyLaboratoryofBiologyandGenetic ImprovementofOilCrops,MinistryofAgriculture,Wuhan430062,[email protected] pathogens are an agriculturally important group ofdestructive pathogens. One of them is Sclerotinia sclerotiorum,whichattacksmorethan400plantspeciesandisoneofthemostimportantdiseasesinoilcropsintheworld,S. sclerotiorumisalsothemajordiseasesofoilseedrapeinChina.ButlittleisknownaboutmolecularmechanismsofhostresistancetoS. sclerotiorum,whichthuslimiteddevelopmentofresistanceimprovementstrategy.WeidentifiedWRERF50 gene from cDNA microarray of B. napusinoculatedwithS. sclerotiorum.ToclarifyregulationofWRERF50gene expression in response to S. sclerotiorum infection, wild-typeArabidopsiswere treatedwithwoundingandplanthormoneethephon,MeJAandSAandthenWRERF50expressionofdifferenttreatmentanddifferenttimepointswereanalyzedbyquantitativeRT-PCR; in addition,we also detectedWRERF50 expression inthreemutantbackgrounds(npr1-1,coi1-1andein2-1).TheresultssuggestedthatexpressionofWRERF50wasinducedbywounding,independent of ET, JA, and SA signaling pathway.Consistently,Over-expressionofWRERF50activatesexpressionofseveralPRgenesPDF1.2,ChiBandPR-2, increasedplantresistanceagainstnecrotrophic fungi Botrys cinerea and Sclerotinia sclerotiorumwhile WRERF50-silencing plants down-regulated expression ofseveralPRgenesanddecreasedresistancetobothpathogens.

PS04-241ProteomicsandphosphoproteomicsofPhytophthora infestanslifestagesSvante Resjo1, Ashfaq Ali1, Marit Lenman1, Fredrik Levander2,MarianneSandin2,ErikAndreasson11Department of Plant Protection Biology, Swedish Universityof Agricultural Sciences, Alnarp, Sweden, 2Department ofImmunotechnology,LundUniversity,Lund,[email protected] infestans is a devastating plant pathogen that can

Page 120: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession04-Plant-oomycete/fungalinteractions

118

Post

er 0

4

causeimmensedamagetoapotatofieldinaweek.ThecostofP. infestanscontrolanddamagesisestimatedto900millionEuroperyearintheEU.AnimprovedunderstandingofthemechanismofinfectionofP. infestansonamolecularlevelwouldbeusefulfordevelopingnovelmethodsofpathogencontrolmeasures.WehaveusedproteomicstostudyP. infestanslifestagesinordertoidentifyuniqueproteinsandproteinphosphorylationevents.Previously,amicroarrayapproachhasbeenusedtostudymRNAlevelsduringvariouslifestages.However,sincethecorrelationbetweenmRNAandprotein levels israther low,with levelsofmRNAexplainingapproximately 40% of the variation in protein levels, it is ofinterest to studyprotein levelsdirectly.Toourknowledge this isthe first large scale proteomics and phosphoproteomics study ofP. infestans. Using qualitative and quantitative proteomics, wehave identifiedmore than4000P. infestansphosphopeptidesand2000phosphorylationsites.Amongtheidentifiedphosphoproteinsare a number of proteins involved in infection such asmembersof theCRN-familyof effectorproteins, notpreviouslydescribedas phosphoproteins. From the phosphosites, we have identifiedphosphorylationmotifs,someofwhicharepreviouslyundescribed.Inaddition,wehaveacquiredquantitativedatafor1500proteinsandmore than4000phosphopeptides in thedifferent life stages.Among these are anumberofproteins specific for life stagesofparticularinterestfortheinfectionprocess.

PS04-242EffectofMethyljasmonateonthesuppressionofgraymoulddiseaseandonPALdefensegeneexpressioninBotrytis cinereainfectedgrapevineberriesDeena Errampalli1,Amir Sharon2, Paul H. Goodwin3, EmilyA.Bordeleau1,KarinE.Schneider11Agriculture andAgri-Food Canada, Vineland Station, Ontario,,22Department of Molecular Biology and Ecology of Plants, TelAvivUniversity,TelAviv69978Israel,33SchoolofEnvironmentalSciences, University of Guelph, Guelph, Ontario, Canada [email protected] cinerea, a necrotrophic pathogen, causes gray mouldin grapevine (Vitis vinifera). Methyl jasmonate (MeJA) occursnaturally inhost plant tissues andhas signalling role in elicitinginduced systemic resistance (ISR) against disease. This studyinvestigatestheeffectofexogenousMeJA,onthesuppressionofpostharvestgraymould ingreengrapecultivarsChardonnayandVidalandinredgrapecultivarsMerlotandCabernetSauvignon.Thegrapebunches(15grapes/bunchandthreereplicatetreatments)werespray-treatedwith1mMofMeJA,airdriedfor3hours.ThreedaysaftertheMeJAtreatment,eachofthegrapeberryinthebunchwaswoundedwith a needle and inoculatedwith 1 x 10 4sporesofB. cinereaB05.10andincubatedinthedarkat20ºCand85%RH.ControltreatmentdidnotreceiveMeJA.Thelesiondiameterwasrecordedat7and14daysafterinoculation.Theelicitor,MeJAinduceddefenseresponsebysignificantlysuppressingtheBotrytisgray mould disease in all the grape cultivars tested. Defenseresponse,expressedasPALgene,ingrapevineberriestowardsB. cinerea,wasstudied.MaximumlevelsofinductionofPALgenewasobservedat48hpiinB. cinereainfected,MeJAtreated,orMeJAtreated andB. cinerea infected grapevine berries.A significantlylowerlevelofPALgeneexpressedinMeJAtreatedandB. cinereainfectedgrapevineberries,ascomparedtoB. cinereaonlyinfectedberries. Postharvest treatment with methyl jasmonate may beincorporated as a potential tool in the grape postharvest diseasemanagementstrategies.

PS04-243Loss of function of ethylene receptor ETR1 in ArabidopsisreducesFusarium oxysporuminfectionIakovosS.Pantelides1,SotiriosE.Tjamos2,ModestosKargakis2,SofiaPappa2,EleftheriosC.Tjamos2,EpaminondasJ.Paplomatas21Cyprus University of Technology, Department of Agricultural,Sciences, Biotechnology and Food Science, Lemesos, Cyprus.,

2AgriculturalUniversityofAthens,[email protected],causedbyFusarium oxysporum,isacommondisease of awide range of economically important crops that isdifficulttocontrol,resultinginsevereyieldlosses.TheresponsesofArabidopsis thalianamutantplantsimpairedinknownpathogenresponsepathwayswereusedtoexplorethecomponentsindefenceagainst F. oxysporum. Pathogenicity experiments of the mutantlines with F. oxysporum revealed enhanced resistance in etr1-1[ethylene (ET) receptormutant]plants,butnot insalicylicacid-,jasmonic acid or otherET-deficientmutants, indicating a crucialroleofETR1 indefence against thispathogen.Quantificationofthepathogeninplant tissuesbyqPCRrevealed that thedecreasein symptom severity shown inetr1-1 plantswas associatedwithsignificantreductioninthegrowthofthepathogeninthevascularsystemoftheplants,suggestingthatimpairedperceptionofETviaETR1 results in increased disease resistance. Furthermore, geneexpression analysis of several defence genes showed elevatedexpression levels of thePR1, PR2 andPR5 transcripts inetr1-1plantsafterF. oxysporuminoculation.Thelatterindicatesthattheinduceddefenceresponsesofetr1-1plantsaredependentonasetofdefencegenesactivatedonpathogenattack.

PS04-244ControllingPerillarustusingplant-derivedessentialoilsMd. Sarafat Ali1, Vivek Bajpai1, Soon-Gu Lee2, Ajay Sharma1,Kwang-HyunBaek11School of Biotechnology, Yeungnam University, Gyeongsan,Korea, 2School of Bioresource, Andong National University,Andong760-749,[email protected] is used extensively as a leafy vegetable or a cuisine oilduetothedistinctivearomaandpungency.Asthemostdamagingdiseaseloweringthequalityofperillaleaves,perillarusthasbeencontrolled with limited numbers of agrochemicals due to thepropertyofleafyvegetable.Therefore,newmethodsofcontrollingthe disease environmentally friendly are required. Essential oilsarenaturalcompoundsderivedfromplants,whichcontainvolatilearomawithantifungalactivities.Anewlydevelopedmethodwasappliedforhigherextractionoftheessentialoilsfromdriedleavesandfromseeds,andtheextractedessentialoilshadthecontrollingactivity of fungal diseases. Further investigation is undergonefor identifying themechanismofcontrolling the fungaldiseases,includingtheperillarust.

PS04-245Progress on the cloning of ATR2 from Hyaloperonospora arabidopsidisAlisonWoods-Tor1,VolkanCevik2,DavidJ.Studholme3,MahmutTor11National Pollen and Aerobiology Research Unit, Institute ofScienceandtheEnvironment,UniversityofWorcester,Worcester,WR26AJ,UK.,2SchoolofLifeSciences,UniversityofWarwick,Coventry, CV4 7AL, UK, 3Biosciences, College of Life andEnvironmentalSciences,UniversityofExeter,ExeterEX44QD,[email protected] arabidopsidis (Hpa) is a natural biotrophicpathogen ofArabidopsis thaliana and the interaction phenotypewith its host is determined by the pathogen originated ATR(Arabidopsis thalianarecognized)andthecorrespondinghostRPP(recognition ofPeronospora parasitica) genes.ArabidopsisCol-0carriesRPP2AandRPP2B(Sinapidouetal.,2004,PlantJ.38:898-909),whichenablesrecognitionoftheavirulencedeterminantdesignated ATR2Cala2 from Hpa-Cala2. We screened an F2populationgeneratedfromthecrossbetweenHpa-Cala2andHpa-Noks1,whichwaspreviouslyusedtocloneATR5Emoy2(Baileyet al,2011,MPMI24:827-838)and identifiedagenetic interval

Page 121: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession05-Biocontrolinteractions

119

Poster 05

forsemi-dominantATR2Cala2.AphysicalmapofATR2Cala2hasbeen established using the publicly available genomic andBACsequences.We then screened 192 F2 isolates and established aninterval for theATR2Cala2 locus of 188kb. Illumina paired-endsequencing data for Hpa-Cala2 and Hpa-Noks1 were generatedandused to identifypolymorphicmarkers enablingus tonarrowthe intervaldown to40kb.Noneof thegeneswithin the intervalpossessanRXLRmotif,but thereareputative secretedproteins,whichshowgeneduplication.Currently,thecandidatesarebeingtestedandthelatestdatawillbepresented.

PS04-246Rpiblb2-mediated late blight resistance requires SGT1 andsalicylicacid-mediatedsignaling,butnotRAR1orHSP90, inNicotiana benthamianaSang-KeunOh1,3,SophienKamoun4,DoilChoi1,HyeRanKim2,3

1PlantGenomicsandBreedingInstitute,SeoulNationalUniversity,Seoul, Korea, 2Green Bio-Research Center KRIBB, Deajeon,Korea,3CabbageGenomicsAssistedBreedingSupportingCenter,Deajeon,Korea, 4TheSainsburyLaboratory,NorwichNR47UH,[email protected] (Solanum bulbocastanum) Rpiblb2 encodes a proteinwith a putative CC-NBS-LRR (coiled-coil-nucleotide bindingsiteand leucine-richrepeat)motif thatconfersPhytophthora lateblight disease resistance.We examined the components requiredfor Rpiblb2-mediated resistance to P. infestans in Nicotiana benthamiana.Tobacco rattle virus (TRV)-inducedgenesilencing(VIGS) was used to repress candidate genes inN. benthamianaandtoassayagainstP. infestansinfections.NbSGT1wasrequiredfordiseaseresistancetoP. infestansandhypersensitiveresponses(HRs) triggered by coexpression ofAVRblb2 andRpiblb2 inN. benthamiana.RAR1andHSP90didnotaffectdiseaseresistanceorHRsinRpiblb2-transgenicplants.Toelucidatetheroleofsalicylicacid (SA) in Rpiblb2-mediated resistance, we analyzed NahG-transgenic plant responses following P. infestans infection. TheincreasedsusceptibilityoftransgenicRpiblb2plantsontheNahGbackgroundcorrelatedwithreducedSAandSAglucoside levels,but didnot correlatewithHRcell death induction.Furthermore,Rpiblb2-mediated HR cell death was associated with H2O2, butnot SA, accumulation. SA is required for basal defense and forRpiblb2-mediated resistance against P. infestans. These findingsprovideinsightintotherolesofSGT1andSAinRpiblb2-mediateddiseaseresistanceagainstP. infestans.

PS04-247TheroleofVdSteAGproteincoupledpheromonereceptorinvirulenceandbiologyofthevascularwiltpathogenVerticillium dahliaeIoannis A. Stringlis1, Ioanna Kalaitzoglou1, Epaminondas J.Paplomatas1,DimitriosI.Tsitsigiannis11Laboratory of Plant Pathology, Department of Crop Science,AgriculturalUniversityofAthens,Athens,[email protected]. dahliae is a soil-borne funguscausingwiltdiseases in severalhosts. The particular biology of this fungus complicates itstreatmentthroughconventionalmethods.Thus,thestudyofgenesimplicatedininteractionsofthefunguswithitshostsisnecessarytounravelthepathogenicityorvirulencemechanismsandtodiscoverputativenovelmethodstocontrolthedisease.GProtein-CoupledReceptors(GPCRs)representthelargestfamilyoftransmembranereceptors consisting of seven transmembrane domains. GPCRsarecritical factors in regulatingmorphogenesis,defense,mating,infectionandvirulenceinvariousorganisms.ProteinsequencesofcharacterizedGPCRsofthewellstudiedfungiAspergillus nidulansandMagnaporthe griseawereusedforalignmentcomparisonwiththegenomeofV. dahliaeinordertodetectpotentialGPCRs.Afterperformingphylogeneticanalysis,thesequencesofV. dahliaethatshowedhighhomologytotheGPCRsofA. nidulansandM. grisea

wereselectedinordertosortoutthereceptorsbytheirmolecularrelativity. Seven different groups of GPCRs emerged from thephylogeneticanalysis,varyinginsensingdifferentenvironmentalsignals.AgrobacteriummediateddisruptionofapheromoneGPCR(named asVdSteA) in two wild type races, 70V and 25V ofV. dahliaewasperformed inorder tostudy theroleof this receptorin virulence and morphology. 70V and 25V DVdSteA mutantsdisplayedreductioninvirulenceineggplantsandtomatoplantsand70VDVdSteAmutantsexhibitedincreasedmicrosclerotiaformationandconidiationcomparedtotheircorrespondingwildtypes.BothDVdSteA mutants exhibited higher conidial germination ratescomparedtothewildtypes.

PS04-248TheNecrosisandEthyleneinducingProtein(VdNEP)geneisimplicated in symptom inductionby thevascularwilt fungusVerticillium dahliaeAliki K. Tzima1, Epaminondas J. Paplomatas1, Dimitrios I.Tsitsigiannis1,SeogchanKang21LaboratoryofPlantPathology,AgriculturalUniversityofAthens,Athens,Greece,2DepartmentofPlantPathology,ThePennsylvaniaStateUniversity,UniversityPark,PA16802,[email protected](NEP1likeproteins)familythatcontainsnine identifiedgenesandhasbeenshownto induce leafnecrosisand defense responses on several hosts. In the present study,VdNEPwasinvestigatedforitsinvolvementinsymptominductionand virulence of V. dahliae. To this end, the VdNEP gene wasoverexpressedinmultipleV.dahliaestrainsusingtwoconstitutivefungal promoters (Aspergillus nidulans-trpC and Magnaportheoryzae-RP). Increased necrosis symptoms on cotton plants wereobserved when VdNEP was overexpressed in transformants oftheV.dahliae cottondefoliating andnon-defoliatingpathotypes.Similarly, inoculation of tomato plants with the same cottondefoliating transformant overexpressing VdNEP caused stuntingand increased necrosis symptoms. In contrast, the wild typedefoliating strain, which is less virulent on tomato than cotton,causedweakchlorosisandwiltingsymptomsandhyperauxiny,astomatoplantsgrewtallercomparedtouninoculatedcontrolplants.Moreover, transient expression ofVdNEP in tomato plants via aTRV (Tobacco rattle virus)-expression vector ofVdNEP causedtypicalnecrosissymptoms.ResultsofthepresentstudysuggesttheimplicationofVdNEPinsymptominductionbyV.dahliae.

PS05-249InteractionofbiologicalcontrolagentSerratia plymuthicaA30with blackleg causing biovar 3 Dickeya spp. in vitro and in plantaRobertCzajkowski1,2,WaldoJ.deBoer1,JohannesA.vanVeen2,3,JanM.vanderWolf11PlantResearchInternational,WageningenUniversityandResearchCentre, 2Netherlands Institute of Ecology (NIOO-KNAW),Droevendaalsesteeg 10, 6708 PB, The Netherlands, 3Institute ofBiologyLeiden,UniversityofLeiden,Sylviusweg72,2333BE,Leiden,[email protected] Europe pectinolytic bacteria belonging toDickeya spp. causeincreasing losses in (seed) potato production. This is related topresenceofanew,unclassifiedgeneticcladeofbiovar3Dickeyaspp.provisionallynamedD. solani.EffectivestrategiestocontrolDickeyaspp.havenotbeendevelopedyet.Wehavecharacterizeda biological control agent Serratia plymuthica strain A30, anendophyte isolated from rotten potato tuber tissue and activeagainstD. solani.Thisantagonismrequiresdirectcontactbetweenthe control agent and the pathogen and is most likely basedon antibiosis. In a potato slice assay, strainA30 eliminated thepathogenandpreventedpotatotissuemacerationbyD. solaniwheninoculatedindensitiesatleast100timeshigherthanthepathogen.TostudytheinteractionbetweenS. plymuthicaA30andD. solani

Page 122: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession05-Biocontrolinteractions

120

Post

er 0

5

in planta,fluorescentproteintaggedstrains(markedwithGFPandDsRed)wereexploited.Inrepeatedgreenhouseexperiments,atubertreatmentwithstrainA30protectedpotatoplantsagainstD. solanieffectively,resultinginadecreaseintheincidenceofsteminfectionof,onaverage,97%.Usingconfocallaserscanningmicroscopy,theantagonistcouldbetracedinvascularandparenchymatictissueoftubers,rootsandstemsatleasttill28daysafterplanting.ResultsindicatedthatS. plymuthicaA30outcompetedD. solaniin planta.We used random transposon mutagenesis and genome analysisto characterizepotential genesofS. plymuthicaA30 involved inbiocontrol.

PS05-250Consortia of environmentally friendly microbial for controlblast, bacterial leafblight, and sheathblightdiseases on riceplantsNisaRachmaniaMubarik1,YadiSuryadi2,LisdarManafSudirman11Department of Biology, Faculty of Mathematics and NaturalSciences, Bogor Agricultural University, Bogor, Indonesia,2Indonesian Research Center forAgriculture Biotechnology andGeneticResources(BBBiogen),Cimanggu,Bogor,Indonesiamubariknisa@yahoo.comTheuseofbacteriaasbiocontrolagentsenvironmentallyfriendlyneed to be explored. This study was aimed to (a) study theinhibitory ability of eight isolates of biocontrol bacteria againstplant pathogenic bacteriaXanthomonas oryzae pv.oryzae (Xoo)as the cause of bacterial leaf blight disease (BLB),Rhizoctonia solaniasthecauseofsheathblightdisease,andPyricularia oryzaeas the cause of blast disease, (b) determine the effectivenessof the consortia of bacteria to control the diseases, and (c) in vivo application of biocontrol agents formulative composed bytalcum, bentonite, vegetable oil, and suspension as carrier agentoncultivarIR64riceplantsingreenhouse.IsolateswhichusedasbiologicalcontrolarePseudomonas aeruginosaC32aandC32b,P. fluorescensPf,Serratia marcescensE31,Bacillussp.I.5,Bacillus cereus I.21 and II.14, and B. firmus E65. The research methodconsistsoftestinghypersensitivity,testofantagonistictoXoo,andin vivoapplicationofbiologicalcontrolisolatesinthegreenhouse.AntagonisttestofC32a,C32b,andI.5showedinhibitoryactivityagainstXoo.ApplicationofC32aisolatecouldsuppressthelongofwoundBLBbetterthanchemicalagent.Amongofeighttreatments,the resultsof compatibility test found thebest formula to inhibitR. solaniwasA2consistedE65,andA8formulausingbentoniteascarrierconsistedofamixtureofE65,E31C32b,andII.14.A2treatmentusedE65andA6 treatmentusedE65, II.14, andC32bshowed thebest inhibitionagainstP. oryzae i.e.73-85%and66-83%,respectively.Keywords:rice,biocontrol,blast

PS05-251Pseudomonas fluorescensSBW25secretesabiosurfactantthatfacilitatesslidingmotilityandplantgrowthpromotionAbdullahAl-Sohim1,2,3,GlynA.Barrett1,JennaGallie2,Xue-XianZhang2,PaulB.Rainey2,3,RobertW.Jackson11School ofBiological Sciences,University ofReading,Reading,UK,2NewZealandInstituteforAdvancedStudy,MasseyUniversityatAlbany,NewZealand, 3MaxPlanck Institute forEvolutionaryBiology,Ploen,[email protected] fluorescens bacteria are common soil inhabitantsthatfavourcolonisationofplants,especiallytherootenvironment(rhizosphere).P. fluorescens strain SBW25 has been extensivelystudied to understand the genetic basis of its ecological successin the rhizosphere. The flagellum master regulator, FleQ, isimportantfornegativelyregulatingwssgenes(encodingcelluloseextracellular polysaccharide (EPS)) and positively regulatingflagellargenes.ThisindicatesthatFleQisprobablyimportantfortransitional switching of the bacterial lifecycle from the motileplanktonic form (in the soil) to the non-motile EPS-producingbiofilm formon andwithin plant tissues. Itwas also discovered

that FleQ plays a role in bacterial surface-spreading motility:mutationoffleQinSBW25(SBW25delfleQ)revealedaflagellum-independentsurface-spreadingmotilityphenotype.MutagenesisofSBW25delfleQidentifiedseveralnon-motilemutants.PCRanalysisidentified the mutations to two non-ribosomal synthetase genesknowntobeinvolvedinproductionofthebiosurfactantviscosin.Complementation of these mutants with fleQ restored surfacemotilitydespitea lackofviscosinproduction.This indicates thatSBW25canmoveoversurfacesbyflagellum-dependentswarmingand viscosin-dependent sliding motility. We also investigatedwhether viscosinmight improveplant growth in the presence ofoomycete and fungal pathogens. Plant growth promotion assaysusing SBW25delfleQ viscosin mutants showed that viscosin isthekeybacterialproductresponsibleforsuppressionofoomyceteand fungal detrimental effects on plant seedling emergence anddevelopment.Taken together,ourdatahaveuncovered themajorfactorthatisresponsibleforP. fluorescensSBW25suppressionofplantrootpathogens.

PS05-252In silicoanalysisoftranscriptionalregulatoryelementsrelatedwithdiseaseresistanceHushnaAraNaznin1,YoshiokaYohei1,HienoAyaka1,HyakumachiMitsuro2,YamamotoYoshiharu21The United Graduate School of Agricultural Sciences, GifuUniversity,Gifu, Japan, 2FacultyofAppliedBiologicalSciences,GifuUniversity,Gifu,[email protected] utilizes diverse and sophisticated signaling cascades forrecognizingandresponding toawiderangeofbioticandabioticstresses. Induced systemic resistance (ISR) is a phenomenonwherebyresistancetoinfectiousdiseaseissystemicallyinducedbylocalizedinfectionortreatmentwithmicrobialcomponentssuchasplantgrowthpromotingfungi(PGPF).MultipledefensesignalsareinducedbythePGPF,Penicillium simplicissimumGP17-2againstPseudomonas syringae pv. tomatoDC3000 (Pst).Culturefiltrate(CF)ofPGPF-treatedplantsinfectedwiththepathogenexhibitedelevatedexpressionofthousandsofdefense-relatedgeneswhichare identified by microarray analysis. Different phytohormoneactivitiesareinvolvedinthetranscriptionalregulationofthissignaltransductionofdefense responsivegenes.Thepresent studywasaimed to identify the PGPF- mediated ISR responsive elementsin the promoter of stress inducible genes to dissect integratedtranscriptional network where multiple hormones are supposedtobecommitted.Predictionofputative transcriptional regulatoryelements was made with the help of bioinformatics study fromthe promoters identified frompublic (responsive to SA) and ourownmicroarraydata (responsive toH2O2andCF),andsyntheticplantpromoterswerepreparedbyusingthepredictedputativecis-regulatory elements to diagnose the regulatory responses of theelements in transcriptional network.Cross-detection of the sameelementssuggeststheirpossiblecrosstalk.Preciseanalysisofcis-actingelementsandtheirtranscriptionfactorscangiveanaccurateunderstanding of regulatory systems in stress-responsive geneexpression.

PS05-253Genesexpressedintissue-culturedseedlingsofmountainlaurel(Kalmia latifola L.) with colonizing Streptomyces padanusAOK30AkaneMeguro1,2,KazuhiroToyoda1,HiroshiOgiyama1, SachikoHasegawa1,2, Tomio Nishimura2, Hitoshi Kunoh1,2, TomonoriShiraishi11LaboratoryofPlantPathologyandGeneticEngineering,GraduateSchoolofNaturalScienceandTechnology,OkayamaUniversity,Okayama, Japan, 2Institute for Biological Process Research,AkatsukaGardenCo.Ltd.,[email protected],Streptomyces padanusAOK30iscapable

Page 123: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession05-Biocontrolinteractions

121

Poster 05

of protectingmountain laurel against infection byPestarotiopsis sydowiana, a causal agent ofPestalotiadisease,when applied tothe seedling of the plant. In this study, suppression subtractivehybridization (SSH) was used to identify genes differentiallyexpressed in seedlings ofmountain laurel after application ofS. padanusAOK30.Subsequentdothybridizationwith independentRNAfromS. padanus-colonizedandcontrolplantsidentifiednon-redundant181cDNAsinvolving72and109clones,whichwereup-anddown-regulateduponinoculationwiththebacteria,respectively.Comparison of the sequences with databases revealed that anumberoftranscriptsencodingproteinsorenzymesthatfunctiondirectlyindefenseorstressresponseandregulatoryproteinswereregulateddifferentiallyintheseedlingswithcolonizingS. padanusAOK30.Semi-quantitativeRT-PCRanalysisfortheselectedgenesdemonstrated that inoculation of mountain laurel seedlings withS. padanusAOK30increasedexpressionofdefense-relatedgenesas well as distinct classes of glutathione S-transferase, althoughendochitinasewere exclusively suppressed.These results clearlyindicate that the S. padanus-colonizing seedlings likely initiateor prime plant defense responses towards pathogen infection.DifferentialexpressionoftheselectedgeneswasalsoobservedinS. padanus-colonizedseedlings,comparedtothosesolelychallengedwithafungalpathogen,P. sydowiana.Thisapproachwillassistineffortsnotonlytounderstandthemolecularbasisoftheenhancedtolerance and/or enhanced disease resistance ofmountain laurel,buttodefineacoresetofgenesduringcolonizationorassociationwithS. padanusAOK30.

PS05-254Induced resistance and antibiosis a dual mode of action ofPseudozyma aphidisagainstdiversephytopathogensMaggieLevy1,KobiBuxdorf1,AvivaGafni1,IdoRahat11Department of Plant Pathology and Microbiology, HebrewUniversityofJerusalemlevym@agri.huji.ac.ilPlantpathogenschallengeoureffortstomaximizecropproductionduetotheirabilitytorapidlydevelopresistancetopesticides.Thiscanresultinimmenseyieldlossesonanannualbasis.Oneofthemain research goals of this century involves the development ofnew tools to control pathogens. Fungal biocontrol agents havebecome an important alternative to the use of chemicals due toenvironmentalconcerns.Werecentlyisolatedtheepiphyticyeast-likePseudozyma aphidisfromstrawberryleaves.OurdatasuggestthatthisP. aphidisisolatesecretesextracellularmetaboliteswhichinhibit several plant pathogens in vitro. In addition, applicationof theP. aphidis sporesonplants in thegreenhousesignificantlyreducedBotrytis cinerea,Clavibacter michiganensis or powderymildew infection. We also demonstrated that P. aphidis cansensitize theplant’s defensemachineryby inductionofPR1 andPDF1.2 gene expression locally and systemically inArabidopsisplants.We further found thatP. aphidis could reduceB. cinereainfectioninArabidopsismutants impairedinJAorSAsignaling,jar-1-1 and NahG and npr1-1 locally and systemically. Thissuggests that above the direct inhibition P. aphidis inhibit B. cinereainfectionalsobyinducedresistanceinSA-,JA-andNPR1-independent manner. Moreover we found it cannot reconstitutePR1 andpartially reconstitutePDF1.2 expression in themutantssystemically,suggestingtheinducedresistanceabilityofP. aphidisis not directed solely through PR1 and PDF1.2 but probablyalso throughotherdifferentpathogenesis resistancegenes and/orpathwaysaswell.

PS05-255The biocontrol strain Pseudomonas fluorescens F113 is toxictowardssoilamoebaeMario Rincon1, Marta Martin1, Rafael Rivilla1, Maria Sanchez-Contreras11Departamento de Biologia,Universidad Autonoma de Madrid,Madrid,[email protected]

Pseudomonas fluorescens F113 is able to protect crops such asbeetrootandtomatofromphytopathogenicfungi.Whileinteractingwith the plant host, biocontrol strains are exposed to predationby bacteriophagous invertebrates such as protozoa. Therefore,rhizospheric bacteria may have evolved molecular mechanismsto face this ecological pressure. We tested the ability of theprotozoan Acanthamoeba polyphaga to graze on Pseudomonas fluorescens F113.A. polyphagawasunable to feed andmultiplyonP. fluorescensF113wild-type.HowevergacAorgacSmutants(P. fluorescens F113 derivatives lacking secondary metabolites)supported amoebal growth but did so to a lesser extent than aharmlessEscherichia colistrain.Atthecellularlevel,A. polyphagainco-culturewithF113wild-typeemittedlongfilopodiapriortocelldeath,andinteractionwiththegacAmutantshowedsimilareffectsof cytoskeletal changes. Our results indicate that P. fluorescensF113possessesGac-dependentandGac-independentmechanismsoftoxicitytowardsA. polyphaga.

PS05-256SuppressionofFusariumwiltdiseasebyanorganichydroponicssystemKazuki Fujiwara1,2, Chihiro Aoyama1, Masao Takano1, MakotoShinohara21Graduate School of Environmental Studies, Nagoya University,Nagoya, Japan, 2National Agricultural and Food ResearchOrganizationfujiwara.kazuki@b.mbox.nagoya-u.ac.jpOrganichydroponics,capableofmineralisingorganiccompoundsto inorganic nutrients by constructed microbial communityin the water, shows a potential to suppress root diseases. Toassess suppressive effect against root diseases, Firstly, in vitroexamination of suppressive effect of the hydroponic solutionfromorganichydroponicswasconductedusingafungalpathogenFusarium oxysporum,causingFusariumwiltoflettuce.Thisresultdemonstrated that the density ofF. oxysporum was dramaticallyincreased in sterilized hydroponic solutions by filtration orautoclaving, respectively. On the other hand, the growth of F. oxysporum was suppressed in an untreated hydroponic solutioncontaining livingmicrobial community. Secondly, we conductedan inoculation test on lettuce seedlings with F. oxysporum. Aconventional hydroponic system, which is required to use onlyinorganicnutrients,showedseverediseasesymptomsoncultivatedseedlings. In contrast, organic hydroponics showed no diseasesymptoms althoughF. oxysporum was detected from surface oftheplantrootsandthehydroponicsolution.However,suppressiveeffect of the Fusarium wilt was not observed when the fungalpathogenwas inoculatedwithin 3 days after transplantingwhilefully developed after that period. Finally, we conducted DGGEanalysistorevealthemicrobialcompositionofrhizospherebiofilmsfromorganic hydroponics. In this result, transitions ofmicrobialcomposition were observed before and after plant cultivation.Altogether, considering in vitro and in planta experiments,suppressive effect on a Fusariumwilt disease was characterisedintosuppressionofpathogengrowthandinfectiontoplantroots.

PS05-257Analysis of microbial community in organic hydroponicssolutionChihiro Aoyama1, Kazuki Fujiwara2, Masao Takano1, MakotoShinohara21Graduate School of Environmental Study, Nagoya University,Japan, 2National InstituteofVegetableandTeaScience,NationalAgriculturalResearcha-chihiro@nagoya-u.jpOrganichydroponicsisanepoch-makingculturemethodofusingorganic matters as fertilizer, which is degraded by microbialecosystemconstructedinthehydroponicsolution.Multipleparallelmineralization, which is continuous reactions of ammonification

Page 124: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession05-Biocontrolinteractions

122

Post

er 0

5

and nitrification in water, enables cultivation of vegetables byaddingorganicfertilizerdirectly to thehydroponicsolution.ThishydroponicssystemhassuppressioneffectofrootdiseasesuchasFusarium wilt and bacterial wilt disease, however characteristicbiofilmdevelopedon the surfaceof roots hasnot been analyzedsufficiently. In this study, we examined succession of microbialecosysteminthebiofilm,dominantmicrobialstrainateachstageandeffectofaddingorganicfertilizeronmicrobialecosystem.Atfirst multiple parallel mineralization was conducted to constructsuitablemicrobialecosystembyusingtwokindsoforganicfertilizerand then butterhead lettuce was cultivated using this solution.BiofilmswerecollectedfromthewallofcultivationtankandplantrootsateachstageandtheywereanalyzedbyPCR-DGGEmethod.Asaresult,microbialcompositionofbiofilmwaschangedgreatlybetween collecting points. At the stage of microbial ecosystemconstruction before cultivation, similar microbial composition,suchasBacillussp.andComamonassp.,wasconfirmedregardlessofusingdifferentorganicfertilizers.Atcultivationstage,differenceofmicrobialecosystembetweenorganicfertilizerswasexpanded.Theseresultssuggestthatplantrootshaveaneffectonselectionofmicrobestodegradeeachorganicfertilizereffectively.

PS05-258Successful organic hydroponics by construction of microbialecosysteminthehydroponicsolutionandthesuppressiveeffectofbacterialwiltdiseaseMakoto Shinohara1, Kazuki Fujiwara1, ChihiroAoyama2,MasaoTakano21NationalAgriculture and FoodResearchOrganization, [email protected] is an excellent technique for the cultivation ofvegetable crops and other plants, but organic fertilisers cannotbe used in conventional hydroponic systems, which generallyuse only inorganic fertilisers, because organic compounds in thehydroponicsolutionsgenerallyhavephytotoxiceffectsthatleadtopoorplantgrowth.Fewmicroorganismsarepresentinhydroponicsolutions to mineralize the organic compounds into inorganicnutrients.However, from the viewpoint of resource recycling, itisimportanttodevelopmethodscapableofusingorganicfertilisersources in hydroponics. We developed a novel and practicalhydroponic culturemethod that usesmicroorganisms to degradeorganicfertiliserinthehydroponicsolution.Soilmicroorganismswereculturedby regulating theamountsoforganic fertiliserandinoculum,withmoderateaeration.Themicroorganismsmineralisedorganic nitrogen via ammonification and nitrification into nitrateinwater.Theculturesolutioncontainingthemicroorganismswasusable as a hydroponic solution, and organic fertiliser could bedirectlyaddedtoitduringvegetablecultivation.Vegetablesgrewwell in our organic hydroponic system. Inoculation ofRalstonia solanacearum,aphytopathogenicbacteriaofbacterialwiltdisease,inorganichydroponicsresultedinnodiseasesymptomsontomatoseedlings, in contrast to inorganic conventional hydroponics, inwhichmanyseedlingsbecamewiltedanddied.R. solanacearumcouldn’tbedetectedfromboththehydroponicsolutionandtomatoseedlingsinorganichydroponics.Theseresultssuggestthatorganichydroponicssystemhassuppressiveeffecttobacterialwiltdisease.

PS05-259TransmissionofmycovirusesbyattenuatingprogrammedcelldeathinRosellinia necatrixKenichiIkeda1,2,KanakoInoue1,ChiakiKida1,TakahiroUwamori1,SatokoKanematsu2,PyoyunPark11GraduateSchoolofAgriculturalScience,KobeUniversity,Kobe,Japan,2NationalInstituteofFruitTreeScience,NARO,[email protected] necatrix Prillieux cause severe root rot diseases infruit trees.Wehavedevelopedadiseaseprotectionsystemcalled“Virocontrol”,inwhichweusemycovirusestoreducethevirulence

of fungal pathogens.The fungal incompatibility systempreventsmycoviruses from spreading to fungal strains with differentgenetic background; therefore, in order to successfully introducemycovirusesintoagivenfungalstrain,wetrytoinhibitorattenuateincompatible reaction. The fungal incompatibility reaction isconsidered to be a type of programmed cell death though itsmolecularmachineryremainstodetermine.Weaddedvariouskindsof chemical inhibitors into the culture agarmedia duringhyphalpairing and tested whether mycoviruses were transmitted to therecipientfungalisolatesthatweremycovirus-freeandhygromycinBresistancecharacters.Wetreated87kindsofchemicalinhibitorsincludingcellwallsynthesis,proteindegradation,phosphorylation,calciumsignaling,reactiveoxygenspeciesgeneration,andsoon.We found that zinc chloride treatment transmitted several kindsof mycoviruses including Rosellinia necatrix megabirnavirus 1(RnMBV1),oneofthepotentialvirocontrolagent.Themycovirustransmissioneffectwasobservednotonlythetreatmentwithzincchloridebutalsowithzincvitriolsuggestingthatthezincelementwasactivesubstance.Microscopicobservationrevealed thatzincchloride treatment increased hyphal fusion on the incompatiblepairingandtransmittedcytoplasmicGFPproteinstotheoppositefungalisolate.

PS05-260Multiplehostadhesionfactorsofextracellularmatrix(ECM)inMagnaporthe oryzae-potentialtargetfordiseasecontrol-Hiroko Kitagawa1, Kanako Inoue1, Saki Shimoi1, HarumasaKitaoka1,PyoyunPark1,KenichiIkeda11GraduateSchoolofAgriculturalScience,KobeUniversity,Hyogo,[email protected] oryzaearetightlyattachedonthehostsurfaceproducingtheextracellularmatrix(ECM)fromgermtubesandappressoria.Sporegermlingsweretreatedwithvariouslectins and inhibitors revealed that theglycoprotein(s) consistingofmannose sugarmight be important for the adhesion.We alsoevaluatedtheeffectsofhydrophobins, thefungalsurfaceprotein,on adhesion and pathogenicity. Gene knockdown and knockoutexperimentsofhydrophobingenesrevealedthatclassIMpg1wasinvolvedinadhesionandpathogenicitybutclassIIMhp1wasnot.Moreover,wefoundthat treatmentwithnaturalnutrientssuchasbeefandyeastextractsuppressedtheappressoriumformationandtheadhesionthatwasirrespectiveofyeastα-factor.Bybiochemicalstudy, the ECM ofM. oryzae could be degraded by collageno/gelatinolyticenzymes.Wescreenedgelatinolyticbacteriafromriceleavesandsoiltoestablishanovelbiologicalcontrolagentinhibitinggermlingadhesiononthehostplantsurface.TheselectedbacteriawereidentifiedasAcidovorax,Sphingomonas,Chryseobacterium,andPseudomonas sp..Basedon the treatmentwithEDTA,mostisolatesproducedmetalloproteinase.Thescreenedbacterialcultureshowed inhibitoryeffectson spore adhesionon theplastic coverglassanddiseaseprotectiveeffectsonrice.However,theselectedbacteriacouldnotfixonleafwithin1weekusingchloramphenicolresistance marker.We improved bacterial fixation supplementedwith0.3%gelatinanddiseaseprotectioneffectlasted1weekafterbacterialincubation.Thisstudysuggeststhatgelatinolyticbacteriainhibiting germling adhesion may have promise as a biologicalagent.

PS05-261LatestgenerationofbiocontrolagentsdevelopedbycombiningagronomicperformanceandomicstechniquesMatteoLorito1,2,MichelinaRuocco1,Vinale Francesco2, StefaniaLanzuise1, Roberta Marra1, Rosaria Varlese1, Felice Scala1,SheridanL.Woo11DepartmentARBOPAVE-Plant Pathology, University of NaplesFederico II, Italy, 2CNR Institute for Plant Protection, [email protected]

Page 125: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession05-Biocontrolinteractions

123

Poster 05

Beneficialmicrobesareusedtosustainagricultureyieldsandreduceenvironment impact.Thebasic technologyhasbeensubstantiallymodified and improved by using a variety of omics techniques,includingproteomicsandmetabolomics.Latestgenerationofbio-productshaveastrongscientificbase,derivedfromindetailstudyofthemultiplayerinteractionsinvolved(plant-pathogen-biocontrolagent), and are much more effective and reliable. Many novelformulationsarenowappliedasmixturesof livingmicrobesandbioactivemolecules,showingactivityontheentireplantandbeingcompatiblewithotherbio-productsandcommonlyusedpesticides.Knowledgeobtainedbystudyingthegenomeandthemechanismof actionofworld-wideusedantagonistic fungi andbacteriahasallowedthedevelopmentofready-to-usetechnologypackagestobeimplementeddirectlyinmedium-to-largefarmsforcontroloffungi,bacteria,viruses,nematodesandeffectsabioticstresses.Thenewtechnology,mainlydestinedtodevelopingcountries,hasproducedasubstantialreductionofagrochemicaluseandhaspermittedthecommercializationofnew linesofhorticulturalproducts labelledaszero-residuewithoutorganic farming.Fromomics to thefieldprojects have been successfully carried out in Honduras, CostaRica, Brasil, Perù, Cina, Libya,Venezuela, etc. against diseasesof melon, pineapple, strawberry and tomato. Finally, new plantstimulatingmolecules,includingsomefungalhydrophobins,havebeen identified,which are able to activate ISR, promote growthand rootdevelopment, increase resistance todroughtand lackofnutrients,andkilldirectlyseveralfungalphytopathogens.

PS05-262Pseudomonas-mediatedinducedsystemicresistance,whatisinitforthebacteriaPeter A. H. M. Bakker1, Rogier F. Doornbos1, Roeland L.Berendsen1,CorneM.J.Pieterse11Plant-Microbe Interactions, Utrecht University, Utrecht,[email protected] many strains of Pseudomonas spp. with biological controlproperties, ISR has been recognized as an importantmechanismofdiseasesuppression.Pseudomonas-mediated ISR isbothplantspeciesspecificandbacterialstrainspecific.InradishP. fluorescensstrainsWCS374 andWCS417 can elicit ISR,whereasP. putidastrain WCS358 can not, but in Arabidopsis WCS374 can notelicitISRandbothWCS358andWCS417can.InArabidopsisthetranscription factor MYB72 is required for effective expressionof ISR, as expression of MYB72 is up regulated upon rootcolonization by ISR eliciting bacteria, and myb72 knock outmutants canno longerexpress ISR.The root colonizingabilitiesofthethreeWCSPseudomonasstrainswerestudiedonwildtypeA. thaliana Col-0 and a myb72 knock out mutant in the Col-0background.BothWCS358 andWCS417 colonized the roots ofCol-0tomuchhigherpopulationdensitiesthanWCS374.However,on themyb72 knock out all three strains reached relatively lowpopulationdensities.ThusitappearsthathighpopulationdensitiesofISRelicitingbacterialstrainsaresupportedintherhizosphereofaplantgenotypethatcanexpressISRandthebacteriaaresomehowrewarded. Implicationsof ISRon recruitmentand functioningoftherhizospheremicrobiomearediscussed.

PS05-263InsecticidalactivityofPseudomonas taiwanensisJe-RueiLiu1,2,3,Wen-JenChen1,Ming-CheShih31Institute of Biotechnology, National Taiwan University, Taipei,Taiwan,2DepartmentofAnimalScienceandTechnology,NationalTaiwan University, Taipei, Taiwan, 3Agricultural BiotechnologyResearchCenter,AcademiaSinica,Taipei,115,[email protected] taiwanensisisanewspeciesisolatedfromsoilandclassified recently. In a previous study, the insecticidal activityof P. taiwanensis toward Drosophila melanogaster larvae wasdemonstrated and the insecticidal protein gene tccC was cloned

andheterologouslyexpressedinEscherichia coli.TherecombinantTccCproteinshowedhighinsecticidalactivitytowardDrosophilalarvae.Inthisstudy,theinsecticidalactivityofP. taiwanensisandthe function of TccC were further investigated. P. taiwanensisnot only showed insecticidal activities against larvae ofPlutella xylostella,Spodoptera exigua,Spodoptera litura,Trichoplusia ni,andDrosophila melanogaster but also induced apoptosis in Sf9andIPLB-Ld652Yinsectcells.Inordertoassess,anisogenictccCgeneknockoutmutantofP. taiwanensiswasgeneratedbyreplacingthe tccC gene.As compared with the wild-type strain, the tccCgene knockoutmutant ofP. taiwanensis showed lower toxicitiestoward Sf9 insect cells andPlutella xylostella larvae. Inside theP. taiwanensis cell, TccC protein might be processed into twofragments,aN-terminalfragmentcontainingarecombinational-hot-spot(Rhs)domainandaC-terminalfragmentcontainingasodium/glutamatesymporterdomainandaTraTdomain.NewstudiesforevaluatingthebiologicalfunctionsofthesetwofragmentsderivedfromTccCarenowinprogress.

PS05-264Transcriptomic analysis of systemic resistance induced by aplant growth-promoting fungus Penicillium simplicissimumGP17-2Yohei Yoshioka1, Most. Hushna Ara Naznin1, Ayaka Hieno1,MasafumiShimizu2,MitsuroHyakumachi2,YoshiharuYamamoto21The United Graduate School of Agricultural Sciences, GifuUniversity,2FacultyofAppliedBiologicalSciences,[email protected] plant growth-promoting fungus (PGPF) Penicillium simplicissimumGP17-2inducessystemicresistanceagainstbacterialleafspeckcausedbyPseudomonas syringaepv.tomatoDC3000.TheISRsignalinginvolvesmultipleplanthormone-mediatedpaths,includingsalicylicacid,jasmonicacid,andethylene.Inthisstudy,we investigated signal transduction forGP17-2-mediated ISRbymicroarray and promoter analyses. Microarray data of GP17-2treatmentwere subjected to comparative analysiswithpathogen,planthormone,hydrogenperoxideandwoundresponses.Resultsshowed that gene expression at 6 hours post GP17-2 treatmentwasclassifiedintothesamecladewithsalicylicacidandhydrogenperoxide; incontrast,geneexpressionat24hourspost treatmentshowedonlythatofabscisicacid.Theseresultssuggestcrosstalkbetween ISR inducedbyGP17-2 and responses of salicylic acidandhydrogenperoxideatearlierstageofISR,andat laterstage,ofabscisicacid.Subsequently,wedidin silicopromoteranalysisof the identified genes involved in GP17-2-mediated ISR. Thepromoter predictionmethod we developed showedmuch highersuccess rate and high sensitivity than conventional predictionmethods (Yamamoto et al.,BMCPlantBoil. 11: 39, 2011).OurpredictionprovidedvariousputativeISRandalsophytohormone-responsive elements. These candidates were applied in vivofunctionalanalysisusingsyntheticpromoterandluciferasereportersystem. These analyses are expected to provide new knowledgeofthetranscriptionalnetworkofGP17-2-mediatedISRandplanthormonesignaling.

PS05-265Control of rice diseases using an extract of the shrubChromolaena odoratainvolvesinducedresistanceDacKhoaNguyen1,3,4,JuliánRodríguezAlgaba1,JensC.Sørensen2,HilmerSørensen2,KeldE.Andersen2,PhanThiHongThuy4,TranThiThuThuy4,DavidB.Collinge1,HansJ.L.Jørgensen11Department of Plant Biology and Biotechnology, Universityof Copenhagen, Denmark, 2Department of Basic Sciences andEnvironment, University of Copenhagen, Thorvaldsensvej 40,1871 Frederiksberg C, Denmark, 3Department of MolecularBiotechnology, Institute of Biotechnology Research andDevelopment,CanThoUniversity,3/2Street,NinhKieuDistrict,CanThoCity,Vietnam,4DepartmentofPlantProtection,CollegeofAgricultureandAppliedBiology,CanThoUniversity,3/2Street,NinhKieuDistrict,CanThoCity,Vietnam

Page 126: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession05-Biocontrolinteractions

124

Post

er 0

5

[email protected] odorata is an invasiveweed from theNeotropics,butwe have recently found that an aqueous extract of the plantcouldcontrolimportantdiseasesinriceunderbothcontrolledandfield conditions by application to the seeds before sowing or bysprayingontheleaves.Indeed,significantcontrolwasobtainedofsheathblight(Rhizoctonia solani),brownspot(Bipolaris oryzae),riceblast(Pyricularia oryzae)andbacterialblight(Xanthomonas oryzaepv.oryzae) [Khoaetal. (2011).Phytopathology101:231-240].Expressionofdifferentdefence-relatedgeneswasstudiedinplantsinoculatedwithR. solaniandincludedgenesencodingPR-proteins[β-1,3-glucanase(PR-2),chitinase(PR-3),thaumatin-likeprotein(PR-5),peroxidase(PR-9),PR-1bandPBZ1(bothPR-1)]andgenesencodingtwoenzymesinvolvedinthehydrogenperoxidemetabolism(superoxidedismutaseandcatalase).Applicationoftheextractpriortopathogeninoculationresultedinelevatedtranscriptlevels of the defence-related genes compared to control plantspre-treatedwithwater.This resulted in decreased fungal growthand reduced formation of infection cushions of R. solani. Theresultsindicatethattheprotectionexertedbytheextractinvolvesinducedresistancesincedefenceresponseswereenhancedinplantstreatedwiththeextractfollowedbyinoculationwiththepathogencomparedtocontrolplantspre-treatedwithwater.Toidentifytheactivecompound(s)responsibleforthedisease-reducingeffect,theextract has been fractioned using group separation and analysedbycapillaryelectrophoresis.Thesub-fractionsarecurrentlybeingsubjectedtoNMRanalysesforstructureelucidationoftheactivecompound(s).

PS05-266Obstacle of “VIROCONTROL”: vacuole-mediatedprogrammedcelldeathduringheterogenic incompatibility inRosellinia necatrix.Takahiro Uwamori1,2, Kanako Inoue1, Chiaki Kida1, HirotomoKitazawa1,SatokoKanematsu2,PyoyunPark1,KenichiIkeda11Graduate School of Agricultural Science, Kobe, Kobe, Japan,2NationalInstituteofFruitTreeScience,NARO,[email protected] necatrix.causesevererootrotdiseaseoffruit trees.Forsustainablediseaseprotection,wehaveattempted to develop “Virocontrol”, which utilizes hypovirulentmycovirus. For the success of virocontrol, mycoviruses shouldtransfer from hypha to other hypha via anastomosis. However,in these fungi, the heterogenic incompatibility accompanied byactiveprogrammedcell death (PCD)preventsmycoviruses fromspreadingamongdifferentfungalstrains.Inthisstudy,weobservedhyphal interactionbetweencompatibleand incompatiblepairingswith light (LM) and transmission electron microscopes (TEM).Mycelial interactions (barrage line) were classified into threetypes, i.e., broadmelanin line, narrowmelanin line, and narrowmelaninlinewithhighlypigmentationlimitedone-sidedmycelia.LM observation revealed that hyphal anastomosis occurredwithhighfrequencyincompatiblepairing.Incontrast,inincompatiblepairing, the anastomosis hardly occurred.We assumed that thisfungus released self/nonself-recognition substances. Treatmentwithactivatedcharcoalsuppressednotonlybarragelineformationin incompatible combination but also hyphal anastomosis incompatible combination. TEM observation of the incompatiblehyphae revealed that cell structures degenerated as followingorder; vacuole, cell membrane, nucleus, endoplasmic reticulumand mitochondria. The degenerated nucleus was characterizedby disconnection of nuclear membrane and loss of internalelectrondensity,butheterochromatincondensationdidnotoccur.The heterogenic incompatible PCD was initiated by vacuolardegenerationandfollowedmembranedegenerationoforganelles,whichwereatypicalfeaturesofapoptosisandautophagybutnoveltypeofPCD.

PS05-267DevelopmentofagriculturalmaterialforriceusingtheabilityofricesymbioticbacteriaTsuyoshi Isawa1, Junta Hirayama1, Satoru Kanai1, Rei Ikeuchi1,MunehiroNoda1,SatoshiShinozaki11ResearchandDevelopmentCenter,MayekawaMFG.CO.,[email protected] kinds of fungus and bacterial endophytes are isolatedform plants. Some endophytes have given the useful functions,such as growth promotion, disease resistance, and droughttolerance, to the host plant. Azospirillum sp. B510, isolatedfrom rice in japan, can induce disease resistance in rice plantsand promote plant growth in paddy field (1, 2).To searchmorepracticallyuseful strain,weexploited thesefindingsand isolatedAzospirillumsp.strainfromfield-grownrice.ThestrainactivatedtheimmunityofricelikestrainB510.Wedevelopedthestrainasagriculturalmaterialforricecroppingbyexaminationformulationprocesses. From2008 to 2010, inoculation experimentswith theagricultural material was conducted in Hokkaido, Japan. Stemnumbers on panicle formation stage and tiller numbers and seedyield on ripening stage were increased by inoculation with theagricultural material. Similar effects were observed in severalareas tested in Japan. Therefore, application of the agriculturalmaterial in rice cultivationwill be expect to increase cropyield.(1)Yasudaetal.2009.Bioscience,Biotechnology,andBiochemistryVol73,p2595-2599;(2)Isawaetal.2010.MicrobesandEnvironts.Vol.25,p58-61.

PS05-268Biocontrol potential ofBacillus sp. towards plant pathogenicbacteriafromDickeyaspp.SylwiaJafra1,DorotaKrzyzanowska1,MichalObuchowski2,MartaPotrykus1,EwaLojkowska11Department of Biotechnology, Intercollegiate Faculty ofBiotechnologyofUniversityofGdanskandMedicalUniversityofGdansk,Gdansk,Poland,2DepartmentofMedicalBiotechnology,IntercollegiateFacultyofBiotechnologyofUniversityofGdanskandMedicalUniversityofGdansk,Gdansk,[email protected],pectinolyticplantpathogenicbacteriafromtheDickeyagenus, apart of Pectobacterium spp., are responsible for theimportanteconomiclossesinthepotatoproductioninEurope.Thepreventionofthediseasespreadingisbasedonhygienicmeasuresand application of certified pathogen-free propagation material.Biological control could be an alternative for standard controlmanagement in potato, bringing together the environmentallyfriendly replacement for chemical and physical control and costreductions. Bacteria from Bacillus genus produce biologicallyactivecompoundsandareknownfortheirantagonisticpropertiestowards fungal and bacterial plant pathogens.These bacteria aredeeply studied for their applicablepotential in agriculture.In thisstudy we analyzed the antagonistic potential of 13 Bacillus sp.isolates originated from rhizosphere of different plants, towardsDickeya spp. These isolates were selected on the basis of theirability to inhibit pathogens growth (7 isolates) or to interfere inquorum-sensing(QS)mechanismmediatedbyN-acylhomoserinelactones(AHL)(6isolates).Co-inoculationassayonpotatotubersilencesconfirmedtheabilityofthe8isolatestoprotectplanttissuefrom the pathogens activity.TheAHL-inactivating isolateswereactiveagainstmostofthepathogenicstrainstested.ItisespeciallyinterestingbecausetheQSmechanismseemstobelessimportantinthepathogenicityofDickeyasp.thaninPectobacteriumgenus.Themost active isolateswere tested for their ability to colonizepotatorhizosphereinagrowthchamberexperiment.Forthisgreenfluorescentprotein(GFP)-taggedorriphampicineresistantselectedisolateswereused.Obtainedresultswillbefurtherdiscussed.

Page 127: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession06-Plant-nematode/insectinteractions

125

Poster 06

PS05-269Efficacy of rice stubble degrading microorganisms, fungalantagonistandN-fixingbacteriumforenhancinggrowthandyieldoforganicriceChatupornBoonnadakul1,SuthichaiSomsook2,BunditAnurugsa3,DusitAthinuwat11MajorofOrganicFarmingManagement,ThammasatUniversity,Thailand 12121, 2Department of Agricultural Technology,Thammasat University, Thailand 12121, 3Department ofEnvironmentalScience,ThammasatUniversity,[email protected] yield is predominated by using chemical fertilizers andpesticides. The health and environmental criteria have led toincreaseresearcheffortsonalternativemethods.Thedevelopmentoforganicriceproductioninthisstudywasemphasizedonmicrobialcombinations including rice stubble degrading microorganisms(Aspergillus sp.,Azotobacter sp. andSaccharomyces cerevisiae),antagonistic fungus (Trichoderma sp.) and N-fixing bacterium(Bacillus subtilis) compared to bio-organic liquid applied byfarmers. The investigation was carried out at Phayao province,Thailand during July - November, 2011 using RCBD with 3treatments (bio-organic liquid, microbial combination and non-treatedtreatments).Theresultrevealedthetreatmentofmicrobialcombinations showed significantly increase percentages of freshweight,dryweight,plant shoot, stemsper clumpsandyield4.9,6.5,3,9and21.8respectively.Moreover,thesoilpropertyofpaddyfield as organic matter (2.2%), pH (7) and electric conductivity(2.3 mmho/cm) tended to be higher than the control treatment.Especially,totalnitrogeninsoilsignificantlyincreasesto37%aftermicrobialcombinationswereused.Itwouldbethepositiveimpactsofmicrobialcombinations inproducingsoilnutrientandorganicmatterfromricestubbleforenhancinggrowthandyieldofrice.

PS06-270CLEpeptidesignalingincystnematodeparasitismShiyanChen1,PingLang1,DemosthenisChronis2,JianyingWang3,MelissaG.Mitchum3,XiaohongWang1,21DepartmentofPlantPathologyandPlant-MicrobeBiology,CornellUniversity, Ithaca, NY, USA, 2USDA-ARS, Robert W. HolleyCenter for Agriculture and Health, Ithaca, NY, USA, 3Divisionof Plant Sciences andBond Life Sciences Center, University ofMissouri,Columbia,MO,[email protected] cyst nematodes (Heterodera andGlobodera spp.)are agriculturally-significant pests that cause substantial annualyield losses worldwide. These sedentary endoparasites secreteeffectorproteinsoriginatedfromtheiresophagealglandcellsintoselected root cells to create a unique feeding cell structure thatservesasthesolenutrientsourceforthenematodetocompleteitslifecycle.EffectorproteinssharingsimilaritytoplantCLAVATA3/ESR(CLE)signalingpeptideshavebeenidentifiedinseveralcystnematodespeciesincludingsoybeancystnematode(H. glycines),beet cystnematode (H. schachtii), andpotato cystnematode (G. rostochiensis and G. pallida). Plant CLE peptides represent afamilyof signalingpeptideshavingcritical roles inplantgrowthand development including regulation of stem cell fate in therootmeristem.A largebodyofevidencenowsupportsa role fornematodesecretedCLEpeptidesasligandmimicsofendogenousplantCLEsignals todevelopmentally reprogram the fateof rootcellsforfeedingcellformation.Hostplantreceptorsthat interactwithnematodesecretedCLEsignalsarebeingidentifiedbyloss-of-functionstudiesandreceptorbindingassays.ThesestudieshaveprovidednewinsightintohownematodeCLEsignalsareperceivedby host plants tomodulate signaling pathways that facilitate theformationoffeedingcellswithinhostplantroots.Ultimately,wehope to apply the knowledge of this conserved mechanism ofmolecularmimicryinnematodeparasitismtodevelopnovelformsofengineeredresistanceincropplants.

PS06-271Molecularandfunctionalanalysisofrice-nematodeinteractionsGodelieve D. Gheysen1, Tina Kyndt1, Annelies Haegeman1,KamrunNahar1,LanderBauters1,HongliJi1,MonicaHofte21DeptMolecularBiotechnology,GhentUniversity,Ghent,Belgium,2DepartmentofCropprotection,GhentUniversity,Ghent,[email protected] research focuses on rice as model plant to analyse theinteractionwithnematodesatthecellularandmolecularlevel.Toget a comprehensive overview of the compatible plant responseto nematode infection, mRNA sequencing was performedon rice after nematode infection. Local infected tissue wascompared with systemic tissue after infection by the root knotnematode Meloidogyne graminicola or the migratory nematodeHirschmanniella oryzae and with control tissue of the samedevelopmental stage.Oneof the results is thedownregulationofplantdefensegeneslocallyandsystemicallyafterrootknotnematodeinfection.Wearealsostudyingtheroleofseveralplanthormonesin the plants basal defense. For a functional analysis of plantgenes that are differentially expressed upon nematode infection,we perform infection experiments on mutants or transgenicswith lower or higher expression of that specific plant gene. Togetinsightintheproteinsthataresecretedbynematodesintotheplant in order to establish a succesful infection, a transcriptomeanalysiswasperformedonMeloidogyne graminicolapreparasiticjuvenilesandHirschmanniella oryzaemixedstagenematodes.Oneof thestrategies is to identifynematodeproteins thatarecapableofsuppressingplantdefense.Inthefuturewewanttoextendouranalyses to other types of rice nematodes (cyst nematode, stemnematode,whitetipnematode).

PS06-272SilencingofMyzus persicaegenesbyplantmediatedRNAiAlexander D. Coleman1, Marco Pitino1,2, Massimo E. Maffei2,ChristopherJ.Ridout1,SaskiaA.Hogenhout11The John Innes Centre, NorwichResearch Park,Norwich,UK,2PlantPhysiologyUnit,DepartmentofPlantBiology, InnovationCentre,UniversityofTurin,Turin,[email protected] green peach aphid (Myzus persicae) is one of the mostsignificant crop-damaging insect-pests worldwide. Little isunderstoodonhowaphidsmodulateplants intocompatiblehostsfor the aphids and the viruses they transmit. RNA interference(RNAi)isavaluablereversegeneticstooltostudygenefunctionin various organisms including aphids.We made use of theM. persicaebroadplanthostrange,whichincludesthemodelplantsNicotiana benthamiana andArabidopsis thaliana, todevelop theplant-mediated RNAi technology for aphids. This technologyenablesaphidgenesilencingintheaphidnaturalenvironmentandminimizesinsecthandlingduringexperiments(Pitino,Colemanetal, 2011. PLoSOne 6: e25709).We targetedM. persicae Rack1(MpRack1),whichispredominantlyexpressedinthegut,andM. persicae C002 (MpC002), which is predominantly expressed inthesalivaryglands.TheaphidswerefedonN. benthamiana leafdiscs transiently producing dsRNAcorresponding to these genesandonA. thalianaplantsstablyproducingthedsRNAs.MpC002andMpRack1 expressionwere knocked down by up to 60% ontransgenicN. benthamianaandA. thaliana.Moreover,silencedM. persicaeproducedlessprogenyconsistentwiththesegeneshavingessentialfunctions.Similarlevelsofgenesilencingwereachievedin our plant-mediated RNAi approach and published silencingmethods for aphids. Furthermore, theN. benthamiana leaf discassay can be developed into a screen to assesswhich genes areessentialforaphidsurvivalonplantsorforvirustransmission.Ourresultsalsodemonstratethefeasibilityoftheplant-mediatedRNAiapproachforaphid/viruscontrol.

Page 128: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession06-Plant-nematode/insectinteractions

126

Post

er 0

6

PS06-273GeneticalgenomicsofnematodeparasitismDavidM.Bird1,MichaelA.Djordjevic2,DahliaNielsen1,ValerieM.Williamson31Bioinformatics Research Center, NC State University, 2TheAustralianNationalUniversity,PlantScienceDivision,Canberra,ACT0200,Australia,, 3DepartmentofNematology,UniversityofCalifornia,Davis,CA,[email protected] nematodes (RKN: Meloidogyne sp.) elicit complexcellularchangesintheirhosts.Usingcross-species,eQTLanalysisweask:howdoesthegeneticmake-upof thepathogeninfluencehost gene expression? Specifically, we consider the influence ofallelicvariationateachnematodelocusontheexpressionofeachand every plant gene. Natural genetic and phenotypic variationin field isolates ofM. hapla has been captured in highly inbrednematode parental lines (VW9 and LM), and 120 recombinantinbredprogeny lines (RILs)developedas amappingpopulation.ReplicatepoolsofMedicagoplantshavebeenindividuallyinfectedwiththe120nematodeRILs,andthecombinedtranscriptomesofeachindividualdetermined.Mappingthedatatothefullgenomesequences reveals the quantitative expression levels of eachplant gene and each pathogen gene. Comparison of VW9 andLM revealed numerous SNPs, including ~14,000 within codingregions;thesemarkerscanbescoredinRNA-Seqdata,permittingeachpathogenRILtobegenotyped.Thusfar,datafrom32RILshave revealed numerous recombination events, including severalapparent hot-spots. Genotyping additional RILs will inform themappingofQTLandMendelianlocigermanetoparasiticability.Our functional analyses ascribe a parasitic role to several of thecomplex loci we have identified as encoding mimics of plantpeptidehormones(CLEandRAR).Consistentwiththeirrolesinparasitism, these loci are highlypolymorphic betweenVW9andLM;weareinterestedtoseeifourcross-species,eQTLapproachalsowillindictthesegenes.

PS06-274Functional analysis of root-knot nematode genes and hostresponsesduringArabidopsisinfectionCynthiaA.Gleason11Georg-AugustUniversity,Goettingen,Germanycgleaso@gwdg.dePlant-parasiticnematodesareahugeagriculturalproblemonmanyoftheworld’smainfoodcrops,andoneofthemostdamagingoftheplant-parasiticnematodesistheroot-knotnematode(Meloidogynespp). These nematodes pose a serious agricultural threat due totheir largehost rangeandbecausemanycropplants lacknaturalnematode resistance. During the susceptible interaction, root-knot nematodes invade host rootswhere they choose plant cellsto convert into metabolically-active feeding sites. The root-knotnematode’smanipulationof theplant cell, and in particular howthenematodeisabletoregulatehostplantpathways,isnotwell-understood.Herewereportonthefindingsfromanoveleffectorscreen using a heterologous expression system to functionallyanalyze the roles of putative root-knot nematode effectors andsecretedproteins.Byexpressingnematodegenes in thebacterialpathogenPseudomonas syringaeDC3000andmonitoringbacterialgrowthoninfectedArabidopsisleaves,wehavetestedseveralroot-knot nematode genes.We have discovered that expression of atleastoneofthenematodegenesthatwehavetestedcanaltertheoveralllevelsofbacterialgrowthoninoculatedArabidopsisleaves.Interestingly,itlowersbacterialgrowth,hintingthataproteinfroma rootpathogenhasanegative impactonbacterialvirulenceandgrowthduring leaf infection. In addition,wewill brieflydiscussplant sideof thenematode-plant interaction,with someevidencesuggesting that auxin perception is required for fullM. javanicasusceptibilityonArabidopsisroots.

PS06-275Cowpea aphid,Aphis craccivora Koch. feeding behavior andplantantioxidativeresponseinfababean,Vicia fabaL.cultivarsAlanSoffan1,SalemS.Alghamdi2,AbdulrahmanS.Aldawood31PlantProtectionDepartment,KingSaudUniversity,KingdomofSaudiArabia,2PlantProductionDepartment,KingSaudUniversity,3PlantProtectionDepartment,[email protected] aphid, Aphis craccivora Koch., performance on fiveselectedfababean,Vicia fabaL.,cultivarswereevaluatedthroughbiologicalstudy,feedingbehaviorstudy(usingDC-EPG)andplantantioxidative response. Initial cowpeaaphidcolonydevelopmentstudyrankedthehigherresistantfromGazira2>Com.’Misr’>Giza3Imp.>Goff1>Misr1.DetachedleafbiologicalassaysupportedthesuggestedlesssuitabilityofGazira2comparedtoMisr1byhavingsignificantly lower net reproduction rate (Ro), intrinsic rate ofincrease(rm),finiterateofincrease(λ),butlongerforgenerationtime(T),anddoublingtime(Td).Feedingbehaviorstudyrevealedthatthedifferentresistantlevelsamongfivefababeancultivarswerenotduetophloemtissuefactorsorleafsurfacefactor,asconfirmedbyinsignificantresultofphloemingestionduration(waveformE2)andscanningelectronmicroscope(SEM),respectively.Resistancefactor,especiallyinGazira2,issuggestedtobeduetothelongerdurationofstyletpenetrationdifficulties(waveformF).Repeatedmeasurementanalysisshowedtherewassignificantlyhigherplantantioxidative response activity on Gazira2 compared to Misr1across the three days of cowpea aphid infestation duration forboth peroxidase (POD) and polyphenol oxidase (PPO) activity(P=0.0005andP=0.0051,respectively).Finally,itwassuggestedthathigheractivityofPODandPPOinGazira2hadstrongrelationwiththeirresistantcharacterofhavinglongerwaveformFduration(styletpenetrationdifficulties).

PS06-276Anaturalditerpeneasan inducer for resistance to root-knotnematode(Meloidogyne incognita)infectioninArabidopsisandtomatoTaketoFujimoto1,ShigemiSeo2,HiroshiAbe3,TakayukiMizukubo11Research Team for insect & pest management, NationalAgricultural Research Center, Tsukuba, Japan, 2Plant-MicrobeInteractions Research Unit, National Institute of AgrobiologicalSciences, 3Experimental Plant Division, RIKEN BioResourceCentertaketof@affrc.go.jpPlant-parasiticnematodesparasitizerootsand/orstemsofvarioushostplants, resulting indamageoryield loss.Theyield lossdueto nematode infectionwas estimated to reach a hundredmilliondollars per year. The root-knot nematode (RKN), one of themost devastating pathogenic nematodes, invades plants roots bydamaging the root, and the plant should recognize the invasionand transmit the signal to theplantbody todefend itself againstthe attack byRKN.We have recently shown that jasmonic acid(JA), a plant stress hormone, reduces the degree of infection ofRKN through activation of defense-related genes in tomato andArabidopsis thaliana.BecauseJAisknownto induceproductionof various secondarymetabolites,we assumed that JA-induciblemetaboliteswouldcontributetothereductionininfection.Basedontheassumption,weexploredRKNinfection-inhibitingsubstancesfrom tomato plants exogenously treated with JA and identifieda diterpene as one of such substances. This diterpene reducedRKN infection in tomatoandArabidopsis.The reductionby thiscompoundwasalteredinseveraldefense-relatedorphytohormonesArabidopsismutants.

PS06-277Unravelling themechanismsof resistance tobluegreenaphidandpeaaphidinthemodellegumeMedicago truncatula

Page 129: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession07-Effectorproteins

127

Poster 07

KaramSingh1,2,LarsKamphuis1,2,SuminGuo2,3,JohnKlingler2,4,LinglingGao2,OwenEdwards41TheUWAInstitueofAgriculture,UniversityofWesternAustralia,Australia,2CSIROPlantIndustry,Floreat,PrivateBag5WembleyWA6913,Australia.,3KeyLaboratoryofGenetics&Biotechnology,Ministry of Education, Nanjing Forestry University, Nanjing210037,China,4CSIROEcosystemSciences,Floreat,PrivateBag5WembleyWA6913,[email protected], including the closely related bluegreen (BGA;Acyrthosiphon kondoi)andpea(PA;A. pisi)aphid,areimportantpests in agriculture. Resistance to BGA and PA has beenintrogressedintotheMedicago truncatulavarietyJemalong(A17)through recurrent backcrosses to create a new aphid-resistantcultivarJester(91%identicaltoA17).ResistancetoBGAinJesteris conferred by a dominant gene called AKR (Acyrthosiphon kondoi resistance) locatedontheshortarmofchromosomethreeinaregionrichinCC-NBS-LRRgenes.PAresistanceinJesterisconferredbyadominantgene,termedAPR(Acyrthosiphon pisumresistance),whichliesapproximately22.3cMdistalfromAKRinaregiondenseinCC-NBS-LRRgenes.Analysisoftranscriptionalchanges in defence related genes representing various signallingpathways and transcription factor profiling showed cleardifferences in the response to BGA vs. PA.A17 has a moderateresistancetobothBGAandPAcomparedtothehighlysusceptibleaccessionA20.Quantitativetraitloci(QTL)analysisusinganA17xA20recombinantinbredlinepopulationrevealedthatonelocus,which co-segregatedwithAIN (Acyrthosiphon induced necrosis)on chromosome 3, is responsible for the reduction of aphidbiomass (indicatorof antibiosis) forbothPAandBGA,albeit toa lesserdegree forPA thanBGA. Interestingly, two independentloci on chromosomes 5 and 3 were identified for the plantbiomassreduction(indicatorofplanttolerance)byPAandBGA,respectively, demonstrating that the plants tolerance response tothesetwocloselyrelatedaphidspeciesisdistinct.

PS06-278ApplicationofRNAi todevelopplant resistance tonematodepathogensMichaelG.K.Jones1,JoanneTan1,HarshiniHerath1,SadiaIqbal1,PaulNical1,JohnFosu-Nyarko11Plant Biotechnology Research Group, School of BiologicalSciencesandBiotechnology,WAStateAgriculturalBiotechnologyCentre,MurdochUniversity,Perth,[email protected] aimof thiswork is to develop and applyRNA interference(RNAi)technologytoestablishhostresistanceincereal,grassanddicotyledonouscropplantsofeconomicimportance.Thefocusisonresistancetoroot lesionnematodes(Pratylenchusspp.)whichreduceyieldsofwheat,barleyandsugarcanecropsby7-15%ormore, and the beet cyst nematode (Heterodera schachtii),whichisamajorpestofbrassicaandbeetcrops.Usingnewsequencingtechnologies we have undertaken transcriptome analyses of P. thornei, P. zeae, andH. schachtii, and following annotation andcomparativegenomicanalyses(Nicoletal.Int.J.Parasitol.42,225-237,2012),aseriesofpotentialtargetgeneswereidentifiedwhichif silencedwould confer host resistance.Two approaches to testtheeffectsofsilencingthesetargetgeneswereundertaken:soakingJ2nematodesindsRNA,anddeliveryofdsRNAtonematodesviatransgenicplants.Methodswereestablishedtogeneratetransgenicplants of wheat, sugarcane andArabidopsis, and for analysis ofRLNs after soaking experiments. Replicated lines of differenttransgenic eventswere challenged in soil or in sandwith J2s ofH. schachtii(Arabidopsis)andmixedstagesofRLNs(wheatandsugarcane) of the different nematode species.With reductions innematode replication of up to 90% ormore, the results provideclear proof-of-concept that RNAi can be used to confer hostresistance to nematode pathogens both in dicotyledonous andmonocotyledonouscropplants.

PS06-279Unravelling the molecular events involved during the earlypathogenic interaction between Meloidogyne incognita andArabidopsis thalianaAliceTeillet1,KatarzynaDybal1,AnthonyJ.Miller2,RosaneH.C.Curtis1,BrianR.Kerry1,JohnAntoniw1,KimHammond-Kosack1,PeterHedden11Rothamsted Research, Harpenden, UK, 2John Innes Centre,Norwich,[email protected] root knot nematode Meloidogyne incognita is an obligateparasitethatcaninfectupto1700plantspecies.Thesenematodespenetrate the rootat theelongationzoneand thenmigrate to thezone of differentiation where they establish their feeding site.Although physiological and molecular changes inside the rootleading to the feeding site formation have been widely studied,very little is known about the molecular events preceding rootpenetrationbynematodes.Howeverunderstandinghownematodessuccessfully penetrate their host could lead to novel controlstrategies. This work aims to understand the early signallingand molecular events involved before and during M. incognitapenetrationofArabidopsis thalianaroots.Asapreliminaryscreen,weusedsterilerootexudatesfromA. thalianatostudyM. incognitabehaviourandgeneexpression.Weshow that thenematodesareabletoperceiveandrespondtotherootsignals.BasedonthisworkandusingnextgenerationRNAsequencingwearenowanalysingthenematodeandplanttranscriptomeduringveryearlyinteractionstages,comparedtonon-infectivenematodesandmock-inoculatedroots.With theobjective to identifynewnematodeeffectors,wearealsousinganin silicoapproachtopredictthenematodeproteinsecretome and identify those genes highly expressed during theearlyplantinfection.

PS06-280Involvement of plant CLE peptide signaling in nematodeinfectionprocessintomatoChikaEjima1,NganT.Bui1,ShinichiroSawa11Graduate School of Science and Technology, KumamotoUniversity,Kumamoto,Japanchica@gamba-fan.jpCLEpeptidehormoneisthemoleculeresponsibleforthecontrolofplantmeristemactivity,andCLEgenesareconservedinmanyplants.Ontheotherhand,intheanimalkingdom,onlynematodethatisinfectivetoplantshasCLEgene.ThisCLEgeneofnematodeislikelytobefunctionalintheplants.Oncenematodesinfectroots,nematodes make root cells into the multinucleated giant cells,as source of nutrition, by injection of various redifferentiationfactors thought to be involved CLE peptides of nematodes. Inthisstudy, toelucidate themolecularmechanismof the infectionprocess of nematode, nematode infection experiments to plantswereperformed.Lotsofwild-typestrainsandcultivarsoftomatowere infected byNematode (Meloidogyne incognita). Comparedwithinfectionrateasanindexofroot-knotnumber,itwasrevealedthat Micro TOM (Solanum lycopersicum), Solanum pennellii,Solanum peruveanumshowedresistancetothenematodeinfection.Followingthat,weidentifiedandanalyzedthesequencesoftomatohomologue genes ofCLV2, RPK2, SOL2, andCLV1, which areinvolvedinCLEpeptidesignalingofArabidopsis.TherearesomeSNPsinthesegenes.

PS07-281FunctionalanalysisofXanthomonas campestrispv.campestristypeIIIeffectorsusingtransgenicplantapproachYi-PingHo1,HongLin1,Meng-YingLi1,ChoonMengTan1,Jun-YiYang11InstituteofBiochemistry,NationalChunghsingUniversity,[email protected]

Page 130: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession07-Effectorproteins

128

Post

er 0

7

The black rot disease caused by Xanthomonas campestris pv.campestris is one of the most important disease in cruciferouscrops. Because the virulence ofX. campestris pv. campestris isdependentonthetypeIIIsecretionsystem(T3SS)toinjecteffectorproteins,itisimportanttostudytheinteractionbetweenplantandpathogen through type III effectors for controlling Xcc disease.Here, 13 type III effectors ofX. campestris pv.campestris 8004wereanalyzedbytransgenicArabidopsisapproach.Amongthem,XVE::AvrXccC8004, XVE::XopAC8004, XVE::XopX8004 andXVE::AvrBs18004 transgenic lines show cell death phenotype;XVE::XopD8004 and XVE::XopP8004 show abnormaldevelopmentphenotype.Inordertounderstandthemechanismofcell death induced byAvrXccC8004, transgenic lines expressedtruncatedfragmentsofAvrXccC8004werecreated.Throughtrypanblue staining and TEM analysis, we found that theAvrB_AvrCdomain alone can trigger cell death. For RNA-seq analysis onXVE:AvrXccC8004(110-440a.a.)transgenicplants,24.9millionreadswere obtained fromDMSO- and estradiol-treated samples.AfterDESeqanalysis,a totalof381uniquegeneswithp<0.01wereidentifiedasdifferentialexpressedgenes.Amongthem,111outof381differentiallyexpressedgenesweremappedtoresponsetostimulustermbyGeneOntology(GO)analysiswhichsuggestedthatArabidopsiscouldresponsetotheactivitiesoftheAvrB_AvrCdomain of AvrXccC8004 and regulated genes expression forcellularorbehavioralstimulations.

PS07-282Identification of infection stage-specific effector molecules oftheAsiansoybeanrustfungusPhakopsora pachyrhiziMarco Loehrer1, Christian Schlupp1, Yannick Flaskamp1, UlrichSchaffrath11Department of Plant Physiology, RWTH Aachen University,Aachen,[email protected] soybean rust (Phakopsora pachyrhizi) causes severe yieldlosses insoybeangrowingregions inNorth-andSouth-America.Sincesoybeanplantswithresistancetoallisolatesofthepathogenarenotyetavailable,andfungicidaltreatmentsareprofit-decreasing,soybean cultivation in areas invaded by ASR might becomelimited. Facing this scenario we followed a knowledge-basedapproachbydeducingnovelstrategiestocombatthediseasefromdetailedinvestigationsofthefungalinfectionprocess.ASRpursuesaJanus-facedinfectionstrategybykillingthepenetratedepidermalcellswhichisatypicalforan intrinsicbiotrophicpathogen.LateronASRestablishesanordinarybiotrophicinteractionbyforminghaustoria inside mesophyll cells. Besides serving as feedingorgans, haustoria also secrete effectors that may interfere withthehost’sdefencemachinery.Aimingat the identificationof thissecretome, we targeted the haustorial transcriptome by a nextgenerationsequencingapproachusingRNAofisolatedhaustoriaincomparisontoRNAextractedfrominfectionstructures includingappressoria.Afterde-novoassemblyandannotation,weperformedan in silico screen for genes encoding for putatively secretedproteins.ForthefunctionalanalysisofcandidategenesinASR,weareworkingtowardstheestablishmentofatransienthost-inducedgenesilencingassay.In thiswaysilencingoffungalgenescouldbeachievedbyexpressingtherespectiveinterferingRNAsinthehost tissue.Dataon thegenesilencingmechanisminASRusingartificialsiRNAandinplantaexpressedhairpinconstructs,aswellasvirusinducedgenesilencing,willbepresented.

PS07-283Pectobacterium carotovorum uses the type III secretionmachinerytosuppresssystemicdefenseinhostplantsOlgaBadalyan1,YevgenyNikolaichik11Belarusianstateuniversity,Minsk,[email protected] show that delivery of the type III secretion system (T3SS)

effectorproteinDspEtoplantcellsbyPectobacterium carotovorumleads to strong local induction of known plant defense markersincludingPR and phytoalexin biosynthesis genes in both potatoandtomatoplants.However,inpotatotuberstheexpectedsystemicinduction was not observed at least for some of these genes.Inactivation of the key regulatory (HrpL) or structural (HrcV)componentorthemaineffector(DspE)ofthetypeIIImachineryinP. carotovorumresultedinsystemicinductionofgenesweaklyinduced(ornotinducedatall)bythewildtypebacterium.Wehavealso observed significantly reduced maceration of potato tubertissuebytheT3SSmutantscomparedtothewildtypebacteria.Wesuggest thatT3SSmayprovoke rapiddeathof the cells close totheinfectionsitewhichmaybeadvantageousforthenecrotrophicpathogenandmaynotallowenoughtimefortheproperinductionofsystemicdefensereactions.

PS07-284A rice blast fungus alpha-L-arabinofuranosidase proteinMoABFbisrelatedwithMagnaporthe oryzaeinfectioninriceJingniWu1,YimingWang2,SangGonKim2,SunTaeKim3,KyuYoungKang1,21DivisionofAppliedLifeScience (BK21program),GyeongsangNationalUniversity,Jinju,SouthKorea,2PlantMolecularBiologyand Biotechnology Research Center, Gyeongsang NationalUniversity, Jinju, 660-701, South Korea, 3Department of PlantBioscience,PusanNationalUniversity,Miryang, 627-706,[email protected] hydrolase family protein is a widespread groupenzymes that hydrolase the glycosidic bond between two ormore carbohydrates. During host infection process, M. oryzaesecreted out a series ofGH family proteins to degrade ricewallfor successful infection. One of thoseGH family protein alpha-L-arabinofuranosidaseB (MoABFb),which belong to theGH43subfamily, was previously detected relatedwith fungal infectionprocess. Sequence alignment of MoABFb homologs revealeda high conservation of amino acid sequence with GH43 familyproteins from other species. Biochemical analysis by usingrecombinantMoABFb protein confirmed thatMoABFb containsa high arabinofuranosidase activity. SEMdata indicated that theexpressionofMoABFbisrelatedwithhostcellwalldegradation.RT-PCR and leaf blot results suggested that MoABFb wasaccumulatedafter48hafterinoculationtothecompatiblericestrainandrevealedagoodmatchwithfungalinfectedpattern.InvitroandinvivocelldeathassayusingcelldeathreporterPBZ1 pro::GFPindicates that expression of MoABFb related with cell deathactivation in host.To understand the role ofMoABFb in fungalpathogenicity, gene deficient and over-expression mutants weregenerated.Thedeficientmutantincreasedfungalsusceptibility,andover-expressionmutant reduced the infection pattern, suggestingthatMoABFbrelatedwithfungalpathogenicity

PS07-285AMagnaporthe oryzae secretedeffector,MoCP,activateshostautophagicprogrammedcelldeathYimingWang1,JingniWu2,SangGonKim1,SunTaeKim3,KyuYoungKang1,21Plant Molecular Biology and Biotechnology Research Center,Gyeongsang National University, Jinju, South Korea, 2DivisionofApplied Life Science (BK21 program),GyeongsangNationalUniversity, Jinju, 660-701, South Korea,, 3Department of PlantBioscience,PusanNationalUniversity,Miryang, 627-706,[email protected] rice blast fungus secreted protein MoCP belongs to thecerato-plantanin family, which has phytotoxic activity againstvariousplants.Here,wecharacterizedthatMoCPproteininducesprogrammed cell death (PCD) in rice. ROS accumulation, ionleakage,DNAfragmentation,cytochromec release,chromosome

Page 131: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession07-Effectorproteins

129

Poster 07

shrinkage,nuclearcondensation,andautophagyformation,whichwerecelldeathmarkers,wereinvestigatedusingbiochemicalandhistochemical approaches. PCD was induced in rice suspensionculturedcellsaftertreatmentwithexogenousMoCPundertimeanddosagedependentmanner.Furthermore,exogenousMoCPproteininduced defense responses such as PR genes and MAP kinaseactivation in rice.MoCPwith or without signal peptide derivedfrom rice secreted protein glucanase was fused with mCherryreporter,andthenoverexpressedincelldeathinduciblepromotertransgenicplant,PBZ1pro::GFP.OnlythesecretedproteinactivatedGFP signal and induced defense related gene expression. TheseresultsindicatedthatMoCPmayactivecelldeathaftersecretedoutofplasmamembranebutnotinthecytoplasm,andactivateshostautophagicPCD.

PS07-286The biotrophPhakopsora pachyrhizi pretends a necrotrophicpestRuth Campe1, Marco Loehrer1, Caspar Langenbach1, GeroldBeckers1,UlrichSchaffrath1,UweConrath1,KatharinaGoellner11PlantPhysiologyDepartment,RWTHAachen,[email protected] pachyrhizi is a biotrophic fungus causingAsian soyrustdisease.OnbothitssoybeanhostandArabidopsisnonhostP. pachyrhizi directly penetrates epidermal cells that then commitcellsuicide.ThehypersensitiveresponsecoincideswithactivatedexpressionofPDF1.2,amarkergenefordefensetonecrotrophicpests.Wewould like to elucidatewhetherP. pachyrhizi activelyaffectsnonhostgeneexpressionpriortopenetration.Byapplicationof cell-free germination fluids onto Arabidopsis leaves wedemonstrated that PDF1.2 expression does not depend on thepresenceoffungalstructuresorpenetration.ThisfindingsupportsourhypothesisthatP. pachyrhizimimicsatleastsomeaspectsofanecrotrophtodisguise itsbiotrophicnature.ByfractionatingP. pachyrhizi germination fluid itwas shown thatPDF1.2 elicitingactivityresidesinaproteinaceousfraction.Furtheranalyseswillbedonetoidentifytheresponsibleproteins.

PS07-287EffectorCoDN3ofColletotrichum orbicularesuppressesNIS1-inducedcelldeathofNicotiana benthamianaHirokiIrieda1,KaeYoshino1,TetsuroOkuno1,YoshitakaTakano11GraduateSchoolofAgriculture,KyotoUniversity,Kyoto,[email protected] orbiculare (Co), the causal agent of cucumberanthracnose, infects Nicotiana benthamiana (Nb). Transientexpression of the secreted protein geneNIS1 by agro-infiltrationinducescelldeathinNb(NIS1-inducedcelldeath,NCD).Promoterassay usingGFP suggested thatNIS1 is preferentially expressedin invasive biotrophic hyphae ofCo. This has led to a proposalthatNCDoccurs inNb at the infectionprocessofCo.However,the knockout mutants ofNIS1 showed normal virulence onNb,suggestingapossibility thatNCDissuppressed inNbduringCoinfection.Previously,CgDN3, encodinga secretedsmallprotein,wasidentifiedasapathogenicity-relatedgeneofC. gloeosporioides(Cg) that infectsStylosanthes guianensis.The knockoutmutantsofCgDN3elicitedalocalhypersensitive-likeresponsebythehostplant,implyingtheabilityofCgDN3tosuppressthehypersensitive-like cell death. We identified a homologue of CgDN3 in Co,designatedCoDN3,andinvestigateditssuppressiveeffectonNCD.Asaresult,wefoundthatCoDN3isaneffectorfunctioningasasuppressorofNCD.Furthermore,toelucidateCoDN3functionasa secreted effector indetail,wevisualizedCoDN3protein fusedwithmCherryduringhostplant invasionanddetected thehighlyconcentrated signal of CoDN3 at the neck region of biotrophicinvasivehyphaebeneaththeappressorialpenetrationsite,implyingvigoroussecretionofeffectoratthispoint.Wewillpresentdetailedanalysisontheeffector-concentratedzoneusingmultiplecellularmarkers.[ThisworkwassupportedbytheProgramforPromotion

ofBasicResearchActivitiesforInnovativeBiosciences.]

PS07-288ThestructureandevolutionofbarleypowderymildeweffectorcandidatesCarsten Pedersen1, James C.Abbott2, Geraint Barton2, LaurenceV. Bindschedler3, Rainer Cramer3, Xunli Lu4, TakakiMaekawa4,LiamMcGuffin3,EmielVerLorenvanThemaat4,HansThordal-Christensen1,RalfWessling4,RalphPanstruga5,PietroD.Spanu21DepartmentofAgricultureandEcology,UniversityofCopenhagen,Denmark, 2FacultyofNaturalSciences, ImperialCollege,UnitedKingdom,,3UniversityofReading,UnitedKingdom,4Max-PlanckInstituteforPlantBreedingResearch,Cologne,Germany,5InstituteforBiologyI,RWTHAachenUniversity,[email protected],Blumeria graminis f.sp. hordei (Bgh)is a recently sequenced (Spanu et al. 2010), obligate biotrophicpathogenofbarleywithasignificantagriculturalimpactandserveas a model for studies on powdery mildews and other obligatebiotrophic interactions. Here I present a comprehensive surveyof the 491 Candidates for Secreted Effector Proteins (CSEPs)representingmore than7%of theprotein codinggenes found intheBghgenome.BasedonsequencehomologiesweclusteredtheCSEPsintofamiliesofparalogsandshowthatCSEPgeneshaveduplicatedinthegenomemostlikelyduetounequalcrossingoverduringevolutionand theyare therefore clustered in thegenome.Withinmanyofthesefamilieswefindstrongevidenceforpositiveselectionfordiversity.Whenwemappedtheaminoacidresiduesunderpositiveselectionon3Dstructuralmodelstheywereusuallypredicted to be exposed and thus possibly involved in proteininteractions.ExpressionstudiesshowthattheCSEPspreferentiallyare expressed in haustoria.Many CSEPs from different familiesappear to be related to microbial RNAses and we propose thata largeproportionof theCSEPshave evolved froman ancestralmicrobialRNAse.WespeculatethattheseRNasesmayhavebeenanidealstartingmaterialforbuildingupaneffectorarsenal.OurdatafitwellwithamodelforCSEPevolutiondrivenbyselectionforgeneduplicationsandselectionforaminoacidchancesresultinginalargediversityallowingthefungustoyieldavariedpaletteofeffectorsfunctions.

PS07-289DissectingfunctionsofHyaloperonospora arabidopsidiseffectorsbytranscriptomeapproachShuta Asai1,2, Ghanasyam Rallapalli1, Georgina Fabro3, LennartWirthmueller1,Marie-CécileCaillaud1,JonathanJones11Sainsbury Laboratory, John Innes Centre, Norwich, UnitedKingdom, 2Plant Science Center, RIKEN, Kanagawa, Japan,3UniversidadNacionaldeCórdoba,Córdoba,ArgentinaShuta.Asai@sainsbury-laboratory.ac.ukOomycetepathogenssecreteeffectormoleculestoattenuateplantdefense signaling during colonization of their hosts. We haverevealed that candidate effectors (HaRxLs) found in the genomesequence of Arabidopsis downy mildew (Hyaloperonospora arabidopsidis-Hpa;Baxteretal.2010SCIENCE)couldpositivelycontribute to bacterial virulence and suppress PAMP-triggeredimmunity(Fabroetal.2011PLOSPathogens).Also,thesubcellularlocalizationofHaRxLsin plantawasinvestigated(Caillaudetal.2012PlantJ.)andputativeplanttargetsofHaRxLswereidentifiedby yeast two hybrid screening (Mukhtar et al. 2011 SCIENCE).However, the mechanisms by which Hpa effectors promotevirulence remain to be elucidated.We have established a robustexpression profiling method, named Gene Expression ProfilingthroughRandomShearedcDNAtagsequencing(EXPRSS),whichcould detect differential expression with higher sensitivity thanmicroarray method. To identify the effector virulence functions,transcriptomeanalysisusingEXPRSSwascarriedoutonlinesthatexpressseveraleffectorstargetedtothehostcellnucleus,whichwewouldexpecttointerferewithtranscriptionalregulationofdefense

Page 132: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession07-Effectorproteins

130

Post

er 0

7

genesininfectedhostcells.PutativetargetsandfunctionsofHpaeffectorsarediscussedonthebasisoftranscriptomedata.

PS07-290OsPUB44, a regulator of PAMPs-induced basal resistance, istargetedbytypeIIIeffectorXoo3222KazuyaIshikawa1,KojiYamaguchi1,KazuakiSakamoto1,YuichiroMuraguchi1, Seiji Tsuge2, Ko Shimamoto3, Chojiro Kojima4,TsutomuKawasaki11Graduate School of Agriculture, Kinki University, 2GraduateSchool of Agriculture, Kyoto Prefectural University, 3GraduateSchool of Biological Science, Nara Institute of Science andTechnology,4InstituteforProteinResearch,OsakaUniversitynb_ishikawa@nara.kindai.ac.jpManygram-negativebacteriathatinfectplantsdirectlyinjectlotsofeffectorproteinsintohostcellsusingtypeIIIsecretionsystem(TTSS). The type III effector proteins are considered to be theprimaryvirulencefactorsandstronglycontributetocausediseaseonthehostplants.Therefore,itislikelythattheseeffectorsblockthe important steps in plant immune response. Xoo3222 is oneof effector proteins secreted into rice cells through theTTSS ofXanthomonas oryzaepv.oryzae(Xoo).ToelucidatethephysiologyofXoo3222,wehavegeneratedtransgenicriceplantsexpressingXoo3222.Thetransgenicplantsshowedanenhancedsusceptibilityto the TTSS-deficient Xoo mutant. Additionally, microarrayexperimentsrevealedthatXoo3222stronglyaffectedexpressionofalargenumberofPRgenesinducedbythechitinelicitor,suggestingthat Xoo3222 may target host factors that function in PAMPs-triggeredimmunityinrice.WeidentifiedOsPUB44asaninteractorof Xoo3222. OsPUB44 encodes ubiquitin E3 ligasewithU-boxandARMdomains.ExpressionlevelsofOsPUB44wereincreasedby the chitin elicitor treatment. Xoo3222 specifically interactedwith the U-box domain of OsPUB44. Furthermore, OsPUB44possessed the ubiquitin E3 ligase activity in vitro, which wasinhibitedbyXoo3222.Interestingly,Xoo3222didnotinteractwiththeOsPUB44homologousproteins.The twohybridexperimentsshowedthat threeaminoacidresidueswithintheU-boxmotifofOsPUB44,whicharedistinctfromthoseofOsPUB44homologousproteins, are responsible for interaction with Xoo3222. Thesefindings suggest thatXoo3222may inhibit rice innate immunityviaspecificmodulationofOsPUB44activity.

PS07-291Biogenesis of sRNAs homologous to effector-encoding genesandtransposableelementsinP. infestansRamesh Vetukuri1, Anna Asman1, Sultana Jahan1, ChristinaDixelius11Dept. of Plant Biology & Forest Genetics, Swedish Universityof Agricultural Sciences & Linnean Center for Plant Biology,Uppsala,[email protected] have prepared small RNAs from mycelia, sporangia,germinating sporangia and germinating cysts of two contrastingisolates (Vetukuri et al. 2012).Deep sequencing of small RNAsfromeight librariesgenerated15.3and12.8millionhigh-qualitysequence-reads, respectively. Total reads were individuallymappedtodatasetsofRXLRandCRNeffectors,transposonsandthe whole genome, after filtering reads that matched to tRNAs,rRNAs andmtDNA.Alignment of all sequences to the entire P.infestansgenomesequence revealedanenrichmentof21,25,26nt sRNAs and in the range of 30-33nt.The highest proportionsof sRNA sequences were homologous to transposons, followedbyCRNandRXLReffectors.ThemoststrikingaccumulationofsRNAsequenceswasobservedforCRNgenes,wherethemajorityofsRNAsequenceswere21ntinlength.5’nucleaotidepreferenceofsRNAsdiffersbetweenRNAsmappedtotransposons,RXLRsandCRNleadingtothesuggestionsthatdifferentArgonautesmightprocessdifferentsRNAs.ViaPiDcl1-eGFPfusionswefoundDCL1localizedtothecellnucleusinP.infestans.Analysisofthe5’base

ofthetotalsRNAsmappingtotransposons,RXLRandunplacedreadsofthegenomeshoweddifferentpreferences,andsuggeststhatdifferentprocessesareusedforthebiogenesisofeachsizeclassofsRNA.But3’endsofsmallRNAsarenotmodified.7miRNAs,precursors and target genes have been predicted.A selection oftransposons, andgenes encodingRXLRandCRNeffectorswithahighabundanceofhomologoussRNAswereanalyzed inmoredetail.

PS07-292Functional analysis of the tumor and anthocyanin-inducingeffectorproteinTin2ofUstilago maydisShigeyuki Tanaka1, Thomas Brefort1, Joerg Kahnt1, RegineKahmann11Max Planck Institute for Terrestrial Microbiology, Marburg,[email protected] fungusUstilago maydis is the causal agent of smut diseasein maize. The interaction with the host is governed by secretedeffectors andmany of the respective genes reside in clusters inthegenome.Cluster19Aisthelargestoftheseclusterscarrying24genes for putatively secreted effector proteins. Deletionmutantsof the left half of cluster 19A (19A_1) showdramatic reductionof tumorformationand lossofanthocyanin induction,whicharecharacteristicphenotypesofmaizeleavesinfectedwithU. maydis.WedemonstratethatTin2effectorencodedinthisregionissecretedandexpressedexclusivelyduringbiotrophicgrowth.tin2deletionmutants showed small reduction of tumor formation and loss ofanthocyanin induction. Introduction of the tin2 gene into the19A_1mutantpartiallyrescuedtumorformationandfullyrestoredanthocyanin induction. A Tin2 protein lacking the C-terminal5 amino acids had lost these abilities. In line with this, Tin2mutantproteincouldnot interactwithcytoplasmicmaizeproteinkinaseZmTTK1identifiedasTin2interactorbyyeasttwohybridscreening.Transientexpressionassays inNicotiana benthamianarevealed that ZmTTK1 was degraded proteasome-dependently.Interestingly, co-expressionwithTin2 stabilizedZmTTK1.Tin2-binding region of ZmTTK1 contains the phosphodegron-likemotif DSGxS.When ZmTTK1 carrying mutations in this motifwas transientlyexpressed, themutantproteinprovedmorestablethanthewildtypeprotein.Therefore,itislikelythatTin2effectormasks the phosphodegron motif of ZmTTK1, which stabilizesfunctional full-length ZmTTK1 kinase in plant cell, resulting insignaltransductionleadingtoanthocyaninbiosynthesisandtumorinduction.

PS07-293Horizontal transfer of holPsyAE TTSS effector gene inXanthomonas campestrisstrainsMariaV.Mokryakova1,AlexanderN.Ignatov2,3,SergyA.Bruskin1,41Institute of General Genetics by N.I. Vavilov, RAS, Moscow,Russia, 2CenterBioengineeringRAS,117312,Moscow, 3RussianResearchInstituteofPhytopathologyRASKHN,149050,MoscowRegion, Russia, 4Moscow Institute of Physics and Technology,9 Institutskii pereulok, Dolgoprudny, 141700 Moscow Region,[email protected] are pathogens of many important agriculturalplants.PathogenicityofmanyGram-negativebacteriaisdependedon the type III secretionsystem(TTSS),which transportat least30virulence effectorproteins intoplant cell,where they subvertthe host cell physiology and disrupt host defense mechanisms.The fact that homologous effector geneswere found in differentspeciesandevengeneraofplant-associatedbacteriawasexplainedbyfrequenthorizontaltransferofthesegenes.Presenceofmobilegenetic elements in vicinity of several effector genes indirectlyconfirmsthehypothesis.Wehaveinvestigatedgeneticdiversityof30TTSSeffectorgenesinapopulationofXanthomonas campestrisfieldstrainsinordertoevaluatepossiblehorizontaltransferofthe

Page 133: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession07-Effectorproteins

131

Poster 07

effectorgenesacrossthegenusXanthomonas.InafewstrainsofX. campestris pv. campestriswe have found conservative region(318bp) which is homologous to holPsyAE from X. oryzae pv. oryzae. Assuming the presence of homologous genes, we haveanalyzed this region and found that these strains have a genehomologoustoholPsyAEat97%.AftersequencingthisregionwehaveidentifiedconservativeDNAfragmentslikelytobeassociatedwithgenetictransferandinsertionofthisgene.Weareinvestigatingpossible protein-protein interactions of this homolog holPsyAEwith Arabidopsis proteins. This gene is probably important tounderstanding of plant-microbe interactions, because of its highsequenceidentityintheremotespeciesofthegenusXanthomonas.Thisworkwassupportedbygrants10-04-01195-aRFFI,“Livingnature:currentstateanddevelopmentalproblems”fromProgramofRANPresidiumandISTC#3431.

PS07-294Arabidopsis powdery mildew effector proteins target highlyconnectedhostproteinsanddisplayvirulenceactivityRalfWessling1,AmberStephens1,EmielVerLorenvanThemaat1,PascalBraun2,JefferyL.Dangl3,RalphPanstruga1,41Department ofPlantMicrobe Interactions,MaxPlanck Institutefor PlantBreedingResearch,Cologne,Germany, 2Plant SystemsBiology, Center of Life and Food Sciences Weihenstephan,TechnicalUniversityMunich,Munich,Germany,3HowardHughesMedical Institue and Biology Department, University of NorthCarolina,ChapelHill,NorthCarolina,UnitedStatesofAmerica,4Unit of Plant Molecular Cell Biology, Institute for Biology I,RWTHAachenUniversity,Aachen,[email protected] plant pathogens employ a diverse set of effectormolecules to manipulate the host cell during infections. Whilethe effector complement of pathogenic bacteria has beenmostlyelucidated, the repertoire and host targets of fungal effectors arecurrently underexplored. Here, we characterize the haustorialeffectorcomplementoftheAscomyceteGolovinomyces orontii,thecausalagentofthepowderymildewdiseaseinArabidopsis thaliana.From a haustorial cDNA library, we have identified transcriptscodingfor120candidatesecretedproteinsandwereabletoobtainfulllengthclonesfor84ofthese.Transcriptionprofilingofselectedeffectorssuggeststheirsequentialdeliveryduringpathogenesis.Inordertoexploretheinteractomeoftheclonedeffectorcomplementwe conducted a high-throughput yeast two-hybrid screen againsta library ofArabidopsis full lengthOpen Reading Frames. Thisapproachyielded132highqualityinteractionsbetween47effectorsand 61 corresponding plant proteins. Interestingly, we found alargeoverlapwiththeeffector-plantinteractomesofthebacteriumPseudomonas syringae and the oomycete Hyaloperonospora arabidopsidis.Proteinstargetedbyall threepathogensarehighlyconnected in theArabidopsis interactome.Mutant lines of thesegenes display disease phenotypes, suggesting that evolutionarydistinctplantparasitestargetthesameconservedhubstopromotevirulence. Six effectors also enhance virulence of effector-delivering bacteria and suppress induced cell death inNicotiana benthamiana.TheirArabidopsisproteintargetsarecurrentlybeingcharacterizedinmoredetail.

PS07-295Xanthomonas campestrisTypeIIIeffectorXopJtargetsthehostcellproteasometosuppressplantdefenceSuayibUestuen1,VerenaBartetzko1,FrederikBoernke11Department of Biochemistry, Friedrich-Alexander UniversityErlangen-Nuernbergsuestuen@biologie.uni-erlangen.deXanthomonas campestris pv. vesicatoria (Xcv) is the causalagentofbacterialspotdiseaseinpepper(Capsicum annuum)andtomato(Solanum lycopersicum).ToovercomethebasaldefenceofplantsXcv translocates about30 effectorproteinsvia its type IIIsecretionsystemintothehostcell.XopJisaXcvtypeIIIeffector

proteingroupedintotheYopJ/AvrRxvfamilyofSUMOproteases/acetyltransferasesalthoughitsbiochemicalactivityhasnotyetbeendemonstrated.Inthisstudy,wecharacterisethevirulencefunctionofXopJ.Theeffectorproteinislocalisedtotheplasmamembraneviaposttranslationalmodificationsinvolvingmyristoylationandmostlikelyadditionalpalmitoylation.Itsubvertsbasaldefenceresponsesbyinhibitingvesiculartraffickingtotheplasmamembraneandasaconsequenceofthatalsopapillaeassociateddepositionofcallose.Secretionassaysusinga secretableGFP reporterprotein showedthat theinhibitionofproteinsecretionrequiresanintactcatalytictriadandplasmamembranelocalisationinvolvingmyristoylation.UsingtheyeasttwohybridsystemandinplantaBiFCassayswewere able to identifyRPT6, a subunit of the 26Sproteasome, asa binding partner of XopJ.Mutational analysis showed that theinteraction between XopJ and RPT6 required an intact catalytictriadwhichsuggeststhatitsbiochemicalactivityisnecessaryforXopJtobindRPT6.BiochemicalstudiesindicatedthatexpressionofXopJinleavesofNicotiana benthamianadramaticallyincreasesthe amount of ubiquinated proteins and significantly reducesproteasome activity. Thus, XopJ might contribute to bacterialvirulence by inhibiting proteasome activity through interferencewithRPT6function.

PS07-296Functional characterization of small, cysteine-rich secretedeffectorsfromthefilamentousfungusMagnaporthe oryzaeWilliamC.Sharpee1,YeonyeeOh1,BillFranck1,JoshSalisbery1,RalphDean11NCStateUniversitywcsharpe@ncsu.eduThefilamentousfungusMagnaporthe oryzaeisthemostdestructivepathogenofriceworldwide.Itisdescribedashavingtwodistinctlifestyles within the host plant: a biotrophic interaction duringthe early stages of infection followed by a necrotrophic phasecharacterizedbyhostcelldeathandlesionformation.Toidentifyeffectorproteinsthatcontributetopathogenesis,thegenomeofM. oryzae strain 70-15wasmined for proteins that contain a signalpeptide,havegreater than3%cysteinecontent,andare less than250aminoacidsinlength.Thesecriteriawereselectedbaseduponthecharacteristicsofknowneffectorsfromotherplant-pathogenicfungi and oomycetes. These proteins were then transientlyexpressedinNicotiana benthamiana leavesviaagroinfiltrationtodetermine if the putative effectors can elicit cell death and thuspotentiallyplay a role in thenecrotrophicphaseof infection.Ofthe70candidateeffectorstestedtodate,10werefoundtoinducenecrosisandarebeingevaluatedfornecrosisinducingactivityinbarley.Inaddition,candidateeffectorsarebeingco-agroinfiltratedwiththeBAXgene,aknowninducerofhostcelldeathinbothplantandmammaliancells.CandidateeffectorsthatsuppressthenecrosisinducingactivityofBAXarepotentially involved insuppressinghost plant defenses and could contribute to the biotrophic phaseof infection. Furthermore, the genomes of 40M. oryzae isolatesarebeinganalyzedforcandidateeffectorstoidentifythosethatareconservedamongstsomeorall isolatesand those thatare isolatespecifictobetterdefinetheirroleinvirulence.

PS07-297XanthomonasT3SeffectorXopXsuppresseseffectortriggeredimmunitytopromotepathogenesisWilliam Stork1, Mica Soriano1, Jung-Gun Kim1, Mary BethMudgett11BiologyDepartment,StanfordUniversity,Stanford,[email protected](T3Es)ofplantpathogenicbacteriaaretranslocateddirectlyintothehostcellcytoplasmduringinfectionandhavebeenshowntosuppressimmunesignalinganddefense.The Xanthomonas campestris vesicatoria (Xcv) T3E XopX isan virulence factor that appears to suppress host defense, butdetails ofXopXactivity andpotential host targets are unknown.

Page 134: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession07-Effectorproteins

132

Post

er 0

7

XopXisa699-aminoacidproteinconservedamongmostknownXanthomonasstrains.HighlyconservedmotifsamongXopXallelesincludeanN-terminalalaninerichregionandapredictedtyrosinephosporylation site at amino acid 275. XopX alleles are alsohomologoustotheXanthomonasT3EEarlyChlorosisFactor(ECF).TheclosestXopXhomologinPseudomonassyringaeisHopAE1.WedemonstratedthatXopXsuppressesthehypersensitiveresponse(HR)elicitedbyXcvinthenon-hostplantNicotiana tabacum.WeperformedanAgrobacterium-mediatedtransientexpressionscreenofanXcvT3ElibrarytoidentifyT3EselicitingHRinN. tabacum.Finally,wedemonstratedthatanXcvxopXmutantstrainelicitsanaggravatedHRandhasreducedgrowthinthenaturalhost,tomato.Futureworkwill determinewhetherXopXactivity is specific toeffectortriggeredimmunity.Wewillperformastructure-functionanalysisofXopXtoidentifydomain(s)andresidue(s)responsiblefor itsactivityand identifyhostproteins that interactwithXopXthroughprotein-proteininteractionanalyses.

PS07-298ScreeningofRalstonia solanacearumeffectorssuppressinghostimmuneresponsesYoshitoTaguchi1,HirofumiYoshioka2,KazuyaAkimitsu1,KazuyaIchimura11KagawaUniversity,Kagawa,Japan,[email protected]. solanacearumistypeofgramnegativebacteriaandthecausalagentofbacterialwilt, notonly inSolanaceae, but also inmorethan200otherplantspecies.Initialplant-pathogeninteractionisacriticallyimportantfordeterminationofR. solanacearuminfection.Forsuccessfulinfection,bacterialpathogensinjecttypeIIIeffectorsintohostcellsandinhibithostMTI(MAMP-TriggeredImmunity)or ETI (Effector-Triggered Immunity). More than 45 effectorshave been predicted in theR. solanacearum genome. However,only a few effectors that suppress host immune responses havebeenidentified.Wecollected92putativeeffectorsfromthegenomeinformationofR. solanacearumGMI1000andtheliterature-basedknowledge.We examined them to find effectors which have anabilitytosuppressHR(HypersensitiveResponse)likecelldeath.For thispurpose,wecoexpressed each effectorwith either INF1or MEK2DD to induce HR like cell death by agroinfiltration inNicotiana benthamianaleaves.Wewilldiscusspossiblefunctionsofpositiveeffectorsfromongoingscreening.

PS07-299ManipulationofplantimmunitysignallingbytheLateBlightRXLR-WYeffectorPexRD2StuartR.F.King1,MilesArmstrong2,HazelMcLellan2,PaulBirch2,SophienKamoun3,MarkBanfield11DepartmentofBiologicalChemistry,JohnInnesCentre,NorwichResearchPark,NR47UH,UnitedKingdom,2PlantPathology,TheJamesHutton Institute, Invergowrie,Dundee,DD25DA,UnitedKingdom, 3The Sainsbury Laboratory, Norwich Research Park,NR47UH,UnitedKingdomstuart.king@jic.ac.ukOomycetesofthegenusPhytophthorarepresentsomeofthemostdestructive pathogens of crop species, causing major yield andeconomiclossesworldwide.Phytophthora infestans,thecausativeagent of late blight, is a devastating pathogen of potatoes andtomatoes.Tocolonisehostplants,itsecretesanarsenalofeffectorproteinsthatarethoughttocontributetovirulencebysuppressingtheplantimmunesystem.PhytophthoraeffectorsfromtheRXLReffector family translocate inside host cells to interactwith theirhosttargetsandmodulatehostcellfunction.Thetargetsofanumberof theseRXLReffectorsarenowbeginningtobeidentified.It ishopedthatbygaininginsightsintotheseeffector-targetinteractions-themolecularfrontlineoftheco-evolutionaryarmsracebetweenthepathogenandhost-willeventuallyleadtonovelstrategiestocontrolcropdiseases.WehaveusedaY2Hscreen to reveal thatPexRD2,anRXLR-WYeffector,interactswithamulti-domainhost

proteinimplicatedinthecelldeathsignallingpathwaysassociatedwithplantimmunity.WehavealsoshownthatectopicexpressionofPexRD2enhancesthegrowthofthepathogeninamodelhost,Nicotiana benthamiana, and suppresses the hypersensitive celldeath associatedwith the recognition of a number of avirulenceproteins.

PS07-300EffectorAvr-PitamayformcomplexwithPi-taandCOX11inthemitochondriaandmodulateROSproductionLetian Chen1, Fengpin Wang1, Xiaoyu Wang1, Yuanling Chen1,XiucaiZhao1,YaoguangLiu1,KoShimamoto21South ChinaAgricultural University, Guangzhou, China, 2PlantMolecularGenetics,NAIST,8916-5Takayama,Ikoma630-0101,[email protected]/Pi-ta is a classic pathosystem to study themechanismsof molecular interaction between blast fungus ( Magnaporthe grisea )andcerealplantrice(Oryza sativa L.).Botheffectorandresistancegeneshavebeenclonedformorethanadecade,whiletheinvivorecognitionprocessesofAvr-PitaandPi-taarestilllargelyunknown.Incurrentstudy,wefusedaGFPoranYFPfluorescentprotein to Pi-ta andAvr-Pita respectively and demonstrated thateffectorAvr-Pita is colocalizedwith cognate Pi-ta protein in themitochondria. Then, a nuclear encoded mitochondrial proteinCOX11wasidentifiedasoneofAvr-Pita-interactingcomponentsinyeasttwo-hybridassays.WefurtherdemonstratedthatCOX11isanegativeregulatorofreactiveoxygenspecies(ROS)accumulation.Taken together, we reason that some fungal pathogens delivereffectorproteinintothemitochondriaofhost.AndtheeffectormayenhancethefunctionofCOX11byphysicalinteractiontoeliminateROS.WhilecognateRproteinarreststheeffectorandCOX11tobootupROSproductionleadingtoplantinnateimmuneresponses.

PS07-301Families of candidate effector proteins identified from thehaustorial transcriptomes of Uromyces appendiculatus andPhakopsora pachyrhiziTobiasI.Link11DepartmentofPhytomedicine,UniversityofHohenheim,[email protected] fungi are biotrophic pathogens, which do not kill theirrespective host plants but are dependent on living tissue forpropagation. Among them are species with major economicimpactlikePhakopsora pachyrhiziandUromyces appendiculatus,infecting soybean and common bean. A hallmark feature ofbiotrophicfungiarehaustoria,whicharetheinterfacefornutrientuptake in rust fungi and probably also for transfer of effectorproteins into the plant cell.We did transcriptome sequencing ofRNA from isolated haustoria of both U. appendiculatus and P. pachyrhizi using the next generation sequencing technology 454pyrosequencing. Comparing our annotation results with thosefor pre-biotrophic structures we could corroborate findings thathaustoria have indeed important functions in energy and aminoacidmetabolism.BLASTing our sequences against selected rustandbasidiomycetegenomesequences,predictingsecretedproteinsand building gene families through clustering,we could identifygenesandgenefamiliesthataresecretedandthatarespecifictorustfungiorsubcladestotherustfungi.Familiesspecifictothelegumehostseemtobemissingbutwefoundatleastonefamilythatseemstobepresentinpathogensingeneral.Inadditiontophylogeneticdistributioninterestingmotifsandexpressionpatternsmakethesegenes and gene families good candidate effectors. We are nowusingphenotypicassaysandidentificationofinteractionpartnerstoconfirmandcharacterizeeffectorproteins.

Page 135: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession07-Effectorproteins

133

Poster 07

PS07-302Analysis of defense-associated MIN7 protein complex inArabidopsisKinyaNomura1,HirokazuTanaka2,LoriImboden1,ShengYangHe11Plant Research Laboratory, Michigan State University, USA,2Laboratory of Plant Growth and Development, Department ofBiologicalSciences,GraduateSchoolofScience,OsakaUniversity,Japannomura@msu.eduPlantshaveevolvedapowerfulimmunesystemtodefendagainstinfection by most microbial organisms. However, successfulpathogens, such as Pseudomonas syringae, have developedcountermeasuresandinjectvirulenceproteinsintothehostcelltosuppressplantimmunityandcausediseases.DuringP.s.pv.tomato(Pst)DC3000infectionofArabidopsis,thehostARFGEFproteinMIN7isdestabilized,viathehost26Sproteasome,bythepathogeneffectorHopM1.WefoundthatMIN7hasabroadroleinpathogen-associated molecular pattern (PAMP)-, salicylic acid (SA)-, andeffector-triggered immunity.TheMIN7 level inhealthyplants islow,butincreasesposttranscriptionallyinresponsetotheactivationofdefense.Livecell imagingshows thatHopM1actswithin thetrans-Golgi network/early endosome of plant cells to destabilizeMIN7 during Pst DC3000 infection. Native polyacrylamide gelelectrophoresisanalysisshowedthatMIN7existsasanover500kDaproteincomplexinleafcells.ToidentifytheMIN7interactorprotein(s), we performed co-immunoprecipitation. MIN7 waspurifiedfromtransgenicArabidopsisplantsexpressingMIN7-GFPafter treatment with benzothiadiazole to induce SA-dependentimmunity.Massspectrometryanalysisindicatedthatfourproteins(theARFGTPaseARFA1,theARFGEFBIG2,the14-3-3proteinGRF1, and a tetratricopeptide repeat (TPR)-like superfamilyprotein). TPR-like superfamily protein SALK KO line (tpr-1)showssimilarphenotypestomin7suchasearlysenescenceunderstressed condition. We are testing the hypothesis that ARFA1,BIG2,GRF1,and/orTPR-likesuperfamilyproteinarerequiredforMIN7-mediateddefense.

PS07-303New races with unique mutations in avirulence genesovercomingtomatoCfresistancegenesinaJapanesepopulationofCladosporium fulvumYuichiro Iida1,2, Pieter van ‘t Hof2, Henriek Beenen2, IoannisStergiopoulos2, Rahim Mehrabi2,3, Ayumi Notsu4, MasaharuKubota1,Ali Bahkali5, KamelAbd-Elsalam5,6, FumihiroTerami1,JeromeCollemare2,PierreJ.G.M.deWit2,5,71National Institute of Vegetable and Tea Science, 2WageningenUniversity, 3Seed and Plant Improvement Institute, 4HokkaidoResearch Organization, 5King Saud University, 6Plant PathologyResearchInstitute,7CentreforBiosystemsGenomicsy_iida@affrc.go.jpLeafmoldoftomatoiscausedbythebiotrophicfungusCladosporium fulvumwhich complieswith thegene-for-gene system indicatingthat each dominant pathogen avirulence (Avr) gene product isrecognized by the product of a corresponding dominant hostC. fulvum (Cf) resistance gene.As a result of selection pressureimposedbyCfgenesoften,pathogenicracesdevelopedadaptedtotheintroducedCfresistancegenes.Thefungushasbeenreportedto occur on tomato in Japan since the 1920s. Initially only race0,unable toovercomeanyof theknownCfgenes,wasreported.However,duringthelasttwodecadesCfresistancegeneshavebeenintroduced and new races evolved adapted to correspondingCfgenes.Herewedeterminedthevirulencespectrumof123C. fulvumstrainscollectedfromdifferentpartsofJapanandsequencedtheiravirulence(Avr)genestogetdetailedinformationonthemolecularbasisofadaptationtothedifferentCfgenes.TenracesofC. fulvumwere identified of which races 9, 2.9, 4.9 and 4.9.11 occur inJapanonly.TheAvrgenesoftheseracescontainuniquemutationscausingadaptationtoCfgenes including(i)frameshiftmutationsand(ii)transposoninsertionsinAvr2,(iii)pointmutationsinAvr4

andAvr4E, and (iv) deletionofAvr4E andAvr9. It is concludedthatmolecularmechanismsofadaptationtodifferentCfgenesinanisolatedC. fulvumpopulationinJapanareuniquebutfollowsimilarpatternsasthoseobservedinotherpartsoftheworld.

PS07-304Functional studies ofPseudomonas syringae type III effectorAvrEXiufangXin1,KinyaNomura1,FranciscoUribe1,XujunChen11Department of Plant Biology/DOE-Plant Research Laboratory,MichiganStateUniversity,[email protected] subvert plant immunity, Gram-negative phytopathogenicbacteria injectnumerouseffectorproteins into theplantcell.TheAvrE family of type III effectors is broadly conserved and veryimportant forpathogenesis.However, themolecularmechanismsof their virulence functions are not understood. We are usingArabidopsis-Pseudomonas syringae pv. tomato (Pst) DC3000pathosystem to studyAvrE function.We identified two sequencemotifs inAvrE: aWxxxEmotif within the N-terminal half andaKKmotif at theC-terminus.When transgenically produced inArabidopsis, wild-type AvrE complemented the growth of thePstDC3000deltaCELmutant, inwhich fourconservedeffectorsincluding avrE are deleted. In contrast, transgenically expressedWxxxE orKKmotifmutants lost the ability to complement thedeltaCELmutant, demonstrating theWxxxE andKKmotifs areessential forAvrE function. Remarkably,we recently found thattheWxxxEmotif can be relocated to four other tryptophan (W)positions where these Ws are conserved among AvrE-familyproteins. When co-expressed in tobacco plants, the N- and C-terminal halves ofAvrE can reconstitute the cell death-inducingactivity ofwild typeAvrE and the two half proteins interact, asdemonstrated by co-immunoprecipitation, suggesting AvrE isamodular protein and contains at least two functional domains.Using fluorescence protein tagging,AvrE protein is found to belocalizedontheplasmamembraneandformspeckles.Yeasttwo-hybridandinplantapulldownusingAvrEasbaitrevealedseveralcandidates ofAvrE interacting proteins, which paved a way foridentifyingmoleculartargetsofAvrEintheplantcell.

PS07-305Identification of effectors from Blumeria graminis byXanthomonas type three secretion and virus-induced genesilencingbasedscreensShan Qi1, EhrenWhigham1, Clara P. Prieto2, Pietro D. Spanu2,RogerP.Wise1,2,AdamJ.Bogdanove11Plant Pathology Department, Iowa State University, Ames,Iowa,US,2MolecularPlantPathologyDepartment,ImperialCollegeLondoncassandraqs@gmail.comIdentificationandcharacterizationofBlumeria graminiseffectorsiscritical forobtainingabetterunderstandingofbarleypowderymildew interactions, which may contribute to new controlstrategies.Byproteomics,weidentifiedabout40Blumeriaeffectorcandidate (BEC) genes from the recently completed Blumeria graminis genome sequence. Host-induced silencing of thesegenes with particle bombardment revealed nine that appear toplayaroleinthehost-pathogeninteraction.Wefusedeachofthecoding sequences to the5, endof the avrBs2effectorgene fromXanthomonas campestrisforbacterialtypeIIIdeliveryintobarleyaswellasmaizeandrice.WhendeliveredintobarleybyastrainofX. campestris that otherwise elicits no visible plant response,oneofthecandidates,BEC1019,suppressedadefense-associatedcelldeathelicitedbyanother,co-inoculated,Xanthomonasspecies,X. oryzae.Meanwhile, each of the nineBECswas also silencedby Barley stripe mosaic virus (BSMV) induced gene silencingand followed by inoculation of Blumeria graminis isolate 5874in barley.SilencingBEC1019 resulted inmuch less sporulationand fungal growth. Thus, BEC 1019, may function to suppress

Page 136: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession07-Effectorproteins

134

Post

er 0

7

defenseandenhancevirulenceduringthedevelopmentofpowderymildew inbarley.BEC1019homologsweredetected in22otherdiversepathogenicfungi,includingthehumanpathogenCandida albicans,suggestingthatBEC1019mayrepresentalargefamilyofconservedfungalvirulencefactors.

PS07-306Characterization of the CoPRF1 mutant of Colletotrichum orbicularedefectiveinestablishmentofhostinfectionKaoruTanaka1,YasuyukiKubo11Laboratory of Plant Pathology, Graduate School of Life andEnvironmentalScience,KyotoprefecturalUniversity,Kyoto,Japans811631037@kpu.ac.jpPlantpathogenshaveco-evolvedwiththeirhostplantswhichhaveevolvedthedefensesystemagainsttheirpathogens.Itisgenerallyacceptedthatplantsexpressbasalimmunitybytherecognitionofthepathogen-associatedmolecularpatterns,butcompatiblepathogenssuppresstheplantbasaldefensebysecretingtheeffectorprotein.Inourpreviousstudy,wehaveobtainedseveralpathogenicitydeficientinsertionalmutantsinColletotrichum orbicularebyAgrobacterium tumefaciens-mediated transformation (AtMT). Among them, inthemutantnamedYK4524 itwasshown thataT-DNAinsertiondisrupted a gene which presumably encodes an extracellularproteinwith signal peptide sequence.AndBLAST search of thepredicted sequence found no significant homologous genes inpublisheddatabases,suggestingthatitisuniquetoC.orbiculare.SowenamedthisgeneCoPRF1(Pathogenesis-relatedfactor1).Targetgene disruption mutants ofCoPRF1 obtained byAtMT showedsignificant reduction in virulence on the host leaves. However,characteristics such as germination, appressorium formation andpenetration hyphae formation of coprf1 mutants in vitro werenormal,indicatingthatCoPRF1isnotessentialforinfectionrelatedmorphogenesis.Ontheotherhand,penetrationabilityofmutantswasattenuatedonintactcucumbercotyledons,andtheelongationof its invasive hyphaewas slower comparedwith thewild type.Fromtheseresults,itwassuggestedthatCoPRF1wouldengageintheestablishmentofhostinfectionofC.orbiculare.

PS07-307Functional characterization of secreted effector proteinsfrom the hemibiotrophic fungal pathogen Colletotrichum higginsianumHiroyuki Takahara1, Jochen Kleemann2, Stéphane Hacquard2,RichardO’Connell21Ishikawa Prefectural University, Ishikawa, Japan, 2Max PlanckInstituteforPlantBreedingResearchtakahara@ishikawa-pu.ac.jpThe ascomycete fungus, Colletotrichumj higginsianum, belongsto one of themost economically important genera of pathogens,causinganthracnosediseaseonawiderangeofcruciferousplants,including Brassica, Raphanus and the model plant Arabidopsis thaliana. To identify fungal genes related to pathogenicity, wegeneratedcDNAlibrariesfromdifferentColletotrichum infectionstages on Arabidopsis leaves, namely appressorial penetration,biotrophic phase and necrotrophic phase, and those librariesweredeeplysequencedby454-pyrosequencing.Secretedeffectorproteinsenableplantpathogenicfungitomanipulatehostdefenseresponses for successful infection. By computational mining ofthe ESTs,we have identified sets of genes encoding putativeC. higginsianum effector candidate (ChECs) that are specificallyexpressed in particular fungal infection structures.We identifiedtwo secreted LysM domain proteins from a biotrophic hypha-EST library, which may function as effectors to evade chitin-triggeredimmuneresponses.WearealsoevaluatingthebiologicalactivitiesofChECsinplantabyAgrobacterium-mediatedtransientexpression inNicotiana benthamiana. Several putative functionswillbepresented.

PS07-308Identification of novel bacterial effector protein involved inhypersensitiveresponse(HR)celldeathinriceMachikoKondo1,ChikaMiyata2,HarukaSasaki2,RyousukeAoi2,Fang-SikChe1,21Bio-Science,NagahamaInstituteofBio-ScienceandTechnology,Shiga,Japan,2GraduateSchoolofBioscience,NagahamaInstituteofBio-ScienceandTechnologym_kondo@nagahama-i-bio.ac.jpPlantpathogenicbacteriaAcidovorax avenaeN1141rice-avirulentstraininducestheplantimmuneresponsescontaininghypersensitive(HR)celldeathinrice.IthasknownthatplantHRcelldeathwasinducedbyseveraleffectorproteinssecretedintoplantcellsthroughthe bacterial Type III secretion system (T3SS). To clarify theinductionmechanismofHRcelldeathinricebyN1141strain,weanalyzedgenomesequenceofN1141strainandfound30kbphrpgeneclusterencodingT3SS.ThedeletionmutantofT3SSinN1141strain(NΔT3SS)didnotinduceHRcelldeathinrice,showingthateffectors secreted throughT3SS is involved in induction of HRcell death in rice.Thereforewe next attempted to identify theseeffectors using proteome analysis. Several proteins of NΔT3SSstrainwerespecificallyaccumulatedcomparedwithN1141strainsafterinoculationtoculturericecells.Theseaccumulatedproteinswereidentifiedanddisruptionmutantsofeachgeneencodingtheidentifiedproteinwereprepared.Amongthesedisruptionmutants,Ahp1 disruptionmutant did not causesHR cell death. TransientexpressionofAhp1 in ricecellscausedHRcelldeathassociatedwithnuclearDNAfragmentation,Furthermore,Ahp1proteinsweresecretedintohrpminimalmediumfromN1141strain,suggestingthatAhp1istheeffectorinvolvedininductionofHRcelldeath.

PS07-309Ahomologueofanavirulencegene inthetomatowilt fungusFusarium oxysporum f. sp. lycopersici race 1 functions as avirulencegene in thecabbageyellows fungusF. oxysporum f.sp.conglutinansTakeshi Kashiwa1, Keigo Inami2,4, Masashi Fujinaga3, HidekiOgiso3,TohruTeraoka2,TsutomuArie21UnitedGraduateSchoolofAgriculturalScience,TokyoUniversityof Agriculture and Technology (TUAT), 2Graduate School ofAgriculture, Tokyo University of Agriculture and Technology(TUAT), 3NaganoVegetable andOrnamental Crop ExperimentalStation,4PresentAddressNRR&DDepartment,[email protected] is a small protein secreted by Fusarium oxysporum f. sp.lycopersici(FOL)intomatoxylemsapduringinfection(Houterman2007).Thisprotein triggersFOL race1-specific resistance (I) oftomato, andSIX4 is regarded as an avirulence gene (Houterman2008).AlthoughSIX4hasbeenconsideredtobeuniqueinFOLrace1(Lievens2009),wefoundthatF. oxysporumf.sp.conglutinans(FOC)possessesaSIX4homologueinitsgenome(Kashiwa2010).In thisstudy,weanalyzed thestructureandfunctionof theSIX4homologue in FOC.The SIX4 in FOL and the SIX4 homologuein FOCwere 99% identical in nucleotide level (Kashiwa 2012).In a FOC isolate Cong: 1-1, SIX4 located on a ca. 2Mb smallchromosome.TheexpressionofSIX4wasdetectedinthetissues,suchasstemsandroots,ofcabbageinfectedwithFOCCong:1-1byRT-PCR.SIX4 homologue-disruptants in FOCCong: 1-1 didnotgainvirulencetoFOC-resistantcabbagecvs.Syutoku-SPandKoikaze.Ontheotherhand,thedisruptantsshowedthereductionof virulence against FOC-susceptible cv. Shikidori. ThesesuggestedthattheSIX4homologueisinvolvedinvirulence,butnotinavirulenceinFOC.

Page 137: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession07-Effectorproteins

135

Poster 07

PS07-310ElucidationofactivationmechanismsofRproteinPitby theeffectorproteinAvr-PitAtsumi Tsujimoto1, Kentaro Yoshida2, Ryohei Terauchi2, YojiKawano1,KoShimamoto11LaboratoryofPlantMolecularGenetics,NaraInstituteofScienceandTechnology,Nara,Japan,2IwateBiotechnologyResearchCentera-tsujimoto@bs.naist.jpPlantshaveimmunesystemsagainstpathogenssuchasblastfungus.Pathogens secrete their effectors into plant cells. Plants perceivesignals from invasion of effectors throughdisease resistance (R)proteins.RecognitionofeffectorsbyRproteinstriggersrapidandeffective defense responses called hypersensitive response.MostRproteinsbelongtotheNB-LRRfamilyproteinsastheycontainacentralnucleotide-bindingdomain(NB)andC-terminalleucine-rich repeat (LRR) domain. We have recently found that smallGTPaseOsRac1interactswithaNB-LRR-typeRproteinPitandcontributes to Pit-mediated defense response against rice blastfungusMagnaporthegrisea.Thus,OsRac1actsasadirectsignalingpartnerdownstreamofPit.However,anactivationmechanismofPit is largely unknown becauseAvr-Pit has not been identifieduntil now. To isolateAvr-Pit, we introduced amethod based onwhole-genome resequencing of pooledDNA from a segregatingpopulationofblastfungithatshowAvr-Pitphenotype.BlastfungicarryingAvr-Pit were crossed directly to those withoutAvr-Pit,allowing unequivocal segregation in first filial generation (F(1))linesofsubtlephenotypicdifferences.WeappliedthismethodtotwosetsofblastfungusandidentifiedseveralcandidatesofAvr-Pit.TofurtherscreenAvr-Pit,wewillperformcelldeathassayusingriceprotoplaststomonitortheinteractionbetweenAvr-PitandPit.

PS07-311Phosphatidylinositol monophosphate-binding ability ofPhytophthora infestansRXLReffectorAVR3a is required forthevirulencefunctionTakashi Yaeno1, Hua Li2, Angela Chaparro-Garcia3, SebastianSchornack3,SeizoKoshiba2,SatoruWatanabe2,TakanoriKigawa2,SophienKamoun3,KenShirasu11PlantScienceCenter,RIKEN,Japan,2SSBC,RIKEN,Japan,3TheSainsburyLaboratory,UKyaeno@psc.riken.jpPathogensdeliveranumberofeffectorproteinsintoplantcellstosuppressPAMP(pathogen-associatedmolecularpattern)-triggeredimmunity(PTI).Resistantplantsareabletorecognizetheeffectorsbytheresistance(R)proteinsandinducestrongimmuneresponses.AVR3a, an effectorprotein secreted frompotatoblightpathogenPhytophthora infestans, has an RXLR motif at the N-terminusand is translocated intoplantcells in theRXLRmotifdependentmanner.AVR3asuppressesPTIinducedbytherecognitionofINF1.However, its underlying mechanism is still unclear. The NMRanalysis revealed that the effector domain ofAVR3a comprisesfour α-helices and has a positively charged surface area, whichis important for binding phosphatidylinositol monophosphates(PIPs).AVR3awithapointmutation in theareawasnotable tosuppress INF1-induced PTI, although it was still recognized byR3a,apotatoRprotein.Likewise,thestabilityofCMPG1whichisavirulencetargetofAVR3awasdiminishedbythemutation.Infact,thesteady-statelevelsofthenon-PIP-bindingmutantproteinswere significantly reduced. Furthermore, overexpression of PIP5-kinasewhich phosphorylates PIPs resulted in the reduction ofAVR3aprotein levels in planta.Thesedatasuggest that thePIP-bindingabilityofAVR3aisessentialforitsaccumulationin plantato suppress CMPG1-mediated immunity. We will discuss themolecular relationship between the lipid binding, the virulencefunctionandtheRXLRmotif.

PS07-312OsBPC1targetedbyXoo1488effectorregulateschitininducedimmunityinriceKoji Yamaguchi1, Iuji Masutani1, Kazuya Ishikawa1, TsutomuKawasaki11Department of Advanced Bioscience, Faculty of Agriculture,KinkiUniversity,Nara,Japannb_koji@nara.kindai.ac.jpPlantbacterialpathogensequippedwiththetypeIIIsecretionsystem(TTSS)andgenerallydeliverdifferentTTSSeffectorproteinsintoplantcells.TheseTTSSeffectorproteinsmodulatethefunctionofcrucialhostregulatorymoleculesandallowbacteriatoinvadeplantcells. So far,we found that the transgenic rice plants expressingXoo1488,oneoftheXanthomonasoryzaepv.oryzae(Xoo)effectorsshowedseveresusceptibilitytotheTTSS-deficienthrpXmutantofXoo.Over-expressionofXoo1488alsosuppressedchitin-inducedimmune response in rice suspension cell.We identified BASICPENTACYSTEINE1 (OsBPC1) as potential interacting proteinsofXoo1488usingyeasttwo-hybridscreening.OsBPC1isaplantspecifictranscriptionfactorandlocalizedinnucleusinrice.BiFCexperiments indicated that Xoo1488 interacted with OsBPC1 inperinuclear region, suggesting thatXoo1488may inhibit nuclearlocalizationofOsBPC1.ElectromobilityshiftassaysrevealedthatOsBPC1isabletobindGAGAelement.Microarrayanalysisusingtransgenic rice suspension cell over-expressingOsBPC1 showedthatOsBPC1regulatesexpressionofchitin inducedgeneswhichhave GAGA elements in their promoter regions. Furthermoreover-expression ofOsBPC1 enhanced resistance to blast fungus(Magnaporthe oryza) in rice, suggesting that OsBPC1 playsimportantroleinriceimmunity.

PS07-313Magnaporthe oryzaeAVR-Piaprotein: inductionof resistancereactioninPiariceandpreparationofanti-AVR-PiaantibodyYukiSato1,ToyoyukiOse2,RyouheiTerauchi3,TeruoSone11Graduate school ofAgriculture, Hokkaido University, Sapporo,Japan;, 2Research faculty of Pharmacology, Hokkaido Univ.,Sapporo,Hokkaido,Japan,3IwateBiotechnologyResearchCenter,Kitakami,Iwate,[email protected] avirulence gene AVR-Pia, which induces hypersensitivereaction (HR) of rice cultivarswith the resistance genePiawasisolated from Magnaporthe oryzae strain Ina168 (Miki et al.,2009) and gene expression during infection was associated byqRT-PCRusingmRNAextracted fromblast inoculated rice leaf,detected in 24 hours after inoculation. Furthermore, AVR-Piaproteinlocalizationtobiotrophicinterfacialcomplex(BIC:Khanget al.,2010)wasobservedusingAVR-Pia::eGFPfusionproteinincompatiblericeleafsheathcells.Ontheotherhand,thefunctionaldetail of AVR-Pia protein during infection was not understoodexceptthatAVR-PiainteractswithotherAVR-Piamolecule,whichwassuggestedbyyeast two-hybridassay.InordertoanalyzethefunctionofAVR-Piaprotein,therecombinantAVR-PiaproteinwaspurifiedfromE. coli.RecombinantAVR-PiasolutionwasrevealedtoinduceHR-likebrowningspotswhenitwasinfiltratedintoPiariceleaf,suggestingthattherecombinantAVR-Piahasactivitytotrigger the host,s resistance reaction.An anti-AVR-Pia antibodywas preparedwith the recombinant protein, and its validitywasinvestigated byWestern blotting. NativeAVR-Pia was detectedfromtotalproteinextractedfromriceleafsheathcells,andtheMWofAVR-Piawasestimatedas7.4kDa,correspondingtoAVR-Piaw/osignalpeptide.TheseresultssuggestthatrecombinantAVR-PiahassimilarstructuretothenativeAVR-Pia,andtheantibodyhasspecificitytonativeAVR-PiaandisusefulforAVR-Pialocalizationaftersecretionduringblastinfectionbyimmuno-staining.

Page 138: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession07-Effectorproteins

136

Post

er 0

7

PS07-314New clues to the functions ofAWR effectors fromRalstonia solanacearumbyheterologousexpressioninyeastCrinaMihaelaPopa1,MontserratSole1,JoaquinArino2,MarcValls11Genetics Department, University of Barcelona, Barcelona,Spain, 2Biochemistry and Molecular Biology Department &BiotechnologyandBiomedicineInstitute,AutonomousUniversityofBarcelona,Barcelona,Spaincrina.popa@ub.eduThepresentworkfocusesonthecharacterizationofamultigenicfamilyof5typeIIIeffectorscalledAWRfromtheplantpathogenRalstonia solanacearum.Theseeffectorsareinvolvedinbacterialinfection as previous experiments in planta showed that theirdeletion renders the bacterium less virulent on tomato (Sole etal.,2012).InordertodiscovernewcluestothefunctionsofAWReffectors, we examined the consequences of induced expressionofthesegenes(usingGateway-compatibleyeastvectors)onyeastgrowth.ExpressionofT3SSeffectorsinSaccharomyces cerevisiaeoversteps the limitations of their study in plants, as yeast lacksresistance(R)proteinsthatcantriggerETIresponses.ProductionofAWRsfromagalactose-inducibleGAL1promoterdeterminedtheirclassificationinto3groupsaccordingtotheireffectonyeastgrowth: AWR5 and AWR2 gave rise to the strongest toxicity,whileAWR1 andAWR3only inhibited yeast growthwhen theirexpression was induced.AWR4 had no effect on yeast growth.These results were confirmed by expression of awrs using atetracycline-responsible (Tet-Off) promoter system both fromepisomic and genome-integrated constructs.The high toxicity ofAWR5wasanalyzedbygrowthcurvesofyeasttransformedcellsusingtheTet-Offsystemandreal-timeRT-PCR.Thenatureofthegrowth restriction caused by AWR effectors is currently underscrutiny.Datawill be presented on the involvement of themainphysiological processes (e.g. respiration, membrane integrity)andthenatureofthisphenotype(growtharrestorcelldeath).Ourresultsconfirmyeastasamodelsystemtoidentifygain-of-functionphenotypes.

PS07-315Using heterologous expression approaches to study thebiologicalfunctionsofXanthomonas campestrispv.campestristypeIIIeffectors(T3Es)Wen-LingDeng1,Jen-YuTzeng1,Je-JiaWu11The Department of Plant Pathology, National Chung HsingUniversity,Taichung,[email protected] plant-pathogenic xanthomonads modulate plant geneexpressionandovercomeplantdefensesbytranslocatingasubsetof type III effector proteins (T3Es) into plant cells via the typeIII secretion system (T3SS). In this study, we characterize thebiologicalfunctionsofX. campestrispv.campestris(Xcc)T3EsbyheterologousexpressionapproachesusingX. campestrispv.raphani(Xcr) as a recipient bacterium and Agrobacterium tumefaciensfor in-planta transient expression.Xcc causes systemic black rotdisease on Brassicaceae, whereas Xcr elicits localized necroticspotson the leavesofBrassicaceaeandSolanaceae.Comparisonof genome sequences reveals that the two xanthomonads harbordifferentrepertoriesofT3Es,whicharelikelytobeinvolvedintheirdifferentialinteractionswithplantcells.FourofthedifferentialXcct3es,avrXccC,xopD,xopN,andxopX,wereclonedandecotopicallyexpressed inXcr to test if theXccT3Esalter the interactionsofXcrwithplantcellsbymonitoringbacterialgrowthandsymptomdevelopmentincabbageleaves.Inaddition,thefoureffectorsweretransiently expressed in tobacco (Nicotiana benthamiana andN. tabacum) and tomato (Solanum esculentum) viaAgrobacterium-mediatedtransformation,followedbyachallenge-inoculationwithwild-type Xcr, to assay for the Xcc T3SEs functions in planta.The results of Agrobacterium-mediated transient assay showedthatXopXcaninduceHRintobaccoandtomato,whereasXopNpromotessymptomdevelopmentintobaccouponXcrinoculation.

OurresultsindicatetheheterologousexpressionmethodcouldbeafeasibleapproachtoanalyzethefunctionsofT3SEsforfacilitatingbacterialmultiplicationandelicitingsymptomsinplants.

PS07-316Effectoromics of the phytopathogenic nematode, Globodera rostochiensisShawkatAli1,2,MaximMagne1,OlivierCôté1,BenjaminMimee2,GuyBélair2,PeterMoffett11DépartementdeBiologie,UniversitédeSherbrooke,2HorticultureR&DCentreAgricultureandAgri-FoodCanada430,BoulevardGouin,St-Jean-sur-Richelieu,Qué[email protected] potato cyst nematodeGlobodera rostochiensis is presumedto employ multiple secreted effector proteins to successfullyinfecttheirhostplants.Althoughseveralcandidateeffectorshavebeen identified, their functions are as yet poorly defined. Wecomputationally identified forty predicted secreted proteins ofG. rostochiensis from NCBI and expressed sequence tag (EST)databases.Wehavegeneratedalibraryof38clonescorrespondingto28genes,encodingpredictedsecretedproteins,inthreedifferentconstructs for transient and systemic in planta expression. In aneffort to elcucidate the biological functions of these predictedsecreted proteins,we expressed them inNicotiana benthamiana,N. tabacum, Solanum tuberosum and S. lycopersicum. Severalof these effectors produce different phenotypeswhen transientlyand systemically expressed in planta. Two of the effectorsGrSPRYSEC-15andGrEXPB2inducedcelldeathresponsesinN. tabacumandS. lycopersicum respectively,while theirexpressioninN. benthamiana inducedseveresymptoms,includingchlorosisanddwarfing.Inaddition,morethan40%oftheputativeeffectorsproduced dramatic phenotypes when expressed systemicallyin N. benthamiana by Potato virus X (PVX) based constructs.Furthermore,wehavefoundthatseveraleffectorsappeartorenderrecombinantPVXavirulent on certain genotypes suggesting thatthese may be avirulence proteins recognized by plant resistantproteins.We have also found that several effectors can suppresscelldeathinducedbycelldeathinducerssuggestingthattheymaysuppressplantdefenseresponses.Thephenotypesinducedbytheseeffectors and their possible biological roles in suppressing hostimmunityandestablishingsuccessfulinfectionwillbediscussed.

PS07-317Effector protein trafficking from Piriformospora indica andtheirfunctioninbarleyrootcellsMaryamRafiqi1, FengZhang1,DagmarBiedenkopf1,Karl-HeinzKogel11InstituteofPhytopathologyandAppliedZoology,ResearchCentrefor BioSystems, LandUse, and Nutrition (IFZ), Justus LiebigUniversity,Giessen,Germanymaryam.rafiqi@agrar.uni-giessen.deOneoftheexcitingdevelopmentsinplant-microbeinteractionshasbeenthefindingthatbothpathogenicandmutualisticfungidelivereffectorproteins into thecytoplasmofhostcells.Deploymentofalargesetofeffectors,whichfunctioneitheroutside(apoplastic)or inside(cytoplasmic) thehostcell, ispostulated tobeessentialforsuccessfulcolonisationofplanttissue.Weareinvestigatingthenovelsebacinaleansymbiosiszoominginonthemodelinteractionbetween barley (Hordeum vulgare) roots and the basidiomycetePiriformospora indica, a mutualistic endophyte that alleviatessaltstressandinducessystemicresistancetofungalandbacterialdiseases. Here, we address the secretion and translocation intohost cells ofP. indica’s effector proteins .One expanded familyof P. indica’s putative effectors, named DELDs, is defined bya conserved pattern of seven amino acids (RISDELD) at theC-terminus.WeareusingmutationalanalysisinP. indicacombinedwithheterologousexpressionofDELDproteinsinbarleyrootstoinvestigatethemolecularroleofDELDproteinsinthemutualisticinteractionbetweenP. indicaandplants.

Page 139: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession07-Effectorproteins

137

Poster 07

PS07-318The Pseudomonas syringae HopA1 effector is differentiallyrecognized by plants and resembles phosphothreonine lyasesfromanimalpathogensTania Y. Toruno1, Alexander Singer2, Ming Guo1, AlexeiSavchenko2,JamesR.Alfano11Center for Plant Science Innovation and Department of PlantPathology,UniversityofNebraska-Lincoln,Nebraska,USA,2C.H.BestInstitute,UniversityofToronto,Toronto,Ontario,[email protected] syringae isahostspecificplantbacterialpathogenthat requiresa type IIIproteinsecretionsystemto injecteffectorproteins into plant cells for pathogenicity. The type III effectorHopA1(formerlyHopPsyA)wasfirstcharacterizedinP. syringaepv.syringae61andisencodedbyagenelocatedintheDNAclusterthatencodesthetypeIIIapparatus.P. syringaepv.tomatoDC3000containsahopA1allele inadifferent regionof thechromosome.HopA1Psy61 and HopA1PtoDC3000 proteins are 57% identical. InNicotiana tabacumcv.Xanthi(tobacco)andArabidopsis thalianaaccession Ws-0, HopA1Psy61 but not HopA1PtoDC3000 elicits ahypersensitive response (HR), consistent with HopA1Psy61 beingrecognizedbyaplantimmunereceptorinducingeffector-triggeredimmunity.TheC-terminaltwo-thirdofHopA1Psy61isrecognizedbytobaccowhereastheN-terminalthirdisrecognizedbyArabidopsissuggestingthatthisproteinisrecognizeddifferentlybytheseplantspecies.ExpressionofHopA1inyeastrevealedthatHopA1Psy61butnotHopA1PtoDC3000inhibitsyeastgrowth,whichmaysuggesttheseeffectorshavedifferentvirulencetargets.HopA1sharessequencesimilarity with the Photorhabdus luminescens insecticidal toxinMcf2 and the HopA1PtoDC3000 structure, covering residues 122-380, resembles phosphothreonine lyases from animal pathogens,including the Shigella OspF and the Salmonella SpvC proteins.Five conserved residues between HopA1 andMcf2, which alsocorrespondtotheresiduespredictedtobeinthephosphothreoninelyase active site,weremutated to alanine.Themajority of theseresidues were important for the HopA1-dependent phenotypesconsistent with HopA1 being an enzyme structurally related tophosphothreoninelyases.

PS07-319CharacterizationofCbAve1fromCercospora [email protected] hemibiotrophic fungal pathogenCercospora beticola causesleafspotofsugarbeet.Despiteperennialwide-spreadlossesfromleaf spot, extremely little is known about the effectors that helpto establish disease. It was shown previously that transient co-expression ofC. beticola effector geneCbAve1 and the tomatoresistance gene Ve1 resulted in a hypersensitive response inNicotiana benthamiana. To assess the role of CbAve1 duringcolonization, CbAve1 knock-out mutants were generated andwillbecompared to theprogenitor isolateduringcolonizationofsugarbeet. In addition, quantitative RT-PCR ofCbAve1 during agrowthonsugarbeetwillbepresented.

PS07-320TranscriptomeprofilingidentifiesanovelXanthomonasTALE-specificplantresistancegeneinpepperTina Strauss1, Remco van Poecke2, Annett Strauss1, JanettElsaesser1,IsraelRamirez1,MarcelPrins2,ThomasLahaye11Institute of Genetics, Faculty of Biology, Ludwig-Maximilans-University Munich, Munich, Germany, 2Keygene, Wageningen,[email protected] infection gram-negative plant pathogenic bacteria of the

genusXanthomonasinjectacocktailof20-30effectorproteinsintoplant host cells. TranscriptionActivator- Like Effector Proteins(TALEs)areastructurallydistinctclassofeffectorsthatfunctionas transcription factorswithin the plant cell.TALEs bind to andtranscriptionallyactivateplantsusceptibility(S)genesthatpromotedisease. However, some TALEs also bind and transcriptionallyactivate plant resistance (R) genes thereby triggering a defenseresponsethathindersthebacteriatomultiplyandspreadinthehostplant.TheTALEproteinAvrBs3fromXanthomonas campestrispv.vesicatoria(Xcv)transcriptionallyinducethebellpepper(Capsicum annuum)resistancegeneBs3whichresultsinXcvresistance.TheXcvTALEproteinAvrBs4is97%identicaltoAvrBs3butisnotrecognized in pepper Bs3 plants. However AvrBs4 triggers adefenseresponseintheCapsicum pubescensaccessionPI235047thatcarriestheresistancegeneBs4C.DuetothefactthatAvrBs4C-terminal deletion derivatives lacking acidic activation domainarenotlongerabletoinduceacelldeathresponseweassumethatAvrBs4 also transcriptionally activates the expression of Bs4C.BasedonthishypothesisweaimedtoidentifyBs4Cviadifferentialtranscript profiling using next-generation sequencing (NGS) andcomparedtranscriptpopulationsoftheresistant(PI235047)andthesusceptible accession (PI 585270) upon inoculationwithAvrBs4containingXcvstrains.Oneprimecandidatefor thepepperBs4Cgenewas identified and could be confirmed by geneticmappingandcomplementationassays.FurthercharacterizationofBs4Cwillbepresented.

PS07-321Development of novel fluorescent tags to monitor bacterialeffectordeliveryin vivoJohannesMathieu1,SimonSchwizer1,GregoryB.Martin11BoyceThompsonInstitute,Ithaca,NY,USAjm885@cornell.eduTosubverttheplantimmunesystemandestablishdisease,gram-negativepathogensutilizetheType3SecretionSystem(T3SS)todeliver effectors into thehost cell cytoplasm.Effector-orT3SS-knockoutsarehypo-ornon-virulent,demonstratingthatsuccessfuldeliveryiscrucialforefficienthostcolonization.Directvisualizationofeffectorswhileinfectionsunfoldin situcouldprovidemanynewinsights into the mechanistics of infection, especially regardingdynamic aspects of these processes (e.g. timing and order ofeffector delivery, their subcellular targeting and turnover rates).Unfortunately,thefactthatthewell-establishedfluorophores(GFP/ -derivates, RFP) block delivery of effectors by the T3SS hasprohibitedthistypeofstudiestodate.Instead,researchershavetoresort to biochemical assays,which require isolation of proteinsprior to analysis and consequently cannot provide subcellularresolution and real timemonitoring, or to ectopic expression ofeffectorsinsideofhostcells,whichcomplicatestheinterpretationof results due to unrealistically high protein abundance.We arecurrently testing different strategies that could allow real-timetracking of bacterial effectors during their delivery in vivo. Oneapproach,usingthenovelfluorophoreiLOV,hasbeencomplicatedby the fact that, despite a fold completely different from GFP,iLOValsointerfereswithtype3secretion.However,analternativesystembasedonanunusualsplit-GFPsystemthathasrecentlybeendemonstratedtoworkinSalmonellaandtissueculturehassofarpassedallfunctionaltests,makingitapromisingcandidate.Wewillpresentourlatestresultsonboththeseapproaches.

PS07-322Computational and molecular identification ofXanthomonas oryzaeTALeffectortargetsinriceAndresCernadas1,ErinDoyle1,LiWang1,AdamJ.Bogdanove11IowaStateUniversitycernadas@iastate.eduTranscriptionactivator-like(TAL)effectorsfoundinXanthomonasspecies promote bacterial growth, disease susceptibility anddefense responses by directly binding to cis-regulatory DNA

Page 140: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession07-Effectorproteins

138

Post

er 0

7

sequences and inducing host gene expression. In this study, wehavecomparedthegeneexpressionchangesofrice(Oryza sativa)infectedwiththevascularandthenon-vascularbacterialpathogens,Xanthomonas oryzae pv. oryzae (Xoo) andXanthomonas oryzaepv. oryzicola (Xoc), respectively. Xoc and Xoo execute largelydifferent transcriptional profiles and the most significant geneexpression changes depend on a functional type three-secretionsystem (T3SS). To investigate the role of TAL effectors in thehostgeneexpression,weusedacomputer-basedmatrixtopredicthost induced-genes that are targetsbyTALeffectorsofXocandXoo. Although meaningful TAL effectors were characterizedin Xoo, their functions in Xoc remain unknown. Therefore wefocused the study onXocTAL effectors. In total,we confirmedfifteenhostgenesthataredirectlytargetedbysevendifferentTALeffectors.Nextwe conducted in planta virulence experiments toassociate the contribution of theseTAL effectors to virulence.ATALeffectormutantthat iscomplementedbyTal2g,appearedasthe most reduced in virulence.We previously found that Tal2ginducestwomostsignificantlyXoc-inducedgenes.TodiscovertheimportanttargetforTal2gvirulence,wedesignedcustomizedTALeffectorstargetingeachspecificTal2gtargets.Finally,wepresenttheprincipalhost susceptibilitycandidate for ricediseasecausedbyXoc.

PS07-323ThreenewpathogenicityeffectorsofPiercesdiseaseinXylella fastidiosanotfoundinbiocontrolstrainEB92-1ShujianZhang1,PranjibChakrabarty2,DonaldHopkins3,DeanW.Gabriel11Plant Pathology Dept., University of Florida, Gainesville, FL ,USA,2CentralInstituteforCottonResearch,Nagpur,India,3Mid-FloridaREC,UniversityofFlorida,Apopka,Florida,[email protected] fastidiosa (Xf) infects a wide range of plant hosts andcauses economically serious diseases, including Pierces Disease(PD) of grapevines. Xf biocontrol strain EB92-1 is infectiousto grapevines but does not cause symptoms. The draft genomeofEB92-1 revealed:1) that itwasnearly identical ingeneorderand sequence to Temecula; 2) no unique or additional geneswere found in EB92-1 that were not previously identified inTemecula,and3)EB92-1appearedtobemissinggenesencoding10 potential pathogenicity effectors found in Temecula (Zhanget al 2011). The latter included a type II secreted lipase (LipA;PD1703),twoidenticalgenesencodingproteinssimilartozonulaoccludenstoxin(Zot;PD0915andPD0928)andallsixpredictedhemagglutinin-likeproteins(PD0986,PD1792,PD2108,PD2110,PD2116andPD2118).PCRanalysesand subsequent sequencingof the PCR products confirmed that all 10 genes were missingin EB92-1. Leaves of tobacco and citrus inoculated with crudeproteinextractsof theTemeculaPD1703geneover-expressed inE. coli exhibitedhypersensitive cell collapse in less than24hrs.PD1703,drivenby itsnativepromoter,conferredstrongsecretedlipaseactivity toXanthomonas citri, E. coli andEB92-1 inplateassays. Pathogenicity of the EB92-1 exconjugant with PD1703showedsignificantly increasedsymptomsongrapesascomparedwithanEB92-1exconjugantcarryingtheemptyvector.Similarly,Temecula PD0928 (Zot) and PD0986 (hemagglutinin)were alsomovedintoEB92-1,bothexconjugantsalsoshowedsignificantlyincreased symptomsongrape in comparison toEB92-1with theemptyvector.

PS07-324GRP7, a substrate ofPseudomonas syringae type III effectorHopU1, plays a role in plant innate immunity by binding toimmunity-relatedRNAAnna Joe1, Byeong-ryool Jeong2, Valerie Nicaise3, ChristinKorneli4,DorotheeStaiger4,CyrilZipfel3,JamesR.Alfano21School of Biological Science and Center for Plant ScienceInnovation, University of Nebraska, Lincoln, Nebraska 68588,USA, 2Center for Plant Science Innovation and Department of

Plant Pathology, University of Nebraska, Lincoln, Nebraska68588,USA,3TheSainsburyLaboratory,NorwichResearchPark,Norwich,NR47UH,UK,4MolecularCellPhysiology,UniversityofBielefeld,33501Bielefeld,[email protected] bacterial pathogen Pseudomonas syringae uses a type IIIsecretionsystem(T3SS)toinjecteffectors(T3Es)intoplantcellsandsuppressplantimmunity.TheP. syringaepv.tomatoDC3000T3EHopU1wasdeterminedtobeamono-ADP-ribosyltransferasethatcanuseseveralRNA-bindingproteinsassubstratesthathaveRNA-recognition motifs (RRMs). One of these proteins, GRP7was shown to be involved in innate immunity andArabidopsismutants lacking GRP7 were more susceptible to P. syringae.HopU1 ADP-ribosylates an arginine residue in position 49 ofGRP7,which iswithin itsRRM.WefoundthatADP-ribosylatedGRP7 was reduced in its ability to bind RNA.Also, transgenicgrp7mutantplantsexpressingGRP7restoredthesusceptibilityandimmunity-relatedphenotypesassociatedwith themutantplant towild typeplant phenotypeswhereas transgenic plants expressingaGRP7R49Kproteindidnot indicating that the aminoacid thatis the site of ADP-ribosylation is critical for GRP7’s function.Recently,wefound thatplantsover-expressingGRP7weremoreresistanttoP. syringaeandotherpathogenssupportingthatGRP7playsabroadlyimportantroleininnateimmunity.Yeasttwohybridscreensandinplantaco-immunoprecipitationexperimentsindicatethatGRP7 interactswithseveralproteins involved in translation.To screen RNAs modulated by GRP7, we performed RNA-immunoprecipitation followed by RNA sequencing (RIP-Seq).Thusfar,ourRIP-SeqresultsindicatethatGRP7bindstoseveralimmunity-related RNAs. Taken together, GRP7 likely interactswithseveralimmunity-relatedRNAstoinsurethattheseRNAsareefficientlytranslatedsuchthattheplantcanmountarobustimmuneresponse.

PS07-325The Pseudomonas syringae type III effectors HopK1 andAvrRps4areprocessedduringimportintochloroplastsGuangyongLi1,JamesR.Alfano11CenterforPlantScienceInnovationandtheDepartmentofPlantPathology,UniversityofNebraska,Lincoln,Nebraska,[email protected] syringae injectseffectorproteinsintoplantcellsviaitstypeIIIsecretionsystem.Aprimaryroleforthemajorityof theseeffectors is tosuppressplant immunity.Wefocused on one of these effectors, HopK1, because it possesseda robust ability to suppress immunity.AP. syringae pv. tomatoDC3000hopK1mutantwassubstantiallyreducedinvirulencemoreso thanmost single effectormutants, which usually have subtlevirulencephenotypes.TheN-terminal147aminoacidsofHopK1sharehighsequenceidentitywiththewellcharacterizedAvrRps4protein,however,theirC-terminalregionsaredissimilar.HopK1isprocessedinsideplantcellsatthesamesitewhereAvrRps4hasbeenreportedtobeprocessed.Interestingly,transgenicplantsexpressingHopK1 and AvrRps4 derivatives indicate that both proteinsare targeted to chloroplasts using subcellular localization andbiochemicalfractionation.Additionally,biochemicalfractionationexperimentsusingArabidopsis infiltratedwithP. syringae strainscontainingHopK1-HAorAvrRps4-HAindicatethattheprocessedformofthesebacterially-injectedproteinswasfoundpredominatelyinchloroplasts.Immunity-inducedtransgenicplantsexpressingfulllengthHopK1were reduced in two common immune responsesandcomplemented thevirulencephenotypeof aDC3000hopK1mutant.However,plantsexpressingtheprocessedformofHopK1,whichwouldnotbelocalizedtochloroplasts,failedtocomplementtheDC3000hopK1mutantandproducedimmuneresponsessimilartowildtypeplantssuggestingtheHopK1needstobelocalizedtothechloroplast to function.Taken together,HopK1andAvrRps4likelytargetdistinctplantproteinsinsidechloroplaststocontributetoplantpathogenesis.

Page 141: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession08-Plant-virus/viroidinteractions

139

Poster 08

PS07-326Xanthomonas Type III effector XopD desumoylates tomatotranscriptionfactorSlERF4tosuppressethyleneresponsesandpromotepathogengrowthJung-GunKim1,WilliamF.J.Stork1,MaryBethMudgett11Dept.ofBiology,StanfordUniversity,Stanford,[email protected] of host protein sumoylation by pathogens hasemergedasanimportantvirulencestrategytosuppressimmunity.The direct link between protein sumoylation and eukaryotictranscription suggests that pathogens might directly modulatethe sumoylation state of transcription factors. Here we provideevidence that XopD, a SUMO protease from Xanthomonas campestrispathovarvesicatoria(Xcv),directlyinterfereswithplanttranscriptiontomodulateethylene(ET)responsesduringinfection.XopDisrequiredtopromoteXcvgrowthintomatoleavesandtosuppressdiseasesymptomdevelopment.GiventhatXopDcontainstwo EAR motifs implicated in ET signaling and transcriptionrepression,wehypothesized thatXopDmaydirectlyregulateETproduction and/or signaling.Consistentwith this hypothesis, ETgas and biosynthesis mRNAs were significantly higher in XcvdeltaxopD-infectedleavescomparedtoXcv-infectedleaves.BothETproductionandperceptionwererequiredfortomatoimmunityandsymptomdevelopment.InspectionoftomatoERFsexpressedinXcv-infectedleavessuggestedthatSlERF4isaputativeXopDsubstrate. Virus-induced gene silencing in tomato revealed thatSlERF4mRNAexpressionwasrequiredforXcvdeltaxopD-inducedETproductionandET-stimulated immunity.XopDwas found tocolocalizewithSlERF4 insubnuclear fociandhydrolyze tomatoSUMO1fromK53ofSlERF4resultinginSlERF4destabilization.MutationofK53toR53preventedSlERF4sumoylation,decreasedSlERF4 levels, and reducedSlERF4-dependent transcription.Weconclude thatXopD directly binds and desumoylates SlERF4 torepressETinduced-transcriptionrequiredforXcvimmunity.ThisisthefirstexampleofapathogenSUMOproteasethattargetsahostsumoylatedtranscriptionfactortosuppressdefense.

PS07-327DissectingtheinteractionbetweenP. syringaepv.phaseolicolaanditsnon-hostA. thalianausingeffectoromicsTadeuszWroblewski1,NataliaBelter1,RichardW.Michelmore11TheGenomeCenter,UniversityofCalifornia,Davis,Davis,CA,[email protected] immunity (MTI) is thought to be a majordeterminant of non-host resistance (NHR) of Arabidopsis to P. syringaepv.phaseolicola1448A(Pph1448A).However,Pph1448Aproduces effectors that can be potentially recognized and induceeffector-triggered immunity (ETI) in Arabidopsis includingAvrRps4,HopAS1,andthreeAvrBhomologs:AvrB2,AvrB4-1andAvrB4-2.ToestablishthecontributionofETItotheincompatibilitybetweenArabidopsisandPph1448A,wedeterminedthepatternsofeffectorrecognitionamongdifferentArabidopsisecotypes.WeusedaTobaccoRattleVirus-basedtransientexpressionsystemtodelivereffectorsindividuallyandanalyzedtheirabilitytoinduceETIbasedonthephenotypeofinfectedplants.Recognitionwasmanifestedassymptomlessimmunityorasextensivenecrosisassociatedwiththeinductionofahypersensitive response.All threeAvrBhomologstriggeredRPM1/RIN4andTAO1-mediateddefenses inCol-0. Inaddition,twoAvrB4paralogstriggeredRPM1/TAO1-independentdefenses inCol-0 due toRPS2 activation.AlsoHopJ1 triggereddefenseresponsesinCol-0andseveralotherecotypes.Wemappedthis response to a~10cM region in theArabidopsis genomeandusingareversegeneticapproachnarroweddownthedeterminantofrecognitiontoasingleCC-NB-LRR-encodinggenewithnoknownspecificity reported previously.We named this geneDERK1 forDeterminant of Effector Recognition 1.Wearepyramidingseveralknockouts ofNB-LRR encoding genes to produce lines that arecompromised in recognition of effectors from Pph1448A.These

will enableus todetermine thequantitativecontributionsofETIandMTItoNHRofArabidopsistoPph1448A.

PS07-328Identification and characterization of intracellular effectorsCrinklers of the Oomycete Aphanomyces euteiches, a rootpathogenoflegumesDianaRamirez-Garces1,YvesMartinez1,BernardDumas1,ElodieGaulin11Laboratoire de Recherche en Sciences Végétales (LRSV),UM5546 CNRS-Univ Toulouse III, Pôle de BiotechnologieVégétale,Castanet-Tolosan,[email protected] euteichesisanoomyceteinfectingrootsofvariouslegumes species as pea, alfalfa and themodel legumeMedicago truncatula. The genus Aphanomyces (Saprolegniales) has aparticular taxonomic positionwithin oomycetes comprising bothanimal pathogen and plant pathogen species. cDNA librariesfrominfectiousmyceliumrevealedthepresenceoforthologCRN(CrinklingandNecrosis)genes,initiallyidentifiedinPhytophthora infestans.CRNproteinsofPhythophthora sparecodedbyseveralhundreds of genes and have been classified in different familiesaccordingtosequencefeaturesontheircarboxylterminaldomains.WhiletheseCterminaldomainsarevariableandarethoughttobeimplicated in the functionof theprotein, theNterminal domainsare highly conserved and characterized by the presence of aLFLAKaminoacidmotifimplicatedinthetranslocationfromthepathogen to the host cell.A.euteiches expresses during infectiontwo families ofCRNs,AeCRN5andAeCRN13, bothpresentingaLYLALKmotifresponsiblefortheinternalizationoftheproteininside plant cells. Both proteins are expressed during infectionofM. truncatula roots. In planta expressionofbothproteinshasrevealedthatAeCRN5andAeCRN13aretargetedtothenucleus.Theirexpressioninrootsaltersrootarchitecturebyinhibitingrootdevelopment,whiletriggerringcelldeathinN. benthamianaleaves.SuchobservationssuggestthatA. euteiches‘sCRNsarevirulenceproteinsexertingtheirfunctionthroughtheinteractionwithnuclearcompounds.Latestresultsconcerningtheircharacterizationwillbepresentedintheposter.

PS08-329Seeingtheworldoutside:avirususesthehostsensorialsystemtotakecuesfromtheenvironmentAurelie Bak1, Alexandre Martiniere1, Jean-Luc Macia1, DanielGargani1,StephaneBlanc1,MartinDrucker11Institut National pour la RechercheAgronomique, Montpellier,[email protected] rely totally on the host to achieve every step of theinfectioncycle.Much isknownabouthowviruses interferewithcellularprocessestoputthemattheiruseanditisclearthattheyinterceptintracellularandintra-hostcommunicationandprocessestooptimiseinteractionwiththehost.Hereweunprecedentedlythatshowvirusesarealsoabletousethehostsensorialsystemtoveryrapidlyperceiveandreactoncuesfromtheworldoutsidethehost,inawaydisconnectedfromthereactionofthehostitself.Cauliflower mosaic virus(CaMV)istransmittedfromplant-to-plantbyaphids,and previouswork has shown that the virus-aphid interaction isnotanaccidentalprocessbutdependsonthepresenceofthevirus-inducedTransmissionBodies(TBs)ininfectedcells,containingtheCaMVtransmissiblecomplexes.OurresultsdemonstratethatTBsreacton thepresenceand feedingof the insectvectorby rapidlyand reversibly dispersing their contents on corticalmicrotubulesthroughoutthecell.If thisTBreactionisperturbed,transmissionrates drop; if this reaction is artificially enhanced, transmissionratesrise.ThisshowsthatCaMVinterceptsthehost’sperceptionoftheaphidandimmediatelytranslatesitinanappropriateresponsethatoptimisesitschancesofacquisition,everythinggoingbacktonormalstandbystateafewminuteslater.

Page 142: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession08-Plant-virus/viroidinteractions

140

Post

er 0

8

PS08-330Tomato SlSnRK1 protein interacts with and phosphorylatesβC1, a pathogenesis protein encoded by a geminivirusbetasatelliteQingtang Shen1, Zhou Liu1, Fengming Song1, Qi Xie2, LindaHanley-Bowdoin3,XuepingZhou11InsituteofBiotechnology,ZhejiangUniversity,Hangzhou,China,2StateKeyLaboratoryofPlantGenomics,NationalCenterforPlantGeneResearch,InstituteofGeneticsandDevelopmentalBiology,Chinese Academy of Sciences, Beijing, China, 3Department ofMolecular and Structural Biochemistry, North Carolina StateUniversity,Raleigh,NorthCarolina,[email protected] βC1 protein of Tomato yellow leaf curl China betasatellite(TYLCCNB) functions as a pathogenicity determinant.TobetterunderstandthemolecularbasisofβC1inpathogenicity,ayeasttwo-hybridscreenofatomatocDNAlibrarywascarriedoutusingβC1asbait.βC1interactedwithatomatoSNF1-relatedkinasedesignatedasSlSnRK1.Theirinteractionwasconfirmedusingabimolecularfluorescence complementation assay in Nicotiana benthamianacells. Plants over-expressing SnRK1 were delayed for symptomappearanceandcontainedlowerlevelsofviralandsatelliteDNA,whileplantssilencedforSnRK1expressiondevelopedsymptomsearlierandaccumulatedhigherlevelsofviralDNA.InvitrokinaseassaysshowedthatβC1isphosphorylatedbySlSnRK1mainlyonserine at position 33 (S-33) and threonine at position 78 (T-78).Plants infected with βC1 mutants containing phosphorylation-mimic aspartate residues in place of S-33 and/orT-78 displayeddelayed and attenuated symptoms and accumulated lower levelsofviralDNA,whileplantsinfectedwithphosphorylation-negativealanine mutants contained higher levels of viral DNA. TheseresultssuggestedthattheSlSnRK1proteinattenuatesgeminivirusinfectionbyinteractingwithandphosphorylatingtheβC1protein.

PS08-331MolecularcharacterizationofChilli leaf curl virusandsatelliteDNAassociatedwithtomatoinOmanAkhtarJ.Khan1,AmalM.Al-Zaidi1,Mohd.S.Akhtar11Sultan Qaboos University, 2Sultan Qaboos University, 3SultanQaboosUniversity,[email protected] is cultivated in the coastal region of the Sultanate ofOmanduringthewinterseasontomeetthehighdemandforfreshproduceinthedomesticmarket.Toidentifythecausalagentofawidespread disease associated with infestations of the whitefly,leaves were collected from tomato plants showing symptomscharacteristicofthebegomovirusdiseaseinAl-BatinahandDhofarregions during 2010 and 2011.Total nucleic acidswere isolatedfromthetomatoleavesandusedasthetemplateforrollingcircleamplificationofbegomoviralDNA.TheNcoIdigestedputativefulllengthbegomoviralDNAwasclonedandsequenced.Thecompletenucleotide(nt)sequencewasdeterminedas2758bp,indicativeofamonopartitebegomoviralgenome.ThevirusfromOmanwasmostclosely related to ChLCV-Multan at 92% nt identity. However,AV1andAV2ORFsofChLCV-OmshowedhighntsimilaritywithPepLCV-Lahore and ChLCV-Panipat. Based on the guidelinesof the ICTV theOman isolate has been designated ChLCV-Omand is considered a strain of ChLCV-Multan. A satellite DNAwasamplifiedbyPCRusingdegenerateprimersandcloned,andtheDNA sequencewas determined.Analysis of the complete ntsequenceof1327bpindicatedthattheDNAβshared96%similaritywithitsclosestrelatives,TYLCVAl-BatinahDNA-βisolatedfromtomatoinOman.ThisisthefirstreportofChLCVfromOmanandDNA-βassociatedwith theChLCV-Omisolate.TheChLCV-Omand associatedDNA-β thus represent a begomovirus-complex attheAsian-MiddleEastcrossroadsthatuniquelysharegeographicalandgenetichallmarksofboth.

PS08-332FunctionalanalysisofCucumber mosaic virus2bproteinandcoat protein on symptom development of inoculated tobaccoplantTomofumiMochizuki1, TomoyaWada1,Yuki Hirata1, Satoshi T.Ohki11Graduate School of Life and Environmental Sciences, OsakaPrefectureUniversity,Osaka,[email protected] mosaic virus(CMV)pepostraincausedleafmalformationwithpalegreenchlorosis (mosaic symptom)on infected tobaccoplant.Coatprotein(CP)mutantsofpepo,whichPatresidue129was substituted by C, Q or S, induced white chlorosis, whilesubstitutionbyA,DorE,didnot alter thepalegreenchlorosis.TheseCPmutantscausedlowexpressionofsomephotosynthesis-relatedgenesthatwascorrelatedwithfewthylakoidmembranesandchlorosisphenotype.Mutationsof2bprotein,whichRatresidue46wassubstitutedbyC(R46C),orSatresidues40and42weresubstitutedbyA(S40/42A),resultedinasymptomaticphenotype,regardlessoftheRNAsilencingsuppressoractivity.Thus,CPand2b are the virulence determinants of CMV in tobacco plant. TofurtherunderstandtheroleofCPand2bonsymptomdevelopment,virulence of CMVmutants of combined substitutions with bothofCPand2bwereanalyzed.The2bmutants(R46CorS40/42A)containinganaminoacidsubstitutionintheCP(129A,129E,129C,129Qor129S)inducedchlorosiswithoutleafmalformation,whilethe2bmutantsthatanaminoacid129intheCPwasDorPshowedasymptomaticphenotype.TheseresultssuggestthatmutatedpepoCP containing an amino acid 129A, 129E, 129C, 129Qor 129Ssolely triggerschlorosiswhilepepoCPwith129Por129Ddoesnothavevirulence. Inaddition, thewild type2bproteinofpepoprobablydeterminesleafmalformationwithpalegreenchlorosis.

PS08-3335’untranslatedregionoftobamovirusRNAisinvolvedinviralcell-to-cellmovementHiroyukiMizumoto1,AkinoriKiba1,YasufumiHikichi11Laboratory of Plant Pathology and Biotechnology, KochiUniversity,Kochi,[email protected] establish a systemic infection in plants, viruses invadeneighboringcellsviacell-to-cellmovementthroughplasmodesmatauntiltheyreachphloem.Movementprotein(MP)oftobamovirusesplayscriticalrolesintransportingviralnucleicacidandenlargingthe pore size of plasmodesmata. In addition toMP, 130K/180Kreplicaseproteinsoftobamovirusesarereportedtobeinvolvedinviralcell-to-cellmovementbytheyetunknownmechanism.Inthisstudy,weexploredadditionalviralfactorsinvolvedintobamoviruscell-to-cell movement. In an analysis using chimeric virusesconsistingofPaprika mild mottle virusJapanesestrain(PaMMV-J)andTomato mosaic virus(ToMV),replacementof5’untranslatedregion(5’-UTR)ofPaMMV-Jwith thatofToMVresulted in theinhibition of viral movement in tomato plants without affectingviralRNAreplication.Tofurtherdeterminenucleotidesequencescausing PaMMV-J movement inhibition, we have constructedmutantvirusesinwhichseveralpartsofPaMMV-J5’-UTRwerereplacedwiththecorrespondingnucleotidesofToMV.NucleotidereplacementintwodistinctpartsofPaMMV-J5’-UTR,bywhichAUUACpentanucleotidesequencewasgenerated,resultedintheinhibition of the viral movement in tomato plants. Interestingly,this inhibitory effect appeared to be related to the origin of130K/180K proteins: movement inhibition was not observed inthechimericviruswith130K/180KreplicaseproteinsfromToMV.These observations suggested that 130K/180K replicase proteinsoftobamovirusesareinvolvedintheviralmovement,possiblybyinteractingwithnucleotidesequenceinthe5’-UTR.

Page 143: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession08-Plant-virus/viroidinteractions

141

Poster 08

PS08-334CharacterizationofaribonucleoproteincomplexthatservesasaprecursoroftobaccomosaicvirusreplicationcomplexKazueKawamura1,KazuhiroIshibashi1,MasayukiIshikawa11Plant-Microbe Interactions Research Unit, National Institute ofAgrobiologicalSciences,Tsukuba,[email protected] mosaic virus(TMV)isapositive-strandRNAvirus.Afterinvasionofhostcells, thegenomicRNAofTMVistranslatedtoyielda130-kDaproteinand its read-troughproductof180kDa.The 130-kDa and 180-kDa proteins (hereafter, the “replicationproteins”) recruit the genomic RNA to the cytoplasmic surfacesoforganellarmembranes to form the replicationcomplex. In thereplicationcomplex,negative-strandRNAissynthesized,andthenusingitasatemplate,alargeamountofprogenyRNAisproduced.WehavepreviouslyestablishedaninvitrosysteminwhichTMVRNAistranslatedandreplicatedinacell-freeextractofevacuolatedtobacco protoplasts (BYL).When TMV RNA was translated inBYLfromwhichmembraneshadbeenremovedbycentrifugation,RNAreplicationdidnotoccurbutaribonucleoproteincomplexthatcontained TMV RNA and the replication proteins accumulated.This ribonucleoprotein complex could form active replicationcomplexupon additionofBYLmembranes.Here,we show thatthereplicationproteinsbindaspecificregionofTMVRNAinthisribonucleoprotein complex, and that TMVRNA in the complexisa lessactive template for translation thanpurifiedTMVRNA.ThegenomicRNAsofpositive-strandRNAvirusesshouldserveastemplatesforbothtranslationandnegative-strandRNAsynthesis,in which ribosomes and RNA polymerases move in oppositedirections,and theircollisionwillbefatal forbothprocesses.Toavoid ribosome-polymerase collision, inhibition of TMV RNAtranslationintheribonucleoproteincomplexmaybeaprerequisiteforRNAreplication.

PS08-335NextgenerationsequencingrevealschrysanthemumgenesandsmallRNAsassociatedwithChrysanthemum stunt viroidYeonhwa Jo1,Kyoung-Min Jo1,Kook-HyungKim1,WonKyongCho11DepartmentofAgriculturalBiotechnology,CollegeofAgricultureand Life Sciences, Seoul National University, Seoul, 151-921,[email protected] chrysanthemum is one of popular flowersworldwide and isalsoimportantforfloricultureindustry.Chrysanthemum stunt viroid(CSVd)isamainpathogenleadingtodramaticeconomiclossesofchrysanthemumproduction. Inorder to identifygenesassociatedwith CSVd infection, we carried out transcriptome analysis ofCSVd infectedchrysanthemumusinghigh-throughputRocheGSFLX454 pyrosequencing method. A total of 99,750 reads wereobtained,trimmed,andassembledinto11,600expressedsequencetags(ESTs),whichwerefurtherannotatedbytheblast2goprogram.Comparative analysis with other plant genomes revealed about70%ofchrysanthemumESTsareconservedinotherplantspecies.Inaddition,wefoundthat208chrysanthemumESTswereassignedtovarious transcriptionfactorfamilies.TogetenrichedfunctionsofobtainedESTs,weperformedgeneontology(GO)enrichmentanalysis implemented in the GOEAST program and identifiedenriched276GOterms.Ofthem,GOtermsrelatedtochloroplasts,mitochondria, plasmodesmata, stress responses, andmetabolismswerehighlyenriched.Inaddition,wedeterminedsmallnon-codingRNAs in CSVd infected chrysanthemum using Illumina SolexasequencingidentifyingalargenumberofsmallRNAsderivedfromCSVd.ThisstudyisthefirstreportwhichpresentsatranscriptomeanalysisofCSVdinfectedchrysanthemumaswellassmallRNAsrelated toCSVdusingnextgeneration sequencing.TheobtainedESTsandCSVdderivedsmallRNAsprovideusefulinformationtostudyplant-viroidinteraction.

PS08-336Aputative sodium-hydrogenantiporterhelpsBamboo mosaic virusaccumulationinNicotiana benthamianaMenghsiaoMeng1,Yu-TsungHan1,Hui-ChuanWu1,Tzu-YingOu11NationalChungHsingUniversitymhmeng@dragon.nchu.edu.twBamboo mosaic virus(BaMV),apotexvirus,hasanapproximately6.4kbpositive-strandRNAgenomewitha5’capand3’poly-(A)tail. ORF1 of the virus encodes a replication protein, consistingofamRNAcappingdomain,ahelicase-likedomainandaRNA-dependentRNApolymerase(RdRp).TheRdRpdomainwasusedasbaittoscreenaleafcDNAlibraryofNicotiana benthamianabyyeasttwo-hybridscreening.Aputativesodium-hydrogenantiporter(NbNHAP)wasfoundtointeractwiththebait.TounderstandtheeffectofNbNHAPonBaMVaccumulation,theNbNHAP-silencedN. benthamiana was transfected with a BaMV infectious cloneandBaMV coat protein accumulationwas determined later.TheresultshowedthatthecoatproteinaccumulationdecreasedintheNbNHAP-silenced plants. In protoplast assays, overexpressionof NbNHAP increased the accumulation levels of BaMV coatprotein.Together,theseresultssuggestthatNbNHAPmayprovideafavorableenvironmentforBaMVreplication.

PS08-337Donon-circulativeplantvirusessensethearrivaloftheaphidvector?MartinDrucker1,AurelieBak1,Jean-LucMacia1,StephaneBlanc11INRA, UMR BGPI Plant Pathogen Interactions, Montpellier,[email protected] (a DNA virus) and TuMV (a RNA virus) use the non-circulativemode for transmissionby aphids: virus particles bindtoareceptorlocatedatthetipoftheaphidstylets(proboscis-likemouthparts) when the aphids insert the stylets into cells whilefeeding on infected plants. When aphids change the plant, thevirusesaretransportedinthestyletstoanewhostandinoculatedintoit.OurpublishedresultsshowthatCaMVformsanintracellulartransmissionbody(TB),thatisspecializedfortransmissionandthattransmissionrequireslivingcells.ThisindicatesthattransmissionofCaMVisnotbyaccidentalcontaminationofthevectormouthpartsbut results from specific interactions between the virus and thevector during the acquisition process. Our unpublished results(seealsocommunicationbyAurelieBak)showthattheTBreactsspecifically on the arrival of the aphid vector and disintegratesrapidly and reversibly, thereby distributing transmissible viruscomplexes on microtubules throughout the cell and greatlyenhancingtransmission.Twoquestionsarise:1)IsCaMVtheonlyvirus able to sense the vector’s arrival and prepare accordinglyfor transmission? 2)How does the virus sense the vector?Herewe show that also transmission of the unrelatedTuMV requireslivingcellsanddoesnot result fromaccidentalcontamination.Apharmacologicalanalysis shows thatcalciumsignalling isaveryearly step common for aphid sensing by both viruses, whereasdownstreamreactionstoaphidsdiffer.Takentogether,weproposethat vector sensing by viruses might be a general phenomenonenablingefficienttransmission.

PS08-338TheinteractionproteomeoftheNNB-LRRimmunereceptorPatrick Cournoyer1, Jeffrey L. Caplan2, Brett S. Phinney3, S. P.Dinesh-Kumar31DepartmentofMolecular,Cellular, andDevelopmentalBiology,YaleUniversity,NewHaven,CT,USA,2DepartmentofBiologicalSciences, Delaware Biotechnology Institute, University ofDelaware,Newark,DE,USA, 3DepartmentofPlantBiologyandTheGenomeCenter,CollegeofBiologicalSciences,UniversityofCalifornia,Davis,CA,USA.

Page 144: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession08-Plant-virus/viroidinteractions

142

Post

er 0

8

[email protected] use NB-LRR immune receptors to recognize specificpathogen effectors and trigger defense responses. Identifyingmembers of NB-LRR immune receptormulti-protein complexeswillimproveourunderstandingofpathogenrecognition,immunereceptor activation, and defense signal induction. Because NB-LRRshavelowendogenousexpressionlevelsandarerecalcitrantto over-expression, isolating NB-LRR complexes has been achallenge.Recent improvements inaffinitypurificationandmassspectrometry (AP-MS) have it made it feasible to enrich NB-LRRscomplexesandidentifylow-abundancemembers.Here,weperformedAP-MSontheTIR-NB-LRRimmunereceptorNfromNicotiana sp.,which confers resistance toTobacco mosaic virus(TMV). We fused genomic N to a tandem affinity purificationtag (N-TAP) containing c-myc epitopes.As a control to identifynon-specificco-purifyingproteins,weusedβ-glucuronidase-GFP-TAP. Following one-step immunoaffinity purification, we usedlabel-free LC-MS/MS to identify several novel N multi-proteincomplexmembers.Wewilldiscusstherole(s)oftheseproteinsinN-mediateddefenseagainstTMV.

PS08-339Management of whitefly transmitted begomovirus associatedwithtomatoinOmanAdelA.Al-Shihi1,[email protected] yellow leaf curl virus (TYLCV) isawhitefly-transmittedbegomovirus.Duringfieldsurveyin2010-2011diseaseincidenceon tomato associated with begomovirus was found to be 10-100%.Disease symptoms,which include yellowing, leaf curlingandsevereplantstuntingarereminiscentofbegomovirus.Tomatoseedlings coveredwithAgrylnet innurseryand6-7weeksaftertransplant showed less than5%viral symptomsandhigh tomatoyield.Intransmissionstudies,femalewhiteflieswerefoundmoreefficient in transmitting virus and associated satellite DNA ascompared to male whiteflies. Viral acquisition and transmissionrates bywhiteflywere evaluated by symptoms development andconfirmedbyPCR.Theminimumacquisitionperiodwasfoundtobe30minandtransmissionperiod15minforsuccessfuldiseasedevelopment. Seventeen-tomato breeding lines introgressedwith Ty genes resistant to begomovirus, were challenged withviruliferous whiteflies. Nine out of seventeen breeding linesshowed no symptoms and were field resistant, whereas eightbreedinglinesshowedmoderatetohighsusceptibilitytoTYLCV.Amplification fragment length polymorphism (AFLP) revealed ahighpolymorphismamongallbreedinglines.Mostoftheresistantbreeding lines clustered together but somewith susceptible onesindicating that clustering is due to their genetic relatedness andnottheresistance.Thiscancontributetomakesomedecisionsbybreeders in relation to the choice of the appropriate parents andlinkagefortheresistancegenes.

PS08-340Regulation of the cell-to-cellmovement of plant viruses by aSer/Thrkinase-likeproteinChi-Ping Cheng1, Shun-Fang Cheng2, Meng-Shan Tsai1, Ching-HsiuTsai21Department of Life Sciences, Tzu Chi Univeristy, Hualien,Taiwan, 2Graduate Institute of Biotechnology, National ChungHsingUniversity,Taichung,[email protected] the interaction between hosts and the viruses offers apotentialwaytodevelopantivirusstrategies.Inthisstudy,wefocuson a Nicotiana benthamiana Ser/Thr kinase-like (NbSTK-like)proteinwhichisinvolvedinthecell-to-cellmovementofBamboo mosaic virus (BaMV).BaMVisasingle-stranded,positivesenseRNAvirus(Linet.al.,1992)whichcausessignificanteconomical

lost of bamboo in Taiwan. By using cDNA-AFLP, the NbSTK-like protein is found to be up-regulated in theBaMV-inoculatedN. benthamiana (Cheng et. al., 2007). NbSTK-like containsthe homologous domain of Ser/Thr kinase. Knocking down theexpressionofNbSTK-likereducedtheaccumulationofBaMVintheinoculatedleavesbutnotintheprotoplasts.ThelocalizationofNbSTK-likeismainlyonthecellmembrane.Activesitemutationof NbSTK-like does not change its subcellular localization butsignificantlyaffecttheBaMVaccumulation.Thesedataimplicatethat NbSTK-like facilitates the cell-to-cell movement of BaMV.Moreover, knocking down the expression of NbSTK-like alsoaffects theaccumulationofCucumber mosaic virus (CMV), thusNbSTK-likemay have broader effect on different viruses ratherthan specific to BaMV. However, the phosphorylation status ofBaMVcoatproteinwasunaffectedintheNbSTK-likeknockdownprotoplasts.ThesubstrateofNbSTK-likeandthedetailmechanismareunderinvestigation.

PS08-341Mutationsinthe130K/180KreplicationproteingenesofPepper mild mottle virus that confer the ability to systemically infecttomatoplantsreduceitsinfectivityinoriginalhostsYukino Morikawa1, Kazuhiro Ishibashi2, Hiroyuki Mizumoto1,KentaroKimura1,KouheiMatsumoto1,AkinoriKiba1,MasayukiIshikawa2,TetsuroOkuno3,YasufumiHikichi11Laboratory of Plant Pathology and Biotechnology, KochiUniversity, Kochi, Japan, 2Division of Plant Sciences, NationalInstituteofAgrobiologicalSciences,Tsukuba,Japan,3Laboratoryof Plant pathology, Graduate School of Agriculture, KyotoUniversity,Kyoto,[email protected] mild mottle virus (PMMoV) and Tobacco mild green mosaic virus(TMGMV)cannotreplicatewithintomatoprotoplastsduetotheinhibitoryeffectexertedbythetm-1protein.Amutantof TMGMV Japanese strain (TMGMV-J) with the T894M-and F970Y-substitutions in the 130K/180K replication protein(130K/180K) can replicate within tomato protoplasts and infecttomato plants systemically. In this study,we analyzed the effectof the corresponding amino acid changes (the insertion of Rbetweenthe889thand890thresiduesandtheF970Y-substitution)inPMMoVJapanesestrain(PMMoV-J)130K/180Koninfectivityintomatoplants.Thoughthemutantwiththe889RinsertionandtheF976Y-substitution (PMMoV-889/976) and thatwith the F976Y-substitutionalone(PMMoV-976)replicatedintomatoprotoplasts,theydidnotinfecttomatoplants.Theaffinityofthe130KproteinofPMMoV-889/976towardtm-1proteinwaslowerthanthatofthewild-typePMMoV130Kprotein.WethenselectedaspontaneousPMMoV-889/976mutantwhichcould systemically infect tomatoplants. The mutant contained additional D1091N-substitutionin the 130K/180K. Furthermore, this PMMoV mutant (PM-889/976/1091) systemically infected tomatoplants.These resultssuggestthattheF976Y-substitutioniscriticalforovercomingtm-1-mediatedresistance,andtheD1091N-substitutioniscriticalforsystemic infectivity of PMMoV in tomato plants. Interestingly,eithertheF976Y-orD1091N-substitutionsledtolowerreplicationactivityand lower systemic infectivityof themutants inoriginalhosts,Capsicum annuum andNicotiana benthamiana. Thus, thePMMoV mutations, which enabled the virus to infect tomatoplants,reducedthereplicationabilityofthevirusinoriginalhosts.

PS08-342RecapitulationofribosomalframeshiftingofClover yellow vein virusP3N-PIPOinacell-freetranslationsystemYuka Hagiwara-Komoda1, Sun Hee Choi1, Kenji Nakahara1,SatoshiNaito11ResearchFacultyofAgriculture,HokkaidoUniversity,Sapporo,Japanhagi-ko@abs.agr.hokudai.ac.jpThefamilyPotyviridaeisoneofthemostagriculturallyimportant

Page 145: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession08-Plant-virus/viroidinteractions

143

Poster 08

virus groups. Potyviruses have a single-stranded, positive-senseRNAgenomeofapproximately10kbinlength.Theviralgenomecontains a single long open reading frame (ORF) encoding apolyproteinwhichiscleavedintoapproximately10matureproteins.Recently,ashortORF,pipo,wasdiscoveredwithintheP3cistronof potyviral polyprotein (Chung et al., PNAS 105; 5897-5902,2008).ThePIPOORFexistsinthe+2readingframerelativetothepolyprotein.PIPOisproposedtobeexpressedasaproteinfusedtotheN-terminalpartofP3(P3N-PIPO).However,whetherP3N-PIPOisexpressedviatranscriptionalslippageorribosomalframeshiftingisunknown.Clover yellow vein virus(ClYVV)isamemberofthepotyvirus group.ClYVV also contains the PIPOORF in the P3cistron.P3N-PIPOofClYVVissuggestedtobeassociatedwiththeviralpathogenicityinpeacarryingtheresistancegene,cyv1.Inthisstudy,we investigatedwhetherClYVVP3N-PIPOissynthesizedbyribosomalframeshifting,byusingacell-freetranslationsystem.WefoundthatP3N-PIPOisexpressedbyribosomalframeshifting.Furthermore, the frameshifting efficiencies are different betweentwoClYVVisolates: theonethat isvirulent to thecyv1-carryingpeaexpressedmoreP3N-PIPOthantheavirulentisolate.

PS08-343Multiple suppressors of posttranscriptional gene silencingencoded by Ageratum yellow vein virus, a monopartitebegomovirusM.S.Shahid1,M.Ikegami2,P.Sharma3,T.Kon4,K.T.Natsuaki1,M.S.Shahid1,51Department of International Agricultural Development, TokyoUniversity of Agriculture, Tokyo 156-8502, Japan, 2NODAIResearch Institute,TokyoUniversity ofAgriculture,Tokyo 156-8502,Japan,3DivisionofCropImprovement,DirectorateofWheatResearch,Karnal132001, India, 4DepartmentofPlantPathologyUniversityofCalifornia,Davis,USA,5DepartmentofBiosciences,COMSATS Institute of InformationTechnology, Sahiwal 57000,[email protected] silencing is a natural defense response of plants againstinvading viruses. In counter-defense, viruses encode suppressorsof gene silencing that allow them to effectively invade plants.Ageratumyellowveindisease(AYVD)iscausedbytheassociationof a Tomato leaf curl Java betasatellite [Indonesia: Indonesia1:2003] (ToLCJB-[ID:ID:03]) with a begomovirus component.Ageratum yellow vein virus-Indonesia[Indonesia:Tomato](AYVV-ID[ID:Tom])alonecouldsystemicallyinfecttheplantsandinducedupward leaf curl symptoms even in the absence of betasatellite.HoweverToLCJB-[ID:ID:03]wasrequired,inadditiontoAYVV-ID[ID:Tom], for induction of severe downward leaf curl diseaseinN. benthamiana plants.We have identified theDNA encodedV2anditsbetasatellitethattheV2andbetaC1genesaresymptomdeterminants. We also found that the ToLCJB-[ID:ID:03],encoded betaC1 proteins as efficient silencing suppressors ofposttranscriptionalgenesilencing(PTGS)byusingAgrobacteriumco-infiltration or heterologous PVX vector assays. However, theresultsalsoshowedweaksuppressionofgenesilencingactivitiesforC2andC4inducedbyGFPmRNAassociatedwithGFPwasdetected. Furthermore, confocal imaging analysis of ToLCJB-[ID:ID:03]betaC1intheepidermalcellsofN. benthamianashowsthatthisproteinisaccumulatedtowardstheperipheryofthecellandaroundthenucleus,however,V2accumulatedinthecellcytoplasm,C4associatedwithplasmamembraneandC2exclusivelytargetedintonucleus. In thisstudy,weidentifiedasmanyasfourdistinctsuppressorsofRNAsilencingencodedbyAYVV-ID[ID:Tom]anditscognatebetasatelliteinthefamilyGeminiviridae,counteractinginnateantiviralresponse.

PS08-344Toward molecular isolation of the Pvr4 gene conferringresistanceagainstPepper mottle virusinCapsicum annuumSaet-ByulKim1, Jung-HeonHan2,Hyun JungKim1,Shin-YoungKim1,DoilChoi1

1Department of Plant Science, SeoulNationalUniversity, Seoul,Korea,2PepperandBreedingInstitute,BusinessIncubator,CollegeofAgricultureandLifeSciences,SeoulNationalUniversity,Suwon441-853,[email protected] plant viruses ofPotyviridae family includingPepper mottle virus (PepMoV) and Potato virus Y (PVY) are known as mostdestructive plant viruses with disease symptoms of mottling onpepper or tomato leaves. In pepper, Capsicum annuum CM334containing Pvr4 and Capsicum chinense accession PI159236containingPvr7arereportedasresistantsourcesagainstPepMoVand PVY. The Pvr4 is known as a single dominant resistancegene against potyvirus with a broad spectrum and is located inchromosome10.Pvr7isalsodeterminedasasingledominantgene,whichhasbeenknown tobe tightly linked toPvr4 inPI159236.Onthebasisof these,wetry to isolatePvr4genebyperforminggeneticanalysisofPepMoVresistancewithBC1F3100individualsfromCM334(Pvr4)andECW123R(pvr4).PCAPSmarkerlinkedat a distance of 7cM from Pvr4 has been developed throughcomparative genomics between tomato and pepper CM334genome.PositionalcloningofPvr4bymarkerdevelopmentsandcandidate gene approach using pepper draft genome sequence isunderway.Progressofourworkonmap-basedcloningofPvr4willbepresentedasaposter.

PS08-345ScreeningforvirulencefactorsofGentian Kobu-sho-associated virusinvolvedintumorousorhyperplasticdisordersingentianGoAtsumi1,ReikoTomita1,KappeiKobayashi2,HiromasaSaitoh1,Ken-TaroSekine11IwateBiotechnologyResearchCenter,[email protected] gentians are perennial plants cultivated for ornamentalpurposes. Kobu-sho is a syndrome that causes tumorous orhyperplastic disorders on stems, nodes and roots of gentian, butthe most common and early symptom is stunt with shortenedinternodes. Kobu-sho was first reported in the mid-1980s, butthecausalagent(s)remainsunknown.Wehaveidentifiedanovelvirus-like double stranded (ds) RNA of approximately 23 kb,whichshowedstatistically significant relevance toKobu-shoanddesignateditasGentian kobu-sho-associated virus(GKaV).GKaVsequencehasasinglelargeORFthatencodesapotentialpolyproteinofabout7,400aminoacids.Theaminoacidsequencedidnotshowsignificantsimilaritytoanyplantviralproteins.TosearchforthevirulencefactorsinvolvedinKobu-shodevelopment,weexpressedpartial fragments of theGKaV sequence using a transient assaysystem based on Nicotiana benthamiana-Potato virus X (PVX)vector system because infectious GKaV molecular clone is notavailable.Weamplified55overlappingfragmentsof810bpfromGKaVgenomeandexpressed themusingPVXvector.Wefoundthat the expression of two fragments (GK1 or GK32) inducedsymptomsdistinctfromcontrolvectorexpressingGFP.PVX/GK1inducedstuntingandsystemiccelldeath.PVX/GK32inducedtheleavestobecurled,thestemstobebentandthewholeplantstobereptant. Furthermore, it induced an ectopic development of leaf-liketissueontheabaxialsideofveinsinnormalleaves.TheresultssuggestthatthesefragmentsencompassthecandidatesfordifferentvirulencefactorsofGKaV.

PS08-346EvaluationofthedurabilityofN’resistancegenetoPepper mild mottle virususingrandommutagenesisofcoatproteingenesKengoIdehara1,MamiNoguchi1,ReikoTomita2,GoAtsumi2,Ken-Taro Sekine2, Naoto Yamaoka3, Masamichi Nishiguchi1, KappeiKobayashi11LaboratoryofPlantMolecularBiologyandVirology,FacultyofAgriculture, Ehime University, Ehime, Japan, 2Research groupofPlantPathology, IwateBiotechnologyResearchCenter, Iwate,Japan, 3Laboratory of Plant Pathology, Faculty of Agriculture,

Page 146: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession08-Plant-virus/viroidinteractions

144

Post

er 0

8

EhimeUniversity,Ehime,[email protected] the use of resistant cultivars is one of the most idealstrategiesinplantdiseasecontrol,theresistance-breakingpathogenstrainssometimesbreakoutandcauseseverelossesinthefields.Genemanipulationandsomeothertechnologieswouldprovideuswithopportunitiestousethebrokenresistancegenesforcontrollingdiseasesindifferentcrops.Itwouldbeusefultousetobamovirusresistancegenes,L andN’ frompepperandNicotiana sylvestris,respectively, in combination to control tobamovirus infection inpepperproductionfields.AllelesofL genehavebeenbrokenbystrainsofPepper mild mottle virus(PMMoV)butarebelievedtobe durable againstTobacco mosaic virus (TMV). In contrast,N’isineffectiveagainstTMVbutexhibitedresistancetoallPMMoVstrainswetested.ToassessthepotentialriskofemergenceofN’-breakingPMMoV,weestablishedanAgroinfectionsystemtoscreenthe viruses with randomly mutated PMMoV CP for resistancebreakage.PMMoVCPgeneswith randommutations (1.8 aminoacid changes/clone in average; introduced using an error-pronePCR),were inserted into a PMMoV genome in a binary vector.AgroinfectionofthePMMoVmutantlibraryandimmunodetectionofCPidentified12candidatesforN’-breakingPMMoVCPoutof360clonestested.InspiteofthelackofresistanceresponseandthecleardetectionofCPaccumulationspreadintheinoculatedleaves,none of the candidate clones infectedN. sylvestris systemically,suggestingthatN’-mediatedresistanceisdurableagainstPMMoVinfection.

PS08-347Increased expression of P3N-PIPO facilitate the cell-to-cellmovementofClover yellow vein virusinacyv1-resistantpeaSunHeeChoi1,KenjiS.Nakahara1,IchiroUyeda11Pathogen-plant Interactions group, The Graduate School ofAgriculture,HokkaiodUniversuty,Sapporo,Japanshsibs@res.agr.hokudai.ac.jpTherearetworecessiveresistancegenes,cyv1orcyv2,controllingClover yellow vein virus(ClYVV)inPisum sativum.Inpealinescarrying cyv1, an isolate of ClYVV, Cl-no30, was restricted ina single cell whereas another isolate, 90-1 Br2, overcame thisresistance.WemappedtheClYVVelementforthecyv1-resistancebreaking by examining infection of the cyv1 peaswith chimericvirusesbetweenCl-no30and90-1Br2, revealing thatP3N-PIPOis involved in the resistance breaking. Then, how P3N-PIPO isinvolved in the resistance breaking was examined. P3N-PIPOsof other potyviruseswere reported to be involved in cell-to-cellmovement.WehereconfirmedthatP3N-PIPOisalsorequiredforthe cell-to-cell movement of ClYVV in infected plants, raisingthepossibility thatCl-no30 is defect in cell-to-cellmovement inacyv1peaand the90-1Br2P3N-PIPOdiminishes thedefectofCl-no30.Totestthispossibility,theGFP-taggedCl-no30infectiousclonewasbiolisticallyinoculatedintothecyv1peawiththeplantexpressionvectorscontainingtheP3orP3N-PIPOORFfromCl-no30and90-1Br2underthe35Spromoter.Thevirusmovementwas monitored with GFP fluorescence. As a result, additionalexpressionoftheP3N-PIPOderivedfromeitherCl-no30or90-1Br2 enabled Cl-no30 tomove into adjacent cells but that of P3rarely did. Susceptible peas infectedwith 90-1Br2 accumulatedmoreP3N-PIPOthandidthoseinfectedwithCl-no30.TheseresultssuggestedthattheincreasedexpressionofP3N-PIPOfacilitatethecell-to-cellmovement ofCl-no30 in a cyv1 pea, resulting in theresistancebreaking.

PS08-348AthioredoxinhproteinfromNicotiana benthamianaisinvolvedinthemovementofBamboo mosaic virusYing-PingHuang1,Hui-TingChen1, Lin-Ling Shenkwen1, Shun-FangCheng1,Yau-HeiuHsu1,Ching-HsiuTsai11Graduate Institute of Biotechnology, University of ChungHsing,Taichung,Taiwan

[email protected] the downregulatedgenes inNicotiana benthamiana afterBamboo mosaic virus <BaMV> infection identified by cDNA-amplifiedfragmentlengthpolymorphism<AFLP>techniquewasshown to participate in viral infection cycle.After retrieving thesequencebyRACE technique, theproteinproductdeduced fromthefull-lengthcDNAsequencehasanorthologtoathioredoxinhprotein.Therefore,wedesignatethisfull-lengthcloneNbTRXh1.ToinspecthowNbTRXh1isinvolvedintheinfectioncycleofBaMVinN. benthamianaplant,weusedthevirusinducedgenesilencing<VIGS>techniquetoknockdowntheexpressionlevelofNbTRXh1inN. benthamianaplantandtheninoculatedBaMV.Resultsshowthat the accumulation of BaMV coat protein is increased in theknockdown plants at 5 dpi compared to that of control plants.However,wecannotfindany significantdifferencebetween theknockdown and control protoplasts at 24 hpi. Further, we alsofindout thatBaMV ismore efficient in infectionandmovementinNbTRXh1-knockdownplantsthanthoseinthecontrolplants.Incontrast,theaccumulationofBaMVisreducedwhenthisgenewastransientlyexpressedinplants.OveralloftheseresultssuggestthattheproductofNbTRXh1genemayplayaroleinrestrictingBaMVmovementratherinreplication.

PS08-349Determiningthemechanismbywhichthep8andp6.6proteinsfromPanicum mosaic virusinfluenceitsintercellularmovementinmaizeXinShun Ding2, Elison B. Blancaflor1, Min Zhu2, Richard S.Nelson11PlantBiologyDivision,TheSamuelRobertsNobleFoundation,Inc., Ardmore, OK, USA, 2Plant Pathology Department, ChinaAgriculturalUniversity,Beijing,Chinaxsding@noble.orgInthepastthreedecadesnumerousstudieswereconductedtoelucidatethemechanismof virus cell-to-cellmovement in dicotyledonousspecies.However, similar research inmonocotyledonous specieshasbeenmore limited.Panicum mosaic virus (PMV) isanRNAvirusandisthetypememberofthePanicovirusgenusinthefamilyTombusviridae.PMVencodes tworeplication-associatedproteins(e.g. p48 and p112) and four other proteins (e.g. p8, p6.6, p15,andthecapsidprotein).Apreviousstudyusingmutantsdefectivein expressing one of the four non-replication-associated proteinsshowedthatthep8andp6.6proteinsarelikelyinvolvedinPMVmovement between cells in its monocotyledonous host plant(Turinaetal.2000Virology266:120-128).Werecentlyidentifiedan Oklahoma strain of PMV (O-PMV) from a field Panicum virgatum(switchgrass)andproducedafulllengthinfectiouscloneofthisvirus.Inaddition,weclonedthep8andp6.6openreadingframes(ORFs)andinsertedthemindividuallyinfrontorbehindagreenfluorescentprotein(GFP)ORFinabinaryvector.Wealsodeveloped a transient expression technique for these constructsin both dicotyledonous andmonocotyledonous species using theHeliosGeneGunsystemandTungstenM17microcarrier.Wewillreport on the intracellular location of these genes through theirectopic expression in cells of Zea mays cv. Oh28; in particularwhethertheylocalizetoplasmodesmata.Initialfindingsindicateanunusuallocalizationpatterndependentonthehostspeciesanalyzed.

PS08-350Evidence that SGT1 facilitates viral accumulation andinductionofnecrosisinTomato ringspot virusinfectedplantsBasudevGhoshal1,HeleneSanfacon21Department of Botany, The University of British Columbia,Vancouver, Canada, 2Pacific Agri-Food Research Centre,AgricultureandAgri-FoodCanada,Summerland,BC,Canadabasu@interchange.ubc.caHostgenesplayanimportantroleindeterminingtheoutcomeofplant-virus interactions. Plants inoculated with ToRSV-Rasp1 (a

Page 147: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession08-Plant-virus/viroidinteractions

145

Poster 08

severe Tomato ringspot virus isolate) display systemic necrosisat21C.Symptomsareinducedearlierat27Cbuttheyaremilderandplantseventually recover.ViralRNAsaredetectedearlier ininfection at 27C than at 21Cbut accumulate to high levels laterin infection at both temperatures.The role of host genes in thisinteraction is poorly understood. SGT1 (Suppressor ofG2 alleleof SKP1) is amultifunctional protein and is involved inR-genemediatedresponse,non-hostresistanceandprogrammedcelldeath.Prior to inoculation, SGT1was found to be expressed at higherlevelsat27Cthenat21C. Inaddition,SGT1wasupregulated inresponse to virus infection at 21C.We investigated the effect ofsilencing SGT1 on viral RNA and protein accumulation and onthe induction of necrosis at 21C. Following silencing of SGT1usingavirus-inducedgenesilencing(VIGS)approach,only12%of ToRSV-Rasp1 inoculated plants displayed systemic necrosisat seven and fourteen days post-inoculation. In contrast 94% ofcontrolplantswerenecroticat these timepoints.ViralRNAandcoatproteinaccumulatedatlowerlevelsinSGT1-silencedplantsin comparison to control plants, suggesting that SGT1 enhancesvirusaccumulation.ThereducednecrosisinSGT1-silencedplantsmaybeadirecteffectoftheSGT1silencingontheregulationofplantdefenseresponsesoritmaybeduetothelowerlevelsofvirusaccumulationintheseplants.

PS08-351Cucumber mosaic virus (CMV) RNA3 transgenic Nicotiana benthamianacomplementtoexpressCMV-RNA1andRNA2systemicallyNorihoFukuzawa1,TakeshiMatsumura1,ChikaraMasuta21NationalInstituteofAdvancedIndustrialScienceandTechnology,Sapporo, Japan, 2Graduate School of Agriculture, HokkaidoUniversity,Sapporo,[email protected] mosaic virus (CMV)hasaverybroadhost rangeandcontains three single-stranded, genomic RNAs (RNAs 1-3).Wehavepreviouslydeveloped theCMV-basedvector,whichwasanengineeredRNA 2 to express a hetelorogous gene.We are nowdeveloping another system,where the CMV vector can be usedtogether with transgenic plants expressing the CMV genes. Inthisstudy,weproducedtransgenicNicotiana benhtamianaplantsexpressingCMVRNA3,whichencodesthemovementprotein(3a)andthecoatprotein(CP).Inthesetransgenicplants,theexpressionof CPwas not detected as we expected, perhaps due to lack ofRNA4 forCP.Whenwe inoculated these transgenic plantswithin vitro transcripts of CMVRNAs 1 and 2,we could of courseobserveCMVsymptomsanddetectedahighlevelofaccumulationof CMV-CP. To confirm whether we could produce a foreignproteininthetransgenicplantsusingtheCMVvectorwithoutCP-mediated resistance, the transgenic plants were inoculated within vitro transcripts of CMV RNA 1 and RNA2:H1-GFP, whose2bgenewas replacedwith theGFPgene. In theupper leavesofinoculated plants, GFP was clearly detected suggesting that theRNA3transgenicplantscanbecomeaplatformforforeignproteinproductionusingtheCMVvector.Inthissystem,wejustusedtwoviralRNAsinsteadofthree,savingtimeandcosttoproducevirus-infectedplantsinashortperiod.ThisworkwassupportedinpartbygrantsfromtheMinistryofEconomyTradeandIndustryinJapan.

PS08-352Identification of domains in p27 auxiliary replicase proteinessential for its association with the endoplasmic reticulummembranesinRed clover necrotic mosaic virusKusumawaty Kusumanegara1, Akira Mine2, Kiwamu Hyodo1,MasanoriKaido1,KazuyukiMise1,TetsuroOkuno11Laboratoty of Plant Pathology, Graduate School ofAgriculture,Kyoto University, Kyoto, Japan, 2Department of Plant MicrobeInteractions, Max Planck Institute for Plant Breeding Research,Cologne,[email protected]

Positive-strand RNA viruses require the host intracellularmembranes for replicating their genomic RNAs. Red clover necrotic mosaic virus (RCNMV), a member of Dianthoviruses,has a bipartite genome consisting of RNA1 and RNA2. RNA1encodes two N-terminally overlapping replication proteins p27andp88.Ourpreviousstudiesshowedthatp27recruitsRNA2tothe endoplasmic reticulum (ER) membranes via the interactionbetweentheC-terminalregionofp27andaspecificRNAelement.In this study, we determined the domains and critical aminoacids in p27 required for its association with, and targeting theER membranes using C-terminally GFP-fused p27 (p27-GFP)that can support viral RNA replication in the presence of p88.Confocal microscopy and membrane flotation assays using anAgrobacterium-mediatedexpressionsystemshowedthatastretchoftwentyaminoacidsintheN-terminalregionofp27isessentialfor themembraneassociationofp27,and that thisdomainaloneissufficienttotargetGFPtotheERmembranes.Weidentifiedtheaminoacidsinthisdomainrequiredforthemembraneassociationof p27 using alanine-scanning mutagenesis.We also found thatthisdomaincontainstheaminoacidsnotcriticalinthemembraneassociationbutarerequiredfortheformationoftheRCNMVRNAreplication complexes and negative-strand RNA synthesis. Ourresultsextendourunderstandingofamultifunctionalroleofp27inRCNMVreplication.

PS08-353Theregulationmechanismofreactiveoxygenspeciesgenerationbycalcium-dependentproteinkinaseMayuKamimura1,YuyaKousaka1,YulongHan1,Fang-SikChe11Bio-Science,GraduateSchoolofBioSciences,NagahamaInstituteofBio-ScienceandTechnology,Shiga,[email protected](ROS)generation,usuallycalledtheoxidativeburst,wasobservedwhentheflagellinfromAcidovoraxavenaerice-avirulentstraintreatedtotheculturedricecells.ROSgenerationafterrecognitionoftheavirulentflagellinwasstronglysuppressedbyCa2+chelatingagentsorkinaseinhibitors.Inorderto investigate theCa2+dynamicsduringplant immuneresponses,yellow cameleon 3.6 was transiently expressed in cultured ricecells.Whentheavirulentflagellinwastreatedtothericecells,Ca2+concentrationwas rapidly increased,whileanotablechangewasnotobservedbyvirulentflagellin treatment.Thesedata indicatedthepossibilitythatROSgenerationafterrecognitionoftheavirulentflagellin was regulated by calcium-dependent phosphorylation.Plants have calcium-dependent protein kinase (CPK) possessingprotein kinase domain andEF handmotifs thatmay function inCa2+regulation.Among 29 rice CPK genes, 6 CPK genes wereexpressed after treatment of the avirulent flagellin. OsCPK12 knock-down and knock-out mutants did not induce any ROSgenerationaftertreatmentoftheavirulentflagellin,suggestingthatOsCPK12regulatedtheROSgeneration.SinceithasknownthatOsrboh play a central role in ROS generation during biotic andabiotic stress, we examined interaction between OsCPK12 andOsrboh.InteractionexperimentbasedonBiFCtechnologyshowedthat OsCPK12 interacted with N-terminal domain of OsrbohA.TheseresultsproposedthattheactivityofOsrbohAmightregulateviatheN-terminalphosphorylationbyOsCPK12.

PS08-354EffectofriceRNA-dependentRNAPolymerase1(OsRDR1)onRNAsilencingandsmallRNAregulationMasamichiNishiguchi1,2,HuiChen1,2,KappeiKobayashi1,NaotoYamaoka11Faculty of Agriculture, Ehime University, Matsuyama, Japan,2SouthernCropProtectionandFoodResearchCentre,AgricultureandAgri-FoodCanada,London,ON,N5V4T3,[email protected] silencing is a sequence specific gene regulation throughRNA degradation, which is conserved across the fungal, animal

Page 148: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession08-Plant-virus/viroidinteractions

146

Post

er 0

8

and plant kingdoms.The rice (Oryza sativa)mutant lineswhereOsRDR1 was disrupted by the insertion of rice retrotransposonTos17was selected and further characterized for virusmediatedRNAsilencingandsmallRNAregulation.RNAsilencinginductionbyparticlebombardmentwasperformedtoinvestigateanyeffectsofOsRDR1onRNAsilencingwithrecombinantvirusDNA/RNAinthemutantlines.TheresultsshowedthatOsRDR1wasrequiredforRNAsilencingmediatedbyBrome mosaic virus(BMV,ssRNAvirus) but not for the silencing mediated byWheat dwarf virus(WDV,ssDNAvirus).NorthernblotanalysisofCucumber mosaic virus(CMV)inoculatedplantsshowedhigheraccumulationlevelsofCMVRNAs in themutant lines than in thewild-type plants,indicating that OsRDR1 plays an important role in antivirusdefense. Furthermore, small RNA analysis showed that whiletheexpression levelsof somemiRNAswereunder thedetectionlimit in themutant lines, thoseofothermiRNAswere increaseddepending on rice tissues, and that themRNA level for targetedgene was inversely correlated with the expression level of eachmiRNA.OurobservationssuggestthatOsRDR1isinvolved,eitherinadirectorindirectmanner,inthebiogenesisofthesemiRNAs.

PS08-355MaizeFerredoxin-5playsanegativeroleinSugarcane mosaic virus infectionKe-ShuangWang1,YuqinCheng11DepartmentofPomology,CollegeofAgronomyandBiotechnology,[email protected] virus infection in plants relies on complex molecularinteractions between the invading virus and host proteins. OurpreviousworksshowedthatSugarcane mosaic virus(SCMV)HC-Procouldspecifically interactwithmaize ferredoxin-5 (FdV) inyeastandplantcells,thentheroleofFdVinSCMVinfectionwasfurtherstudied.TheresultsshowedthatsuppressionofFdVthroughvirus-induced gene silencing (VIGS) inmaize plants resulted inmore severemosaic symptomandenhanced theaccumulationofSCMVviralcoatproteinsaswellasviralgenomicRNAs.However,transient over-expression of FdV inmaize protoplasts impairedSCMVmultiplication.ThesedatasuggestedthatmaizeFdVmightplayanegativeroleinSCMVinfection.

PS08-356UltrastructuralstudyofTomato yellow leaf curl virusinthecellsofhostplantsandthemidgutepithelialcellsoftheinsectvector,whiteflyMiwaUchibori1,MasashiSuzuki1,MasashiUgaki11The Department of Integrated Biosciences, The University ofTokyo,Chiba,[email protected] geminivirus Tomato yellow leaf curl virus (TYLCV) is animportantplantpathogen.Itsinfectiontoplantsisstrictlylimitedwithin the phloem. Various insects feed on the infected plants,butonlyasinglespecies,awhiteflyBemisia tabaci,cantransmitTYLCV from plant to plant. To obtain insight into the phloemtropism and the vector specificity, we analyzed ultrastructurallocalization ofTYLCV in plant and insect cells by immunogoldelectronmicroscopy (IEM).When TYLCVwas inoculated ontoplantsbythewhitefly,theviruswasaccumulatedonlyinphloemtissues,as reported.Nevertheless,when theviruswas inoculatedintoNicotiana benthamiana leaves by agrobacterium infiltration,thevirusinfectedmesophyllcellsandaccumulatedinanelectron-densematterwithinthecellnucleus.Thisindicatesthatthephloemtropism ofTYLCV is not because of its inability to replicate inothercelltypes.TYLCVistransmittedbyB. tabaciinacirculative,non-propagativemanner.AfterB. tabaciwas allowed to feedoninfectedplants,itsdigestivetractwassubmittedforIEM.Theviruswaslocalizedonlyinelectron-densematerialswithinvesicle-likestructuresfoundinthecytoplasmofmidgutepithelialcells.Thesestructureswereobservedatthedescendingandascendingmidgut

andthecaecum.Incontrast,nogold-labelingwasdetectedinthemidgutcellsofanon-vectorwhitefly,Trialeurodes vaporariorum,after itsfeedingoninfectedplants.Theseresultssuggest that thevectorspecificityofTYLCVisduetoitsabilitytoenterB. tabacimidgutcellsandinabilitytoentercellsofotherinsects.

PS08-357Evaluation of RNAi-mediated resistance offered to Potato spindle tuber viroid in transgenic N. benthamiana plantsexpressingdifferenthairpinRNAconstructsCharithR.Adkar-Purushothama1,AtsushiKasai1,TakeoHarada1,TeruoSano11Faculty of Agriculture and Life Science, Hirosaki University,Hirosaki,[email protected] are small circular plant pathogenic RNAs. Unlike RNAviruses, viroids do not encode protein, and depend on host’stranscriptional machinery for replication.As might be expectedfrom their highly base-paired structure and RNA-RNAmode ofreplication, viroids have been shown to induce RNA silencing.Accumulationofviroid-specificsmallRNA(Vd-sRNA)hasbeenreporteduponinfectioninhostplant.Previously,RNAi-mediatedresistance against PSTVd infection has been observed in certaintransgenic tomato lines expressing high levels of hairpin RNA-derivedsmallviroidRNAs.Further,ourdeepsequencingdataonsmallRNAsderivedfromPSTVdintomatoplantsrevealedcertainhotspotsonPSTVdmoleculethattendtoproducemoresmallRNAsthan other regions. With these backgrounds, we have producedtransgenic Nicotiana benthamiana plants expressing hairpinconstructsofnearfulllengthPSTVdand21-nucleotidesequencesderivedfromtheVd-sRNAhotspotsofPSTVd.ResistanceoftheT2plantsexpressingVd-sRNAtoPSTVdinfectionwasanalyzedbyNorthernhybridization.Some transgenic linesshowedcertainlevelofresistance.AgoodcorrelationhasbeenobservedbetweenthelevelofresistanceandthesmallRNAexpressionintransgeniclines.Higherlevelsofresistancewereobservedintransgenicplantsexpressingnear full lengthPSTVdhairpin constructs rather thanthoseexpressingsmallRNAderivedfromhotspot.

PS08-358A seed storage protein, PAP85, involved in early stage ofreplicationofTobacco mosaic virusandERmorphologychangeCheng-En Chen1, Tan-Tung Wang1, I-Ling Chien1, Hsin-HungYeh1,21DepartmentofPlantPathologyandMicrobiology,NationalTaiwanUniversity,Taipei,Taiwan.,2ResearchCenterforPlantMedicine,NationalTaiwanUniversity,Taipei,[email protected] single-stranded RNA ((+)RNA) viruses induce themodification of the host intracellularmembrane for assembly ofmembrane-boundvirus replication complexes (VRCs).However,thehostfactorsinvolvedinthisprocessremainlargelyunknown.WeusedmicroarrayassaytoscreentheArabidopsisgene(s)withresponse to infection of a (+)RNA virus, Tobacco mosaic virus(TMV), in the initial stage and identified anArabidopsis gene,PAP85 (annotated as a seed storage protein), upregulated duringinitialTMV infection. Experimentswith PAP85 knockdown andoverexpression inpap85-RNAiplants suggested thatPAP85wasinvolved in TMV accumulation. Co-expression of PAP85 andthe TMV main replicase (P126) but not their expression alonein Arabidopsis protoplasts cells could modify the endoplasmicreticulum (ER) structure. PAP85 also induced ER modificationin thepresenceof another12S seed-storageprotein (At1g03880,usually co-expressed with PAP85 during seed maturation).However, the inductionofERmodificationwasprotein specific,because co-expression of PAP85 and the ER marker could notmodifytheERstructure.OurdatasuggestPAP85involvedinTMVreplicationandTMVmayhijackseed-storageproteins tomodifytheERstructureforreplication.Thesealsoprovideastartingpoint

Page 149: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession08-Plant-virus/viroidinteractions

147

Poster 08

forfurtherinvestigationoftheroleofPAP85inERmodificationinplants.

PS08-359Molecular characterization of Potato spindle tuber viroid-derivedandnon-relatedcircularRNAsfromdahliaTaroTsushima1,TeruoSano11Faculty of Agriculture and Life Science, Hirosaki University,Aomori,Japanh04a2036@yahoo.co.jpDahliaisanewnaturalhostforviroidandsupportsthereplicationof Potato spindle tuber viroid (PSTVd) (Tsushima et al 2011).During the examinationsonPSTVd infecting indahlia,wehavedetected another single-stranded circular RNA molecules co-existingintheextracts.Someofthem,bysequencingofRT-PCRproductsobtainedbyPCRprimersderivedfromtheuppercentralconserved region of PSTVd, were identified to be the deletionmoleculesofPSTVd,inwhichastretchesofsequenceranging20-170nucleotidesweredeleted.Theotheroneswerealsoamplifiedcoincidently by the same PCR primers but sequencing analysisrevealedthattheydonotshareanysignificantsequencesimilarityto known viroid species. They included several molecules withdifferentsizesbutsharedpartiallyidenticalunitsformingseveralchimeric structures.To investigate the biological importance oftheseviroid-likecircularRNAmoleculesinplant,wehaveselectedtwo PSTVd-derived deletionmolecules of the size 188 and 304nucleotides,andcreatedthedimericcDNAconstructs.Theanalysisisnowunderwayusingtomato(cv.Rutgers)anddahliatoexaminewhether thesedeletionmoleculeshaveapotential toreplicatebythemselves.Wearefurtherconductingco-inoculationassayusingin vitro transcribed deletion molecules and the intact PSTVdmolecule to examine how these deletionmolecules interactwiththereplicationofintactPSTVdmolecule.

PS08-360Identification of the amino acids in Cap binding pocket ofBrassica rapaeIF(iso)4EinducingtheresistanceagainstTurnip mosaic virusJinheeKim1,WonheeKang1,DosunKim2

1DepartmentofPlantScience,CALS,SeoulNationalUniversity,Seoul, 2National Institute of Horticultural and Herbal Science,Suwon440-706,[email protected] mosaic virus (TuMV) is one of the major viruses inBrassicaceae crops which belong to the genus Potyvirus. AndeIF(iso)4Eiswellknownforrecessiveresistancegeneofpotyvirusinmanycrops.Toelucidatethekeyaminoacidsintheinteractionbetween TuMVVPg and eIF(iso)4E, amino acids of eIF(iso)4Ewere mutated. Seven amino acids in cap binding pocket werechosen for the candidate amino acid thatmay play a role in theinteraction ofTuMVVPg.Wedemonstrated that a single aminoacidmutation in cap binding pocket of Brassica eIF(iso)4E canabolish the interactionwithTuMVVPg. eIF(iso)4Ewhich has amutation at eachW49,W95 andK150 positions impaired in itsinteractionwithVPgaccording to theyeast twohybrid analysis.BiFC assay resultwas also consistentwith the yeast two hybriddata,asthesignalwashighlyreducedincoexpressionofeIF(iso)4E(W95L,K150L,W95L/K150E)andTuMVVPg.ComplementationofaneIF4EknockoutyeaststrainbymutatedeIF(iso)4EproteinsshowedthatalleIF(iso)4EmutantswereabletocomplementeIF4Eofyeast.TofindoutifthesemutationsaffectthesusceptibilityofChinesecabbage,transformantanalysiswasperformed.eIF(iso)4EW95L, W95L/K150E and susceptible wild type were over-expressedinsusceptibleChinesecabbage.AccordingtotheTuMVscreeningresultofT1andT2transformants,over-expressionoftheeIF(iso)4EmutantsshowedresistancetofourTuMVstrains(CHN2,3,4and5).OurresultssupportthatthemutationsineIF(iso)4EcanengineerthebroadspectrumTuMVresistance.

PS08-361SeasonaldynamicsandcorrelationstudiesoftwoviroidsintwocitruscultivarsChun-YiLin1,Ting-HsuanHung11DepartmentofPlantPathologyandMicrobiology,NationalTaiwanUniversity,Taipei,[email protected] exocortis viroid (CEVd) andHop stunt viroid (HSVd orCVd-II)aretwoknowncitruspathogens(documentedin1972and1995, respectively) that cause severe impacts on citrus industryin Taiwan. These two viroids usually co-infect citrus plants inTaiwan and their percentages of co-infection may reach up tofifty percent.The study of seasonalmultiplicative dynamics andcorrelationbetweentwoviroidsisnecessaryforunderstandingtheecologyofCEVdandHSVd.Forthequantitativeinvestigation,theTaqMan®real-timeRT-PCRassaywasusedtodetectthepresenceand infectionpercentagesofviroids inplant tissues,whichwereperiodicallysampledfromseventeennaturalhostsincludingelevenbloodsweetoranges(Citrus sinensisvar.)andsixMurcotttangors(ClimentinexCitrus sinensisOsbeck)inthemiddleTaiwan(Yunlincounty).TheresultsshowedthatbothCEVdandHSVdunevenlydistributedintheircitrushosts,andrelativelyhigherconcentrationofviroidswasfound in twigbarks.Correlationanalysisbetweenviroid titers and temperatures revealed that CEVd preferredwarmertemperaturewhereasHSVdpreferredcoolertemperature.Interestingly, a positive correlation between two viroids is,however,onlyobservedinMurcotttangors.Theresultspresentedinthisstudydemonstratedthatdifferentviroidswerelikelyadaptedtodifferenttemperatures,andvariouscitruscultivarsmightshowdifferent interactive relationships between CEVd and HSVd.Further studiesof long-termecological surveywillbeconductedinthefuture.

PS08-362Analysisofnucleo-cytoplasmictraffickingoftheTurnip crinkle viruscoatproteinanditsinfluenceonplantdefenseresponsesJuYeonMoon1,3,WonDoHeo2,JeongMeePark1,31Department of Biosystems and Bioengineering, University ofScience and Technology, 2Department of Biological Sciences,KAIST,3GreenBioResearchCenter,[email protected] research with Arabidopsis resistance to TCVdemonstratedthatTCVcoatprotein(CP)isanavrfactorrecognizedbyHRT(hypersensitiveresponsetoTCV)andalsoitplaysasaviralsuppressorofRNAsilencing(VSR)onplantdefensesystem.Here,wehave investigated the interactionbetweenHRTandCPor itsnaturalmutants,D4NandP5S,whichareescapedHRTrecognition,and also their VSR activities using an Agrobacterium-mediatedtransientexpressioninNicotiana benthamianaplants,respectively.ToassessthebiologicalroleofintracellularcompartmentationofCP,weconstructedfusionproteinsbetweenCPclonesandfluorescentproteins,YFP:CPorCP:GFP,respectively.BothfusionCPproteinsweredetected in the cytoplasm,nucleus andprobablynucleolus,but, interestingly, YFP:CP displayed an exclusive nucleolusdistribution and accumulation in speckle-like structures. Inaddition,therecombinantCPswentonseparatefunctions;CP:GFPonlycouldbutplaya roleofavr factor forHRT,whileYFP:CP,aswellasitsdistinctmutants(YFP:D4N,YFP:P5S),preserveditsVSRabilityalbeitdisappearingcelldeathresponsewithHRT.Incontrast to the low level of CP:GFP protein, immunoblot assayshowedstableexpressionofvariantN-terminalfusedCPproteins,which maintained capacity of VSRs. Furthermore, changing thenucleocytoplasmictraffickingofthebothCPfusionproteinsusingexogenous targeting signals revealed that recognition of CP byHRTisoccurredincytosol.Takentogether,theseresultssuggestedthatnucleo-cytoplasmicdistributionofTCVCP is importance ininitiatingR-generecognition,whereasitsstabilityandlocalizationof nucleolus are necessary to drive silencing suppressionmechanism.

Page 150: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession08-Plant-virus/viroidinteractions

148

Post

er 0

8

PS08-363Identification of host proteins interacting with the capsidproteinofOdotoglossum ringspot virusWen-ChiHu1,Shu-ChuanLee1,Ching-HuaMao1,Ya-ChunChang11DepartmentofPlantPathologyandMicrobiology,NationalTaiwanUniversity,Taipei,[email protected] capsid protein (CP) of an orchid infecting tobamovirus,Odotoglossum ringspot virus (ORSV), was previously shown toinvolve in virus long-distance movement. Substitution of Glu100by Gly100 in the CP (CPE100G) of ORSV abolished the systemicinfectioninNicotiana benthamianaplant.Accordingtotheresultsof transmission electron microscopy, CPE100G mutant could notproduce uniform sized virions as wild type ORSV could. Thisdatamaypartially explain the long-distancemovementdefectofORSVCPE100Gmutant.However,thehostproteinsinteractingwithORSVCPandinvolvinginsystemicinfectionarestillunknown.TouncoverthemolecularinteractionofhostandORSVCP,wecreatedacDNAlibraryfromthevirus-infectedN. benthamianatissuesandscreenedtheCP-interactinghostproteinsthroughyeasttwo-hybridsystem. Among 208 candidate clones from primary auxotrophselection, half of them gave positive results in β-galactosidaseactivityassay.Sofar,thecDNAinsertsof19doublepositiveclonesweresequencedandanalyzedusingNCBIBLASTsearchwithinthe database of GenBank. These clones could be classified intofour groups including plant defense-related, metabolism-related,light-harvestingandenergysynthesized-relatedgenes.Inaddition,there are unknown-function N. benthamiana genes and a fewtranscriptionfactors.Insummary,severalplantproteinsinteractingwithORSVCPwereidentifiedthroughyeasttwohybridscreening.The further interactionand functional assaysbetweenORSVCPandhostfactorswillbeinvestigated.

PS08-364Induction of tobamovirus resistance in nontransgenic scionsaftergraftingontoNtTOM1andNtTOM3silencedrootstocksMd.EmranAli1,KappeiKobayashi1,NaotoYamaoka1,MasayukiIshikawa2,MasamichiNishiguchi11Faculty of Agriculture, Ehime University, 3-5-7 Tarumi.Matsuyama790-8566,Japan,2NationalInstituteofAgrobiologicalSciences,3-10-3Kan-nondai,Tsukuba,Ibaraki305-602,[email protected] and TOM3 are Arabidopsis genes which are requiredfor tobamovirus multiplication. In the mutants of these genestobamoviruscannotmultiply.Thesegenesaredistributedinotherplants including tomato, tobacco and melon. Silencing of bothNtTOM1andNtTOM3intobaccoplantsresultedinhighresistanceagainstseveraltobamoviruses(Asanoet.al.,2005).RNAsilencingis a novel mechanism of gene regulation by sequence specificRNAdegradationandisinvolvedincontrollingendogenousgeneexpression and defense against invasive nucleic acids such asviruses. It is transmitted between scions and rootstocks throughgraftinginplants.Inthisstudyweexaminedthegrafttransmissionof RNA silencing for conferring virus resistance to the non-transgenic scionsgraftedonto rootstocks inwhichbothNtTOM1and NtTOM3 were silenced (Sd1). Non-transgenic Nicotiana tabacum (cvs.SamsunandXanthinc)andN. benthamianawereusedforgraftingontotheSd1rootstocks.Theleavesweredetachedfromthescions8weeksaftergraftingandinoculatedwithseveraltobamoviruses including Tobacco mosaic virus, Tomato mosaic virus andWasabi mottle virus.Then the virus accumulationwastested16daysafter inoculationbyELISA.Asaresultextremelylowamountofviruswasdetected ingraftedscionsshowing thatthevirusresistancewasconferred.siRNAofNtTOM1andNtTOM3wasdetectedinthescionsaswellasintherootstocks.TheseresultssuggestthatRNAsilencingwasinducedinandvirusresistancewasconferredtothenon-transgenicscionsbygraftingontorootstocksinwhichtwohostgenesweresilenced.

PS08-365RCY1-mediated resistance to Cucumber mosaic virus isregulatedbyLRRdomain-mediatedinteractionwithCMV(Y)followingdegradationofRCY1Hideki Takahashi1, Hiromi Shoji1, Sugihiro Ando1, MinoruTakeshita2,MasashiSuzuki3,ChikaraMasuta41Graduate School of Agricultural Science, Tohoku University,Sendai,Japan,2FacultyofAgriculture,KyushuUniversity,Fukuoka,Japan, 3Graduate School of Frontier Sciences,TheUniversity ofTokyo,Kashiwa,Japan,4GraduateSchoolofAgriculture,HokkaidoUniversity,Sapporo,[email protected], which encodes a CC-NB-LRR class R protein, confersthe hypersensitive resistance (HR) response to a yellow strainof cucumber mosaic virus [CMV(Y)] in Arabidopsis thaliana.Nicotiana benthamiana(Nb)transformedwithhemagglutinin(HA)epitope-taggedRCY1(RCY1-HA)alsoexhibitedadefenseresponseaccompanied by HR cell death and induction of defense-relatedgene expression in response to CMV(Y). Following transientexpression ofRCY1-HA by agroinfiltration, the defense reactionwasinducedinNbleavesinfectedwithCMV(Y),butnotinvirulentCMV(B2)-infectedNb leaves transientlyexpressingRCY1-HAorCMV(Y)-infected Nb leaves transiently expressing HA-taggedRPP8 (RPP8-HA),which isallelic toRCY1.This result suggeststhatArabidopsis RCY1-conferredresistancetoCMV(Y)couldbereproduced inNb leaves in a gene-for-genemanner. Expressionof a seriesof chimeric constructs betweenRCY1-HA andRPP8-HA in CMV(Y)-infectedNb indicates that induction of defenseresponsestoCMV(Y)wasregulatedbytheLRRdomainofRCY1.Interestingly, in CMV(Y)-infected Nb manifesting the defenseresponse,thelevelsofbothRCY1andchimericproteinsharboringtheRCY1LRRdomainweresignificantlyreduced.Takentogether,thesedataindicatethattheRCY1-conferredresistanceresponsetoCMV(Y)isregulatedbyanLRRdomain-mediatedinteractionwithCMV(Y)andseemstobetightlyassociatedwiththedegradationofRCY1inresponsetoCMV(Y).

PS08-366AssessmentofRNAexosomeasaviralresistancefactorNaoyoshiKumakura1,AtsushiTakeda1,YuichiroWatanabe1,21DepartmentofLifeScience,GraduateSchoolofArtsandSciences,The University of Tokyo, Tokyo, Japan, 2Graduate Program onEnvironmentalSciences(GPES)[email protected],Rgene-mediatedresistanceandRNAsilencingarewellknown.ByusingRNAsilencing,plantsdegrade viralRNAs and protect themselves. Plants have variousRNAdegradationmachinery,besidesRNAsilencing,forinstance,5->3or3->5exoribonucleases.AlthoughRNAsilencingwaswellstudiedas thedefensemachineryagainstviruses,whetherornottheotherRNAdegradationmechanismscombatwithviralRNAsornotisstilluncertain.WefocusedourattentiononRNAexosome,awidelyconserved3->5exoribonucleasecomplexineukaryote,andhypothesizedthattheRNAexosomedegradesviralRNAs.Totestthishypothesis,wetriedtoestablishexosomeknocked-downplantlinestoinfectplantviruses.Wetriedthenewexosomeknock-downmethod.Itwasimpossibletoinfectvirusesontoexosomeknock-out mutants because almost all exosome null mutants showedlethalphenotypes.Then,weusedartificialmicroRNAs[amiRNAs]strategyandexpressedamiRNAonlyinmesophyllcells toavoidlethal phenotypes.As a result, the functional exosome knocked-down plants were successfully obtained. This method makes itpossible to test whether the essential genes are related to virusvirulence or not. Here, we report results of challenges of somevirusesontotheexosomeknock-downmutants.

Page 151: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession08-Plant-virus/viroidinteractions

149

Poster 08

PS08-367The expression of miR398 and its target genes in BaMVtransgenicNicotiana benthamianaplantsFu-Chen Hsu1, Shyi-KaeYen1, Bing-Nan Shen1,Yi-Ching Lee2,Yau-HeiuHsu2,Na-ShengLin11InstituteofPlantandMicrobialBiology,AcademiaSinica,Taipei,Taiwan, 2Graduate Institute of Biotechnology, National ChungHsingUniversity,Taichung,[email protected],miR398anditstargetgenes,Csd1,Csd2andCcs,areinresponsetosomebioticandabioticstresses.BothCsd1andCsd2 are Cu-Zn superoxide dismutases (SODs) for catalyzingsuperoxidetohydrogenperoxide.Csd1iscytosolicandCsd2isinthechloroplasts.CcsisacopperchaperoneforallCu-ZnSODsinArabidopsis.However,littleisknownabouttheirinteractionwithplantviruses.Inthisstudy,transgenicNicotiana benthamianaplantsexpressing full-length cDNA of Bamboo mosaic virus (BaMV)weregeneratedandtwophenotypeswereobserved:asymptomatic(AS)andsymptomatic(S)lines.LineSshowssimilarsymptomsas those of BaMV-infected plants. To analyze the differentialexpressionsofmiRNAsinthesetwolines,miRNAarrayrevealedthattheexpressionofmiR398washighlyinducedinfullyexpandedsymptomatic leaves of line S. The cloned full-length cDNAsequences ofNbCsd1 shared 75% similaritywith those ofCsd1inArabidopsisandthepredictivetargetsiteofmiR398wasfoundinthe5’UTRofNbCsd1.However,microarrayandreal-timeRT-PCRrevealedtheup-regulationofNbCsd1insymptomaticleavesoflineS.Asexpected,NbCsd2expressionwasdown-regulatedinfullyexpandedleavesofbothBaMVtransgeniclines.WhethertheNbCsd1isthetargetofmiR398inN. benthamianaandtheeffectofmiR398onBaMVaccumulationremainfurtherinvestigation.

PS08-368Hostglycinerichprotein2hasaroleinplantdefensetovirusinfectionHsin-ChuanChen1,Yi-TsungTu1,Yau-HeiuHsu2,Na-ShengLin11InstituteofPlantandMicrobialBiology,AcademiaSinica,Taipei115,Taiwan,2GraduateInstituteofBiotechnology,NationalChungHsingUniversity,Taichung402,[email protected] proteins (GRPs) are diversified in structure,expression pattern, modulation, subcellular localization andperformverydistinctfunctionsinplanta.Theyinvolveincellwallstructure, cold and osmotic stresses, flowering time control anddevelopment.GRPsalsoconferdefenseagainstfungiandvirusesaswellasbacteria.Inthisstudy,usingthe5’untranslatedregion(UTR)ofBamboo mosaic virussatelliteRNA(satBaMV)asbait,we isolated the host GRP2 from evacuolated tobacco protoplastextract.InArabidopsis thaliana,AtGRP2isacold-inducednucleo-cytoplasmic RNA-binding protein and requires for flower andseed development. The GRP2 ofNicotiana benthamiana sharesapproximately60%identitywithAtGRP2inaminoacidsequence.Electrophoretic mobility shift assay revealed that recombinantNbGRP2binds to the5’UTRofBaMVand satBaMVRNAs invitro.Moreover,theaccumulationlevelofBaMVRNAwashigherin GRP2 silencingN. benthamiana than that of wild-type plantimplyingthatGRP2mayplayaroleinplantdefensemechanismtovirusinfection.

PS08-369TransgenicexpressionofTMVcapsidandmovementproteinsmodulate plant basal defense and biotic stress responses inNicotiana tabacumGabriela Conti1, Maria Cecilia Rodriguez1, Carlos AugustoManacorda1,SebastianAsurmendi11InstitutodeBiotecnologiaCICVyA-INTA,Hurlingham,[email protected]

Plantvirusescausemetabolicandphysiologicalchangesassociatedto symptomaticphenotypesof disease.Rapidviral replication inplanttissuesinvolvesthesynthesisoflargeamountsofvirusnucleicacids and proteins that in turn require re-direct host resourcesfromnormalcellularprocesses.Furthermoretheeffectcalledhostgeneshut-offcompromisessomeaspectsofplantphysiologyandbroad-spectrum defense response. We used transgenic tobaccoexpressingavariantofTobacco mosaic virus(TMV)coatprotein(CPT42W)ormovementprotein(MP),andahybridtransgenicline(MPxCPT42W)thatco-expressesbothproteinstostudytheplantresponsetoindividualviralproteins.Employingmicroarrayanalysisof MPxCPT42W plants and silenced mpxcpT42W* controls,we found that altered transcripts were mostly down regulated,suggestingapersistent shut-offdue toMPxCPT42Wexpression.Next, we showed that MP was involved in ROS accumulation,reductionoftotalascorbateandtheexpressionofROSscavenginggenes.Theseeffectswereenhancedwhenbothproteinswereco-expressed.MPandMPxCPT42WplantsshowedincreasedlevelsofSAandSA-responsivegenesexpression.Furthermore,theseeffectswerepartiallyreproducedinN. benthamianawhenGMP1transcriptwassilenced.CPT42WseemstoplayanegativeroleinthedefenseresponsebyreducingtheexpressionofPR-1andRDR-1.MPandMPxCPT42W transgenic expression promoted a recovery-likephenotypeinTMV-RNAinfectionsandenhancedsusceptibilitytoPseudomonas syringaeandSclerotinia sclerotiorum. It isevidentthatthemechanismsunderlyingdiseasesusceptibilityandtoleranceorresistancedependonacomplexregulatorynetwork;andvirusesareabletodisruptthesefinetunings

PS08-370StudyoftheinvolvmentofthegenesthatencodetheproteinsSlGAL83andTCTP in the infection of a susceptiblehost byPepper yellow mosaic virusRenan S. Cascardo1, Fernanda P. Bruckner1, Andre S. Xavier2,FranciscoM.Zerbini2,PolianeA.Zerbini11DepartmentofMicrobiology,UniversityofVicosa,Vicosa,Brazil,2DepartmentofPhytopathology,[email protected] genomes ofmost plant viruses code for only 4-10 proteinswhicharerequiredtocompletetheinfectioncycle.Forasuccessfulinfection, these viral proteins must interact with host factors,modulating metabolic pathways and coordinating a complexnetwork pathogen favor. A subtractive library constructed fromsusceptible tomato plants infected by the potyvirus Pepper yellow mosaic virus (PepYMV) identified several genes whichare putatively involved in the viral infection process, includingthose that code for theTranslationallyControlledTumorProtein(TCTP)andthetomatohomologueoftheSaccharomyces cerevisaeGal83(SlGal83),aproteinof theSNF1complex.TheobjectivesofthisworkweretostudytherolesofTCTPandSlGal83duringPepYMVinfectioninsusceptiblehosts.Transgenictomatoes(cv.Moneymaker) silenced for these geneswere generated andwereinoculatedwithPepYMV.ELISAandqRT-PCRshowedthatnon-transformedplantswereinfected,whilesilencedplantswereELISAnegativeandhadreducedviralload.ThesubcellularlocalizationofTCTPwasanalyzed.InhealthyplantsthesubcellularlocalizationofTCTPiscytoplasmaticand48hoursafterPepYMVinfection,TCTP is relocated to the nucleus.TodeterminewhichPepYMVprotein(s)promotesnuclear targetingofTCTP,eachviralproteinwas coexpressed individuallywith pYFP-TCTP. Results showedthat TCTP accumulates predominantly in the nucleus when co-infiltrated with CI and NIa.Together, the results of this workindicate that both TCTP and Sl-Gal83 play critical roles in thetomato-PepYMVinteraction,beingnecessaryfortheestablishmentofasystemicinfection

PS08-371ViralinfectiondynamicsandinterferenceunderthesynergismbetweenCucumber mosaic virusandTurnip mosaic virus

Page 152: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession09-Cellwallmodificationandresistance

150

Post

er 0

9

Minoru Takeshita1, Emiko Koizumi1, Makiko Noguchi1, NarutoFuruya1,KenichiTsuchiya11FacultyofAgriculture,KyushuUniversity,Fukuoka,[email protected] of Cucumber mosaic virus (CMV) and Turnip mosaic virus (TuMV)exacerbatesymptomseverityonNicotiana benthamiana. To examine spatial effects of the 2b protein (2b)of CMV in infection patterns, the CMV vectors expressingEGFP (EG) or DsRed2 (Ds) were used for inoculation ontoN. benthamiana.CMV2-A1vector(C2-A1[A1])hasafunctional2bwhileCMV-H1 vector (C2-H1 [H1]) is 2b deficient. In a singleinfection,A1Ds highly accumulated in initial infection sites andshowed extensive fluorescence in systemically infected leaves,whereasH1Dsdisappearedrapidlyfrominitialinfectionsitesandcouldnot spreadefficiently inupper,non-inoculated leaf tissues.Furthermore,A1Dscouldspreadintheplantstreatedwithsalicylicacid(SA)afterinoculation.Theresultssuggestedspatialeffectsof2bagainstSA-mediatedvirushostresistance.InmixedinfectionswithTuMV,wefoundnewfunctionsof2binvolvedinunloadingofCMVfromvasculature intononvascular tissues,andobservedspatialinterference(localinterference)betweenCMVandTuMVatanearlystageofmixedinfection.TheantagonisticinteractionsbetweenCMVandTuMVwerecompromisedbythesynergyeffectsinsubsequentinfectiondynamics.Webelievethatthephenomenaobserved in mixed infection of the two viruses provide novelinsights into the relationships among RNA silencing suppressor,viralsynergism,andinterference.

PS08-372Functions of the coat protein ofPotato virus A are regulatedby protein kinase CK2 phosphorylation and by a pathwayinvolvingcellularHSP70anditsco-chaperonCPIPAndresLohmus1,AndersHafren1,KristiinaMakinen11Department ofFood andEnvironmentalSciences,University ofHelsinki,Helsinki,Finlandandres.lohmus@helsinki.fiWehaveidentifiedanenzymethatphosphorylatesthecoatprotein(CP)ofPotato virus A(PVA,genusPotyvirus)astheproteinkinaseCK2(Ivanovetal.,2003).AminoacidsubstitutionsaffectingtheCK2consensussequence242-TTSEED-247inCPwereintroducedintoafull-lengthinfectiouscDNAcloneofPVA.Analysisof theviruses showed that e.g. ATAEED mutant could but AAAEEDcouldnotreplicate.Inanotherstudywefoundthattheheatshockprotein70(HSP70)togetherwithitsco-chaperoneCPIP(HSP40)regulates the functions of PVA CP (Hafren et al., 2010), whichwe believe is a novel mechanism to prevent premature particleassemblyandtoallowefficientviralRNAreplication/translationtoproceed.OurcurrentaimistostudyifamechanisticlinkbetweenCPphosphorylationandHSP70/CPIP-mediated regulationexists.Exogenicexpressionofwildtype(wt)PVACPinhibitsviralgeneexpressionbutCK2sitemutantsarelessefficientinthisfunction.Interestingly CPIP-mediated delivery of CP to HSP70 promotesdegradation of PVA CPwt when assayed in the absence of virusinfection.Also,weshowbysilencingassaysthattheaccumulationofPVACPisaffectedbytheavailableamountofCK2,HSP70andCHIP.

PS08-373DiscoveryandcharacterizationofanovelcalarvirusinfectingpotatoesinChinaYuan-Yuan Li1, Ru-Nan Zhang1, Hai-Ying Xiang1, HeshamAbouelnasr1, Da-Wei Li1, Jia-LinYu1, Jenifer HuangMcBeath2,Cheng-GuiHan11Department of Plant Pathology and State Key Laboratory forAgro-biotechnology, ChinaAgriculturalUniversity,Beijing, P. R.China,2PlantPathologyandBiotechnologyLaboratory,AgricultureandForestryExperimentStation,UniversityofAlaskaFairbanks,Fairbanks,[email protected]

A new carlavirus, tentatively named Potato virusH (PVH),wasfound on potato plants displaying mild symptoms in Hohhot,Inner Mongolia Autonomous Region. PVH was confirmed bygenome sequencing, serological reactions, electron microscopyand host index assays.The PVH particleswere filamentous andslightlycurved,withamodallengthof570nm.ThecompleteRNAgenomic sequences of two isolates of PVHwere determined byReversetranscriptionPCR(RT-PCR)and5`RapidamplificationofcDNAends (5`RACE)methods.Sequence analysis revealed thatthe PVH had a genomic organization typical ofmembers of thegenusCarlavirus,withapositive-sensesingle-strandedgenomeof8410nt.ItsharedCPandreplicaseaminoacidsequenceidentitiesof 38.2-57.7%with those of reported carlaviruses. Phylogeneticanalysesbasedon theaminoacid sequencesof replicaseandCPrevealedthatPVHformedadistinctbranch,whichisonlydistantlyrelatedtoothercarlaviruses.WesternblotassaysshowedthatPVHwasnot serologically related tootherpotatoviruses (PVS,PVMand PoLV). Negative staining electron microscopic observationshowedn that thePVHvirionparticlespurifiedwerefilamentousand slightly curved,withmodal length of 570 nm.Unlike otherpotato carlaviruses, PVH can systemically infect Nicotiana glutinosa,Solanum tuberosumandSolanum lycopersicum,butcannotinfectNicotiana tabacumorNicotiana benthamiana.AlltheseresultssupportedtheclassificationofPVHasanovelspeciesinthegenusCarlavirus.

PS08-374TwodistinctsitesareessentialforvirulentinfectionandsupportofvariantsatelliteRNAreplicationinspontaneousBeet black scorch virusvariantsJin Xu1, XianbingWang1, Lindan Shi1,Yuan Zhou1, Dawei Li1,ChenguiHan1,ZidingZhang1,JialinYu11StateKeyLaboratoryofAgro-Biotechnology,ChinaAgriculturalUniversity,Beijing100193,[email protected] variants of Beet black scorch virus (BBSV) andits satellite RNA were generated from cDNA clones by serialpropagation in Chenopodium amaranticolor and Nicotiana benthamiana.InoculationwithrecombinantRNAssynthesizedinvitrorevealedBBSVvariantswithdivergentinfectiousphenotypesthataffectedeithersymptomexpressionorreplicationofsatelliteRNAvariants.SequencealignmentsshowedacorrelationbetweenthephenotypesanddistinctBBSVgenomiclociinthe3’UTRorin thedomainencoding theviral replicase.ComparativeanalysisbetweenavirulentvariantBBSV-m294andthewildtype(wt)BBSVbysite-directedmutagenesisrevealedthatasinglenucleotide(nt)substitutionofauridinetoaguanineat3477ntinthe3’UTRwasresponsibleforsignificantincreasesinviralpathogenicity.Gain-of-functionanalysesdemonstratedthattheabilityoftheBBSVvariantstosupportreplicationofvariantsatRNAswasmainlydeterminedbyaminoacid516 in theP82replicase. In thiscase,anargininesubstitution for aglutamine residuewasessential forhigh levelsof replication, and the alterations of other residues surroundingposition516inthewtBBSVisolateledtoonlyminorphenotypiceffects. These results provide evidence that divergence of virusfunctionsonpathogenicityandsupportingparasiticreplicationcanbe determined by a single genetic site, either a nucleotide or anaminoacid.

PS09-375Extracellularapyrase(ecto-ATPase)regulatestheperoxidase-catalyzedapoplasticoxidativeburstincowpea(Vigna sinensisEndl.):implicationinnonhostresistanceKaoriTanaka1,KazuhiroToyoda1,NorikoYamagishi2,NobuyukiYoshikawa2, Yoshishige Inagaki1, Yuki Ichinose1, TomonoriShiraishi11LaboratoryofPlantPathologyandGeneticEngineering,GraduateschoolofEnvironmentalandLifeScirence,OkayamaUniversity,Okayama, Japan, 2Laboratory of Plant Pathology, Faculty of

Page 153: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession09-Cellwallmodificationandresistance

151

Poster 09

Agriculture,IwateUniversity,Japangag422131@s.okayama-u.ac.jpSupprescinsAandBfromMycosphaerella pinodesareglycopeptidesuppressorsfordefenses,buttheyactascommonelicitorsonnon-host plants. Recently, one target for the supprescins is proposedto be cell wall-associated apyrases (ecto-ATPases). Indeed, theycan inhibit theATP-hydrolyzingactivity incellwallsofpea,butstimulates theactivityofnon-hostplantssuchascowpea. In thisstudy, cowpea was used to analyze the role of ATP hydrolysisin non-host responses. Purified supprescins induced biphasicgeneration of SOD-sensitive superoxides (O2

.-). PharmacologicalstudieswithinhibitorsandantioxidantenzymesshowedthattheO2

.-generationlargelydependsonanextracellularperoxidase(s)ratherthanamembrane-boundNADPHoxidase,becauseitwassensitiveto salicylhydroxamic acid (SHAM). Since NADH inhibitor I-1completely reduced theO2

.- generation, theoxidationof apoplastNADH(asanelectrondonor)islikelyinvolvedintheperoxidase-catalyzed O2

.- generation. Interestingly, the O2.- generation was

accompanied by a production of a low molecular weight anti-fungal (yet-unidentified) compound(s), which suppresses fungalpenetration from appressoria. Silencing ofVsNTPase1 encodingthecowpeacellwall-associatedapyrase(ecto-ATPase)attenuatedthe O2

.- generation, allowing to be susceptible to infection by anon-pathogenic fungus. Experiments with adenine nucleotideanalogues revealed that ADP enhanced O2

.- generation inducedbythesupprescins.Moreover,anon-hydrolysableADP[β]Saloneevoked SHAM-sensitive O2

.- generation. Taken together, theseresults indicate that cell wall-associated apyrase/ecto-ATPasespatially regulates the peroxidase-catalyzed apoplastic oxidativeburst throughthehydrolysisofadeninenucleotides,substantiallysustainingnon-hostresistanceofcowpea.

PS09-376Defense-relatedLsGRP1 proteinmay link to cellwall pectinandinvolveindiseaseresistanceregulationviaprotein-proteininteractionChia-HuaLin1,Chao-YingChen11DepartmentofPlantPathology&Microbiology,NationalTaiwanUniversity,Taipei,Taiwand95633001@ntu.edu.twInducedresistanceisanenhanceddefensivestateofplantsagainstdifferentkindsofstressesfromtheenvironment.LsGRP1(namedforLiliumStargazerGlycine-RichProtein1) isadefense-relatedgene differentially expressed in salicylic acid-treated lily plantswith increased resistance against Botrytis elliptica. Transientexpression of LsGRP1 in Nicotiana benthemiana could reducesymptoms caused by Botrytis cinerea. LsGRP1 expressionspecifically in leaf tissuesandaccumulationmainly inepidermalandvasculaturecellswereconfirmedbywesternblotanalysisandimmunolocalizationassay,respectively.LsGRP1couldbeextractedwithsodiumdodecylsulfatesolution,butnotwithphosphatebuffersaline.Additionofpectinasein theextractionbuffersignificantlyincreased the recovery of LsGRP1 from lily leaves, suggestingthatLsGRP1islocalizedinthecellwallviacovalentlybindingtothepectin.Manycellwall-localizeddefense-relatedproteinswerereportedtoregulatediseaseresistanceviainteractionwithcertaincellwallproteins.Thus,theputativeinteractingproteinofLsGRP1isinvestigatedbyco-immunoprecipitationtoexploretheactionofLsGRP1intheinducedresistanceoflily.

PS09-377SignWALLing: Signals derived from Arabidopsis cell wallactivatespecificresistancetopathogensEvaMiedes1,MariePierreRiviere1,AndreaSanchez-Vallet1,ClaraSanchez-Rodriguez1, Philippe Ranocha2, Xavier Bartel3, YvesMarco3,DeborahGoffner2,AntonioMolina11Centro de Biotecnología y Genómica de Plantas (UPM-INIA),Departamento Biotecnología. Polytechnic University of Madrid,Madrid,Spain,2Unite;MixtedeRechercheCentreNacionaldela

RechercheScientifiqueUnivToulouseIII,PoledeBiotechnologieVegetale,BP42617Auzeville24,ChemindeBordeRouge,31326CastanetTolosan,FRANCE,3LaboratoiredeInteractionsPlantes-Microorganismes, Centre Nacional de la Recherche ScientifiqueInstiutNationaldelaRechercheAgronomique,ChemindeBordeRouge,31326CastanetTolosan,FRANCE.eva.miedes@upm.esThetraditionalviewofthecellwallasapassivebarrierhasevolvedtoanewconceptthatconsidersthewallasadynamicstructurethatregulatesbothconstitutiveandinducibleplantdefenceresponses.The activation of plant innate immune system can be triggeredby microbe-associated molecular patterns (MAMPs) from thepathogens, but also by damaged-associated molecular patterns(DAMPs),thataremoleculesreleasedfromplantcellwallsuponpathogeninfectionorwounding.Inlinewiththisputativefunction,we have identified novel regulators ofArabidopsis resistance tonecrotrophicfungithatmayalsobeinvolvedinthecontrolofcellwallstructure.Tofurthercharacterizethefunctionofcellwallontheregulationofimmuneresponses,wehaveperformedabiasedresistance screening of putative/characterized primary/secondaryArabidopsis thalianacellwallmutants.Inthisscreeningwehaveidentified 20 mutants with altered susceptibility/resistance to atleastoneofthefollowingpathogens:Plectosphaerella cucumerina,Ralstonia solanacearum, Hyaloperonospora arabidopsidis anda powdery mildew fungus. Expression analyses of the immuneresponse genes in the selected mutants revealed a complexregulationofthedefensiveresponsesinthesemutants.Wefoundthatcellwallextractsfromsomeoftheselectedmutantsconferredresistancetoparticularpathogenswhenappliedtowild-typeplants,further suggesting the presence of DAMPs in the wall extractsof thesemutants.These data togetherwith those obtained in thecharacterizationofthecellwallfromtheselectedmutantssuggestaputativeinterconnectionbetweencellwallstructure/compositionandresistance/susceptibilitytopathogens.

PS09-378PlantresponsetodangersignalsTarja J. Kariola1, Par Davidsson1, Maria Piisila1, Karen Sims-Huopaniemi1,TapioPalva11Division ofGenetics,Department of Biosciences,University ofHelsinki,[email protected] are continuously tormented by various stresses fromthe environment. These stresses, for example diseases causedby pathogens, greatly reduce plant growth, distribution andproductivity.However,plantsarenotdefenseless:immobilityhasforcedthedevelopmentofvarioussophisticateddefensemechanismstriggeredasaresponsetoenvironmentalsignals.Thesemeasuresalterplantmetabolismaimingtoensurethesurvivaloftheplant.In the case of pathogens, rapid detection and following defenseactivation is essential. Pivotal element in the innate immunitysystemofplantsistherecognitionofconserved,pathogen-derivedmolecules,calledPAMPs(pathogenassociatedmolecularpatterns)thatcanbepresentinbothpathogenicandnon-pathogenicmicro-organisms.Importantly,plantscanalsorecognizedamagetoself:endogenousmoleculessuchasfragmentsofplantcellwall.Thesedamageassociatedmolecularpatterns,DAMPs,canbereleasedasaresultofmicrobialenzymeactionorherbivoreattack(wounding)andconstitutedangersignals that triggerplantdefenseresponsessimilarly to PAMPs. DAMP-triggered defense signaling has animportant role for example in defense activation against manynecrotrophic/hemibiotrophic pathogens such as Pectobacterium carotovorum that breaks down plant tissue by secreting cocktailof extracellular enzymes as their pathogenicity strategy.We aimatfindingnewmolecularcomponentsofDAMP-triggereddefensesignaling by using oligogalacturonide (OG) elicitors as DAMPmodel to screen T-DNAmutagenizedArabidopsis seed pool forinsensitivemutants.Our preliminary results indicate that severaloftheOG-insensitivemutantlineshavealteredpathogentolerancephenotype. Increased or decreased tolerance has been observedagainstPectobacterium sp.,Pseudomonas syringae andBotrytis

Page 154: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession09-Cellwallmodificationandresistance

152

Post

er 0

9

cinerea.

PS09-379Infection inhibitor(s) generated in the cell wall preparationfromPisum sativumL.KentaroIio1,ChieKamada1,TomokazuWatanabe1,MinoruIzumi1,YoshishigeInagaki1,YukiIchinose1,KazuhiroToyoda1,TomonoriShiraishi11Graduate School of Environmental and Life Science, OkayamaUniversity,Okayama,[email protected] glycoprotein elicitor fromMycosphaerella pinodes was foundto induce rejection reaction to the pathogen and generation ofinfection-inhibiting activity on uninjured pea tissues (Pisum sativumL.cv.Midoriusui)within1haftertreatment(Yamamotoet al. 1986).Moreover the infection-inhibiting activity was alsofound in pea cell-wall preparation treated with the elicitor (ourunpublished data). Thus the generation of infection-inhibitor isone of rapid defense responses against invading pathogens. BypurificationwithTLCandHPLC,atleast,twoactivecompoundsweredetectableinthefractionfromtheelicitorsolution,andoneofthemwasidentifiedasdihydromaleimide(DHM).HPLCanalysisindicated that 2.7 nmol/gFW (pea tissues) DHM accumulatedwithin1haftertreatmentwithM. pinodes-elicitoror1mMCuSO4.Dihydromaleimide (above 50 μM) inhibited penetration fromappressoriaofM. pinodes,althoughitscarcelyaffectsgerminationand appressorial formation. Penetration by several pathogenicfungi such as Colletotrichum orbiculare, C. destructivum andAlternaria alternatawerealso inhibitedby treatmentwithabove5 μM DHM. Interestingly, 0.5~5 μM DHM alone, which couldnotblockthepenetration,inducedrejectionreactionat24haftertreatment and stimulated the transcriptional activation of severaldefense-relatedgenesat3haftertreatmentinMedicago truncatulaandArabidopsis thaliana Col-0, suggesting that DHMwas alsoabletoinduceresistance.Basedonthesefindings,wediscusstheroleofDHMindefenseresponseandtheapplicationtocultivation.

PS09-380The apoplastic oxidative burst and induced extracellulardefense: production of an anti-fungal compound(s) in theextracellularspaceofcowpealeaveschallengedwiththefungalelicitorMaki Uchioki1, Kazuhiro Toyoda1, Kaori Tanaka1, Mai Takagi1,YoshishigeInagaki1,YukiIchinose1,TomonoriShiraishi11FacultyofAgriculture,OkayamaUniversity,Okayama,[email protected] cowpea leaves challengedwith the fungal elicitor from a peapathogenMycosphaerella pinodes, theapoplasticoxidativeburst;i.e. superoxide production is induced through the oxidation ofNADH (as an electron donor) by an extracellular peroxidase(s),substantiallycontributingtonon-host-resistanceofcowpea(seeaposter byTanaka,K.et al. ). In this study, to clarify the role ofinducibledefense(s)intheextracellularspaceofcowpea,anin vitroassay with ethanol-killed onion epidermis and phytopathogenicfungus includingM. pinodes andColletotrichum orbiculare wascarried out to examine whether an anti-fungal compound(s) isnewlygeneratedincowpealeaves.Whenleafdiscsfromepidermis-peel-off cowpea leaveswere floated on the elicitor solution,O2

.-was abundantly released into the test solution within 15 min,accompanied by a production of anti-fungal (yet-unidentified)compound(s) suppressing the penetration from appressoria butscarcelyaffectssporegermination.Dilution-end-pointanalysisforthe extracellular solution showed that the putative compound(s)waseffectiveevenatonehundred-folddilution.Thecompound(s)was a hydrophilic and heat-stable (95oC for 10min). Separationwith ultrafiltration and subsequent HPLC analysis revealed thatcompoundslessthan500Dawereresponsibleforthepenetrationinhibition.Takentogether,itislikelythatcowpealeavesrespondtoproduceaninfection-inhibitor(s)extracellularlyuponthefungal

elicitor-treatment. Further purification and characterization ofthecompound(s)arenowunderwaytounderstandtheroleoftheextracellulardefenseinnon-hostresistanceofcowpea.

PS09-381Sub-cellular dynamics of beta-1,3-glucanases during stressresponseRaulZavaliev1,AmitLevy1,BernardL.Epel11DepartmentofMolecularBiologyandEcologyofPlants,TelAvivUniversity,TelAviv,[email protected](Pd)ismediatedbybeta-1,3-endoglucanases(BGs).WeshowedpreviouslythatArabidopsisPd-associatedBG(AtBG_pap) isaconstitutivelyexpressedGPI-anchoredextracellularprotein,which increasesPdsizeexclusionlimit (SEL) by degradation of callose at Pd. UnlikeAtBG_pap,twoArabidopsispathogenesisrelatedBGs(PR-BGs),AtBG2andAtBG3,thatarehighlyinducedbybioticstresses,arepredictedtobefreeextracellularproteins.Intobacco,PR-BGswereshowntoincreasePdSELandenhancevirusspread.InordertodeterminethecellularmechanismofPR-BGsfunctioninginstressconditions,wemonitoredtheirtargetingduringvariousstresses.Weshowthatover-expressionofAtBG2-GFPresults inretentionof theproteininER,andthatitssecretiontocellwall is inducedonlyinstressconditionsinvolvingcelldeath.SecretedAtBG2isnotspecificallyenrichedatPd.ThesecretionofAtBG2 ishighest in livingcellsthatsurroundthenecroticlesioninducedbyhighconcentrationsofsalicylicacid(SA)orBotrytis cinerea infection,anddecreasesincellsfartherfromthelesion.WeconcludethatinductionofPR-BGsduringstressisatwo-componentprocessinvolvingaccumulationin theERandsubsequent localizedsecretion.Wealsoshow thatit is the catalytic domain ofAtBG2 that controls its conditionalsecretion.Currently, other candidate stress responsiveBGs fromArabidopsisarebeingcharacterized.

PS09-382Activitiesof9-lipoxygenaseincontrollingplantdefenceandcellwallintegrityTamaraVellosillo1, JorgeVicente1,SatishKulasekaran1,VeronicaAguilera1, Marta Martinez1, Ruth Marcos1, Yonanny Izquierdo1,MatsHamberg2,CarmenCastresana11Centro Nacional de Biotecnologia, CSIC, 2Division ofPhysiologicalChemistryII,DepartmentofMedicalBiochemistryandBiophysics,KarolinskaInstitutet,S-17177Stockholm,[email protected] oxylipins are a class of lipid signalling molecules with acritical role in protecting plants against pathogen attack. Recentdatademonstratedtheparticipationofthe9-LOXandalpha-DOXoxylipinpathwaysinplantdefence.Studieswithmutantsdeficientinoxylipinproduction indicated that the9-LOXandalpha-DOXoxylipinsparticipate in the three layersofdefence -pre-invasion,apoplastic,systemicdefence-triggeredbyArabidopsistopreventPseudomonas syringae pv tomato DC3000 infection. In theseresponses,oxylipinswere found toact as regulatorsofoxidativestress and hormone homeostasis. Our studies also showed high9-LOXandalpha-DOXactivityinrootsofuntreatedplants,wherethese pathways participate in plant defence mechanisms againstrootpathogens,aprocessthatremainspoorlyunderstood.Furtherknowledge on themode of action of oxylipinswas obtained bycharacterization of noxy mutants (non-responding to oxylipins),which are deficient in signalling the response to the 9-LOX-derivative,9-hydroxyoctadecatrienoicacid(9-HOT).Inaccordancewith the role of 9-LOX in plant defence, we found that a highpercentageofthenoxymutationsshowedenhancedsusceptibilityto virulent Pseudomonas. Moreover, in these studies we foundthat noxymutantswere altered in the signalling pathway that isactivatedaftercellulardamagetomaintaincellwallintegrity.Theseresultssupporttheparticipationof9-LOX,andofthederivativesproduced trough this oxylipin pathway, in inducing a sustained

Page 155: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession10-Planthormonesintegratingdefenseresponse

153

Poster 10

defenceresponse.Thelocationofnoxymutationsatlociencodingmitochondrialproteinsindicatedtheparticipationofthisorganelleinestablishmentofrobustimmunity.

PS10-383The vascular pathogen Verticillium longisporum exploits ajasmonicacid-independentCOI1functioninrootstoenhancediseasesymptomsinArabidopsis thalianashootsCorinnaThurow1,AnjaliRalhan1,SonjaSchoettle1,TimIven1,IvoFeussner1,AndreaPolle2,ChristianeGatz11Albrecht-von-Haller Institute for Plant Sciences,Georg-August-University, Goettingen, Germany, 2Buesgen Institute, Georg-August-University,Goettingen,[email protected] soil-borne vascular pathogen Verticillium longisporumcausesreducedshootgrowthandearlysenescenceinArabidopsis thaliana. Analyses of plant mutants in the jasmonic acid (JA)-dependent signaling pathway revealed that disease symptomsare less pronounced in plants lacking the receptor of JA,CORONATINE INSENSITIVE 1 (COI1). Initial colonization oftherootswascomparableinwild-typeandcoi1plantsandfungalDNAaccumulatedtoalmostsimilarlevelsinpetiolesofwild-typeand coi1 plants at 10 days post infection.At late disease stagesthe number of plants with microsclerotia was reduced in coi1,indicating that completion of the fungal life cycle is impaired.Contrarytotheexpectationthatthehormonereceptormutantcoi1shoulddisplaythesamephenotypeasthecorrespondinghormonebiosynthesis mutant dde2, dde2 plants developed wild-type-likedisease symptoms. Induction ofmarker genes of the JA and theJA/ethylene defense pathway in wild-type petioles but not indde2petioles indicatedabsenceof fungalcompounds thatwouldactivate the known COI1-dependent signal transduction chain.Grafting experiments revealed that the susceptibility-enhancingCOI1 function acts in the roots. Moreover, we showed that thecoi1-mediated tolerance is not due to thehyper-activationof thesalicylic acid pathway. In combination with previously reportedresults on theFusarium oxysporum/Arabidopsis interaction, thisstudypointsataconservedstrategyoftwovascularpathogenstoweakenthehosttissuethroughanunknownJA-Ile-independentbutCOI1-dependentmechanismintherootswhichinfluencesdisease-promotingprocessesintheshoot.

PS10-384CompensatoryfunctionsofsalicylicacidandMAPKsignalingineffector-triggeredimmunityKenichiTsuda1,2,AkiraMine1,JaneGlazebrook2,FumiakiKatagiri21DepartmentofPlantMicrobeInteractions,MaxPlanckInstituteforPlantBreedingResearch,Cologne,Germany,2CenterforMicrobialandPlantGenomics,DepartmentofPlantBiology,UniversityofMinnesota,St.Paul,[email protected](PTI)andeffector-triggeredimmunity(ETI)aretriggeredbyrecognitionofconservedmicrobialfeaturescalledmicrobe-associatedmolecularpatternsandspecificpathogeneffectors,respectively.WereportedthatsomecasesofPTIandETIextensivelysharesignalingmachinerybutthecommonnetworkisuseddifferently:synergisticrelationshipsamongsignalingsectorsare evident in PTI, which may represent signal amplification;compensatory relationships dominate in ETI, explaining therobustnessofETI.Tofurtherinvestigatenetworkpropertiesofplantimmunity,weanalyzedexpressionprofilesinWTandthesalicylicacid(SA)biosynthesismutantsid2duringPTIandETI.Wefoundthat regulation of a large number of genes were strongly SA-dependentinPTI;however,someofthegenesincludingacanonicalSAmarkergene,PR1,areregulatedinanSA-independentmannerinETI.AMAPkinase,MPK3,isactivatedduringbothPTIandETIbutthetimingofactivationisdifferent:shorterthan1hourinPTI;upto10hoursinETI.WefoundthatprolongedMPK3activationby inducible expression of a constitutively active form of an

MPK3-activatingMAPKK,MKK4DD,ledtoinductionofPR1inanSA-independentmanner.TheseresultssuggestthattheprolongedMPK3 activation during ETI can transcriptionally regulate thegenestypicallyregulatedbySAindependentlyofSAandthatthiscompensationcouldcontributetoarobustnesspropertyoftheETInetwork.Thus,PTIandETIuseMPK3,butwithdifferenttiming.This is a specific example of the two responses using commonmachineryindifferentways.

PS10-385TheroleofplanthormonesintheinteractionbetweenricerootsandnematodesTinaKyndt1,KamrunNahar1,GodelieveGheysen11DepartmentofMolecularBiotechnology,[email protected] is oneof themost important cropplantsworldwide andanexcellentmodelsystemformonocotyledonousplants.Estimatesofannualyield lossesdue toplant-parasiticnematodeson thiscroprange from 10 to 25%worldwide. The two agronomicallymostimportantnematodesattackingricearethericerootknotnematodeMeloidogyne graminicola and the migratory root rot nematodeHirschmanniella oryzae.Thesetwonematodeshaveverydifferentlifestyles, and comparing the ricedefence systemupon infectionwith thesepathogenscanprovide important insights intogeneralandspecificdefencestrategiesofthericeplant.Recently,wehaveanalyzed the local response of roots upon infection with thesenematodesusinghighthroughputRNAsequencing(mRNA-Seq).Resultsshowedthatseveralmajorhormonepathwaysareinfluencedbynematodeinfection.Whilemigratorynematodeinfectioncausesaninductionofbioticstress-relatedgenesearlyintheinfection,theroot knot nematodes appear to strongly suppress defense-relatedhormonepathways,likethesalicylicacidandethylenepathways.Nexttothislocaldefencesuppression,asystemicdownregulatedofplantdefence-relatedgeneswasalsodemonstratedbyqRT-PCRonshootsofrootknotnematodeinfectedplants.Experimentswithpharmacological treatments and rice mutants revealed that thejasmonatepathwayisakeyplayerinsystemicallyinduceddefenceagainstrootknotnematodes,andthatthispathwayisantagonizedbythebrassinosteroidpathwaytopromotesusceptibilityofthericeroot.Ontheotherhand,salicylicacidseemstobeapotentinducerofdefenceagainstrootrotnematodes.

PS10-386Moniliophtora perniciosa-Solanum lycopersicum interaction intomatohormonalmutantsJulianaDeganello1,GildembergA.Leal Jr2, LazaroE. P. Peres3,AntonioFigueira11CentrodeEnergiaNuclear naAgricultura,UniversidadedeSaoPaulo, Piracicaba, SP, Brazil, 2Universidade Federal deAlagoas,Maceio, AL, Brazil, 3Escola Superior de Agricultura “Luiz deQueiroz”,UniversidadedeSaoPaulo,Piracicaba,SP,[email protected] perniciosa(C-biotype)causeswitches,broomdisease incacao(Theobroma cacao),but isolatesof theS-biotypecan infectSolanaceae species, including tomato(S. lycopersicum).Theminiature tomatoMicro-Tomwasusedasamodel toinvestigatetheroleofhormonesinpathogenesis.Themutantsdgt (reducedauxin sensitivity);not (ABAdeficient);epi(ethyleneoverproducer);Nr(ethyleneinsensitive);pro(gibberellinconstitutive signaling); cu3 (reduced brassinosteroid sensitivity);jai1 (reduced jasmonate sensitivity); and the transgenic line35::AtCKX2 (reduced endogenous cytokinin levels), all in theMicro-Tombackground,wereinoculatedwithbasidiosporesfromthe S- or C-biotype.All mutants inoculated with the S-biotypedeveloped typical symptoms in tomato (stem thickening andlateral overgrowth), but not and pro presented a higher numberof symptomatic plants, indicating that low levels of ABA andconstitutive response to gibberellins increased susceptibility.Ethyleneappearedtoaffectpathogenesis,asinoculatedNrshowed

Page 156: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession10-Planthormonesintegratingdefenseresponse

154

Post

er 1

0

significantlythickerstems,whereasepidisplayedasubtledecreaseinhyperplasia.AllmutantsinoculatedwiththeC-biotypedidnotexhibit symptoms, but all plants presented reduced height andgrowth.Expressionof14genesassociatedwithdefenseresponsewas evaluated byRT-qPCR inMicro-Tom inoculatedwith S- orC-biotype up to 720h. In plants inoculated with the S-biotype,11 genes significantly accumulated more transcripts, especially48h after inoculation. Similarly, inoculation with the C-biotypesignificantly increased transcripts for 13 genes, peaking at 72hafter inoculation, especially PR1a and PR1b. The contrastingcompatibilitypresentedbyC-andS-biotypesreflectedquantitativeand kinetic differences in gene activation of the same responserepertoire.

PS10-387ProfilingofspecificproteinsinducedinJapanesebirchplantlettreatedwithsalicylicacidorazelaicacidShinsoYokota1,HiromuSuzuki1,FutoshiIshiguri1,KazuyaIizuka1,NobuoYoshizawa11Department of Forest Science, Utsunomiya University,Utsunomiya,[email protected](SA)isknowntoinducesystemicacquiredresistance(SAR) in plants. In addition, a recent study demonstrated thatazelaic acid (AZA) is a possible translocated signalmolecule toinduceSARinArabidopsis thaliana.Inthepresentstudy,therefore,profilechanges in specificallyexpressedand increased/decreasedproteins in the Japanesebirchplantlets treatedwithSAorAZA.The plantlets were treatedwith SA aqueous solution orAZA inMESbuffer.Intact(C1),woundedandultra-pure-water-infiltrated(C2SA) or wounded and MES-buffer-infiltrated (C2AZA) plantletswere prepared, respectively.Two days after the treatments, eachplantlet was collected, and protein samples were prepared fromthem. The samples were subjected to 2D electrophoresis, in-geldigestion, and LC/MS/MS. The numbers of total protein spotsin C1, C2SA, andTSAwere 718, 739, and 763, respectively.ThenumbersoftheproteinspotsspecificallyexpressedinC1,C2SA,andTSAwere47,34,and23,respectively.Fivespecificallyexpressed,3 significantly increased, and 3 significantly decreased proteinsinTSAwereidentifiedbysequencetagmethodasfollows:malatedehydrogenase,SDH1-1;ATPbinding / succinatedehydrogenase,phosphoglyceratekinase,diaminopimelatedecarboxylase,arginase,chorismate mutase, peptidylprolyl isomerase (cyclophilin),aminopeptidase,andtwohypotheticalproteins.Theseproteinsareconsideredtobe involvedinenergyproduction,metabolism,andproteinsynthesisforSARinductioninbirchplantlets.Thenumbersof totalprotein spots inC1,C2AZA, andTAZAwere788,809, and861, respectively. The numbers of the protein spots specificallyexpressedinC1,C2AZA,andTAZAwere13,18,and26,respectively.

PS10-388RiceWRKY62isapositiveregulatorofSA-pathway-mediatedregulationofditerpenoidphytoalexinsynthesisgenesinriceSetsuko Fukushima1,AyaAkagi1, Shoji Sugano1, Shingo Goto1,HiroshiTakatsuji11NationalInstituteofAgrobiologicalSciences,Tsukuba,[email protected] transcriptionfactor in thesalicylicacid(SA)signalingpathwayinriceanditsgeneistranscriptionallyregulatedby WRKY45, one of key transcription factors in the rice SApathway.Previously,itwasreportedthatWRKY62interactswithXa21,areceptor-likekinaseinvolvedinXanthomonas oryzae pv. oryzae (Xoo) recognition,andWRKY62overexpressionenhancedXoosusceptibility,suggestingthatWRKY62isanegativeregulatorofdefense.Here,wefunctionallycharacterizedWRKY62focusingonitsroleintheSA-pathwayandshowedthatitplaysapositiveroleintheregulationofdefensegenesanddiseaseresistance.WRKY62wasinducedintemporalpatternssimilartothoseofWRKY45afterM. oryzae infection orBTH treatment.WRKY62 showed active

transcriptional repression activity in a transient reporter geneassay in rice protoplasts, whereasWRKY45 is a transcriptionalactivator. Microarray analyses in WRKY62-knockdown rice(WRKY62-kd) revealed that BTH-induced expression of thegenes for biosynthesis of antimicrobial diterpenoidphytoalexins;momilactones, phytocassanes, and oryzalexins, and several PRgenesweredependentonWRKY62.Inaddition,WRKY62-kdriceplantsweremoresusceptibletoM. oryzae.Theseresultsindicatethat WRKY62 is a positive regulator of SA-pathway-mediateddefense program in rice. Overexpression ofWRKY45 induces astrongpre-invasivedefensetoM. oryzae,towhichthediterpenoidphytoalexinsandPRproteinspresumablycontribute.InvestigationofmolecularmechanismsunderlyingtranscriptionalregulationofthedefensegenesbyWRKY45andWRKY62isunderway.

PS10-389Geneticdissectionofjasmonate-flagellinantagonismXuechengZhang1,YvesMillet1,FredAusubel11MassachusettsGeneralHospital/[email protected] evidence suggests that plant hormones play anintegral role in plant innate immune responses and are capableof suppressing pathogen-associated molecular pattern (PAMP)-triggeredimmunity(PTI)inplants.Clearexamplesarejasmonate(JA)-flg22 and brassinolide-flg22 antagonisms. However, themolecular mechanisms underlying the hormone-PTI interactionsremain elusive. To identify regulatory factors in hormoe-PAMPantagonism, we sought to identify key components in JA-flg22antagonismusingageneticapproach.Wehavepreviouslyreportedthat coronatine (COR), a phytotoxin secreted by pathovars ofPseudomonas syringae that mimics JA-Ile in activating JAsignaling,suppressedexpressionofflg22-inducedgenes,includingCYP71A12.We performed a genetic screen to look formutantsdefective in COR-mediated suppression of flg22-triggeredsignaling,bymonitoringGUSexpression inaCYP71A12p:GUSreporter line.Approximately 30mutantswith strong suppressionof CYP71A12p:GUS expression were isolated, including 10coi1allelesandonemyc2allele, twokeygenes in JAsignaling.Molecularcloninganddetailedcharacterizationof the remainingmutantsarecurrentlyinprogress.

PS10-390TranslocationofphospholipaseA2αtoapoplastsismodulatedbydevelopmentalstagesandbacterialinfectioninArabidopsisStephenB.Ryu11KoreaResearchInstituteofBioscience&[email protected] (PLA2) hydrolyzes phospholipids at the sn-2positiontoyieldlysophospholipidsandfreefattyacids.OfthefourparalogsexpressedinArabidopsis,thecellularfunctionsofPLA2αin planta are poorly understood. The present study shows thatPLA2αpossessesuniquecharacteristicsintermsofspatiotemporalsubcellular localization,ascomparedwiththeotherparalogsthatremainintheERand/orGolgiapparatusduringsecretoryprocesses.OnlyPLA2αissecretedouttoextracellularspaces,anditssecretiontoapoplastsismodulatedaccordingtothedevelopmentalstagesofplanttissues.ObservationofPLA2α-RFPtransgenicplantssuggeststhat PLA2α localizes mostly at the Golgi apparatus in activelygrowingleaftissues,butisgraduallytrans-locatedtoapoplastsastheleavesbecomemature.PLA2αpromoter::GUSassaysshowthatPLA2αgeneexpressioniscontrolledinadevelopmentalstage-andtissue-specificmanner. PLA2α gene expression is also regulatedby photoperiod: in contrast to long-day conditions, in short-dayconditions the levelsofPLA2αexpression significantlydecreaseanditssecretiontoapoplastsinmatureleavesisnotevident.WhenPseudomonas syringaepv.tomatoDC3000carryingtheavirulentfactoravrRpm1infectstheapoplastsofhostplants,PLA2αrapidlytrans-locates to the apoplasts where bacteria attempt to becomeestablished.TheseresultssuggestthatPLA2αmayfunctioninplant

Page 157: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession10-Planthormonesintegratingdefenseresponse

155

Poster 10

defenseresponsesatapoplastswherehostconfrontswithinvadingpathogens.

PS10-391Proteome and transcriptome analysis of wound-inducedaccumulationofsalicylicacidinWIPK/SIPK-suppressedplantsShinpei Katou1, Yasuro Onishi2, Nobuhide Asakura2, IchiroMitsuhara3,ShigemiSeo31InternationalYoungResearchersEmpowermentCenter, ShinshuUniversity, 2Graduate School ofAgriculture, ShinshuUniversity,3NationalInstituteofAgrobiologicalSciencesshinpei@shinshu-u.ac.jpSalicylicacid(SA)isasignalingmoleculewhichplaysakeyroleinplantresistancetopathogens.AccumulationofSAisabnormallyinduced by wounding in the tobacco plants with suppressedexpression of WIPK and SIPK, two pathogen- and wound-induced mitogen-activated protein kinases. SA accumulationstartedbetween12and15hr,andpeakedat15hrafterexcisionofleafdiscs(wounding).Wound-inducedaccumulationofSAwasinhibited by cycloheximide (CHX), a protein synthesis inhibitor,in a dose-dependent manner. To clarify the periods required forSA accumulation, leaf discs were first floated on water for thespecificperiodsandthentransferredtoCHXsolution.Asaresult,four-hr incubation onwaterwas sufficient for SA accumulation.Unexpectedly,when leafdiscswere transferred toCHXsolutionafter incubation on water for 6-hr or more, SA accumulationwas enhanced several fold. Analyses on spatial pattern of SAaccumulationrevealedthatSAismainlyaccumulatedinthewoundedregionwhenleafdiscswerefloatedonwaterthroughout,butintheunwoundedregionwhenleafdiscsweretransferredtoCHXfromwater,suggestingthat,whenfloatedonCHX,proteinsynthesisisinhibitedonlyinthewoundedregion,butnotinunwoundedregion.In fact, infiltration of CHX into unwounded region completelyabolished SA accumulation. To clarify mechanisms underlyingwound-inducedandCHX-enhancedSAaccumulation,proteinsandtranscripts which are differentially accumulated inWIPK/SIPK-suppressedplantswere identifiedbyproteomeand transcriptomeanalyses.ThemechanismsofSAinductionbywoundinginWIPK/SIPK-suppressedplantswillbediscussed.

PS10-392VOZgovernsabioticandbioticstressresponsesinArabidopsisMasa H. Sato1, Yusuke Nakai2, Yoichi Nakahira1, KosukeTakebayashi3, Yumiko Nagasawa3, Kanako Yamasaki1, MasaruOhme-Takagi3, Sumire Fujiwara3, Nobutaka Mitsuda3, EiichiroFukusaki3,HirokiSumida1,YasuyukiKubo11Graduate School of Life and Environment. Sciences., KyotoPrefectural University, Kyoto, Japan, 2Bioproduction ResearchInstitute, AIST, Tsukuba, 305-8562, Japan, 3Department ofBiotechnology,GraduateSchoolofEngineering,OsakaUniversity,Suita,Osaka,565-0871,[email protected](VascularplantOne-Zinc-fingerproteins),theplant-specificone-zinc-finger typeDNAbindingproteins,arehighlyconservedin land plant evolution. Although VOZ2 protein has beendemonstratedtobindinvitrotoGCGTNx7ACGCintheV-PPasepromoter, their physiological functions remain to be elucidated.Here,weprovideinsightintotheregulatorymechanismbywhichVOZs modulate stress responses in Arabidopsis. Considerablestress-responsive genes were expressed in the voz1voz2 doublemutant, even under normal growth conditions. In addition, thevoz1voz2doublemutant increasedcoldtolerancewithorwithoutcold acclimation. Furthermore, tolerance to drought stress wassignificantly greater in voz1voz2, although resistance to a fungalpathogen,Colletotrichum higginsianum,andabacterialpathogen,Pseudomonas syringae, were severely impaired. Thus, loss-of-functionofVOZsconferredincreasedabiotictoleranceandbioticstress susceptibility simultaneously. During cold-exposure, boththemRNAexpressionlevelsofVOZ1andVOZ2andVOZ2amount

graduallydecreased.Invoz1voz2,expressionoftheABA-inducibletranscriptionfactorCBF4wassignificantlyupregulatedevenundernormalgrowthconditions,despitetheendogenouscontentofABAbeing significantly unaltered, suggesting that VOZs negativelyaffectCBF4upregulation inanABA-independentmanner.Theseresultssuggest thatVOZsfunctionasanegative regulatorof theabiotic stress responsive pathway and positive regulator of thebiotic stress responsive pathway, controlling the adaptation ofplantstovariousstressconditionsinArabidopsis.

PS10-393ThenuclearubiquitinproteasomeregulatesWRKY45functioninadualmodeinthericedefenseprogramAkane Matsushita1, Haruhiko Inoue1, Shingo Goto1, AkiraNakayama1,ShojiSugano1,NagaoHayashi1,HiroshiTakatsuji11NationalInstituteofAgrobiologicalSciences,Tsukuba,[email protected] isoneofkey transcriptionfactors in thesalicylicacid(SA)signalingpathwayinriceandplaysanessentialroleinBTH-inducedresistancetoriceblast(M. oryzae)andbacterialleaf-blight(Xanthomonas oryzae pv. Oryzae, Xoo) diseases.Here,we showthatWRKY45isregulatedbyubiquitin-proteasomesystem(UPS)inadualmode.Atreatmentofmyc:WRKY45-overexpressingricewith a proteasome inhibitor MG132 induced high accumulationof poly-ubiquitinated myc:WRKY45, suggesting that WRKY45isdegradedbyUPS.TranscriptsofWRKY45-dependentdefensegenes were upregulated in proportion to WRKY45 levelsaccumulated byMG132, suggesting a negative role of the UPSdegradation in the regulation of WRKY45-dependent defenseresponses.Meanwhile,MG132 inhibited full upregulation of theWRKY45-dependentdefensegenesbySA,suggestingapositiveroleoftheUPSdegradationintheregulationofWRKY45activity.FurtheranalysisrevealedthatWRKY45C-terminalpeptideof26aminoacidsisessentialforbothtransactivationactivityandUPSdegradationofWRKY45,consistentwiththestudiesinanimalandyeastproposingacloselinkageoftranscriptionalactivityandUPSdegradationoftranscriptionfactors.NPR1,acentraltranscriptionalregulator of the SA-pathway in Arabidopsis, was reported toundergoUPSdegradation.However,OsNPR1,thericecounterpartofNPR1,was insensitive toMG132.Basedon thedata,wewilldiscusstherolesofWRKY45andOsNPR1inthericeSA-pathwayand significance of the UPS regulation of these SA-pathwaycomponents.

PS10-394Functional analysis of bHLH transcriptional factors MYL1,MYL2andMYL3injasmonatesignalingYukoSasaki-Sekimoto1,HikaruSaito2,ShinjiMasuda3,HiroyukiOhta3,KenShirasu11PlantImmunityResearchGroup,RIKENPSC,Yokohama,Japan,2GraduateschoolofBioscienceandBiotechnology,TokyoInstituteofTechnology,3CenterforBiologicalResourcesandInformatics,[email protected] are plant hormones which play crucial roles indevelopmentalprocessesanddefenseresponsesagainstwoundingandpathogens.COI1mediatesjasmonatesignalingbypromotingthe hormone-dependent degradation of JAZ proteins. JAZproteins are repressors of MYC2, a JA responsive transcriptionfactor. After the degradation of JAZs by SCFCOI1, MYC2 isthought to be released allowing it to regulate the expression ofjasmonate-responsive genes.Apart fromMYC2, information onother transcriptional factors that regulate jasmonate signaling israther limited. Based on our co-expression analysis, we focusedon a subset of bHLH transcription factors designated asMYL1,MYL2andMYL3.WeobtainedandanalyzedT-DNAinsertionalmutants of each MYL gene. Contrary to the myc2 phenotype,myl1myl2myl3mutantswere hypersensitive tomethyl jasmonate(MJ). To characterize genes regulated by MYL1, MYL2 and

Page 158: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession10-Planthormonesintegratingdefenseresponse

156

Post

er 1

0

MYL3, we performedGeneChip analyses ofmyl1myl2myl3 andCol.Weobservedasetofgenesthatshowedenhancedjasmonateresponsivenessinmyl1myl2myl3.Forexample,PAP1andMYB113,positiveregulatorsofanthocyaninbiosynthesis,showedincreasedexpression in myl1myl2myl3 after MJ treatment. We confirmedthat anthocyanin levels in myl1myl2myl3 were higher than ColafterMJ treatment,and thereforeweconclude thatMYL1,MYL2andMYL3negatively regulateanthocyaninbiosynthesis.WealsofoundthatjasmonatemetabolicgenesshowincreasedexpressioninMJtreatedmyl1myl2myl3.Inwoundedmyl1myl2myl3 leaves,thecontentsofjasmonicacid(JA)andJAmetaboliteswerehigherthanCol.TheseresultssuggestthatMYL1,MYL2andMYL3functionasnegativeregulatorsofjasmonatemetabolism.

PS10-395MED25 integrates jasmonate associated transcription inArabidopsis thalianaBrendan N. Kidd1,2, Volkan Cevik3, David M. Cahill4, John M.Manners2,KemalKazan2,JimBeynon3,PeerM.Schenk11School of Agriculture and Food Sciences, The University ofQueensland, St Lucia, Australia, 2Commonwealth Scientificand Industrial Research Organization, Plant Industry, St Lucia,Australia, 3School of Life Sciences, University of Warwick,Wellesbourne Campus, UK, 4School of Life and EnvironmentalSciences,DeakinUniversity,Geelong,[email protected] complex functions as a universal adaptor betweentranscription factors and the RNA polymerase II complex toactivate gene expression. In Arabidopsis thaliana, the MED25subunitoftheMediatorcomplexhasbeenshowntobeapositiveregulatorofjasmonate-(JA)associatedgeneexpressionaswellasaregulatoroffloweringtime,cellsizeandabioticandbioticstress.Usingyeast2-hybridandproteinpull-downexperiments,weshowthatMED25physicallyinteractswithseveralknowntranscriptionalregulators of the JA signaling pathway, including theAP2/ERFtranscriptionfactors(TFs),ORA59andERF1,aswellasthebasichelix-loop-helixTFsMYC2,MYC3andMYC4.Using in plantatranscriptionalactivationexperiments,we show thatORA59andERF1 require a functionalMED25 to activate expression of thePLANT DEFENSIN1.2 (PDF1.2)gene.Inaddition,MED25isalsorequiredforMYC2-dependentactivationoftheinsectdefensegene,VEGETATIVE STORAGE PROTEIN1 (VSP1) aswell asMYC2-dependent repression of pathogen defense genes. These resultssuggestanimportantroleforMED25asaregulatorypointwithintheMediator complex for the controlof JA-associatedherbivoreandpathogendefensegenes.

PS10-396Function of COI1 inN gene-mediated resistance to Tobacco mosaic virusintobaccoKumikoOka1,MichieKobayashi2,IchiroMitsuhara1,ShigemiSeo11National Institute of Agrobiological Sciences, Ibaraki, Japan,2NAROInstituteofFloriculturalScience,Ibaraki,[email protected],infectionwithTobacco mosaic virus(TMV)triggersrapidandlocalizedcelldeathattheinfectionsite,knownasahypersensitiveresponse,resultingintheformationofnecroticlesionsthatlimitviralmultiplicationandsystemicspread.We have previously shown that tobacco plants, in which thetobaccomitogen-activatedproteinkinasesWIPKandSIPKweresilenced,exhibitedreduced jasmonicacid(JA)accumulationandenhancedlocalresistancetoTMV,suggestingthatJAaccumulationnegativelyregulates localresistance toTMV.This is inconsistentwith a previous study by Liu et al. (2004) using a transientexpressionsystemwithNicotiana benthamiana,whoreportedthatVIGS of COI1, a central component of JA signaling, attenuatesN-mediatedresistancetoTMV.However,N. benthamianaisknownto exhibit enhanced susceptibility to infectionwith somevirusesincludingTMV.To determine the exact role of JA in resistance

toTMV,weusedstabletransgenictobaccoplantsinwhichCOI1wassilenced.First,weexaminedtheeffectofJAonresistancetoTMV.Exogenouslyappliedmethyljasmonate(MJ),amethylesterofJA,increasedthesizeoflocalnecroticlesionsandthedegreeofTMVaccumulationcomparedwithcontroltreatment.Next,COI1-silencedtobaccoplantswereassayedforTMVresistance.SilencingofCOI1reducedthesizeofnecroticlesionsandthedegreeofTMVaccumulationininoculatedleaves.TheseresultssuggestthatCOI1-dependentJAsignalingnegativelyregulatesresistancetoTMVinNgene-containingtobacco.

PS10-397Involvement of auxin transcriptional repressor IAA8 on theregulationofprogrammedcelldeathviadirectinteractionwithLSD1inArabidopsisHironori Kaminaka1, Nami Nishimoto1, Fumi Arase1, KengoTakabayashi1,KeitaNishide1,NuriaSanchezColl2,PetraEpple2,BenF.HoltIII3,JefferyL.Dangl21FacultyofAgriculture,TottoriUniversity,Tottori,Japan,2HHMIandDepartmentofBiology,UniversityofNorthCarolinaatChapelHill,NC27510,USA,3DepartmentofBotanyandMicrobiology,UniversityofOklahoma,OK73019,[email protected](PCD),includingthehypersensitiveresponse associated with successful immune responses, resultsfrom cellular responses to oxidative stresses.Arabidopsis LSD1is a negative regulator of PCD and may control the expressionof cell death-related genes by altering intracellular partitioningof transcriptional regulators. IAA8, one of the Aux/IAA auxintranscriptional repressors,was identifiedasan interactionpartnerofLSD1byyeasttwo-hybrid(Y2H)screening.Interestingly,IAA8andadditionalAux/IAAsinteractedwithLSD1viatheconserveddomainIIwhichisalsorequiredforAux/IAAinteractionswiththeTIR1/AFBauxinreceptors.Intransientprotoplastassays,wefoundthatmostAux/IAA-GFPsaccumulatedinthenucleus.Contrastingly,IAA8andIAA18,bothLSD1interactors,accumulatedinboththenucleusandcytoplasm.MutationsintheconservedIAAsequencerequired for the Y2H interaction with LSD1 compromised thecytoplasmic localization of IAA8-GFP, but not IAA18-GFP. In plantaBiFCanalyses indicated thatLSD1 interfereswith auxin-dependent binding of IAA8 to TIR1. We further demonstratedthat IAA8 is a negative mediator of the uncontrolled cell deathobserved in lsd1. Microarray and expression analyses revealedthat a subset of auxin-responsive genes are up-regulated in lsd1andthatup-regulationofmarkergenesforauxinandcelldeathinlsd1 iscontrolledby IAA8.These results suggest that IAA8mayparticipate in the initiationofPCDbymodulating transcriptionalregulationonauxinsignalingviadirect interactionwithLSD1inthecytoplasm.

PS10-398RiceOsERF922negativelyregulatesbasalresistanceandsalttolerancemodulatedbyABADongfengLiu1,XujunChen1,JiqinLiu1,ZejianGuo11Department of Plant Pathology, China Agricultural University,Beijing,[email protected]/ethylene response factor (AP2/ERF) transcriptionfactors play important roles in plant development and in theresponses of plants to biotic and abiotic stresses. There are 122members in Arabidopsis and 139 in rice. Rice OsERF922 isstrongly induced by abscisic acid (ABA) and salt treatments aswellasbybothvirulentandavirulentpathovarsofMagnaporthe oryzae.OsERF922 is localized to the nucleus, binds specificallyto theGCCbox in vitroandactsasa transcriptionalactivator inplant and yeast cells.The elevated disease resistance againstM. oryzae ofRNAiplantswas associatedwith increasedexpressionofPR,PAL, andphytoalexinbiosynthesis relatedgeneswithandwithout pathogen infection. By contrast, overexpressing lines

Page 159: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession10-Planthormonesintegratingdefenseresponse

157

Poster 10

showed reduced expression levels of these defense-relatedgenesandenhancedsusceptibilitytoM. oryzae.Inaddition,OsERF922overexpression lines becamemore sensitive to salt stress in riceand tobacco plants. Expression of ABA biosynthesis-relatedgene, nine-cis epoxycarotenoid dioxygenase (NCED) 4 andaccumulation of ABA were decreased in the OsERF922 RNAiplants,while increased in theoverexpression lines.These resultssuggestthatOsERF922functionsasanegativeregulatorofplantdisease resistance and salt tolerancemediated throughABA andis integrated into the complicated cross-talk between biotic andabioticstresssignalingnetworks.

PS10-399Involvement of the JA-inductive bHLH transcription factorRERJ1inricedefenseresponsesNaoko Kawamura1, Koji Miyamoto1, Rika Ozawa2, JunjiTakabayashi2,AkioMiyao3,HirohikoHirochika3,HideakiNojiri1,HisakazuYamane4,KazunoriOkada11BiotechnologyResearchCenter,TheUniversityofTokyo,2CenterforEcologicalResearch,KyotoUniversity, 3National Institute ofAgrobiological Sciences, 4Department of Biosciences, [email protected](JA)isasignalmoleculethatisinducedby various stresses such as wounding, herbivory, and pathogenattackandmediatesdefensereactions.RERJ1(riceearlyresponsivetoJA1)isaJA-induciblebHLHtranscriptionfactor,whosemRNAexpression is rapidly induced in response to wounding and JAwithin10minutes.Recently,wefoundthatRERJ1expressionwasinducedonlyattheregionofinjuryafterwoundingbyusingRERJ1promoter-GUStransgenicplantsandsuggested thatRERJ1playsaroleasatranscriptionalactivatorforregulatingstress-induciblegene expression, with a strong correlation to JA accumulationin the stressed region. To gain further understanding of RERJ1function, here we performed transcriptome analysis underwoundingconditionandbioassayforinsectresistanceusingrerj1-Tos17mutant.Transcriptomeanalysisrevealedthatexpressionsofmany defense related genes including proteinase inhibitor geneswere greatly suppressed in wounded rerj1 mutant. Armywormfeedingexperimentsshowedthattheweightofrerj1-fedlarvawasremarkablyhigherthanthatofwild-type-fedlarvaandthattheareaoffeedingdamageinrerj1mutantwasbiggerthanwild-typeplant.Wealsofoundthatexpressionofthegeneforthemonoterpenoidlinaloolproductionwasnot inducedobviouslyafterwounding inrerj1mutant.Itisknownthatthereleaseofplantvolatilessuchasmono-andsesquiterpenoidsisinducedunderstressconditionsandaffectsplant-insectinteractions.Takentogether,theseresultsshowthatRERJ1playsa significant role in the transductionofwoundsignalstoacquiretheresistancetoherbivoryinrice.

PS10-400Jasmonate signaling pathway through JASMONATE-ZIMDOMAIN(JAZ)proteininriceEi-ichi Murakami1,2, Michiko Yasuda2, Shuhei Shima2, Taka-akiTomizawa1,HideoNakashita1,21DepartmentofAppliedBiologyandChemistry,TokyoUniversityof Agriculture, Tokyo, Japan, 2Plant-Endophyte InteractionsLaboratory, Center for Intellectual Property Strategies, RIKEN,Saitama,[email protected](JA)isaphytohormonethatregulatesplantdevelopmentand protection against biotic and abiotic stresses. JA signalingpathway has been extensively studied in Arabidopsis thaliana . The JASMONATE-ZIM DOMAIN1 (AtJAZ1) protein is atranscriptionalrepressorofJAsignaling,whichbindsandinhibitstranscriptional factors in JA signaling.The bioactive jasmonoyl-isoleucine (JA-Ile) promotes the interaction between AtJAZ1protein and the F-box protein CORONATINE INSENSITIVE1(COI1), which interaction causes the degradation of AtJAZ1

proteinby26Sproteasome.Thisdegradationallowstranscriptionalfactors, such as MYC2 and MYB21, to activate JA-responsivegenes.However,JAsignalingmechanismsofrice involvingJAZprotein are poorly understood compered to those ofArabidopsis .We focusedona JAZproteinof rice (OsJAZ)andanalyzed itsprotein-proteininteractionbyyeasttwo-hybridsystem(Y2H)usingcoronatine (COR) as a substitute for JA-Ile. Interaction betweenOsJAZandOsCOI1requiredCOR,however,thatbetweenOsJAZandOsMYCorOsMYBdid not.These results suggest that ricepossessesJAsignalingpathwaymediatedbyJAZproteinaswellasArabidopsis .

PS10-401EffectofenvironmentalstressoninduceddiseaseresistancebyplantactivatorsandendophyticbacteriainriceMiyuki Kusajima1,2, Junta Hirayama2, MichikoYasuda2, SatoshiShinozaki2,HideoNakashita1,21DepartmentofAppliedBiologyandChemistry,TokyoUniversityofAgriculture,Tokyo,Japan,2RIKENInnovationCenter,[email protected] disease resistance, activated by some microbes andchemicals, protects the whole plant from the attacks by varioustypes of pathogens such as bacteria, fungi and viruses. In thisstudy, we analyzed changes of phytohormone signaling duringthe induction of these resistances. Systemic acquired resistance(SAR)isinducedbypathogeninfectionthroughsalicylicacid(SA)accumulation.SARhasbeenpracticallyutilized in ricefieldsbyexploitingtheplantactivatorscapableofinducingSAR.Extensivestudies inArabidopsishaverevealedthat theSA-mediatedsignaltransduction for SAR induction is antagonistically regulated bytheABA-mediated signaling for environmental stress responses.However,itremainstobeclarifiedwhetherSARinriceisregulatedinthesamemanner.Ontheotherhand,riceplantscolonizedwithendophyticbacteriaexhibiteddiseaseresistanceagainstriceblastandricebacterialblight,however,itsinductionmechanismisstillunknown.Toclarifythedetailedmechanismsoftheseresistancesin rice, we investigated phytohormone signaling by analyzingphytohormonelevelsusingLC-MS/MSandgeneexpressionlevelsin the sections of leaves.The treatment of a plant activatorBITinducedSAaccumulationanddefenserelatedgenesexpressioninrice leaves.However,BIT-inducedSAaccumulationanddefenserelated genes expression were inhibited by environmental stressresponses signaling. These results indicated that SA levels areimportantofSARinrice.

PS10-402Salicylic acid and ethylene induce resistance toPhytophthora sojaeinsoybean(Glycine max)Chang-JieJiang1,TakumaSugimoto2,ShojiSugano11Plant Disease Resistance Research Unit, National Instituteof Agrobiological Sciences, 2Hyogo Agricultural Institute [email protected] and root rot disease of soybean caused by the oomycetepathogen Phytophthora sojae is among the most devastatingonesinsoybean-producingareaworldwide.Hereweinvestigatedprotective effects and themolecularmechanismof various planthormonesandplantactivatorsonsoybeanseedlingsagainstP. sojae.We found that application of benzothiazole (BTH), an activatorof thesalicylicacid (SA)signaling,and1-aminocyclopropane-1-carboxylicacid(ACC),aprecursorofethylene(ET)biosynthesis,remarkably enhanced resistance against P. sojae in soybeanseedlings. In contrast, gibberellin (GA) and abscisic acid (ABA)rendered thesoybeanseedlingsmoresusceptible toP. sojae.Co-treatmentofABAwithBTHorACCnegatedtheprotectiveeffectsofBTHandACC,indicatingABAactsantagonisticallyonSAandET signaling pathways.On the other hand,GAdid not interferewithBTHorACC.TheBTHandACCthemselvesdidnotinhibitfungalgrowthofP. sojaeandco-treatmentofACCtogetherwith

Page 160: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession10-Planthormonesintegratingdefenseresponse

158

Post

er 1

0

itsanalogα-aminoisobutyricacid(AIB)diminishedtheprotectiveeffect, suggesting that ET biosynthesis was required for ACC-induced soybean resistance.Expression analysis ofET- andSA-responsivegenes revealed theactivationofETandSAsignalingpathways during P. sojae infection. In addition,ACC treatmentprimedexpressionof theET-responsivegenes andpathogenesis-relatedgenesPR-1andPR-4.Takentogether,ourresultssuggestthat ET-induced soybean resistance against P. sojae relies onprimingofdefense-relatedgenes.

PS10-403Development of multi-disease resistant rice by optimizedoverexpressionofWRKY45Shingo Goto1, Fuyuko Sasakura-Shimoda1, Akane Matsushita1,HiroshiTakatsuji11DiseaseResistantCropsResearchandDevelopmentUnit,NationalInstituteofAgrobiologicalSciences,Ibaraki,Japangotos@affrc.go.jpRicetranscriptionfactorWRKY45playsacentralroleininduceddisease resistance by plant activators through the salicylic acidsignalingpathway.TransgenicriceplantsoverexpressingWRKY45driven by maize ubiquitin promoter (PZmUbi:WRKY45) exhibitedstrong resistance to rice blast and bacterial leaf-blight diseases,accompanying relatively minor growth defects presumablydue to priming effect. However, an unknown environmentalfactor(s) triggered defense responses in these plants, leading togrowth defects. To optimize WRKY45 expression in regard todisease resistance and agricultural traits, we generated severaltransformantricelinesoverexpressingWRKY45drivenbyvariousnewconstitutivepromotersfromrice.Weisolated2-kbupstreamsequencesof22ricegenesthatareexpressedatvariouslevelsasestimatedfrommicroarrayanddatabaseanalyses,fusedupstreamofWRKY45 cDNA, and transformed rice with these constructs.Among the transformants, POsUbi7:WRKY45 lines, which expressWRKY45 driven byOsUbi7 promoter, exhibited the best results.They exhibited enhanced resistance to both blast and leaf-blightdiseases.Inaddition,theiragriculturaltraitsweregreatlyimprovedcompared with PZmUbi:WRKY45 lines and nearly comparablewith those of controlNipponbare rice both in a greenhouse andan isolation field. Histochemical analysis using POsUbi7:GUSlines showed that POsUbi7 has a constitutive promoter activity. InPOsUbi7:WRKY45 lines, basal expression levels of defense geneswerelowandthegeneswererapidlyinducedafterblastinfection.Theseresultssuggestthatstableprimedstateisestablishedintheselines.Overall,thePOsUbi7:WRKY45linesareoptimizedfordiseaseresistance and agricultural traits, and therefore promising forpracticalapplication.

PS10-404Chloroplast-mediated plant innate immunity throughchloroplastCa2+sensorproteinCAS.Hironari Nomura1, Koji Shimotani2, Kana Nakai2, TakuyaFuruichi3,SatoshiSano2,EiichiroFukusaki4,HirofumiYoshioka1,YoichiNakahira2,TakashiShiina21GraduateSchoolofBioagriculturalSciences,NagoyaUniversity,Nagoya, Japan, 2Graduate School of Life and EnvironmentalSciences,KyotoPrefecturalUniversity,Kyoto, Japan, 3EcoTopiaScience Institute, Nagoya University, Nagoya, Japan, 4GraduateSchoolofEngineering,OsakaUniversity,Osaka,[email protected] immunity activates two parallel signal transductionpathways: cytoplasmic signaling pathways, such as mitogen-activated protein kinase (MAPK) phosphorylation cascades andCa2+signalingpathways,leadingtotranscriptionalreprogramming,and a chloroplast-mediated pathway leading to the generationof chloroplast-derived reactive oxygen species (ROS) and theproduction of defense-related hormones, such as salicylic acid(SA)andjasmonicacid(JA).However,themolecularlinkbetweenthe chloroplast and cytoplasmic-nuclear immune signaling

pathwaysremainslargelyunknown.Here,weshowthatpathogen-associatedmolecular pattern (PAMP) signals arequickly relayedto chloroplasts and evoke specificCa2+ signatures in the stroma.Wefurtherdemonstrate thatachloroplast-localizedprotein,CAS(calcium-sensingreceptor),isinvolvedintheregulationofstromalCa2+ and responsible for both PAMP-induced defense responsesandR gene-mediated hypersensitive cell death. CAS likely actsupstreamofPAMP-inducedROS signaling andSAbiosynthesis,allowing chloroplast control on plant innate immunity.Transcriptome analysis in early defense response demonstratesthat CAS is involved in PAMP-induced expression of defensegenesandsuppressionofchloroplastgenesprobablythrough1O2-mediatedretrogradesignaling.WRKYfamilytranscriptionfactorsmight play a critical role in chloroplast-mediated transcriptionalreprogramming in plant innate immunity. This study reveals apreviously unknown chloroplast-mediated signaling pathwaylinkingchloroplaststocytoplasmic-nuclearimmuneresponses.

PS10-405Dynamic changes in histone modifications during ABA-mediatedsuppressionofdefense-relatedgenesKentaroFuji1,MichikoYasuda1,HideoNakashita1,21Plant-Endophyte Interactions Laboratory, RIKEN InnovationCenter,RIKEN, 2DepartmentofAppliedBiologyandChemistry,TokyoUniversityofAgriculturefujiken@riken.jpPlantsarealwaysexposedtovariouskindsofstresses,bioticandabiotic.Theyhavesurvivedsevereconditionsbyactivatingsuitableresponsestotheenvironmentalstressesusingsomephytohormones,suchassalicylicacid(SA),abscisicacid(ABA)andjasmonicacid(JA). It is well-known that there is a strictly regulated balancebetween these phytohormone-induced responses under differentstressconditions.Systemicacquiredresistance(SAR)inducedbyplantactivator isoneofplant responsesagainstbroadpathogensvia SA signaling. Previously,we showed that treatment ofABAsuppressedSARinductionbyinhibitingthepathwaybothupstreamand downstream of SA in Arabidopsis. (Yasuda et al., 2008)However,thedetailedmechanismofsuppressioneffectofABAisstillunknown.Recently,itisreportedthattheregulationofthegeneexpressionsinSAandABAsignalingpathwaysarecloselyrelatedto the change of histonemodification pattern of these genes.Toelucidate thedynamicchanges inchromatinstructureviahistonemodifications in stress response and modulation of these SA-induciblegenes,expressions,suppressedbyABA,weanalyzedthechromatinstateinArabidopsisbyChromatinimmunoprecipitation(ChIP)assay.WedemonstratethatthesuppressionofSA-induciblegenes by ABA treatment associated with the general histonemodifications,H3K4me3 andH3K9ac. In future,we plan to trygenome-wideanalysisofthehistonemodificationsbyChIP-Seq.

PS10-406MitochondrialcomplexIIplaysacriticalroleindefenseagainstdiversepathogensLouiseF.Thatcher1,CynthiaGleason1,ShaobaiHuang2,RhondaC.Foley1,A.HarveyMillar2,KaramB.Singh1,31CSIRO Plant Industry, 2Australian Research Council (ARC)Centre of Excellence in Plant Energy Biology, University ofWesternAustralia, Crawley,WA 6009,Australia, 3University ofWesternAustralia Institute ofAgriculture,University ofWesternAustralia,Crawley,WA6009,[email protected] glutathione S-transferases (GSTs) are detoxifying enzymesinvolved in protecting tissues from oxidative damage or toxicproducts.Onewell-studiedGSTisGSTF8,whosegeneexpressioncanbeinducedbyarangeofelicitorsincludingpathogenattackandsignallingmoleculessuchassalicylicacid(SA),hydrogenperoxide(H2O2),andauxinanditssyntheticherbicidecounterparts.Itsearlytranscriptionalresponsetothesestressorshasmadeitacommonlyusedmarkergeneforearlystressanddefenseresponses.Togain

Page 161: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession10-Planthormonesintegratingdefenseresponse

159

Poster 10

insightintomechanismsofearlystressresponsesweconductedaforwardgeneticscreentoidentifymutantswithchangesinGSTF8promoter activity.One suchmutant, disrupted in stress response(dsr1),showedlossofstressinducibleGSTF8expression,alteredSA-regulated gene expression, and increased susceptibility tospecific pathogens including the bacterial and fungal pathogensPseudomonas syringae and Rhizoctonia solani respectively. Wemapped thedsr1mutation to a single amino acid change in themitochondrialcomplexIIsuccinatedehyrogenasesubunitSDH1-1andshowreducedmitochondrialproducedreactiveoxygenspecies(ROS)withinthismutant.WhileROSplaymajorrolesinresponseto pathogen attack, little is known about the role of localisedmitochondrial derived ROS. Our identification of dsr1 providesgeneticproofthatmitochondrialgenerationofROSplaysacriticalrole inplantstressanddefenseresponses.WehavesubsequentlycharacterisedfurtherGSTF8promotermutantswithaltereddefensegeneexpressionandsomeexhibitingincreasedpathogenresistance.Thesemutantsareprovingtobeavaluableresourceintoexpandingourunderstandingofearlyplantstressresponses.

PS10-407BlastresistancebypanicleblastresistantgenePb1ismediatedbyWRKY45Haruhiko Inoue1, NagaoHayashi1,AkaneMatsushita1, XinqiongLiu1,AkiraNakayama1,ShojiSugano1,Chang-JieJiang1,HiroshiTakatsuji11Nationalinstituteofagrobiologicalsciencesharuhiko@affrc.go.jpPanicle Blast1(Pb1)isapanicleblastresistancegenederivedfromindica rice “Modan”. Pb1 encodes a CC-NB-LRR protein andconfersricewithdurableresistanceofbroadspectrumforfungalraces. Here, we investigated molecular mechanisms underlyingPb1-mediated blast resistance. Pb1 protein interacted with atranscriptionfactorWRKY45,whichplaysacentralroleininducedresistanceviathesalicylicacidsignalingpathwayandisregulatedby ubiquitin proteasome system (UPS). To test the WRKY45dependence ofPb1-mediated blast resistance,we knocked downWRKY45 in a Pb1-containing cultivar and Pb1-overexpressed(Pb1-ox)Nipponbare.Inbothcases,Pb1-mediatedblastresistancewas largely compromised by WRKY45 knockdown, suggestingthat Pb1 resistance is dependent on WRKY45. OverexpressionofPb1-Quad, aCC-domainmutant that interactswithWRKY45veryweakly,resultedinmarkedlyweakerblastresistancethanthatof wild-typePb1, indicating that the interaction withWRKY45through the CC domain is required for Pb1-mediated blastresistance. Overexpression ofPb1 with nuclear export sequencein rice failed to confer blast resistance, indicating that nuclearlocalization is necessary for Pb1 function. In a transient systemusing rice cultured cells, co-expression of Pb1 with WRKY45enhanced accumulation of WRKY45 proteins and increasedWRKY45-dependent transactivation activity. Blast infectioninduced increased accumulation ofWRKY45 inPb1-ox than incontrolNipponbare.These results suggest thatPb1 resistance ismediatedbyprotectionofWRKY45fromitsUPSdegradation.

PS10-408Identification of naringenin 7-O-methyltransferase, a keyenzyme in the biosynthesis of the flavonoid phytoalexinsakuranetininriceTakafumi Shimizu1, Koji Miyamoto1, Fengqiu Lin1, MorifumiHasegawa2,HideakiNojiri1,HisakazuYamane3,KazunoriOkada11BiotechnologyResearchCenter,TheUniversityofTokyo,2Collegeof Agriculture, Ibaraki University, 3Department of Biosciences,[email protected] is the only flavonoid phytoalexin in rice, whoseproduction is induced by ultraviolet (UV) irradiation, CuCl2 orjasmonicacid(JA)treatment,andpathogeninfection.Recentstudiessuggesttheusefulnessofsakuranetinnotonlyasaplantantibiotic

compoundbutalsoasapotentialpharmaceuticalagentexhibitingvariousbioactivities.Anaringenin7-O-methyltransferase(NOMT)is known to catalyze the final step of sakuranetin biosynthesis.Previous attempt to isolate rice NOMT (OsNOMT) from UV-treatedwild-type rice leaveswasunsuccessfulandacaffeicacidO-methyltransferase, OsCOMT1, was identified instead. In thisstudy, we demonstrated that OsCOMT1 does not contribute tosakuranetinproductioninricein vivo,andwesuccessfullypurifiedOsNOMTusingtheoscomt1mutant.AcrudeproteinpreparationfromUV-treatedoscomt1leaveswassubjectedtothreesequentialpurificationsteps,resultingina400-foldpurificationfromthecrudeenzymepreparation.Thepurifiedfractioncontainedproteinwithanapparentmolecularmass of 40 kDa.MALDI-TOF/TOF analysisandsubsequentdatabasesearchesenableus to identify thegenesfor twoO-methyltransferase-likeproteins fromthe40kDaband.SinceoneoftherecombinantproteinsencodedbyOs12g0240900gene showedNOMT activitywith reasonable kinetic properties,we concluded that Os12g0240900 gene encodes an OsNOMT.TheexpressionofOsNOMT genewas transiently inducedby JAtreatmentinriceleavespriortosakuranetinaccumulation.WearenowgeneratingtransgenicriceplantsmodifyingtheOsNOMTgeneexpression to investigate how the changes of sakuranetin levelaffectblast-resistanceinrice.

PS10-409The AP2/ERF domain transcription factor ERF104 confersresistance to necrotrophic fungi via salicylate and ethylenesignalingpathways,butnotjasmonatepathwayChenggangWang1,JunyanHuang1,CaihuaDong1,ShengyiLiu11OilCropsResearchInstituteofCAAS,KeyLaboratoryofBiologyandGenetic ImprovementofOilCrops,MinistryofAgriculture,Wuhan430062,Chinaliusy@oilcrops.cnPathogenicinfectionofplantsinducesavarietyofdefenseresponsesthat depend on action of endogenously produced hormones,including salicylic acid (SA), jasmonic acid (JA) and ethylene(ET). In this study, we identified a novel gene, ETHYLENE-RESPONSE-FACTOR104 (ERF104) from Brassica napus andArabidopsisthaliana.AtERF104expressionwassuppressedbyETandinthemutantnpr1-1,inducedbySAandinthemutantein2-1,andindependentofJAandnotaffectedinthemutantcoil-1.Over-expressionofAtERF104whoseproteinspecificallybindedtotheGCC-boxciselementactivatesexpressionofseveralpathogenesis-related (PR) genes, including ET-responsive genes PDF1.2 andChiB,andSA-responsivegenesPR-1andPR-2whileexpressionofthesegenesexceptforPR-1wasdown-regulatedinAtERF104-silencingplants.Consistently,AtERF104over-expressionincreasedplant resistance against necrotrophic fungi Botrys cinerea andSclerotiniasclerotiorumwhileAtERF56-silencingplantsdecreasedresistance tobothpathogens.Our results suggested thatERF104functionsasanegativeregulatorintheETsignalingpathwayandasapositiveregulatorintheSAsignalingpathway,independentoftheJApathway,inplantdefenseresponsesagainstnecrotrophicfungi.

PS10-410RoleofJAZproteininjasmonicacid-inducedresistancetoricebacterialblightinriceShoko Yamada1, Ayumi Miyamoto1, Akihito Kano1, HodakaShishido1,SeikaMiyoshi1,ShidukuTaniguchi1,DaisukeTamaoki1,KazuyaAkimitsu1,KenjiGomi11FacultyofAgriculture,KagawaUniversity,Kagawa,[email protected](JA)isanaturalhormoneinvolvedindevelopment,responses againstwounding, pathogen and insect attack.The JAbiosyntheticpathwayhasbeenwellstudied,andmuchinformationaboutthetypeandsubcellularlocalizationofitsenzymesisavailablein many plant species.And the few signaling components havebeenidentifiedbyArabidopsismutantscreensdisplayingareducedsensitivity to JA. In contrast, information about the JA signaling

Page 162: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession11-Cropprotection

160

Post

er 1

1

pathwayinrice(Oryza sativaL.)islimited.AsafirststeptowardunderstandingtheroleofJAsignalinginricediseaseresistance,weinvestigatedeffectofJAagainstricebacterialblightdiseasewhichcaused byXanthomonas oryzae pv.oryzae (Xoo) in rice, one ofthemostseriousrice-plantdiseaseinricegrowingcountries.RiceplantsshowedincreasedresistanceagainstXoobyJAtreatment.Alarge-scale screening using a riceDNAmicroarray revealed thatmany defense-related genes involved in rice resistant responsewereupregulatedbyJA.WenextanalyzedtheroleofJAZproteinusing JA-insensitive transgenic rice plants overexpressing JAZproteintruncatedwithC-terminalregion.Asaresult,expressionofmanydefense-relatedgenesupregulatedbyJAwassuppressedintransgenicriceplants.Furthermore,JA-inducedresistanceagainstXoo was cancelled in the JA-insensitive transgenic rice plants.Based on these data, we conclude that upregulation of defense-related genes by JAwas an important response in rice resistantresponseagainstXooandwasregulatedbyJAZproteininrice.

PS10-411Role of jasmonic acid-induced volatile in resistance to ricebacterialblightinriceShidukuTaniguchi1,YumiHosokawa-Shinonaga1,SeikaMiyoshi1,Hodaka Shishido1, Rika Ozawa2, Junji Takabayashi2, DaisukeTamaoki1,KazuyaAkimitsu1,KenjiGomi11Faculty of Agriculture, Kagawa University, Kagawa, Japan,2Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113,[email protected] acid (JA) is one of the plant hormone involved inresponse to pathogen and wounding. There are few informationaboutJAsignalingpathwayindiseaseresistanceinrice.WehavedemonstratedthatJAsignalingplaysanimportantroleonresistancetoricebacterialblightcausedbyXanthomonas oryzaepv.oryzae(Xoo).Inaddition,wefoundthatmanyvolatileswereaccumulatedbyJAtreatmentinrice.Thus,weinvestigatedwhetherJA-inducedvolatilesplayaroleonresistancetoXooinrice.AmongJA-inducedvolatiles,onemonoterpenecompound,linalool,wasreproduciblyaccumulated by JA treatment in rice. It has been reported thatsomemonoterpenes have antibacterial activity to plant bacterialpathogens.Therefore,wefirstanalyzedtheantibacterialactivityoflinalooltoXoo.Asaresult,adirecttreatmentoflinalooltoliquidcultureofXoohadnoeffectonthegrowthofXoo,indicatingthatlinalool has no antibacterial activity toXoo.However,we foundthat a vapor treatment of linalool to rice induced resistance toXoo. Vapor treatment with linalool caused upregulation of geneexpressioninvolvedindefenseresponseinrice.Wenextproducedtransgenic rice plants accumulating linalool by overexpressinglinaloolsynthasegene.Thesetransgenicriceplantsshowedhighlyexpression of defense-related genes under normal conditionwithoutanytreatment.Furthermore,theseplantsshowedincreasedresistancetoXoo.Basedonthesedate,weconcludethat linaloolplaysanimportantroleonresistancetoXooinrice.

PS10-412Plasmodesmataanddefensesignaling:mechanismsandplayersJung-Youn Lee1, XuWang1,Weier Cui1, Ross Sager1, Eun HyeKim1

1Delaware Biotechnology Institute, University of Delaware,Newark,DE,[email protected] communicationmediated by plasmodesmal channelsis thought to play fundamental roles not only in physiologicaland developmental processes but also during interactionswith pathogens. However, how the spatiotemporal changes inplasmodesmalpermeabilityarecontrolledinresponsetomicrobialinfection and how this this regulation impacts overall innateimmunityoftheplantarenotwellunderstood.Recently,wehavefound that the crosstalk between salicylic acid (SA)-mediateddefense signaling and the control over plasmodesmata-mediated

cell-to-cellcommunicationiscrucialforinnateimmuneresponsesagainstbacterialpathogens(Leeetal.,PlantCell2011;23:3353-73). This crosstalk is facilitated by a plasmodesmata-locatedmembraneproteinnamedPDLP5,whichfunctionsasbothnegativeandpositiveregulatorofplasmodesmataandSAsignalingpathway,respectively. To gain further insight into this novel discovery,we performed comprehensive cellular and genetic analyses byemploying a combination of tools we have developed to assayplasmodesmalpermeability in real timeandArabidopsismutantsthatareimpairedinSAbiosynthesis/signalinginthebackgroundof PDLP5 mutants. Here we present detailed mechanisms bywhich thedefensehormoneSAin response tobacterial infectionregulates plasmodesmal closure and structural modification.Furthermore, genetic players involved in this process and theepistatic relationships between the identified players andPDLP5willbepresented.Wewillalsodiscusshowthisintegrationofthedefensepathwayandplasmodesmalconnectivitymightcontributetothebalancingbetweenthecontrolledcelldeathandsurvivalofinfectedplants.

PS10-413The interplay between cytokinin and salicylic acid signalingcoordinatesactivationofdefenseresponsesinArabidopsisDawn Hajdu1, Daniel Bush1, Jeff Dangl2, Joseph Kieber2, CrisArgueso11BiologyDepartment,ColoradoStateUniversity, 2Department ofBiology,UniversityofNorthCarolinacris.argueso@colostate.eduThepastdecadeshaverevealedanimportantroleforhormonesinplantimmunity.Wearenowbeginningtounderstandthecontributionof crosstalk among different hormone signaling networks to theoutcome of plant-pathogen interactions. Cytokinins are planthormones involved in the regulation of many aspects of plantdevelopment and responses to the environment. InArabidopsis,cytokinin signaling involves a phosphorelay pathway similar totwo-component response systems used by bacteria and yeast toperceive and react to various environmental stimuli. In previousstudies(Arguesoetal.,PLoSGenetics2011)wehaveuncoveredthat componentsofcytokinin signalingcontribute to limiting thegrowthofapathogenicisolateoftheoomyceteHyaloperonospora arabidopsidisinArabidopsisplants,throughtheinterplaybetweentheplanthormonescytokininandsalicylicacid(SA).Pre-treatmentofArabidopsisandriceplantswithcytokininleadstoenhancementofSA-dependentdefenseresponsesuponpathogenexposure,inaprocesssimilartodefensepriming.Thesefunctionsforcytokininin plant immunity require an intact host cytokinin phosphorelaysystem, and aremediated in part by type-AARRs,which act asnegative regulators of defense gene expression. We are nowcontinuingtoexploretheroleofcytokininsinplantimmunityanddefenseprimingwithafocusontype-AARRfunction.

PS11-414CharacterisingthegeneticbasisofE. coliO157:H7survivalintheplantenvironmentGlynA.Barrett1,RobertW.Jackson1,SimonC.Andrews1,PennyR.Hirsch2,TimH.Mauchline2,ElizabethJ.Shaw1

1School ofBiological Sciences,University ofReading,Reading,UK,[email protected] circulation of human bacterial pathogens within the foodchainisbecomingmoreandmoreapparent,presentingitselfasarapidly growing threat to food safety.Escherichia coliO157:H7(O157) is often harbouredwithin the intestines of healthy cattleand high densities are shed asymptomatically in their faeces.Animal manure is increasingly being used as a plant fertilizerwhereO157cancome into intimatecontactwithplants,becomeinternalizedwithincertainplanttissueandspreadsystemicallyviathe vascular system.Consumption of infected producemay thenwellleadtoinfectionwithinthehumanhost.Plantcolonizationand

Page 163: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession11-Cropprotection

161

Poster 11

growthdynamicsofO157havebeeninvestigatedinpeaseedlings.O157hasbeendemonstratedtosurviveforupto3weeks.An in silicocomparativeapproachcoupledwithpromoter-probein vivoexpression technology (IVET) screen has been used to identifycandidategenesup-regulatedduringinfectionandthereforelikelyto be important for plant colonisation. Mutational analysis andfitness assays have been undertaken to assess the importance ofspecific genes for their role in plant colonisation. ExperimentalevolutionofO157throughpassagingofthepathogenhasrevealedseveralcloneswhichseemabletosurviveforextendedperiodsoftimeascomparedtothewildtype.Electronmicroscopyhasshownseveraldistinctmorphologicaldifferencesbetweenthese.Genomere-sequencingandannotationshouldrevealinterestinginformationon possible point mutations. Taken together, this project aimsto better understand howO157 survives in the environment andprovideinsightonhowtopreventhumaninfections.

PS11-415Cloning, characterization and expression of an insecticidalcrystal protein gene from Bacilllus thuringiensis isolates ofAndamanandNicobarIslandsH. M. Mahadeva Swamy1, Ramasamy Asokan1, Geetha G.Thimmegowda1,RiazMahmood2,S.N.Nagesha1,DilipK.Arora31Indian Institute of Horticultural Research (IIHR), 2Post-GraduateDepartment of Studies andResearch inBiotechnologyand Bioinformatics, Kuvempu University, Jnanasahayadri,Shankaraghatta, Shimoga 577451, Karnataka, INDIA, 3NationalBureau ofAgriculturally Important Micro organisms (NBAIM),MauNathBhajan,[email protected] six isolates of Bacillus thuringiensis from Andaman andNicobar Islands which were previously characterized by PCRanalysisforthepresenceofColeopteranactivecrygeneswereusedforCry1Ifulllengthgeneamplification.A2.16-kbDNAfragmentof Cry1I gene was PCR amplified, cloned in expression vectorpQE80L,andthenusedfortransformationofE. coliM15cells.Theoptimumexpressionwasobtainedwith1mMIPTGat37oCfor3h.Thesequenceof theclonedcrystalproteingeneshowedalmostcompletehomologywithaCry1ItoxingenefromBacillus thuringiensis var. kurstaki, with scatteredmutations in the toxicregion. The deduced sequence of the protein has homologies of91.0%withCry1IandCry1Ia,and98.0%withCry1Ib.Cloningofthisgenemayhelptoovercometheincreasingresistanceofpeststocurrentlyusedinsecticides.Basedontheresultsobtained,thePCRmethodmaybeavaluableandreliabletoolforspecificdetectionand identificationofcry1Igenes.The toxicityofBt recombinantprotein was determined against first instar larvae ofMyllocerus undecimpustulatus undatusMarshall (Coleoptera:Curculionidae)and Adults; Helicoverpa armigera Hubner (Noctuidae:Lepidoptera)at310μg/mLand15.5μg/mL,respectively.Thenovelcry1Igenewillbeanimportantresourceinconstructinggeneticallyengineeredbacteriaand transgenicplants forbiocontrolof insectpestsandBtbasedbiopesticidalformulations,aimingtoreducetheuseofchemicalinsecticides.

PS11-416ElevationofsoilmicrobialenzymeactivitiesandreductionoffusariumwiltdiseaseincidencebychitinamendmentintomatofieldplotsPorntipWongkaew1,TanitaHomkratoke11Division of Plant Pathology, Department of Plant Science andAgricultural Resources, Faculty of Agriculture, Khon KaenUniversity,KhonKaen,Thailandporwon@kku.ac.thTheeffectofchitinamendmentonsoilmicrobialenzymeactivitiesandfusariumwiltdiseasewereevaluatedintomatoplantingfieldplots.Soilanalyseswereperformedonsamplestakenperiodicallyat oneweek before transplanting, fourweeks after transplantingandoneweekafterharvestingfromeach1x6meterexperimental

plot.Significantimprovementoftheselectedsoilparameterswereachieved in both 500 g and 1,000 g amended plots. Chitinaseactivitiesof the500g and1,000g amendedplotswere elevatedto 1.81 and 2.86 folds at four weeks after transplanting and1.33 and 1.81 folds at one week after harvesting. Similarly, thedehydrogenaseactivitieswereincreasedupto3.65,4.47and1.63,1.64 folds at respectiveconditions.While the increasing ratesofchitinase and dehydrogenase activities in the un-amended plotswere1.47,1.03and1.32,1.23folds, respectively.Determinationoftotalmicrobialactivitybyfluoresceindiacetatehydrolysiswasalso carried out to explore an organic matter turnover. Similarelevationpatternwasgainedwiththe500gchitin,1,000gchitinamended and un-amended plots up to 1.73, 2.12 and 1.23 foldsatfourweeksaftertransplantingand1.19,1.72and1.01foldsatoneweekafterharvesting,respectively.Meanwhile thereductionoffusariumwiltdisease incidenceasmuchas52%to62%wereachievedbytheamendmentof500gand1,000gchitinintotomatoplanting-soilplots.Theseresultsarethusmarkedlyaccountableforthesustainablebenefitsofabiomaterialchitin.

PS11-417Use of essential oils for the control of post harvest decay incitrusTehminaAnjum1,NosheenAkhtar11Institute of Agricultural Sciences, University of the Punjab,Lahore-54590,Pakistan.tehminaanjum@yahoo.comThepresentstudywasdesignedtoevaluate(in vitroand in vivo)antifungal activities of the essential oils obtained from Cuminseeds,ClovebudsandCinnamonbarkagainstPenicillium italicumthatisthecausalagentofbluemolddiseaseincitrusfruitduringstorage.Different concentrations (3, 6, 12, 24 and 48µl/mL) ofselected essential oilswere checked for their potential to inhibitthe mycelial growth of the test fungi. Overall various assaysconfirmedthepotentialoftestedessentialoilsfortheirantifungalactivity which varied with type and concentration of oil used.The in vitro study revealed that the essential oils of cumin andclove have the potential to inhibitmycelial growth of test fungicompletely at concentrations of 12 and 48 µl/ml respectively.Essentialoilofcinnamon,howeverfailedtocompletelyinhibitthemycelial growth even atmaximum used concentration of 48 µl/ml.In vivoassaysalsosupporttheseoutcomes.Cloveandcuminoilswhenappliedoncitrus fruits, showed total fungal inhibitionatconcentrationof24µl/mland48µl/ml respectively.Whereas,cinnamon essential oil could not prevent fungal infection evenwhenusedinhighesttestedconcentration.Thestudywasextendedtotheidentificationofactivecomponentsofthethreeoils.Cloveoilshowsthepresenceofeugenol,alpha-terpineol,Isoeugenolandbeta-terpinene as its major components. The chief componentsfoundincinnamonoilwereeugenolandcinnamaldehyde,whereascuminoilrevealedthepresenceofgamma-terpinen,cuminaldehydeand4-carvomenthenol.

PS11-418Imprimatins, novel plant immume-priming compoundsidentified via a newly-established high-throughput chemicalscreening target salicylic-acid glucosyltransferases inArabidoposis thalianaYoshiteru Noutoshi1, Masateru Okazaki1, Tatsuya Kida1, YutaNishina1, Yoshihiko Morishita2, Takumi Ogawa2, HideyukiSuzuki2, Daisuke Shibata2, Yusuke Jikumaru3, Atsushi Hanada3,YujiKamiya3,KenShirasu31Research Core for Interdisciplinary Sciences (RCIS), OkayamaUniversity, Okayama, Japan, 2Kazusa DNA Research Institute,2-6-7Kazusa-Kamatari,Kisarazu292-0818,Japan,3RIKENPlantScience Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045,Japannoutoshi@cc.okayama-u.ac.jpPlantactivatorsarecompoundsthatprotectplantsfrompathogens

Page 164: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession11-Cropprotection

162

Post

er 1

1

by activating their immune system. Compared with commonly-used pesticides which target pathogens, plant activators providedurable effect to broad spectrum of diseases which have notbeen overcome by pathogenic microbes.Although several plantactivators such as probenazole and benzothiadiazole have beenwidelyusedinagriculture,themolecularmechanismsofimmuneinductionarelargelyunknown.Herewereporttheestablishmentofahigh-throughputchemicalscreeningprocedure to identifyplantimmune-primingcompoundswhichpotentiatebutdonotdirectlyinducecelldeathinArabidopsiscellsuspensionculturesinducedby Pseudomonas syringae pv. tomato DC3000 avrRpm1. Fromscreeningofacommerciallibraryof10,000structurallydiversifiedsmall organic molecules and derivative analysis of the isolatedcandidates,weidentifiedfivecompoundsdesignatedImprimatinsfor“immuneprimingchemicals”.Thesecompoundswereclassifiedinto two groups, ImprimatinA and -B, with structural similarity.These Imprimatins enhanced disease resistance against bothvirulentandavirulentPseudomonasbacteriainArabidopsisplants.Pretreatmentsincreasedtheaccumulationofendogenoussalicylicacid (SA), but reduced its metabolite, SA-O-β-D-glucoside.Wefound that inducing compounds inhibited both a known and apreviouslyunknownSAglucosyltransferase(SAGT) in vitro inacompetitivemannerwithSA.EachsingleandtheirdoubleknockoutArabidopsisplantsfortheseSAGTsphenocopiedtheImprimatin-induced phenotypes and exhibited enhanced disease resistance.Our results indicate that Imprimatins can provide a novelmodeofactiontoprimeplantimmunity,andthatSAglucosylationisatargetfordevelopingnovelcropprotectants.

PS11-419Effectofmonoterpene,sabinene,toricepathogensSeika Miyoshi1, Keisuke Kohzaki1, Yumiko Kokudo-Yamasaki1,YumiHosokawa-Shinonaga1,KazuyaAkimitsu1,KenjiGomi11Facultyofagriculture,KagawaUniversity,Kagawa,[email protected],citrusplantscontainlargevolumesof essential oils that are mainly composed of monoterpenes.Monoterpenes are one of the universal volatile components ofplants and are synthesized by various types of monoterpenesynthasesfromgeranylpyrophosphate inchloroplast. Ithasbeenalso suggested that monoterpenes play a role in plant defensesagainst herbivores and plant pathogens, and as attractants forpollinators. We have previously isolated monoterpene synthasegene RlemTPS2, which produces sabinene, from rough lemon(Citrus jambhili).Inaddition,ourpreviousstudieshaveshownthatsabinenehasantifungalactivityagainstcitrusfungalpathogenA. alternata.Generally,itisknownthatsomeofmonoterpeneshaveawideantifungalandantibacterialspectrumagainstplantpathogens.To evaluate whether sabinene has antimicrobial activity againstother plant pathogens,we investigated effect of sabinene towardrice fungal pathogen, Magnaporthe grisea, and rice bacterialpathogen, Xanthomonas oryzae pv. oryzae (Xoo), which causericeblastandricebacterialblightdisease,respectively.Theseareserious rice diseases in rice growing countries including Japan.SabinenehadantifungalandantibacterialactivitytowardM. griseaandXoo,respectively.Furthermore,avaportreatmentofriceplantswithsabineneinducedresistancetobacterialblightcausedbyXoo.Fromtheseresults,itwasconcludedthatsabinenehaspotencyasausefulnaturalagentforsuppressionricediseases.

PS11-420Exploiting the priming ability of Thellungiella salsuginea toimprovebioticandabioticstresstoleranceMarc J. Champigny1, Vasile Catana1, Wilson Sung1, May Yeo1,MitchMacleod1,PeterSummers1,BrianGolding1,RobinCameron1,ElizabethWeretilnyk11DepartmentofBiology,McMasterUniversity,HamiltonOntario,[email protected]

Cropplantsareexposedtomultiplestressesincludingwaterdeficit,untimely frost andpathogens throughout thegrowing season.TofindnoveltraitstoimprovecroptolerancewestudytheextremophileThellungiella salsuginea,whichisexposedtomultiplestressesinthesalinesubarcticregionsofYukonTerritoryinCanadaaswellasinShandong,China.Exposuretoamildperiodofdrought(primingstimulus)conferredgreatertolerancetoasecondepisodeofseveredroughtinYukonThellungiella,butnotintheShandongecotype.We hypothesized that priming by an abiotic stimulus may alsolead toenhanceddisease resistance in this species.ThereforeweadaptedtheArabidopsis -Pseudomonas syringaepv.tomato(Pst)pathosystemforThellungiellaanddiscoveredthatShandongplantswere20-foldmoreresistanttoPstthanYukonplantsand200-foldmoreresistantthanArabidopsis.Additionally,aninitialexposuretodroughtorsaltprimedYukonThellungiellaforenhancedresistancetoPst, suggesting that an abiotic stress can prime for enhanceddisease resistance in this species. To gain insight into stresstoleranceandpriminginThellungiella,weusedRNA-SeqtoobtaintranscriptomesofplantsgrownintheYukonoringrowthcabinets.A number of Systemic Acquired Resistance-associated priminggenes,theFLS2flagellinreceptor,andmanyResistancereceptorswereupregulated inShandongcomparedtoYukonThellungiella,suggesting that ShandongThellungiella exists in a primed state.Our priming and transcriptome studies indicate that bothYukonandShandongThellungiellaare reservoirsofessentialbioticandabioticstresstolerancegenes.

PS11-421SuppressionofcucumberdiseasesbyusingthespentmushroomsubstrateofLyophyllum decastes andPleurotus eryngiiRoxanaY.Parada1,ShigeyukiMurakami2,NorihiroShimomura1,HiroshiOtani11Faculty of Agriculture, Tottori University, Tottori, Japan, [email protected] protective effect of autoclaved water extract from spentmushroomsubstrate(AWESMS)andautoclavedspentmushroomsubstrate (ASMS)of theediblemushroomsLyophyllum decastesand Pleurotus eryngii against fungal and bacterial diseaseswas investigated on cucumber plants. Plants were treated withAWESMSofL. decastesorP. eryngiibydippingorsprayingthefirsttrueleaf,andinoculatedwiththetargetpathogenafter1week.ResultsshowedthatAWESMSofL. decastessignificantlyreduceddiseases by Colletotrichum orbiculare, Podosphaera xanthii,andPseudomonas syringae pv. lachrymans, but not diseases byCorynespora cassiicola and Cladosporium cucumerinum. TheAWESMSofL. decastesshowednoantifungalactivityagainstC. orbiculareandasignificantincreaseofexpressionofchitinaseandβ-1,3-glucanasegenes24hafterpathogeninoculationwasobservedinplantstreatedwiththewater-extractofL. decastes.Ontheotherhand,whentheplantsweregrowninamixture(1:2,v/v)ofASMSofL. decastesandsoil,asignificantdiseasereductionwasobservedonP. xanthii,C. cucumerinum andP. syringae pv. lachrymans.ProtectiveeffectwasalsoobservedagainstC. orbiculareonplantstreatedwithAWESMSoronplantsgrowninamixtureofASMSofP. eryngii (1:3, v/v).Our results indicated thatAWESMSandASMS,independentlyofthemushroomtype,provideaprotectiveeffect on fungal and bacterial diseases. Therefore, SMS shouldbe considered an easily available sourceof active compounds toprotectplantsfromfungalandbacteriainfections.

PS11-422Studies on potential roles of sulfur compounds for diseasescontrolintheorientalpearorchardKwang-Hyun Min1, Jeong-Pil Ryu1, Sang-Hyun Lee1, Wol-SooKim1,BaikHoCho1,Kwang-YeolYang11KoreanPearExportResearchOrganization,DepartmentofPlantBiotechnology (BK21program),CollegeofAgricultureandLifeScience,ChonnamNationalUniversity,Gwangju,[email protected]

Page 165: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession11-Cropprotection

163

Poster 11

Inordertoeffectivelycontrolpeardiseasesintheorchard,wemustcontrolprimaryinfections.Inmostcases,sulfurcompoundshavebeen applied for curative and preventive purposes in the fields.Here we introduce the preventive efficacy of sulfur compoundsfor pear diseases control through an in vitro study. The objectof disease control using sulfur compounds is to reduce primaryinoculumon spring season.The fallen leaves from pear orchardinfectedbyscabandotherdiseaseswerecollectedandtreatedwithsulfurcompoundsorwaterasacontrol.Pearfruitsonwater-treatedfallenleavesbecameseverelyinfected,whiletheyonsulfur-treatedfallenleaveswerefreshanduninfectedafter10daysincubation.Tocharacterizethediversityofoursamples,weanalyzed18SrRNAinternaltranscribedspacer(ITS)regionsofextractedgenomicDNAfromsulfur-treatedorwater-treatedleaves,respectively.Wefinallyidentifiedabout20geneticallydistinctfungalspecies.Ascomycotaand Cladosporium were most common fungal species in bothtreatedleaves.However,thepopulationdynamicsofseveralfungalspecies including Ascomycota and Cladosporium were a quitedifferentintheeachtreatedleaves.Theseresultssuggestthatthesulfurcompoundstreatmentledtochangesoffungalcommunitiesintheorientalpearorchard.

PS11-423ScreeningofmetabolitesderivedfromsoilmicroorganismsforinductionofplantresistanceagainstTobacco mosaic virusTungKuan1,Hsin-HungYeh11DepartmentofPlantPathologyandMicrobiology,NationalTaiwanUniversity,Taipei,Taiwan(R.O.C.)[email protected] microorganisms produce a large array of metabolites withbroadbioactivity,someofwhicharepotentialdiseasecontrolagentsfortheiranti-phytopathogenicability.Previousstudieshaveshownthatmetabolitesof soilmicroorganismseffectively reducedplantfungalandbacterialdiseasesymptoms.However, theapplicationofsoilmicrobialmetabolitesonviraldiseasemanagementremainslargelytobeexplored.Toaddressthisissue,weutilizedTobacco mosaic virus(TMV)anditslocallesionhost,Nicotiana glutinosa,asamodelsystemandestablishedsymptomquantificationmethodstoscreensoilmicrobialmetabolitesselectedbyavegetablebrothenhancedisolationmethoddescribedbyKoetal.(2010)foranti-viralactivity.Threedifferentclassesofsoilmicroorganisms(fungi,actinomycetes,andbacteria)wereselectedandtheinitialscreeningresults showed that two actinomycetes exhibit anti-viral activityagainstTMV.

PS11-424EthyleneResponse Factor (ERF) transcription factors of theB-3 subgroup includemaster regulatorsof ethylene signalingand mediate resistance to root pathogens without adverselyaffectingrhizobialsymbiosisJonathan P. Anderson1,2, Judith Lichtenzveig1,3, Luis Onate-Sanchez1,4,KaramB.Singh1,21CSIRO Plant Industry, Floreat, Western Australia, 2The UWAInstitute of Agriculture, The University of Western Australia,WA, Australia, 3Department of Environment and Agriculture,CurtinUniversityofTechnology,Bentley,WA,Australia,4Currentaddress:CentrodeBiotecnologíayGenómicadePlantas,Madrid,[email protected] being transcriptionaly induced at late time points afterethylene or pathogen application, the B-3 sub-group ERFtranscriptionfactor,AtERF14,playsamasterregulatoryrolethatisrequiredforethylene-andpathogen-responsiveexpressionofotherERFgenes and defence genes such asPDF1.2.Knock out linesdisplayed enhanced susceptibility to the root-infectingFusarium oxysporum. In order to translate these findings for enhanceddisease resistance in legume crops, homologs ofAtERF14 werestudiedinthemodellegumeMedicago truncatula.Onepathogen

ofimportanceforlegumeproductionistherootinfectingfungus,Rhizoctonia solani.Despiteextensivegermplasmscreensinmanycrops,nostronggeneticresistancehasbeenidentified,suggestingalternative strategies to improve resistance in cropsare required.TranscriptionalanalysisofMedicagorevealedthespecificinductionofB-3subgroupERFswasassociatedwithmoderateresistancetoR. solani.Over-expressionofB-3ERFsinMedicagorootsincreasedresistance to R. solani as well as the oomycete, Phytophthora medicaginis,butnottorootknotnematode.Theseresultsindicatethattargetingspecificregulatorsofethylenedefencemayenhanceresistance to an important subset of root pathogens. Moreover,over-expressionofB-3ERFsenhanceddiseaseresistancewithoutapparent impact on symbiotic interactions with rhizobium inMedicago genotype A17, while over-expression in skl reducedthe hypernodulation phenotype.This suggests that under normalregulation of nodulation, enhanced resistance to root diseasescan be uncoupled from symbiotic plant-microbe interactions inthesametissueandethylene/ERFregulationofnodulenumberisdistinctfromthedefensesregulatedbyB-3ERFs.

PS11-425Broad-spectrum disease resistance by BSR1 sharestranscriptional componentswithBTH-inducible resistance inriceSatoruMaeda1,ShojiSugano1,MarikoNakagome1,AkioMiyao1,Chang-JieJiang1,HiroshiTakatsuji1,MasakiMori11NationalInstituteofAgrobiologicalSciencessatorum@nias.affrc.go.jpWe previously identified the rice BROAD-SPECTRUM RESISTANCE1 (BSR1) gene that encodes a receptor-likecytoplasmic kinase similar to Arabidopsis BIK1 by using FOXhunting system. Overexpression of BSR1 conferred resistanceto Pseudomonas syringae and Colletotrichum higginsianum inArabidopsis,toP. syringaeintomato,andtoXanthomonas oryzaeandMagnaporthe oryzaeinrice.ToexaminethefunctionofBSR1in defense signaling in rice, we performedmicroarray analyses.Transcript levels of 642 geneswere>2 fold higher inBSR1:OXrice comparedwithWT under normal growth condition. Part ofthese genes (17%) overlapped with BTH (SA analog)-induciblegenes. On the other hand, ~40% of the BTH-inducible genesincluding several WRKY genes were upregulated in BSR1:OXrice.WRKY45 is known to play a crucial role in BTH-inducedblast resistance through the SA pathway and its overexpressionconfers resistance to bothX. oryzae andM. oryzae. Microarraydata suggest that broad-spectrum disease resistance inBSR1:OXriceispartlymediatedbyactivationoftheSAsignalingincludingupregulationofWRKY45.Totestthis,BSR1:OXricewascrossedtotransgenicriceoverexpressingbacterialNahGgene(NahGrice)thatcontainsundetectablylowlevelsofendogenousSA.TranscriptlevelsofWRKY45inBSR1:OX/NahGF1plantswerecomparablewiththoseinBSR1:OXplantsandhigher,whilethoseinNahGricewere lower, incomparison toWT.Theseresults indicate that theupregulationofWRKY45 inBSR1:OXriceis independentofSA.Currently, studiesbyusing loss-of-functionmutantsofBSR1 areinprogress.

PS11-426DeterminationofRgenespecificityinbreadwheatRemy Kronbak1, Christina R. Ingvardsen1, Stephanie Walter2,Mogens S. Hovmoeller2, Preben B. Holm1, Henrik Brinch-Pedersen1,PerL.Gregersen11Department of Molecular Biology and Genetics, Science andTechnology, Aarhus University, Denmark., 2Department ofAgroecology, Science and Technology, Aarhus University,[email protected] protect themselves against pathogens through a range ofresistancegenes(Rgenes).OnemajorRgenefamilyiscomposedof the nucleotide binding (NB) leucine rich repeat (LRR) type.

Page 166: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession12-Evolutionofsusceptibilityandresistance

164

Post

er 1

2

When a p-loopmutatedNB-LRR type R gene ofA. thaliana isintroducedinawildtypebackgrounditactsdominantnegatively,conferring susceptibility to the pathogen normally obstructed bythewildtypeRgene.Basedonthis,astrategyhasbeendesignedto match novel R gene candidates in bread wheat (T. aestivum)to specific pathogens. The wheat - yellow rust (P. striiformis)systemwillbeusedforproof-of-concept,inthattheRgeneYr10holding the p-loopmutation will be transformed into the wheatcultivar Avocet-Yr10 harboring the wildtype gene. Transgeniclinesexpressing themutantareexpected toexhibit susceptibilityto an appropriate avirulent P. striiformis isolate harboring theAvrYr10 gene.For the subsequent screening strategy thecultivarBobwhite S-26 will be used and a specific library of expressedNB-LRR type R gene candidates will be established based ondeep transcriptome sequencing. Transgenic Bobwhite S-26 linesexpressingmutatedformsofRgenecandidateswillbeinoculatedwithaselectionofavirulentisolatesofP. striiformis.SusceptibilitytoaparticularisolatewillrevealthespecificityofthewildtypeRgenecorrespondingtothemutantinquestion.TheidentifiedRgenecanthenbeexploitedincropbreedingfordiseaseresistance.

PS11-427Visualisation of phylloplane biofilms using EpiscopicDifferentialInterferenceContrast(EDIC)microscopyandtheinvestigationofnitricoxideforbiofilmcontrolat thespinachphylloplaneNicolaGibbins1,JeremyS.Webb1,C.WilliamKeevil11Centre for Biological Sciences, University of Southampton,Southampton,UKng1e08@soton.ac.ukThecontrolofbiofilmandzoonoticpathogencolonisationat thesurfaceoffreshproducehasimportantimplicationsforcropyield,foodquality,andfoodsafety.Usingthespinachphylloplaneasourmodel,wehaveusedEpiscopicDifferentialInterferenceContrastmicroscopy (EDIC) coupled with Epifluorescence (EF) for thevisualisationofnaturalphylloplanebiofilms,andhaveintroducedGFP labelled Salmonella for the study of human pathogenicbacterialinteractionswiththeleafsurface.Inaddition,theuseofthesignallingmoleculenitricoxide,hasbeen investigatedfor itsability to influencebiofilmdispersal andpathogen removal fromthe phylloplane. The minimal sample preparation required forEDICmicroscopyallowsthevisualisationofleafassociatedbiofilmcommunitiesintheirnatural,unalteredstate.Stainingofthebiofilmmatrixshowstheyaremicrobialinorigin,andtheadditionofGFPlabelled Salmonella to leaves shows the ability of pathogens toexploitdiverseenvironmentalnichesforsurvivalatthephylloplane.Theinvestigationofnitricoxideasauniversalsignallingmoleculeforthereductionofbiofilmandpathogencontaminationhasshownsome promising results. Understanding the complex microbialcommunitiesfoundinthecropproductionenvironmentisessentialfor exploiting innate microbial behaviours, such as the nitricoxidesignallingresponse,forourowngain.Itishopedthatthesestudiescanbeappliedinacropproductionenvironmenttoreducemicrobialspoilageandpathogencontaminationoffreshproduce.

PS11-428PhysiologicalandenzymaticcharacterizationofBurkholderiaspp.isolotedfromcadmiumcontaminatedsoilManuellaN.Dourado1,PaulaF.Martins1,TiagoTezzoto1,MariaC.Quecine1,RicardoA.Azevedo11EscolaSuperiordeAgriculturaLuizdeQueiroz,UniversityofSaoPaulo,Piracicaba,Brazil,[email protected](Cd)canbeaddedtosoilthroughfertilizers,calcareous,pesticides and industrial and domestic effluents. It can beleachedtogroundwater,aswellasbetakenupbyplants,causingdamage to the environment and to human being. Adult coffeeplantswerecultivated ina soilwithout andwithCd (1.28mM),fromwhich tolerantbacteria frombothsoilswithpotential tobe

used to improve phytoremediation of contaminated soils wereisolated.Two isolatesofBurkholderiagenus tolerant todifferentmetals (5 mM of Cd, 4 mM of Ni, 15 mM Zn and 1 mMAl)were selected.The aim of this studywas to verify the potentialthat these two isolates has to be used associated with plants toremediate contaminated soil, characterizing these two isolatesenzymatically (esterase, lipase, cellulose, amylase andpectinase)and physiologically (phosphor solubilization, siderophoreproduction and cadmiumbioaccumulation). Itwas observed thatthesetwoBurkholderiaisolatedidnotproducecellulose,amylaseand pectinase enzymes, however it presented esterase and lipaseenzyme activities, promoted phosphate solubilization, exhibiteda high production of siderophore, which is responsible for ironchelation,butalsodescribedascadmiumchelator,decreasing itsavailabilityandtoxicitytoplants.Themostimportantresultwasthebioaccumulationlevelsexhibited:53to130μgofcadmiumin100mgofbacteriadrymassinbothisolates.Dataobtainedforphosphorsolubilization, siderophore production and Cd bioaccumulationrevealedthepotentialoftheBurkholderiasppisolatestobeusedinphytorremediationofcontaminatedsoils.

PS12-429IdentificationofageneticfactordeterminingthedurabilityofaplantmajorresistancegeneandquantitativeresistancetovirusaccumulationJulie Quenouille-Lederer1,2, Estelle Paulhiac1, Pascale Mistral1,Ghislaine Nemouchi1, Anne-Marie Sage-Palloix1, Bruno Savio1,VincentSimon2,BenoitMoury2,AlainPalloix11UnitedeGenetiqueetAmeliorationdesFruitsetLegumes,INRAPACA, Avignon, France., 2Unite de Pathologie Vegetale, INRAPACA,Avignon,[email protected] resistanceprovides efficient controlof cropdiseasesbutis limited by pathogen counteradaptation. The durability of thepvr23 allele, conferring resistance toPotato virus Y (PVY),wasdemonstratedtodependontheplantgeneticbackground.Inorderto identify genetic factors affecting the durability of the pvr23resistance, QTL mapping was performed using doubled-haploid(DH) lines issued from the F1 between twoCapsicum annuumlines:“Perennial”carryingpvr23inapartiallyresistantbackgroundand “Yolo Wonder” carrying the susceptible pvr2+ allele in asusceptible background. 350DH lineswere genotypedwith 234markersand the linkagemapwasestablished.The156DHlinescarryingthepvr23allelebutsegregatingforthegeneticbackgroundwere evaluated for two traits: the breakdown frequencyofpvr23(followinginoculationwithaPVYclonenonpathogenic(avirulent)towardspvr23)andthePVYaccumulation(followinginoculationwithamutantofthepreviousPVYclonecarryingasinglemutationconferring pathogenicity towards pvr23). Genotypic variancewas highly significant for the two traits with heritabilities of0.76 and 0.47.OnemajorQTL, explaining 29%of the varianceof pvr23 breakdown frequency was identified on chromosome3 and twoQTLs, explaining25%and9%ofPVYaccumulationvariation,were identifiedonchromosomes3 and6, respectively.Interestingly, themajorQTLfor the2 traitsmapped to thesameregion of chromosome 3.A putative pleiotropic effect affectingsimultaneously the two traits, theunderlyingmechanismand theperspectiveinbreedingforresistancedurabilitywillbediscussed.

PS12-430Hexose oxidase provides red algae with a mechanism forattackingbacteriaKimiOgasawara1,NoriyukiHatsugai21LaboratoryofMolecularBiology,GraduateschoolofAgriculture,HokkaidoUniversity, 2ResearchCenter forCooperativeProjects,[email protected] algae are believed to have their own defense strategyagainstpathogeninfection.However,thedefensesystemsagainst

Page 167: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession12-Evolutionofsusceptibilityandresistance

165

Poster 12

pathogeninfectiononmarinealgaeremaintoberesolvedandlittleisknownaboutwhethermarinealgae sharedefensemechanismswith land higher plants.Herewe provide a possiblemechanismunderlying alga immunity, which involves in hexose oxidase(HOX)-dependent production of hydrogen peroxide (H2O2). Wescreened red algae and found thatPtiropbora subcostata had anabilitytosuppressbacterialcolonization.Wepartiallypurifiedanenzymecontributing to theantibacterialactivity inP. sbucostata,which has 50% homologywithHOX ofChondrus crispus. In-gelactivityassayrevealed thatP. sucostatahasanHOXactivityinahexose-dependentmannerand the resistance tobacteriawascompletely inhibitedwithcatalase.Furthermore, thecolonizationofBacillus subtilis was strongly suppressed by around the algafrond ofP. subcostata onGYP agar plate,when alga frondwasplacedontheplatethathadbeenspreadwithsporesofB. subtilis.These results suggest thatH2O2production is responsible for thesuppressionofbacterialcolonization.Thus,ourresultssuggestthatHOX-mediatedH2O2production is important formarine algae toresistagainstbacterialpathogeninmarineenvironment.

PS12-431Identification and molecular mapping of a wheat gene forresistancetoaPolypogonisolateofColletotrichum cerealeRyota Mori1, Yoshihiro Inoue1, Yujiro Takahashi1, So Kiguchi1,YukioTosa11GraduateSchoolofAgriculturalSciences,KobeUniversity,Kobe,[email protected] elucidate genetic mechanisms of host species specificity inplant-microbe interactions, we analyzed interactions betweenanthracnose fungi and gramineous plants. Infection assaysrevealedthataSorgham isolate(Colletotrichum sublineolum),anAvenaisolate(C. cereale),aPolypogonisolate(C. cereale),andaDigitariaisolate(C. hanaui)werespecificallyvirulentontheplantsfromwhichtheywereisolated.When24wheatcultivars/accessionswere inoculated with a Polypogon isolate Cgp29, however, wefoundanexception;mostcultivarswereresistanttoCgp29whilecultivar Hope was susceptible. In F2 populations derived fromcrosses between three resistant cultivars, Norin4 (N4), ChineseSpring(CS)andShin-chunaga(Sch),andthesusceptiblecultivarHope,resistantandsusceptibleseedlingssegregatedina3:1ratio,suggestingthatamajorgeneisinvolvedintheresistanceofeachcultivartoCgp29.InF2populationsderivedfromcrossesbetweenthethreeresistantcultivars,allseedlingswereresistant,suggestingthat these three cultivars carry the same gene. This resistancegenewas tentatively designated asRcg1.Analysis with the CS-Hope chromosome substitution lines and molecular mappingrevealed thatRcg1was located on the long armof chromosome5A.Cytologically,Rcg1wasmainlyassociatedwithhypersensitivereaction.TheseresultssuggestthattheresistanceofwheatagainsttheanthracnosefungusofAsianminorbluegrass(atypeofnonhostresistance)iscontrolledbymajorgene(s)similartothoseinvolvedinthegene-for-geneinteractions.

PS12-432Identification and functional analysis of novel rice blast fieldresistancegene,OsXK2bTatsuyaMurakami1,YuhkoKobayashi1,IsseiKobayashi11Grad.Schl.ofRegion.Innova.Studies/LifeSci.Res.Cntr,[email protected] of crops to harborfield resistance genes,which hardlyoccurred break-down of resistance, is a pivotal strategy of cropprotection. Here, we identified a gene responsible for fieldresistance toblast disease from rice cv.Habataki,which cause apartialinhibitionofhyphalgrowthofriceblastfungusinricecells.Ahigh-densitylinkagemaparoundthelocuswasconstructedandacandidategene,OsXK2b,encodingxylulosekinasewasisolated.The candidate gene belonged to the FGGY carbohydrate kinase

familyaswellasNho1,knowntoneedfornonhost resistanceofArabidopsis thaliana. According to DNA sequence variation ofOsXK2b among various rice cultivars, twomissense SNPswerefound in the coding region and three haplotypes (Habataki type,Koshihikari type,andSasanishiki type)containingdifferentpairsofSNPswerepresent.Whendegreeofriceblast resistancewereexaminedintransgenicriceplantswhichwereoverexpressedeachhaplotype, an overexpressor of Habataki type OsXK2b showedstronginhibitionofhyphalgrowthofblastfungus,comparedwithNipponbare which are harboring Sasanishiki type. These resultsstronglysuggestthatOsXK2bisacausalgeneofthetraitoffieldresistance.Ontheotherhand,resultsofxylulosekinaseassayofOsXK2brecombinantproteinfromeachhaplotypegenerevealedthatdegreesoftheresistanceandactivitiesofxylulosekinasewerenegativelycorrelated.Moreover,OsXK2bknockoutmutantshowedmarkedly enhanced resistance to the fungus. It is suggested thatOsXK2bmay negatively regulatemechanisms of field resistanceagainstblastfungusinriceplants.

PS12-433EvolutionoftheresistanceagainstTMVinNicotianaspp.HanhuiKuang1,FeihongRen1,ShuminChen1,JiongjiongChen11Dept of Vegetable crops, Huazhong Agricultural University,Wuhan,[email protected] resistance genes were generated and maintained in wildplantspecieslargelyremainunknown.WestudiedtheevolutionofresistanceagainstTobacco mosaic virus (TMV) in theNicotianaspecies.TheonlyknownresistancegeneagainstTMVinNicotianaistheNgenefromN. glutinosa.OurmappingresultsshowedthattheresistanceagainstTMVinatleastotherthreeNicotianaspecieswerealsofromtheNlocus.However,theallNhomologuesfromthe three species have less than 95% nucleotide identities withtheNgene.ButthealternativeexonisnotpresentinanyotherNhomologues.WehypothesizethattheresistanceinwildNicotianaspecies were generated independently though they are from thesamelocus.TwodifferentNsequenceswerefoundfromthesevengenotypesofN. glutinosa,whichexhibit45polymorophicsitesinthe 6,658 bp region.To better understand themutation of theNandYPgene(anotherresistancegeneagainstTMV),theavirulencegene from TMV was transformed into a susceptible tobaccogenotype,andthetransformantwithhomozygousavirulencegenewascrossedwiththeTMVresistancegenotypes.Approximately2millionhybridseedswerescreenedforeachofthetwogenotypes.Consequently,morethan100lossoffunctionNmutantsand258lossoffunctionYPmutantswerediscovered.Mostofthelossoffunctionof theNgenewasdue toa largedeletionsspanningtheentireNgene.ThevariationofmutationratebetweentheNandtheYPgeneswillbediscussed.

PS12-434ThechloroplastRECA1 isrequiredfor the immuneresponseofArabidopsistobacterialpathogenPseudomonas syringaepv.tomatoDC3000HyesungJeon1,JunyoungKwon1,HyeyunLee1,MinkyunKim1

1Department of Agricultural Biotechnology, Seoul NationalUniversity,Seoul,[email protected], the descendant of a cyanobacterial ancestor thatestablished symbiotic relationship with ancient eukaryotic host,is involvedinvariousbiologicalprocesses includingbioticstressresponsesinhigherplants.ItwasinvestigatedwhetherRECA1,anArabidopsischloroplasthomologofbacterialrecombinaseRecA,mightbeinvolvedinbioticstressresponsesinhigherplants.First,theRECA1 transcriptswere found to be induced inArabidopsisplants upon treatments with BTH, SA, MeJA, and ethephon,respectively. Microarray experiments showed that RECA1overexpression changed the expression of numerous genes inArabidopsis,includingthedefense-responsivegenesthataccounted

Page 168: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession13-Plantresponse

166

Post

er 1

3

forabout20%oftheup-regulatedgenes.Thesedefense-responsivegenesincludedabroadrangeofgenesrequiredforplantdefensesignalingagainstbacterialpathogen,includingtheupstreamdiseaseresistancegenesthatencodePAMP-oreffector-recognizingfactorsaswell as the resistance-associated signaling or the downstreamPRgenes.RECA1-overexpressingtransgenicplantsshowedhigherlevels of SA accumulation than wild-type Arabidopsis, whilstrecA1 mutant plants showed opposite results. Consistently, thegenesinvolvedinSAbiosynthesisweredifferentiallyexpressedbyRECA1.Allof theseresultswereinharmonywiththeresistanceof RECA1-overexpressing plants or the susceptibility of recA1mutant to Pseudomonas syringae pv. tomato DC3000. GeneticexperimentsfurthershowedthatRECA1playsaroleintheNPR1-dependantactivationofPRgeneexpressions.Combinedtogether,itwasconcludedthatchloroplastRECA1isrequiredfortheimmuneresponseofhigherplants tobacterialpathogen,which is thoughtto have been developed via inter-organellar signaling involvingchloroplastoverthecourseofplantevolution.

PS12-435Purple acid phosphatase 5 is required for regulation ofdefenseresponsesagainstPseudomonas syringaepv.tomatoinArabidopsisSridharRavichandran1,SophiaStone1,BalakrishnanPrithiviraj21Department of Biology, Dalhousie University, 2Deparment ofEnvironmentalSciences,[email protected] identify components of plant defense responses,we screeneda population of T-DNA mutants in Colombia-0 background forenhanceddiseasesusceptibilitytovirulentPseudomonas syringae pv. tomato DC3000 (Pst DC3000). We demonstrate that theArabidopsis Purple Acid Phosphatse 5 (PAP5), induced underprolongedphosphate(Pi)starvationisalsorequiredformaintainingbasalresistancetocertainpathogens.pap5mutantplantsdisplayedenhanced susceptibility to both virulent and avirulent isolatesof bacterial pathogen Pst DC3000 and expression of pathogeninduciblegenePR1wasseveralfoldlowerthaninwildtypeplants.Similarly,otherdefenserelatedgenesincludingICS1andPDF1.2werealsosuppressedinpap5plants.Moreover,treatmentofpap5withBTH (analog of SA) reversed PR1 gene expression.Takentogether,theseresultsprovideevidencesthatPAP5actupstreamofSAaccumulationtoregulateexpressionofotherdefenseresponsivegenesinplantsinfectedwithPstDC3000.

PS12-436ThecompletegenomesequenceofSouthernriceblack-streakeddwarfvirusisolatedfromVietnamThi-SauDinh1,2,CuijiZhou1,XiulingCao1,ChengguiHan1,JialinYu1,DaweiLi1,YongliangZhang11State Key Laboratory of Agro-Biotechnology, College ofBiologicalSciences,ChinaAgriculturalUniversity,Beijing,China,2FacultyofAgricultureForestryFisheries,VinhUniversity,Vinhcity,NgheAnprovince42000,Vietnamcauzhangyl@cau.edu.cnWedeterminedthecompletegenomesequenceofaVietnamisolateof Southern rice black-streaked dwarf virus (SRBSDV).Wholegenome comparisons and phylogenetic analysis showed thatthe genome ofVietnam isolate shared high nucleotide sequenceidentities of over 97.5% with those of the reported Chineseisolates, confirming a common origin of them. Moreover, themost divergence between different SRBSDV isolates lied in thesegmentsS1,S3,S4andS6,whichwasdifferentfromthesequencealignmentresultsbetweenSRBSDVandRice black streaked dwarf virus (RBSDV), implying that SRBSDV evolved in a uniqueway independent ofRBSDV.This is thefirst report of completenucleotidesequenceofSRBSDVinVietnamandourdataprovidenew clues for further understanding of molecular variation andepidemiologyofSRBSDVinSoutheastAsia.

PS13-437CloningandcharacterizationofanovelcanonicalriceresistancegenetoXanthomonas oryzaepv.oryzaeYingChen1,ZuhuaHe11InstituteofPlantPhysiologyandEcology,SIBS,[email protected] oryzae pv. oryzae (Xoo) is the causal agent ofbacterial leaf blight of rice.Thefirst cloned rice resistance genetoXoo,Xa21,encodesapatternrecognitionreceptor(PRR)RLKthat recognizes the PAMPmoleculeAX21, which is compatibleto the Korean strain DY89031 (J18) that contains mutation inAX21production,resultinginresistancebreakdownintheXa21-containging varieties.We propose that durable resistance mightbe ensured by pyramidingXa21 and other typical R genes thatrecognizetype3effectorsofXoo.Withthisscenario,wefoundthataChinese native varietySKZexhibits race-specific resistance toDY89031.WemappedthenewdominantresistancegeneXa38(t)to a 50-kb region on chromosome 3 where no any resistance-relatedgenehasbeenidentified.Wefoundthat theinsertionofatransposibleelementresultsinthefunctionalresistancegenefromthenon-functionallocus.OurcurrentstudysuggeststhatDY89031should secrete an unrecognizedAvr effector that is specificallyrecognized by XA38(t) in SKZ. We also found that XA38(t)-mediated resistance could partially inhibit XA21-miediatedresistanceprobablyduetotheETI-PTIinteraction.

PS13-438The GDSL/SGNH lipases OsGL1 and OsGL2 negativelyregulatebasalimmunityinriceMingjunGao1,WeibingYang1,ZuhuaHe11InstituteofPlantPhysiologyandEcology,SIBS,CAS.Shanghai,Chinamjgao@sibs.ac.cnLipidsandlipidmetabolitesplayimportantrolesinplant-microbeinteractions, and lipases catalyze lipid metabolism. However,functions of lipases in plant defense signaling remain largelyunknown.Here,wereporttheidentificationandfunctionalanalysisof two rice lipase genes, OsGL1 and OsGL2, which encodeputativeGDSL/SGNHlipases.ExpressionofOsGL1andOsGL2wassuppressedinresponsetopathogenaswellasBTHtreatment.OsGL1 was mainly expressed in leaf and leaf sheath, whereasOsGL2 showed high expression in the elongating internode andnode. Biochemical analysis demonstrated that both OsGL1 andOsGL2 recombinantproteinsdisplay lipaseactivity tohydrolyzep-nitrophenylacetateandp-nitrophenylbutyrateinvitro.Instabletransgenicriceplants,wefoundthatOsGL1localizedtopunctatedotsresemblinglipidbodieswhileOsGL2wastargetedtothecellwall.To explore the biological functions ofOsGL1 andOsGL2,we simultaneously suppressed the expression of both genes andfoundthatOsGL1/2RNAiplantsdisplayedenhancedresistancetothebacterialpathogenXanthomonas oryzae pv. oryzae.Bycontrast,OsGL1andOsGL2overexpressedplantsweremoresusceptibletothepathogen.Takentogether,ourresultsindicatethatOsGL1andOsGL2arenegativeregulatorsofricebasaldiseaseresistanceandprovide insights into the functions of lipases in plant immunityresponse.

PS13-439A rice chitinase-like xylanase inhibitor protein, OsXI1, isrelatedwithantifungalactivityandplantdevelopmentDongYeolLee1,JingniWu1,YimingWang2,SangGonKim2,SunTaeKim3,KyuYoungKang1,21DivisionofAppliedLifeScience (BK21program),GyeongsangNationalUniversity,Jinju,SouthKorea,,2PlantMolecularBiologyand Biotechnology Research Center, Gyeongsang NationalUniversity, Jinju, 660-701, South Korea,, 3Department of PlantBioscience,PusanNationalUniversity,Miryang, 627-706,South

Page 169: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession13-Plantresponse

167

Poster 13

[email protected],wecharacterizedaTAXI type ricexylanase inhibitorgene,OsXI1,whichwasinducedbyriceblastfungusMagnaporthe oryzae. Immunohistochemcal analysis with OsXI1 antibodyshowedthatOsXI1ishighlyaccumulatedinroottissue,especiallyintheelongationregion.However,thepurifiedrecombinantproteindo not inhibit both β-1,3-xylanase and β-1,4-xylanase activity,indicatingOsXI1doesnotcontainxylanaseinhibitingactivity.WethenconfirmedtheongelchitinaseactivityofrecombinantOsXI1,andtreatmentofOsXI1causedcellwalldegradationofRhizoctonia solani.ThesedataindicatedthatOsXI1wasrelatedwithpathogendefense by its chitinase activity. Furthermore, T-DNA knockoutmutantofOsXI1showedadwarfphenotype,adifferentseedshapeandrootdevelopment.Wefurtherapplied2-DGEanalysisofroottissues ofwild type andOsXI1mutant. 2-D close viewand3-Dview of each significant regulated protein spots were generatedandthesespotswereidentifiedbyMALDI-TOFMS.Acalreticulinprotein and Calcium-dependent protein kinase gene (CDPK1)werenotdetectedintheOsXI1mutant,andstressrelatedproteinsphosphoglyceratekinaseandchaperoninwereincreased,indicatingthat the loss of OsXI1 may interfere the intracellular calciumconcentration.Additional calcium in theculturemediumshowedarescueeffectonrootlengthandlateralrootdevelopment.Takentogether, the OsXI1may a multi-functional protein related withbothpathogendefenseandplantdevelopment.

PS13-440Connecting pathogen perception to transcriptionalreprogramminginplantimmuneresponsesNoraA.Peine1,AnaV.Garcia2,JaquelineBautor1,JaneE.Parker11Department of Plant-Microbe Interactions,MaxPlanck InstituteforPlantBreedingResearch,Cologne,Germany,2PlantGenomicsResearch, Unite de Recherche en Genomique Vegetale, InstitutNationaldelarechercheagronomique,Evry,[email protected] plants, defense activation to invading pathogens is mediatedby germ-line encoded receptor proteins. Intracellular NucleotideBinding-Leucine-Rich-Repeat(NB-LRR)receptorscanrecognizespecificpathogeneffectorsandtriggerplantresistance.Weaimtolearnmoreaboutprocessesconnectingimmunereceptoractivationto defense outputs.An important regulatory hub for initiation ofdefense responses is controlled by the protein EDS1 (EnhancedDiseaseSusceptibility1).Togetherwithitsinteractionandsignalingpartners,PAD4andSAG101,EDS1isrequiredforbasaldefensetovirulentbiotrophicpathogensandforTIR-NB-LRR(withaToll-Interleukin1Receptordomain)triggeredresistance.IntheTIR-NB-LRR-conditioned immune response, EDS1 operates downstreamof receptor activation but upstream of cell death initiation,accumulation of reactive oxygen species, induction of the stresshormonesalicylicacid(SA)andtranscriptionalreprogramming.WehaveshownthatEDS1shuttlesbetweenthecytoplasmandnucleusandthatdifferentEDS1complexesinthesecompartmentscooperateinmediatingacompleteimmuneresponse.Togainfurtherinsightinto how EDS1 and its signaling partners coordinate multipledefense outputs, transgenic Arabidopsis lines were generatedinwhichEDS1 is forced into thenucleusby fusion to anuclearlocalization signal (NLS). Plants lacking cytoplasmic EDS1 butexpressinghighlevelsofnuclearEDS1inducedefenseresponsessuch as SA accumulation and transcriptional reprogramming intheabsenceofapathogentrigger.ThesecharacteristicsofEDS1-NLS lines are dependent onPAD4.Conditional accumulationofnuclearEDS1viaanestradiol-induciblepromoterrevealsstrikingdifferences between immediate and long term effects of nuclearEDS1whichwearenowexploring.

PS13-441Leaf oil bodies produce an anti-fungal compound actively indyingtissues

Takashi L. Shimada1,2, Yoshitaka Takano2, Tomoo Shimada1,Masayuki Fujiwara3, Yoichiro Fukao3, Masashi Mori4, RyosukeSasaki5,6,KohAoki5,6,IkukoHara-Nishimura11Graduate School of Science, Kyoto University, Kyoto, Japan,2GraduateSchoolofAgriculture,KyotoUniversity,Kyoto,Japan,3GraduateSchoolofBiologicalSciences,NaraInstituteofScienceandTechnology,Nara,Japan,4ResearchInstituteforBioresourcesand Biotechnology, Ishikawa Prefectural University, Ishikawa,Japan, 5Kazusa DNAResearch Institute, Chiba, Japan, 6CREST,JST,[email protected] bodies are known to function as lipid-storage organelle,which is a passive function.They arepresent in various cells ofmanylandplants.However,theactivefunctionsofoilbodiesarenot clear, especially in leaves.Herewe show that two oil-body-localized proteins, which are induced by senescence and fungalinfection, produce an anti-fungal compound.We reveal that oilbodies contained an α-dioxygenase, which is a novel oil-body-localizedprotein,andacaleosinbyproteomicanalysisofoilbodiesprepared from Arabidopsis leaves. Interestingly, after infectionwiththepathogenicfungusColletotrichum higginsianum,boththeα-dioxygenaseandthecaleosinareinduced,andtheyaretargetedtothesurfaceofleafoilbodiesinplanttissuessurroundingpathogeninfectionsites.Recombinantα-dioxygenaseandcaleosinmadeanoxygenatedfattyacid(oxylipin)fromα-linolenicacid(amajorlipidcomponentofoilbodies)viaanunstableintermediatebyacouplingreaction. Importantly,we found that theoxylipinhad anti-fungalactivityagainstC. higginsianumandC. orbiculare.Thesefindingsindicate that oil bodies containing the two enzymes functionas subcellular factories that produce the anti-fungal oxylipin inresponsetofungalinfection.Interestingly,boththeα-dioxygenaseand the caleosin are also induced by leaf senescence.Metabolicanalysisrevealedthatsenescedleavescontainedtheoxylipin.Weofferoilbody-mediateddefensewhichplantsmighthaveevolvedtoprevent fungi fromachieving second infection tonewhealthyplants.

PS13-442PlantprogrammedcelldeathcausedbyanautoactiveformofPrfissuppressedbyco-expressionofthePrfLRRdomainXinranDu1,MinMiao1,GregoryB.Martin2,FangmingXiao11Dept. of Plant, Soil and Entomological Sciences, Universityof Idaho, 2Boyce Thompson Institute for Plant Research andDepartmentofPlantPathologyandPlant-MicrobeBiology,CornellUniversity,Ithaca,NY14853,[email protected] tomato, the NBARC-LRR resistance (R) protein Prf acts inconcertwiththePtoorFenkinasetodetermineimmunityagainstPseudomonas syringae pv tomato (Pst). Prf-mediated defensesignalingisinitiatedbytherecognitionoftwosequence-unrelatedPstsecretedeffectorproteins,AvrPtoandAvrPtoB,bytomatoPtoorFen.Prfdetectstheseinteractionsandactivatessignalingleadingtohostdefenseresponsesincludinglocalizedprogrammedcelldeath(PCD)thatisassociatedwiththearrestofPstgrowth.WefoundthatPrfvariantswithsingleaminoacidsubstitutionsatD1416 in theIDHmotifintheNBARCdomaincauseeffector-independentPCDwhen transiently expressed in leaves ofNicotiana benthamiana,suggestingD1416playsanimportantroleinactivationofPrf.TheN-terminalregionofPrf(NPrf)andtheLRRdomainarerequiredfor this autoactive Prf cell death signaling but dispensable foraccumulationofthePrfD1416Vprotein.Significantly,co-expressionofthePrfLRRbutnotNPrf,withPrfD1416V,AvrPto/Pto,AvrPtoB/Pto,anautoactiveformofPto(PtoY207D),orFencompletelysuppressesPCD.However,thePrfLRRdoesnotinterferewithPCDcausedbyRpi-blb1D475V,adistinctRprotein-mediatedPCDsignalingevent,orthatcausedbyoverexpressionofMAPKKKα,aproteinactingdownstreamofPrf.Furthermore,wefoundthePrfD1416Vproteinisunabletoaccumulateinplantcellswhenco-expressedwiththePrfLRRdomain,likelyexplainingthecelldeathsuppression,despitetheunderlyingmechanismisunknown.

Page 170: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession13-Plantresponse

168

Post

er 1

3

PS13-443Carbon/nitrogenregulatoryubiquitinligaseATL31andATL6controlthedefenseresponseinArabidopsisShugo Maekawa1, Shigetaka Yasuda1, Takeo Sato1, JunjiYamaguchi11FacultyofScienceandGraduateSchoolofLifeScience,HokkaidoUniversity,Sapporo,[email protected],themetabolismofcarbon(C)andnitrogennutrients(N)ismutuallyregulatedandreferredtoas theCandNbalance(C/N).PlantsarethusabletosenseandregulatetheircellularC/Nstatus to optimize their growth. Arabidopsis ATL31 and ATL6encodeaRING-typeubiquitinligaseswhichplayacriticalroleintheC/Nstatusresponse(Satoetal.PlantJ.2009).SincemanyATLmembersareinvolvedintheplantdefenseresponse,weevaluatedwhethertheATL31andATL6areinvolvedindefenseresponses.OurresultsconfirmedthatATL31andATL6expressionisup-regulatedwithflg22aswellaswithinfectionswithPseudomonas syringaepv. tomato DC3000 (Pst. DC3000).Moreover, transgenic plantsoverexpressingATL31andATL6displayedincreasedresistancetoPst.DC3000whereasatl31 atl6doubleknockoutmutantresultedin reduced. Further study demonstrated that the expression ofATL31/ATL6 and defense marker genes was regulated by C/Nconditions.Taken together, these results indicate thatATL31andATL6functionaskeycomponentsofbothC/NregulationandthedefenseresponseinArabidopsis(Maekawaetal.PlantMol.Biol.2012).RelationshipsbetweenC/Nregulationanddefenseresponsewillbediscussed.

PS13-444Cloning of rice blast resistance gene Pi34 and comparativeanalysistoexploreacueofdurableresistanceHidekiKito1,KaoruZenbayashi-Sawata11TohokuAgricultural Research Center, NationalAgriculture [email protected] blast resistant cultivars have been intensively bred byintroducingblast resistancegenes to rice all over theworld.Butmanycompleteresistanceshavebeencollapsedbynewriceblastraceswithin a few years after rice cultivarswere spread. In theother hand, partial resistance to rice blast is thought to providea durable resistance to plants. To understand the mechanism ofdurableresistance,weclonedthepartialresistancegenePi34thatwas identified from rice cultivar Chubu 32 using QTL analysis(Zenbayashietal,2002,2007),whichlocatedin224kbgenomicregionofchr.11.ThenucleotidesequenceofPi34hadnohomologywithknownblastresistancegenesandthepredictedfunctionofthisgenewasunknown.We investigated thecytological responsesofriceleafbladecellstoriceblastinfectionusingnearisogeniclines(NILs), which were introduced chromosomal region harboringPi34 or complete resistance genePib.This comparison ofNILsrevealedthatH2O2accumulationpatternsofthemweresimilarin24hourspostinoculation(hpi),butdifferentin48hpi.ThisfindingindicatedthatpresenceofH2O2in24hpiwasnotseriousfactorforpartialresistance,butquantitativeeffectofH2O2thereaftershouldbeclarifiedbyfartheranalysis.

PS13-445Qa-SNAREs localized to the trans-Golgi network regulatemultiple transport pathways and extracellular diseaseresistanceinplantsTomohiroUemura1, HyeranKim2, Chieko Saito3, Kazuo Ebine1,TakashiUeda1,PaulSchulze-Lefert2,AkihikoNakano1,31Graduate School of Science,University ofTokyo, 2Max PlanckInstituteforPlantBreedingResearch,3RIKEN,[email protected]

Inalleukaryoticcells,amembranetraffickingsystemconnectsthepost-Golgiorganelles,suchasthetrans-Golginetwork,endosomes,vacuoles,andtheplasmamembrane.Thiscomplexnetworkplayscritical roles in several higher-order functions in multicellularorganisms.TheTGN,oneof the importantorganellesforproteintransportinthepost-Golginetwork,functionsasasortingstation,where cargo proteins are directed to the appropriate post-Golgicompartments. Unlike its roles in animal and yeast cells, theTGN has also been reported to function like early endosomalcompartments inplant cells.However, thephysiological rolesoftheTGNfunctions inplants arenotunderstood.Here,we reporta studyof theSYP4group,which represents theplantorthologsof theTlg2/syntaxin16Qa-SNARE that localizeson theTGN inyeast and animal cells. The SYP4 group regulates the secretoryand vacuolar transport pathways in the post-Golgi network andmaintains the morphology of the Golgi apparatus and TGN.Consistentwith a secretory role, SYP4 proteins are required forextracellular resistance responses to a fungal pathogen.We alsorevealaplantcell-specifichigherorderroleoftheSYP4groupintheprotectionofchloroplastsfromsalicylicacid-dependentbioticstress.

PS13-446ApseudokinaseunderbalancingselectionconfersquantitativeandbroadspectrumdiseaseresistanceinArabidopsisCarine Huard-Chauveau1, Marilyne Debieu1, Laure Perchepied1,CedricGlorieux2,NathalieFaure2,JoyBergelson3,FabriceRoux2,DominiqueRoby11UMR CNRS-INRA Laboratory of Plant-MicroorganismInteractions, 2Laboratoire de Genetique et Evolution desPopulationsVegetales,UMRCNRS8198,Universite;desScienceset Technologies; Lille 1, France, 3Department of Ecology andEvolution,University ofChicago, 1101E. 57th Street,Chicago,IL60637,USACarine.Chauveau@toulouse.inra.frPathogensareathreatforcropsandnaturalpopulations.Amajorchallengeinplantbreedingandevolutionarybiologyistoidentifythe genetic and molecular bases for natural resistance variationin plant species. The identification of genes underlying naturalresistancevariationmighthaveenormouspracticalimplicationsbyincreasingcropyieldandquality,andgivefundamentalinsightsinthepredictionof evolutionary trajectoriesof natural populations.We aimed at identifying key genes underlying quantitativeresistance in Arabidopsis thaliana to a pathogen species of thebacterial foliar community, i.e. Xanthomonas campestris pv.campestris(Xcc).BlackrotofcruciferscausedbyXccispossiblythemostimportantdiseaseofcrucifersworldwide,andthegeneticbasesforresistancetothisdiseasearenotyetunderstood.Wereporttheidentification,map-basedcloningandfunctionalvalidationofaQTL(QRX3/RKS1)whichconfersresistancetoseveralXccracesinArabidopsis thaliana.Thisgeneencodesanapparentpseudokinasewhosetranscriptionlevelvariationisinvolvedinnaturalvariationofresistance toXcc.ThegenomicregionassociatedwithQRX3/RKS1wasalsoidentifiedbyperformingGenomeWideAssociation(GWA)mappingatdifferentspatialscales,makingunequivocallyQRX3/RKS1amajorcontributoratthespecieslevel.Datawillbepresented concerning the identification, functional analysis andmolecularevolutionofthisnovelquantitativeresistancegene.

PS13-447CharacterizationofconstitutivelyactiveOsRac1(CA-gOsRac1)transgenicriceplantsgeneratedbygenetargetingThuT.Dang1,ShimataniZenpei2,RieTerada2,YojiKawano1,KoShimamoto11LaboratoryofPlantMolecularGenetics,NaraInstituteofScienceandTechnology,Nara,Japan,2MeijoUniversity,Nagoya,[email protected]/Ropfamily,whichtakestwoformsinthecells:GDP-boundinactiveandGTP-bound

Page 171: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession13-Plantresponse

169

Poster 13

activeforms.PreviousstudiesshowedthatOsRac1playsakeyroleinriceimmunitybyregulatingbothPAMPs-triggeredandeffector-triggered immune responses. The constitutively active (CA)G19VmutationofOsRac1wasshowntoinduceROSproduction,phytoalexin synthesis, and defense gene activation leading toresistancetoriceblastinfection.TofurtherstudytheeffectoftheG19Vmutationondiseaseresistanceweappliedagenetargetingmethod togenerate riceplantswhoseoriginalOsRac1 locuswasmodifiedtotheCAform.ThetargetedCA-OsRac1geneistermedCA-gOsRac1.We found that transgenic plants carried both wildtypeandonemutantallele(CA-gOsRac1) in thefirstgeneration.Thismutationwas stably transmitted to the next generation andthe mutated gene was expressed at the mRNA level. Levels ofmutanttranscriptswereverylowinleafblade,rootandsuspensioncells but those in leaf sheath andpaniclewere higher.However,upon chitin treatment, defense-related genes such as PAL1 andPBZ1weremore activated in transgenicCA-gOsRac1 comparedtowildtype.Inaddition,theinductionofcelldeathwasobservedinleafsheathofCA-gOsRac1plantinfectedbyblastfungus.RNAprofilingofCA-gOsRac1indicatedthatitinducedgenesactivatedbyM. oryzaeandX. ooinfectionthroughmanysignalingprocesses.TheseresultssuggestthatCA-gOsRac1plantsshowedconstitutiveimmuneresponsesintheabsenceofinfection.

PS13-448Geraniol synthase whosemRNA is induced by host-selectiveACT-toxin in theACT-toxin-insensitive rough lemon (Citrus jambhiri)Hodaka Shishido1, Yoko Miyamoto1, Rika Ozawa2, YumikoKokudo-Yamasaki1, Shiduku Taniguchi1, Junji Takabayashi2,KazuyaAkimitsu1,KenjiGomi11Faculty of Agriculture, Kagawa University, Kagawa, Japan,2Center for Ecological Research, KyotoUniversity, Otsu, Shiga,[email protected] alternataproducehost-selectivetoxins(HSTs)thatareselectivelytoxictocertaincultivarsofplants.HSTsofA. alternata are lowmolecularweight, secondarymetaboliteswith toxicity toward distinct plant genotypes, and have thesame specificity as infection by the toxin-producing pathogens.Pathogenicity of A. alternata producing HSTs depends on theHSTs.The tangerine pathotype ofA. alternata causesAlternariabrown spot disease,which affectsmany tangerine andmandarincultivars and their hybrids, and the pathogenicity is dependenton theproductionofACT-toxin.However, theroleofACT-toxininACT-toxin-insensitive plants is currently unknown. Here, westudied the role ofACT-toxin using anACT-toxin producingA. alternata strain SH20 and theACT-toxin-insensitive plant roughlemon(Citrus jambhiri).InductionofsomedefenserelatedgenesinresponsetoSH20werefasterorstrongerthaninresponsetotheACT-toxindeficientSH20mutant.BysequencingsubtractivePCRclonesobtainedfrommRNAofroughlemonleavesinoculatedwithSH20aftersubtractionwiththatoftheACT-toxindeficientSH20mutant,we isolated the SH20-responsive genes in rough lemon.Among the SH20-responsive genes analyzed in this study, weisolateda terpenesynthasegene,RlemTPS3.Wealsodeterminedthat RlemTPS3 localizes to the chloroplast and produces themonoterpenegeraniolwhichisreleasedfromroughlemonleaves.GeraniolhasantifungalactivityagainstA. alternata.Therefore,itissuggestedthatgeraniolproducedbyRlemTPS3playsimportantroleinroughlemonresistance.

PS13-449A novel transcription factor, ANAC042, involved in theregulationofcamalexinbiosynthesisinArabidopsisDaisakuOhta1,HirohisaSaga1,TakumiOgawa11Graduate School of Life and Environmental Sciences, [email protected]

CamalexinisthemajorphytoalexininArabidopsis.Thecamalexinbiosyntheticgeneshavebeenalmostcompletelyelucidated,whilemolecular mechanisms underlying camalexin induction are stillincompletelyunderstood.Here,wereportthefirstcharacterizationstudy on the involvement of ANAC042, a member of NACtranscription factor family genes, in camalexin biosynthesisinduction. T-DNA insertion events within ANAC042 resulted ingreatly reduced levels of camalexin production, and enhancedsusceptibilitytotheinfectionofAlternaria brassicicola.Transcriptlevels of camalexin biosynthetic genes (CYP71A12,CYP71A13,andCYP71B15/PAD3) were greatly lower in the mutants undercamalexin induction conditions, indicating that the camalexindefectscouldbeascribed,atleastinpart,tothereducedexpressionlevels of these P450 genes. GUS-reporter assays demonstrateddifferentialinductionresponsesofANAC042towardsbacterialandfungalpathogens.Particularly,ANAC042expressionwasinducedbybacterialflagellin(Flg22)intherootelongationzone,thecamalexinbiosyntheticsite,andtheinductionwasinhibitedbyaddingeithera general kinase inhibitor K252a, a Ca2+-chelator BAPTA, ormethyljasmonate.TheFlg22-dependentANAC042inductionwasabolished in ethylene-insensitive ein2-1 mutant plants, whereassid2-2 plants defective for salicylic acid biosynthesis exhibitednormalresponses,indicatingthepossibleinvolvementofethylenesignalingintheinductionofANAC042.WediscussANAC042asakeytranscriptionfactorinvolvedinpreviouslyunknownregulatorymechanisms, differentially involved in response to bacterial andfungal pathogen infection, to induce phytoalexin biosynthesis inArabidopsis.

PS13-450The anticipation of danger: MAMP perception enhancesAtPep-triggeredoxidativeburstDominik Klauser1, Sebastian Bartels1, Pascale Flury2, ThomasBoller11TheBotanical Institute,UniversityofBasel,Basel,Switzerland,2Institute of Integrative Biology, Plant Pathology, Swiss FederalInstituteofTechnology,Zurich,[email protected] endogenous Arabidopsis peptides AtPeps elicit an innateimmuneresponsereminiscentofPTI(pattern-triggeredimmunity).Detectionofvariousdangersignals includingmicrobe-associatedmolecular patterns (MAMPs) like flg22 leads to elevatedtranscriptionofPROPEPs,theAtPepprecursors,andtheirreceptors.It has been hypothesized thatAtPeps are involved in enhancingMAMP-triggered immunity. Following this idea we analyzedthe relationship between MAMP- and AtPep-elicited signaling.Wefound that theperceptionofMAMPsenhancedasubsequentAtPep-triggered production of reactive oxygen species (ROS).Intriguingly, other components ofAtPep-triggered immunity likeCa2+-influx, MAP kinase phosphorylation, ethylene productionand expression of early defense genes and ROS-activated genesremained unchanged. Similarly, we positively correlated theintensities of AtPep-triggered response with the abundance ofthe two AtPep-receptors by generating constitutively expressingPEPR1 andPEPR2 transgenic lines andby analyzingpepr1 andpepr2knockoutplants.FurtherweshowthatenhancedaswellasbasalROSproductiontriggeredbyAtPepsisabsentintherbohDrbohFdoublemutant.WepresentevidencethattheenhancementofAtPep-triggeredROSisnotbasedonsimplechangesintheROSdetoxificationmachinery and is independent ofMAPkinase andCa2+signalingpathways.TakentogetherwesuggesthowpotentialfunctionsfortheenhancementofAtPep-elicitedROSbypreviousMAMP perception: First, the strong ROS release might impairmicrobial growth in areas of AtPep release, and second, ROStriggered by AtPeps might take part in ROS mediated systemicsignalinginthecaseofdanger.

PS13-451Imaging analysis of mitochondrial movement in rice cellsduringriceMagnaporthe oryzaeinteractions

Page 172: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession13-Plantresponse

170

Post

er 1

3

SusumuMochizuki1,2,Ken-ichiroSaitoh1,YasuyukiKubo2,EiichiMinami1,YokoNishizawa11National Institute of Agrobiological Sciences, Tsukuba, Japan,2KyotoPrefecturalUniversity,Kyoto,[email protected] produced transgenic rice plants in which some organelles,including mitochondria, were labeled with green fluorescentprotein to analyze organelles changes during the early infectionprocess. Microscopic observations of rice sheathes inoculatedwithMagnaporthe oryzae revealed thatmitochondrialmovementaltersaroundtheinfectionsitesinincompatibleinteractions.Twotypesofalterationofmitochondrialdistributionwereobserved.Inthe cells contactingwith an appressorium,mitochondria radiallytranslocated toward theappressorium(type-Idistribution). In thecellsaroundtheinvadedcell,mitochondriatranslocatedtothesideclose to the invaded cell (type-II distribution). The remarkabletype-II distribution pattern was observed after the adjacent cellshowed hypersensitive reaction. Neither type of mitochondrialdistribution pattern was observed when inoculated with M. oryzaemutantsdeficientinpenetration: thesdhmutant, inwhichappressoria cannotmature, and themst12 mutant, which cannotdevelop penetration pegs. This result indicates that alterationof mitochondrial distribution in a rice cell requires the fungalpenetration into thenearbycells.Thealterationofmitochondrialdistributionwasnotobservedincompatibleinteractions,however,thecellsinfectedbythessd1mutant,whichelicitsthehostdefenseresponse involving hypersensitive reaction-like browning of thepenetratedcells, showedboth typesofmitochondrialdistributionpattern in both compatible and incompatible interactions. Theseresultssuggest that thealterationofmitochondrialdistribution inricecellsafterinoculationwithM. oryzaeiscloselyrelatedtothehypersensitivereactioninricecells.

PS13-452PAMP-mediatedpathogendefenseinSolanum tuberosumRamona Landgraf1, SimoneAltmann1, Lennart Eschen-Lippold1,SophiaSonnewald2,UweSonnewald2,SabineRosahl11Leibniz InstituteofPlantBiochemistry,Halle (Saale),Germany,2UniversityofErlangen,Staudtstr.5,91058Erlangen,Germanyrlandgra@ipb-halle.deThehemibiotrophicoomycetePhytophthora infestansisresponsibleforlateblightofpotato(Solanum tuberosum).Insusceptiblepotatoplants,thepathogen-associatedmolecularpattern(PAMP)Pep-13fromPhytophthora induces enhanced resistance. Pep-13 is a 13aa largepeptidemotif locatednear theC-terminusofacellwalltransglutaminase fromPhytophthora species. The application ofPep-13induces theaccumulationof jasmonicacid(JA),salicylicacid (SA) and hydrogen peroxide, as well as the activation ofdefense genes and hypersensitive cell death. Both JA and SAhave been shown to be required for successful activation of thePep-13mediateddefense responses.To investigate themolecularmechanisms of PAMP-induced defense responses in susceptiblepotato plants, a candidate gene approach was performed. Usingmicroarrayanalyses,weidentifiedmorethan700Pep-13activatedgenes, 50 of which are JA-dependently expressed. Functionalanalyses are performed using RNA interference constructs todown-regulatetheexpressionofspecificcandidategenes.PossiblechangesinthepathogenresponseofthesetransgenicplantswillbeassessedbyanalyzingtheresponsetoPep-13andtoinfectionbyP. infestans.

PS13-453ClimatechangeeffectsontheinteractionbetweenbarleyandtwofungalpathogenswithoppositelifestylesBoletteL.Mikkelsen1,Cb.GowdaRayapuram1,MichaelLyngkjaer11Department of Plant Biology and Biotechnology, University ofCopenhagen,Copenhagen,[email protected]

Thepredictedchangesintheworldclimatearebelievedtoaffectthephysiologyofplants,andtheirinteractionwithpathogens.Itisgenerallyhypothesizedthatcropplantsmaybecomemorepronetodiseasesinthefuture,butitisdifficulttogeneralize,andfewstudieshave been conducted, wheremore than two climatic factors arechangedsimultaneously.Furthermorethemechanismsbehindtheobservedandpredictedchangesinsusceptibilityarenotunderstood.Here we examine, how factors associated with climate changeare affecting disease severity and resistance in barley (Hordeum vulgare)towardstwofungalpathogenswithoppositelifestyles:thebiotrophicBlumeria graminisf.sp.hordei(powderymildew),andthehemibiotrophicBipolaris sorokiniana(spotblotch).Plantsaregrown in aphytotronwithdifferent levelsof temperature, [CO2]and[O3]eitherassinglefactorsorincombination,resemblingtheconditionsin2075asexpectedbyIPCC.Leaveswereassessedforthediseaseseithervisually,microscopicallyand/orbyqPCR.Wefoundthatdiseasedevelopmentofpowderymildewandspotblotchwaseffectedinoppositewaysinthedifferentclimaticconditions.Elevated [O3] and temperature increased penetration resistancetowards powderymildew, while symptoms development of spotblotch were promoted. However, when plants were exposed toelevated temperature, [CO2] and [O3] simultaneously, infectionincreasedtolevelshigherthanambientforbothpathogens.Inordertounderstandthemolecularandbiochemicalchangesresponsibleforourobservations,wearecurrentlymakingwholetranscriptomeand untargeted metabolomic analyses of barley grown in theclimaticconditionswithandwithoutinfection.

PS13-454Medicago truncatulaasamodeltostudyvascularwiltdisease:genetictraitsandregulatorymechanismsCecile Ben1,2, Maoulida Toueni1,2, Sara Montanari1, SalonaAmatya1, Azam Negahi1,2, Guillaume Mathieu1, Marie-ChristineGras3,DominiqueNoel4,LaurentGentzbittel1,2,MartinaRickauer1,21Universite de Toulouse, INP, ENSAT, Laboratoire d’EcologieFonctionnelle, 2CNRS, UMR 5245EcoLab ; 31326 Castanet-Tolosan, France, 3Societe R2n Groupe RAGT, 12510 Druelle,France, 4Tourneur Barenbrug Recherches, Negadis, 82600 Mas-Grenier,Francemartina.rickauer@ensat.frVascularwiltdiseasecausedbybacteriaorfungicausescroplossesworldwide.We found thatRalstonia solanacearum (Rs)[Vailleauetal.,2007]andVerticilliumalbo-atrum(Vaa)[unpublished]infectthemodellegumeplantMedicagotruncatula.Thesepathosystemscanbeusedtostudycross-talkbetweenpathogenicandsymbioticinteractions.Moreover,lineA17isrespectivelysusceptibletoRsandresistanttoVaa,whereaslineF83005.5showsoppositeresponses.Thusthetwopathosystemscanbeusedtostudygenotype-dependentregulationofdefenceresponsesagainstvascularpathogens.Acorecollection of M. truncatula lines showed wide diversity of theresponsetoVaa, fromhighlysusceptibletofullyresistant.MajorQTLsinvolvedintolerancetoVaawereidentifiedonchromosomes2and7respectivelyin2differentcrosses.TheseQTLsdonotco-localise with identifiedVe gene homologs. ResistantA17 plantseliminatethefungusfromtheirvessels5to7daysafterinoculation.InoculationofnodulationmutantswithVaaandRs indicates thatregulatory mechanisms of symbiosis might also be involved inpathogenicinteractions.Theroleofphytohormoneswasstudiedbyexternal treatmentsbefore inoculation.To study regulatoryRNAsinvolved in the response to vascular wilt pathogens libraries ofsmallRNAswereproducedfromrootsoflinesA17andF83005.5,inoculatedwithRsorVaa(MirMedproject).ComparativeanalysisofthelibrariesallowstoidentifymiRsassociatedtoapathosystemandtoresistance.ApilotexperimentwithmiR393suggeststhatthismicroRNAwhichcontrolsauxinsignalingmaybeinvolvedintheregulationofrootresponsestovascularwilt.

PS13-455Cross-talk between AtNHR2A and AtNHR2B to modulatenonhostdefenseresponsesinArabidopsis

Page 173: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession13-Plantresponse

171

Poster 13

ClemenciaM.Rojas1,SeongheeLee1,MuthappaSenthil-Kumar1,AmitaKaundal1,Hee-KyungLee1,KirankumarS.Mysore11TheSamuelRobertsNobleFundation,Ardmore,OK,[email protected]. benthamianathroughavirus-inducedgenesilencing (VIGS)-mediated fast-forwardgenetics screenaimedatidentifyinggenesinvolvedinnonhostdiseaseresistance.SilencingofNHR2inN. benthamianaallowedgrowthofnonhostpathogensPseudomonas syringaepvtomatoT1andP. syringaepvglycineaandenhancedsusceptibilitytowardsthehostpathogen,P. syringaepv.tabaci.NHR2doesnothavehomologytoanygeneswithknownfunction in the NCBI database.We identified two homologs inArabidopsis that we named AtNHR2A and AtNHR2B. T-DNAmutants of bothAtNHR2A andAtNHR2B compromised nonhostresistance against nonhost bacterial pathogens, P. syringae pv.tabaci and P. syringae pv. phaseolicola, and showed increasedsusceptibility to ahostpathogen,P. syringae pv.maculicola.Wefoundthatinspiteofa60%identityataminoacidlevel,AtNHR2Aand AtNHR2B are not redundant as these genes have differentpatterns and levelsofgeneexpressionupon inoculationwith thenonhost andhost pathogens.Comparisonof expression levels ofseveral defense-related genes in wild-type Col-0, Atnhr2a andAtnhr2bmutantsafterinoculationwithnonhostandhostpathogensrevealed different patterns of gene expression. Furthermore, byexaminingtheexpressionofAtNHR2AandAtNHR2B inpubliclyavailable microarray data we found high levels of expressionuponcertainhormonetreatments.WeproposethatAtNHR2AandAtNHR2B play significant roles in transducing or propagatinghormonal signals to achieve defense responses during plant-microbeinteractions.

PS13-456ROS,atwo-facedJanusinplantresponsestopathogens?ShahidSiddique1,ChristianeMatera1,MiroslawSobczak2,ShamimHasan1,PhilippGutbrod1,FlorianM.W.Grundler11INRES,Department ofMolecular Phytomedicine,University ofBonn,2DepartmentofBotany;WarsawUniversityofLifeSciences(SGGW);[email protected] oxygen species (ROS) are produced at and aroundinfectionsitesduringplantdefenseresponses.NADPHoxidases,also referred as respiratory burst oxidases homologues (RBOH)have been shown to play an important role in ROS productioninplants.Among10RBOHgenes(A-J)inArabidopsis thaliana,AtRBOHD andAtRBOHF are known to be involved in defenseresponses.The cyst nematodeHeterodera schachtii infects rootsofArabidopsisplantsandparasitizesbymodifyingrootcellstoahypertrophic syncytial feeding cell system.The aim of thisworkistounderstandtheroleofAtRBOH-mediatedROSduringplant-nematode interaction. Visualization of ROS production usingDAB (Diaminobenzidine),CM-H2DCFDAand transgenic plantsencoding H2O2 sensor HyPer revealed a distinct pattern duringmigration, syncytium induction, and feeding.Our results suggestthat AtRBOHD and AtRBOHF are required for this pathogen-induced ROS production. Unexpectedly, knock-out mutation ofAtRBOHD/Freduceddevelopmentoffemalenematodesby90%,a situation resembling incompatibility. Treatment of plants withDPI (diphenylene iodonium), an inhibitor of NADPH oxidase,gave similar results. Similarly, overexpression of AtRBOHDincreases the suitabilityof plants tonematodes.Further analysesofatrbohd/frevealedup-regulationofplantdefenseresponsegenes(WRKY33, PR1, PR2, PR3andPR5)insyncytiabutnochangeinthe expressionof anti-oxidant genes (APX1, CAT1, GR1).Takentogether,ourfindings suggest anovel roleofAtRBOH-mediatedROS in the function of compatible plant-pathogen interactions.Molecularmechanisms underlying this rolewill be discussed indetail.

PS13-457A sec14P phospholipids transfer protein regulates plantimmunityinNicotianaplantsAkinoriKiba1,2,3,KouheiOhnishi2,HirofumiYoshioka3,YasufumiHikichi11Faculty of Agriculture Kochi University, 2Rearch Institute ofMolecular Genetics Kochi University, 3Graduate School [email protected] solanacearum causes bacterial wilt in severaleconomically important solanaceous. To elucidate the molecularmechanismsofplant-R. solanacearuminteractions,weisolateandanalyzeR. solanacearum-responsivegenesfromNicotianaplants.Inthisreport,wefocusedonNbSec14Pwithsimilaritytosec14pfromyeast.Nbsec14P rescuedgrowthof temperature-sensitive sec14pmutant of yeast and extracellular secretion of invertase from themutantyeast.RecombinantNbsec14Pshowedphosphatidylinositolandphospahtidylchorinetransferactivity.ExpressionofNbsec14Pwasstrongly induced in tobacco leaves inoculatedwithavirulentstrain of R. solanacearum 8107, and was slightly enhanced bytheinoculationwithvirulentstrainofR. solanacearumOE1-1.InNbsec14P-silencedN. benthamianaplants,expressionofdefense-relatedgeneswascompromised,andgrowthofR. solanacearumwas significantly accelerated. Moreover, disease developmentcausedbyR. solanacearum,wasacceleratedinthesilencedplants.Intriguingly, changes of phospholipid contentswere observed inNbsec14P-silenced plant.These results suggested thatNbsec14Phave a role in the defense responses through the regulation ofphospholipidmetabolismsinNicotianaplants.

PS13-458Functionalanalysisoftheelicitor-induciblebZIPtranscriptionfactorOsTGAP1inriceKojiMiyamoto1,TakashiMatsumoto2,KoheiKomiyama1,AtsushiOkada1,TetsuyaChujo1,HirohumiYoshikawa2,3,NaotoShibuya4,HideakiNojiri1,HisakazuYamane5,KazunoriOkada11Biotechnology Research Center, The University of Tokyo,Tokyo, Japan, 2Genome Research Center, NODAI ResearchInstitute,TokyoUniversityofAgriculture,Japan, 3DepartmentofBioscience,TokyoUniversityofAgriculture, Japan, 4DepartmentofLifeSciences,FacultyofAgriculture,MeijiUniversity,Japan,5DepartmentofBiosciences,TeikyoUniversity,[email protected] attacked by pathogenic microorganisms respond witha variety of defensive reactions, including the production ofphytoalexins.We previously showed that biosynthetic genes formomilactonesandphytocassanes,majorditerpenoidphytoalexinsin rice, are respectively clustered on rice chromosome 4 andchromosome 2.We also showed that an elicitor-inducible bZIPtranscription factor, OsTGAP1, is involved in the regulation oftheexpressionofalmostallthebiosyntheticgenesforditerpenoidphytoalexins including the methylerythritol phosphate (MEP)pathwaygenes.Hereweperformedchromatinimmunoprecipitationwith next-generation sequencing technology (ChIP-seq) toelucidate theOsTGAP1bindingsites.Asa result,approximately2,700bindingsiteswereidentifiedundertheuntreatedandelicitor-treated conditions, respectively. We found approximately 1,200geneswhosetranscriptionstartsitesarelocatedwithin2kbfromtheOsTGAP1bindingsitesunderthebothconditions.Accordingtoourprevioustranscriptomeanalysis,theexpressionsofaroundone-sixthgenesoftheabove1200geneswerechangedintheOsTGAP1over-expressingcellscomparedtowild-typecells, indicatingthatthesegenesarepromisingcandidatesoftheOsTGAP1targetgenes.However,OsTGAP1didnotbind to theupstreamregionsof themajorityofditerpenoidphytoalexinbiosyntheticgenesincludingtheMEPpathwaygenes,andpredominantlyboundtotheinetergenicregions and both ends of phytoalexin biosynthetic gene clusters.Amongthedirect targetgenes,wefocusontheOsDXS3geneintheMEPpathwayanditstranscriptionalregulatorymechanismby

Page 174: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession13-Plantresponse

172

Post

er 1

3

OsTGAP1isnowunderinvestigation.

PS13-459Molecular mapping of Rmo2, a core locus conditioning theresistance of barley to various host-specific subgroups ofMagnaporthe oryzaeGang-SuHyon1,NguyenT.T.Nga1,KazuhiroSato2,IzumiChuma1,KazumaOkada3,YoshihiroInoue1,YukioTosa11Graduate School of Agricultural Sciences, Kobe University,22Institute of Plant Science and Resources (IPSR), OkayamaUniversity, 33National Institute of Fruit Tree Science, NationalAgricultureandFoodResearchOrganization(NARO)[email protected] oryzae is themost common fungal species amongcausalagentsofblastdiseasesofgramineousplants.Thisspeciesisfoundonvariouscropse.g.,foxtailmillet,rice,oat,andwheat,but isolatesfromeachcroparealmostexclusivelypathogenicontheiroriginalhostgenus.Barley(Hordeum vulgare)isastaplecropbelonging to Triticeae. The relationship between barley andM. oryzaeisolatesisverycomplex.Barley-specificisolatesorsubgrouphavenotbeen recognized so far.Tocharacterize the relationshipbetweenbarleyandM. oryzae,24barleycultivarswereinoculatedwith 16 isolates from various hosts. These interactions includedvarioustypesfromnonhost-likeimmuneresponsesthroughtypicalhost responses. Genetic mechanisms of the resistance of fiverepresentativebarleycultivars tovarioussubgroupsofM. oryzaewere examined using cv. Nigrate, which was highly susceptibleto all the isolates, as a common parent of genetic crosses. Theresistanceofallfivecultivarswasattributedtoasingle,identicallocus, which was designated as Rmo2. Nevertheless, the Rmo2locusineachcultivarshoweddifferentrangeofresistancereactiontoisolates(subgroups).Thislocuswasmappedonthechromosome7H.Afine-maparoundRmo2wasconstructedusingrecombinantsthat were selected with two flanking ESTmarkers, k10750 andk8512,from2,497susceptible(rmo2rmo2)plants.TheRmo2locuswas limited in a region corresponding to 44 recombinants. Theregion corresponded to the genome sequence of Brachypodium distachyon,whichspanned129kb.

PS13-460Arabidopsis NSL2-related cell death is induced by ROSproductionfromchloroplastsYosukeMaruyama1,JunjiYamaguchi11FacultyofScienceandGraduateSchoolofLifeScience,HokkaidoUniversity,Sapporo,[email protected] are remarkable organisms since they constantly adjusttheir growth and developmental patterns in response to changesin their environment. One of the mechanisms that adjust to theenvironmental changes, cell death is known for resistance topathogenattack.Arabidopsismutantnsl2 (necroticspottedlesion2;alsoreportedasthecad1)whichshowedhypersensitiveresponseseen in the lesion mimic mutants. In addition, the nsl2 mutantshowedpromotionofPRgene transcriptionandaccumulationofSAandJA.Inoculationofthemutantwithvirulencepathogenalsoshowed restrictionofbacterial growth (PlantCellPhysiol. 2005,46: 902-912). Recently we demonstrated that the nsl2 mutantacceleratessenescenceinthedarkconditions.Inconnectionwithaccelerated the senescence, chlorophyll catabolic enzymes wereaccumulatedinthensl2mutantthaninthewildtype.Moreover,microscopic analysisofoxidant formationusing reactiveoxygenspecies (ROS)-dependent fluorescent probe showed that thesereactive species are accumulated in chloroplasts in the mutantleaves.These results suggest that theNSL2-related cell death isinducedbyROSproducedfromthechloroplasts.

PS13-461Application of D-allose for disease control of rice bakanaedisease:SugarphosphorylationofD-allosebyhexokinasegivesGA-dependentshootgrowthinhibitionTakeshi Fukumoto1, Kouhei Ohtani1, Akihito Kano1, ShigeyukiTajima1,KenIzumori1,ToshiakiOhara2,YoshioShigematsu2,TakeoOhkouchi2, Yutaka Ishida3, Yasuomi Tada1, Kazuya Ichimura1,KenjiGomi1,KazuyaAkimitsu11Faculty ofAgriculture, Rare Sugar Research Center, and GeneResearch Center, Kagawa University, Miki, Kagawa, 761-0795,Japan, 2Mitsui Chemicals Agro Inc, Agrochemicals ResearchCenter,1358,Ichimiyake,Yasu,Shiga520-2362,Japan,3ShikokuResearchInstituteInc.,Yashima-nishi,Takamatsu,761-0192,[email protected] has an inhibitory effect on shoot growth in rice. Amicroarray analysis revealed that D-allose treatment inducesdefense-relatedgenes,andD-alloseconfersresistancetobacterialblight pathogen in rice. D-allose was also the most effectiveinhibitor of plant growth among all hexose sugars tested. Toclarify the overall mechanism of the D-allose effects in plants,weexaminedapossible involvementof thehexokinase<HXK>-dependent pathway and suppression of the gibberellin <GA>-signaling to explain the growth inhibition caused by D-allose.D-Allose strongly inhibited the GA-dependent responses suchas elongation of the second leaf sheath and induction of alpha-amylase in embryo-less half seeds in rice. The growth of theslender rice1 <slr1> mutant, which exhibits a constitutive GA-responsive phenotype, was also inhibited by D-allose, and thegrowthinhibitionoftheslr1mutantwasalsoabolishedbyHXK-inhibitor. The Arabidopsis glucose-insensitive2 <gin2> mutant,whichisaloss-of-functionmutantoftheglucosesensorAtHXK1,showed a D-allose-insensitive phenotype. D-allose treatment tothe transgenicgin2 overexpressingAtHXK1WILD orAtHXK1S177ArevealedthatphosphorylationofD-allosebyHXKisanimportantprocess for theD-allose-inducedgrowth inhibition.Furthermore,ABF1andABI5<ABAsignaling factor>werealsoup-regulatedHXK-dependentlyinD-allose-treatedriceandArabidopsis.Onthebasisoftheseresults,wetriedthecontrolofbakanaedisease,whichshows abnormal shoot elongation caused by fungal pathogen-producedGA,andapplicationofD-allosesuccessfullysuppressedthediseasesymptoms.ThisstudywassupportedbyProgrammeforPromotionofBasicandAppliedResearchesforInnovationsinBio-orientedIndustry.

PS13-462Overexpression of tobaccoDof transcription factor enhancestranscriptional activation of the virus resistance geneN andROSgenerationMayumi Takano1, Md. Ashraful Haque1, Nobumitsu Sasaki1,HiroshiNyunoya11Gene Research Center, Tokyo University of Agriculture andTechnology,Tokyo,[email protected] NN tobacco (Nicotiana tabacum) carrying the virusresistance gene N shows hypersensitive response (HR) againstTobacco mosaic virus (TMV) infection. The helicase domain(p50) of the virus replicase acts as an elicitor and upregulatestheN transcriptionpriortoHRinduction.WehavefoundthatanupstreamregionofNcontainsbindingmotifsofDoftranscriptionfactors (BBF proteins of tobacco) and that the co-expression ofp50 andBBF1 inducesHRmore effectively than the expressionofp50alone.Inthisstudy,wefurtherinvestigatedthefunctionalinvolvement of BBF1 in N transcription and HR induction inSamsun NN. We examined the effects of the overexpressionof BBF1/p50 or TMV infection on transcription levels of theendogenousN and BBF1 genes. The expression of BBF1 aloneenhancedthetranscriptionleveloftheNgene.Theco-expressionofp50andBBF1advancedthetimingoftranscriptionalactivationoftheNgene.Eithertheexpressionofp50orTMVinoculationhadno

Page 175: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession13-Plantresponse

173

Poster 13

influenceonthetranscriptionleveloftheendogenousBBF1gene.ReporterassaysbyusingtheupstreamregionoftheNgenerevealedthat the overexpression of BBF1 resulted in the transcriptionalenhancementevenintheSamsunnntobaccolackingtheNgene.Wealsofoundthatreactiveoxygenspecies(ROS)levelsincreasedundertheoverexpressionofBBF1regardlessoftheco-expressionofp50.Ourdata suggest thatBBF1mayplay important roles inN-mediatedHR induction through stimulation ofN transcriptionandROSgeneration.

PS13-463PhosphorylatedD-allose confers disease resistancewithROSgenerationinRiceAkihito Kano4, Takeshi Fukumoto1, Kouhei Ohtani1, AkihideYoshihara1, Toshiaki Ohara2, Shigeyuki Tajima1, Ken Izumori1,Yoshio Shigematsu2, Keiji Tanaka2, Takeo Ohkouchi2, YutakaIshida3,YokoNishizawa4,KazuyaIchimura1,YasuomiTada1,KenjiGomi1,KazuyaAkimitsu11Faculty ofAgriculture, Rare Sugar Research Center, and GeneResearch Center, Kagawa University, Miki, Kagawa, Japan,2Mitsui Chemicals Agro Inc, Agrochemicals Research Center,Ichimiyake,Yasu,Shiga,Japan, 3ShikokuResearchInstituteInc.,Yashima-nishi,Takamatsu,Kagawa, Japan, 4National Institute ofAgrobiologicalSciences,Tsukuba,Japandearmyk1221@gmail.comRaresugarsaredefinedasmonosaccharideswith lowabundanceinnature.D-Alloseat5mMamongseveralsugarsconferred theabilities for induction of disease resistance by a leaf inoculationtest using rice pathogenXanthomonas oryzae pv. oryzae (Xoo).D-Allose-treated rice exhibited a lesionmimic formation on theleaveswithanaccumulationofreactiveoxygenspecies(ROS).TheD-allose-mediatedinductionofROSgeneration,subsequentlesionmimics development and resistance to the rice bacterial blightpathogenweresuppressedbytreatmentwithahexokinaseinhibitorofN-acetyl-D-glucosamine.6-Deoxy-D-allosewhichisastructuralderivativeofD-alloseatthecarbon6positionofphosphorylationsitedidnotconferresistancetoXoo.Inaddition,apeakofD-allose6-phosphate (A6P) was detected in the extracts from D-allose-treated rice leaves, but not in those from mock-treated leaves.WecharacterizedthekinaseactivitytoD-alloseoftwomainricehexokinases, HXK5 and HXK6, using respective recombinantHXK5 and HXK6 by HPLC detection of A6P. Transgenic riceplants constitutively expressing Escherichia coli AlsK encodingD-allose kinase to increase D-allose 6-phosphate synthesis alsoshowed enhanced sensitivity toD-allose.These results indicatedthat D-allose is the first monosaccharide discovered to have anabilityforinductionofROSgeneration,subsequentlesionmimicsdevelopment, PR-protein gene expression, and resistance toXooby hexokinase-mediated conversion of D-allose to D-allose6-phosphate.This study was supported by Programme forPromotionofBasicandAppliedResearchesforInnovationsinBio-orientedIndustry.

PS13-464Isolation and identification of natural diterpenes that inhibitbacterialwiltdiseaseintobacco,tomato,andArabidopsisandanalysisoftheirmodeofactionShigemi Seo1, Kenji Gomi2, Hiroshi Abe3, Michie Kobayashi4,HideharuSeto3,7,YukiIchinose6,IchiroMitsuhara1,YukoOhashi11Plant-Microbe InteractionsResearchUnits,National Institute ofAgrobiological Sciences, Tsukuba, Japan, 2Kagawa University,Kagawa, Japan, 3RIKEN, Tsukuba, Japan, 4National Institute ofFloricultural Science, Tsukuba, Japan, 5National AgriculturalResearchCenter,Tsukuba,Japan,6OkayamaUniversity,Okayama,Japan,7RIKEN,Wako,[email protected] soil-borne bacterial pathogen Ralstonia solanacearuminvades a broad range of plants through their roots, resulting inwiltingoftheplant.Twowiltdisease-inhibitingcompoundswere

biochemically isolated from tobacco (Nicotiana tabacum) andidentified as labdane-typediterpenes.Whenexogenously appliedto their roots, these two diterpenes inhibitedwilt disease causedbyR. solanacearum in tobacco, tomato, andArabidopsis plantswithout exhibiting any antibacterial activity.Microarray analysisidentifiedmanyditerpene-responsive genes inArabidopsis roots,includinggenes encodingorwith a role inATP-binding cassette(ABC)transporters,biosynthesisandsignalingofdefense-relatedmolecules,andsignaltransductioncascadecomponents.Inhibitionofwiltdiseasebythesediterpeneswasattenuatedinsomedefense-relatedArabidopsis mutants. These results suggest that multiplehostfactorsareinvolvedintheinhibitionofbacterialwiltdiseasebyditerpenes.

PS13-465Dispersed benzoxazinone gene cluster: Molecularcharacterization and chromosomal localization ofglucosyltransferaseandglucosidasegenesinwheatandryeMasayukiSue1,ChihiroNakamura1,HideoNakashita11TokyoUniversityofAgriculturesue@nodai.ac.jpBenzoxazinones(Bxs)aremajordefensivesecondarymetabolitesin wheat (Triticum aestivum), rye (Secale cereale) and maize(Zea mays). Here, we identified full sets of homoeologous andparalogousgenesencodingBxglucosyltransferase (GT)andBx-Glcglucosidase(Glu)inhexaploidwheat(2n=6x=42,AABBDD).FourGTloci(TaGTa-TaGTd)weremappedonchromosomes7A,7B (two loci) and7D,whereas fourglu1 loci (Taglu1a-Taglu1d)were on chromosomes 2A, 2B (two loci) and 2D. Transcriptlevels differed greatly among the four loci; B-genome loci ofboth TaGT and Taglu1 genes were preferentially transcribed.Catalytic properties of the enzyme encodedby eachhomoeolog/paralogalsodiffereddespitehighlevelsofidentityamongaminoacidsequences.ThepredominantcontributionoftheBgenometoGT andGlu reactionswas revealed, as observed for thefiveBxbiosynthetic genes, TaBx1-TaBx5, which are separately locatedon homoeologous groups-4 and -5 chromosomes. In rye, wherethe ScBx1-ScBx5 genes are dispersed to chromosomes 7R and5R,ScGTandScgluwerelocatedseparatelyonchromosomes4Rand 2R, respectively. The dispersal of Bx-pathway loci to fourdistinctchromosomesinhexaploidwheatandryesuggeststhattheclusteringofBx-pathwaygenes,asfoundinmaize,isnotessentialforcoordinatedtranscription.Ontheotherhand,barley(Hordeum vulgare)wasfoundtolacktheorthologousGTandglulocidespiteitsclosephylogeneticrelationshipwithwheatandrye.TheseresultscontributetoourunderstandingoftheevolutionaryprocessesthattheBx-pathwaylocihaveundergoneingrasses.

PS13-466Identification of molecules that modulate pathogen inducedprogrammedcelldeathinArabidopsisAndersK.Nilsson1,MatsX.Andersson1,LisaAdolfsson1,OskarJohansson1, Francesco Pinosa1, Christel Garcia1, Mahmut Tor2,MatsHamberg3,MatsEllerstrom1

1Department of Biological and Environmental Sciences,University of Gothenburg, Gothenburg, Sweden, 2NationalPollen andAerobiology Research Unit, Institute of Science andthe Environment, University of Worcester, Worcester, England,3Division of Chemistry II, Department ofMedical BiochemistryandBiophysics,KarolinskaInstitutet,Stockholm,[email protected] triggered immunity in plants is often associated witha local programmed cell death in the infected tissue known ashypersensitiveresponse(HR).HRlesionscausedbytheavirulentbacterium Pseudomonas syringae in Arabidopsis is typicallyinitializedatasinglecellandthenspreadtosurroundingmesophyllcells. Thus, a signal that can propagate the cell death from theinfection site to neighboring cells must be released.We soughtto find diffusible signaling compounds released by pathogen

Page 176: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession13-Plantresponse

174

Post

er 1

3

challengedplantsthatcouldcausecelldeathinnaivetissue.Aplantline heterologously expressing the bacterial effector AvrRpm1underthecontrolofadexamethasoneinduciblepromoterwasusedto scale up the HR. Organic low molecular weight compoundsreleased by the plant after effector elicitation were purified andfractionated by reverse phase HPLC. The fraction that had thestrongestcelldeathpromotingactivitywheninfiltratedintonaivetissuewas further analyzedbyGC-MS. In this fraction, a singlecompoundcouldbeindentifiedandstructuredetermined.Wecannow provide three lines of evidence that the isolated compoundis amodulator of cell death inArabidopsis: (i) the compound issynthesizedandreleasedbytissueundergoingeffectortriggeredcelldeath(ii)thepuresubstancecauseslesionsandnecroticspotswheninfiltrated into naive tissue; (iii) plants impaired in the synthesisof thecompoundshowreduced levelofcelldeath inducedbyP. syringaeandresistanceagainstHyaloperonospora arabidopsides.

PS13-467Ergosterolperceptioninplantsystems:an“omics”approachLizelleA.Piater1,FideleTugizimana1,JohnS.Sherwood1,RobynL.Klemptner1,IanA.Dubery11Department of Biochemistry, University of Johannesburg,Johannesburg,[email protected] are subject to continuous attack by a variety ofmicroorganisms, including phytopathogenic fungi, within theirenvironment.AninterestingMAMPisthefungalsterol,ergosterol,ofwhichthereceptor(s)andinducedsignaltransductionpathway(s)havenotyetbeenelucidated,buthasbeenshowntotriggerdefenseresponses in tomato and tobacco cells, aswell as the expressionof PR-14, a lipid transfer protein (LTP), in grape-vine cells andup-regulation of an oxysterol-binding protein (OSBP) in potato.Here,weutilized an “omics” approach to elucidate the effect ofergosterolonboth tobacco (Nicotiana tabacum) andArabidopsis(Arabidopsis thaliana)plantsystemswithvaryingconcentrations(0-1000nM)overa timeperiod(0-24h).Theresultsshoweddifferential changes in themetabolome of tobacco cells, leadingtovariationinthebiosynthesisofsecondarymetabolites,withfivebicyclic sesquiterpenoid phytoalexins namely capsidiol, lubimin,rishitin,solavetivoneandphytuberinidentifiedasbeingergosterol-induced,andcontributingtothealteredmetabolome(Tugizimanaet al., 2012). Ergosterol is also able to trigger changes to thetranscriptome inArabidopsis as investigated usingACP-DDRT-PCR.LTP(At4g12470),OSBP(At4g08180)andPR-1(At2g14610)showed transient induction typical ofdefensegenes.PreliminaryqPCRexperimentsindicatethatthe18S rRNAgeneofArabidopsisisnotsuitableasareferencecandidatesinceitsexpressionisalteredthroughtreatmentwith250nMergosterolatvarioustimes,whiletheSANDfamilyproteinandElongationFactor1alphashowedstable expression profiles at different treatment-time intervals.Currently, this research is being complementedproteomicallybydendrimer-basedphosphoproteomics.

PS13-468ProteasometransformationinresponsetopathogenattackTakeo Sato1,Huihui Sun1, ShugoMaekawa1, ShigetakaYasuda1,MasayukiFujiwara2,YoichiroFukao2,JunjiYamaguchi11HokkaidoUniversity,2NaraInstituteofScienceandTechnologyt-satou@sci.hokudai.ac.jpProteasomeisalargemultisubunitcomplexthatdegradesdamagedorubiquitinatedproteins,archivingprotein-qualitycontrolandfine-tuningofamountofthespecifictargetproteins.Interestingly, themostsubunitsareencodedbyduplicatedgenesinhigherplantwhilespecificfunctionsofeachparalogoussubunithavebeenstillunclear.Wehavedemonstratedthatloss-of-functionmutantofthespecificparalog shows aberrant response to multiple stress conditions.Furthermore,our recentdata showed thateachpeptidaseactivityis affected by flg22 treatment, suggesting that plant proteasomeis transformed in the structures and functions in response to

environmentalstressconditions,aswellastheimmunoproteasomeand thymoproteasome reported in mammals. To evaluate thishypothesis,wetriedtoidentifysubunitcompositionofproteasomewiththeaffinitypurificationandMSanalysis.Possibilityofplantproteasometransformationinresponsetopathogenattackwillbediscussed.

PS13-469MAMP-responsivephosphoproteinRAM1negativelyregulatesROSproductioninArabidopsisHidenoriMatsui1,YukoNomura1,HirofumiNakagami11Plant Proteomics Research Unit, Plant Science Center, RIKENYokohamaInstitute,Kanagawa,Japanmatsui53@psc.riken.jpPhosphorylationplayscriticalrolesinMAMP(microbe-associatedmolecular patterns)-triggered immunity.Therefore,we examinedphosphoproteomechangesinArabidopsisuponMAMP(microbe-associatedmolecular pattern) treatment to identify novel playersinvolvedinMAMPsignaltransduction.Asaresult,weidentified569proteinswhosephosphorylationstatussignificantlychangedinresponsetoflg22and/orchitintreatments.ToverifyinvolvementoftheidentifiedproteinsinMAMP-triggeredresponses,wehavebeenisolatingT-DNAinsertionlinesfortheseproteinsandcharacterizingflg22-induced ROS (reactive oxygen species) production in theisolatedmutants.Sofarwehaveidentified38genesasregulatorsof flg22-induced ROS production and named these genes RAM (ROS abnormal production mutant).AmongtheRAMgenes,RAM1encodesanunknownproteinandram1plantsshowenhancedROSproductioninresponsetoflg22andelf18treatments.EnhancedROSproduction in ram1 plantswere also observed upon an avirulentbacterial pathogen Pseudomonas syringae pv. tomato DC3000avrRpm1infection.Interestingly,chloroticcelldeathwasobservedin ram1 plants afterPseudomonas syringae pv. tomato DC3000 hrcC- infection. Gene expression analysis revealed that defense-relatedgenesareup-regulatedinram1plants.TheseresultssuggestthatRAM1functionsasanegativeregulatorofMAMP-triggeredimmunityinArabidopsis.

PS13-470Plants growth promotion byStreptomyces. ll. Involvement ofplantpathwayHan-YuYang1,CartonW.Chen11Department ofLifeSciences and Institute ofGenomeSciences,NationalYang-MingUniversitys19109008@gmail.comTwopolyphenoloxidases(PPOs)producedbyStreptomycesexhibitopposite effects on plant growth promotion, i.e., extracellularMelC2 enhances plant growth, whereas intracellular MelD2diminishesit.Toinvestigatethephysiologicalpathwaysofplantsinvolved in these effects, we performed microarray analysis ofArabidopsis thaliana Col-0 seedlings inoculated with differentmelC andmelD strainsofStreptomyces.The results showed thatthe presence ofmelC and the absence ofmelD in Streptomycessimilarlyinducedorrepressedcertaincircadianclockrelatedgenes,TOC1,CCA1, COR27, COL9andPRR3inArabidopsis.Toconfirmtheir involvement, threecircadianclockmutants(toc1, cca1, and cor27)ofArabidopsisweretested.ThegrowthpromotioneffectsofthePPOswasinsignificantinallthreemutants.Moreover,growingArabidopsis under a short daytime (8-h light/16-h dark) insteadof longdaytime (16-h light/8-hdark) alsoeliminated thegrowthpromotion effects. To test the involvement of the plant growthpromotionrhizobacterium-potentiatedinducedsystemicresistance(ISR), twomutants ofArabidopsis, ein2-1 (ethylene insensitive)and jar1-1 (methyl jasmonate insensitive), were tested for thegrowth promotion effects The results showed that the ethylenepathwaywasinvolvedintheeffectofMelD2(butnotMelC2),andthejasmonicacidpathwaywasinvolvedintheeffectofMelC2(butnotMelD2).ThisindicatedthatthetwoPPOsactthroughISRinseparatepathways.

Page 177: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession13-Plantresponse

175

Poster 13

PS13-471Plants growth promotion by Streptomyces. I. Involvement ofpolyphenoloxidasesofStreptomycesCartonW.Chen1,Han-YuYang11Department ofLifeSciences and Institute ofGenomeSciences,NationalYang-MingUniversitycwchen@ym.edu.twFilamentousbacteriaStreptomyces are among themost abundantbacteria in soil. They play an important role as scavengers,degradingorganicwastes.WhileasmallfractionofStreptomycesis plant pathogens, many establish rhizospheric or endophyticassociations with healthy plants often with beneficial effects,presumablyresultingfrom(iii)directpromotionofplantgrowth,(ii) reduction of infection by pathogens, or (iii) promotion ofplant-microbe symbioses. In rhizosphere, Streptomyces face awiderangeofplantphenolics.Thesephenolicsaresubstratesforpolyphenol oxidases (PPO) produced by two homologous PPOsof Streptomyces - a universally present intracellularMelD2 andasporadicallypresentextracellularMelC2.WhileMelD2appearsto play a defensive role and decreases the toxicity of phenolics(presumably by replacing the spontaneous ROS-generatingoxidation of phenolics intracellularly), MelC2 increases thesensitivity(presumablybyconvertingthephenolicsextracellularlyintomore permeable hydrophobic quinones). Interestingly, thesetwoPPOsalsoexhibitoppositeeffectsinpromotingplantgrowth,i.e.,MelC2increasesit,andMelD2reducesit.Thisoppositeeffectwasobservedineightofelevenplantstestedinthesoil.ThesameeffectswerealsoobservedinArabidopsisgrowingonagar,rulingout the involvementofothermicrobesand theprocessingofsoilmaterialsbyextracellularenzymesofStreptomyces.Thelatterwassupportedby the lackofeffectofmutations in themajorproteinsecretionpathway(Tat)ofStreptomycesonthegrowthpromotion.Theinvestigationofthepathwaysinvolvedintheobservedgrowthpromotioneffectsispresentedintheaccompanyingposter.

PS13-472MAPK cascades control NbRBOHB promoter activity inNicotianabenthamianaTakaaki Nakano1, Noriko Miyagawa1, Miki Yoshioka1, NobuakiIshihama1,HirofumiYoshioka11GraduateSchoolofBioagriculturalSciences,NagoyaUniversity,Nagoya,Japannakano.takaaki@c.mbox.nagoya-u.ac.jpPathogen-inducedROSburstismainlycausedbyactivationofanNADPH oxidase in plasma membrane. Plant NADPH oxidasesare designated as RBOH (respiratory burst oxidase homolog).In Nicotiana benthamiana leaves, the ROS burst is caused byNbRBOHBandoccurs in twophases, rapidphaseIandmassivephase IIbursts.Theplant innate immunesystemconsistsof twolayers.First layerreliesontheperceptionofpathogen-associatedmolecular patterns (PAMPs). The responses to PAMPs arecalled PAMP-triggered immunity (PTI). The second layer is therecognition of pathogen effectors, which can promote pathogenfitnessthoroughhostresistance(R)proteins.EffectorrecognitionbyRproteinleadstoeffector-triggeredimmunity(ETI).ETIisanacceleratedandmagnifieddefenseresponsecomparedtoPTI,andisoftenaccompaniedbylocalizedcelldeathtermedahypersensitiveresponse(HR).Here,weinvestigatedNbRBOHBgeneexpressionand its promoter activity inPTI (flg22 and INF1),ETI (AVR3a/R3a)andinresponsetoMEK2DDthatconstitutivelyactivatesSIPKandWIPK. It is well known that INF1 induces strong defenseresponsecomparedtoflg22,andisaccompaniedbyHRcelldeath.NbRBOHBgenewasinducedbyINF1,AVR3a/R3aandMEK2DD,butnotbyflg22at24hafterthetreatments.ThesameistruefortheNbRBOHBpromoteractivity.TheseresultssuggestthatNbRBOHBcouldberobustly inducedbyINF1andAvr3a/R3aviaMAPKinassociationwithphaseIIburst.

PS13-473Molecular characterization and regulation of a Nicotianatabacum S-domain receptor-like kinase gene induced duringanearlyrapidresponsetolipopolysaccharidesIanA.Dubery1,NatashaSanabria1,HenrietteVanHeerden11DepartmentofBiochemistry,UniversityofJohannesburg,AuclandPark,[email protected] S-domain receptor-like kinase (RLK) gene in Nicotianatabacum, responsive to lipopolysaccharide (LPS) elicitation,wasidentified. The gene, corresponding to a differentially expressedLPS-responsive EST, was fully characterized to investigate itsinvolvementinLPS-inducedresponses.Thefullgenomicsequence,designated Nt-Sd-RLK, encodes for a S-domain RLK proteincontaining conserved modules (B-lectin-, S- and PAN-domains)reported to function in mediating protein-protein and protein-carbohydrate interactions in its extracellular domain, as well asthe molecular architecture to transduce signals intracellularlythroughaSer/Thrkinasedomain.PhylogeneticanalysisclusteredNt-Sd-RLKwithS-domainRLKsinducedbybacteria,woundingand salicylic acid. Perception of LPS induced a rapid, bi-phasicresponse in Nt-Sd-RLK expression with a 17-fold up-regulationat 3 and9h.Adefense-relatedW-boxcis elementwas found inthepromoterregionofNt-Sd-RLKandthetransientinductionofNt-Sd-RLKinculturedcellsbyLPSexhibitedapatterntypicalofearlyresponsedefensegenes.Nt-Sd-RLKwasalsoresponsivetosalicylic acid induction and was expressed in differentiated leaftissue,whereLPSelicitedlocalaswellassystemicup-regulation.TheresultscontributenewknowledgeaboutthepotentialrolethatS-domain RLKsmay play within interactive signal transductionpathwaysassociatedwithimmunityanddefense.

PS13-474TheroleofasplicevariantproductofthevirusresistancegeneNintheinductionofhypersensitiveresponseMasumi Takaoka1, Mayumi Takano1, Md. Ashraful Haque1,NobumitsuSasaki1,HiroshiNyunoya11Gene Research Center, Tokyo University of Agriculture andTechnology,Tokyo,[email protected],whichconfersresistancetoTobacco mosaic virus(TMV),istranscriptionallyinducedbytheinfectionofTMV.The N protein recognizes the helicase domain (p50) of TMVreplicaseasanelicitorandinduceshypersensitiveresponse(HR)that results in programmed cell death leading to the restrictionof the spread ofTMV.TheN gene consisting ofTIR,NBS andLRRdomainsproducestwotranscripts,NSandNL,byalternativesplicing.TheNSandNLtranscriptsencodethefull-lengthNproteinandthetruncatedNprotein(Ntr)lackingmostoftheLRRregion,respectively.In thisstudy,weanalyzedthebiologicalroleofNtrintheN-mediatedhypersensitivecelldeath.InSamsunnntobaccoplants lacking theNgene,HRwas inducedby theexpressionofboth N and p50. However, it was suppressed by the additionalexpressionofNtr.HRwasalsosuppressedbytheexpressionofbothp50andNtrinSamsunNNtobaccoplantscarryingtheNgene.TheendogenousNgeneexpressionwasnotsuppressedbyexpressionof Ntr with or without p50-mediated HR induction. Our dataindicatethatNtrdoesnotinfluencetheendogenousNexpressionbut it causesdominantnegativeeffectson the recognitionof theelicitorp50orsignaltransductionpathwayspromotingHR.

PS13-475MappingPAMPResponsesinBrassicasSimon R. Lloyd1, Henk-jan Schoonbeek1, Cyril Zipfel2, ChrisRidout11TheJohninnesCentre,[email protected]

Page 178: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession13-Plantresponse

176

Post

er 1

3

Recentworkinplant-pathogeninteractionshasledtothediscoveryof pattern recognition receptors (PRRs) which confer a rapidearly immune response by recognising pathogen-associatedmolecular patterns (PAMPs). PAMP-triggered immunity (PTI)could contribute to durable disease resistance in the field butour understanding of PTI in many agriculturally important cropplants isonly in its infancy.WehavecharacterisedtheresponsesfollowingrecognitionofthebacterialPAMPself18,flg22andthefungal PAMP chitin in Brassica napus and Brassica oleracea .AssayshavebeendevelopedtoexamineallstagesoftheBrassicaPAMP response including early cell signalling events, such asthe oxidative burst, MAPK phosphorylation and defence geneinduction, to later stage cellular responses including callosedeposition and lignification. Using these assays we discoveredsubstantialvariationexistedinPAMPresponsesbetweenBrassica napus varieties.WethenmappedtheseresponseswithinaBrassica oleracea double haploid mapping population and identifiedsignificant QTLs in the middle of chromosome 9. Interestingly,theseQTLslocalisedtothesameregionasQTLsforsusceptibilitytoAgrobacterium tumefaciens andBotrytis cinerea withinthesamecross.An approach combining next generationRNA sequencingandfinemapping isnowbeingadopted to identify thecandidategenesresponsibleforthesubstantialvariationinPAMPresponses,andpathogenresistance,withinthispopulation.

PS13-476Inceptionofinfection:theboonandthecurseforPseudomonas syringaeShwetaPanchal1,DebanjanaRoy1,MaeliMelotto11DepartmentofBiology,UniversityofTexasatArlington,TX,[email protected] has long been observed that environmental conditions playcrucial roles in modulating immunity and disease in plants andanimals.Forinstance,manybacterialplantdiseaseoutbreaksoccurafterperiodsofhighhumidityandrain.Acriticalstepinbacterialinfectionisentryintotheplantinteriorthroughwoundsornaturalopenings,suchasstomata.Recentstudieshaveshownthatstomatalclosureisanintegralpartoftheplantimmuneresponsetoreducepathogeninvasion.Inthisstudy,wefoundthathighhumiditycaneffectivelycompromisestomatalimmunityinbothcommonbeanand Arabidopsis, which is accompanied by down-regulation ofthesalicylicacidpathwayandup-regulationonthejasmonicacidpathway.Specifically,bacterium-inducedexpressionofPRgenesisabolished,whereasseveralJA-responsivegenessuchasJAZ, LOX3, OPR3, and AOC3,areinducedwithinashortperiodoftimeaftertransferring plants to high humidity. Highly humid environmentcanbe conducive forplant infectionbyweakpathogens.On theotherhand,periodsofdarkness,whenmoststomataareclosed,areeffectiveindecreasingpathogenpenetrationintoleaves.However,coronatineproducedbyPseudomonas syringaepv.tomatoDC3000cells can open dark-closed stomata facilitating infection. Weconclude that:1)awell-knowndisease-promotingenvironmentalcondition, high humidity, acts in part by suppressing stomatalimmunityand2)virulence factors, suchas coronatine, appear toprovide epidemiological advantages to ensure bacterial infectioneven when environmental conditions (darkness and insufficienthumidity)favorstomatalimmunity.

PS13-477LeucinederivedhydroxynitrileglucosidesinbarleyandtheirrelationtopowderymildewinfectionPernille S. Roelsgaard1, Carl Erik Olsen1, Kirsten Joergensen1,MichaelLyngkjaer1,BirgerL.Moeller11PlantBiochemistry,LIFE,[email protected] isproducingfivehydroxynitrileglucosides(HNGs).Oneofthem,Epiheterodendrin,isacyanogenicglucoside.Cyanogenicglucosides are well-known defence compounds distributed

widely in the plant kingdom. They release poisonous hydrogencyanide upon degradation by a specific β-glucosidase.However,no β-glucosidase is known to be present in barley leaves.Morethan99%oftheHNGsintheleafarefoundintheepidermalcelllayer.Thismaybesubjecttofurthersubdivision,asweencounterHNGsinwaxisolatedfrom1stleavesofoneandtwoweeksoldbarleyplants.TheextracellularpresenceofHNGsisintriguingaswell as surprising.Weencounter theHNGsextracellularlywhenwaxissampledeitherwithchloroformextractionorstrippingtheleaveswithcelluloseacetateorwithgumArabic.After applyingthelattermethodtheleafdoesnotwither.Furtherexaminationofthestrippedleavesisperformedvisuallyaswellaswithscanningelectronmicroscopytoensurethattheepidermalcelllayerisintactafterstripping.ThepresenceofHNGsinthewaxcanservemanypurposes,suchasactingasadefencecompoundtowardsprobinginsectsorfungi,aswellasvolatilebreakdownproductsofHNGscouldplayaroleintheplantscommunicationwithitssurroundings.Itishypothesisedthatbarleypowderymildew(Blumeria graminissp.hordei)usesHNGsas foodsourceorhost recognition factor.This is further supported by the fact that bgh prefers high levelHNGcultivarsoverlowlevelHNGcultivars.

PS13-478RNA-seq analysis of the tomato immune response identifiesgeneswhoseexpressionisinducedbyMAMPsandsuppressedbytypeIIIeffectorsHernan G. Rosli1, Zhangjun Fei1,Yi Zheng1,Alan R. Collmer2,GregoryB.Martin1,21BoyceThompsonInstituteforPlantResearch,Ithaca,NY,USA,2Department of Plant Pathology and Plant-Microbe Biology,CornellUniversity,Ithaca,NY,USAhgr28@cornell.eduPlantsactivateavarietyofdefenseresponsesuponrecognitionofmicrobe-associated molecular patterns (MAMPs). This MAMP-triggeredimmunity(MTI)representsafirstlayerofdefenseanditcanbesuppressedbypathogensthroughthedeliveryofeffectorsinto the cytoplasm. We used Illumina RNA-seq to perform atranscriptomicanalysisoftomatoleaveschallengedwithMAMPS(flg22, LPS, PGN), Pseudomonas syringae pv. tomato DC3000and mutants (δhrcQ-U, δhrcQ-U/δfliC, δ28, δavrPto/δavrPtoB),otherPseudomonas (P. fluorescens,P. putida) orAgrobacterium tumefaciens. An initial analysis of the treatments revealed theexistence of two separate clusters: one that included mock,δhrcQ-U/δfliC, A. tumefaciens, LPS, PGN and DC3000, andthe other containing the rest of the treatments. This distributionappearstobeduetotheperceptionornotofflagellin.Interestingly,wildtypeDC3000,whichexpressesflagellin,clusterswiththefirstgroup,indicatingthattheeffectorsdeliveredintotheplantcellarelargelyinvolvedinsuppressingthetranscriptionalreprogrammingthat occurs upon flagellin perception. This large transcriptionalsuppression associated with delivery of the type III effectors isexemplified by the observation that of 2,600 genes induced byflg22, 1,600 are differentwhen comparingDC3000 and the δ28“effector-less” mutant.We are currently focusing on this set ofgenes,especiallythoseencodingproteinkinases,whoseexpressionappearstobetargeted(directlyorindirectly)byeffectors,inordertoidentifynovelgenesinvolvedinMTI.

PS13-479Transcription factors, which connect MAMPs-responsiveMAPKcascadetothecoordinately-expressedphenylpropanoidbiosynthesisgenesMitsukoKishi-Kaboshi1,AkiraTakahashi1,HirohikoHirochika11NationalInstituteofAgrobiologicalSciences,Tsukuba,[email protected] in inductionofMAMPs-triggered immunity (MTI). We previously demonstrated thatOsMKK4-OsMPK3/OsMPK6constitutesaMTIsignalcascadeinrice.The activation of thisMAPK cascade coordinately induces

Page 179: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession13-Plantresponse

177

Poster 13

the expression of 38 of phenylpropanoid biosynthesis genes.Therefore, we expected that common elements exists in thepromoter regions of these phenylpropanoid biosynthesis genes.Wesearchedsuchcommonelementsandfoundanovelconsensussequence,designatedMCA-box,inthepromoterregionsof34ofphenylpropanoidbiosynthesis genes.TheMCA-box is similar toL-box,whichisfoundinPALpromoterofdicotyledonousplants.Intobacco,L-boxcontainingpromoterisactivatedbyR2R3-typeMYB transcription factor (TF),NtMYB2.We found that active-OsMKK4 induces the expression of OsMYB30, OsMYB55 andOsMYB111, which are orthologs of NtMYB2 in rice. Transientexpressionof these riceMYBcDNAs induces the expressionofphenylpropanoid biosynthesis genes in rice calli. In addition,OsMYB30andOsMYB55genesarerapidlyinducedafterMAMPstreatment.ThesedataindicatethatOsMYB30andOsMYB55areinvolvedintheregulationofphenylpropanoidbiosynthesisunderMAMPs-response. Next, we analyzed how OsMKK4-OsMPK6induces theOsMYB55 expression. In tobacco, aGATA-typeTF,AGP1,isapositiveregulatorofNtMYB2.WeidentifiedOsGATA3,a rice ortholog of AGP1, as a positive regulator of OsMYB55.Transient expression of OsGATA3 cDNA activates OsMYB55promoter. Further, addition of active-OsMKK4 and OsMPK6enhanced the activity of OsGATA3. These results revealed anovelpathwayinwhichOsMKK4-OsMPK6activatesOsGATA3,followed by promotion of OsMYB55 expression to inducephenylpropanoidbiosynthesisgenes.

PS13-480Isolation and characterization of lms, a rice lesion mimicmutantwith enhanced resistance to rice blast (Magnaportheoryzae)MulunehTamiru1,JerwinR.Undan1,2,AkiraAbe1,2,3,RymFekih1,RyoheiTerauchi11IwateBiotechnologyResearchCenter,2UnitedGraduateSchoolofAgriculturalSciences,IwateUniversity,Morioka,Iwate,020-8550,Japan,3IwateAgriculturalResearchCenter,Narita20-1,Kitakami,Iwate024-0003,[email protected] lesion mimic and senescence (lms) mutant is characterizedby a spontaneous lesion mimic phenotype during its vegetativegrowth and accelerated senescence after flowering. To isolatethe OsLMS gene, mutant F2 plants obtained by crossing thelmsmutant (japonica) toKasalath (indica)wereused tomap thecandidateregiontoabout322-kbonthelongarmofchromosome2. By Illumina whole-genome re-sequencing of the mutant, weidentified amutation causing aG toAnucleotide substitution atthe exon-intron splicing junction of a gene encoding a proteinwithacarboxyl-terminaldomain(CTD)phosphatasedomainandtwodoublestrandedRNAbindingmotifs(dsRBM).Themutationcausesa splicingerror that ispredicted to introduceaprematurestop codon. RNA interference (RNAi) transgenic lines withsuppressed expressionof theLMS that display the lesionmimicphenotypeconfirmedthatthemutationinLMSisresponsibleforthe abnormal mutant phenotypes. A leaf blade spot inoculationtestrevealedlmsshowsenhancedresistancetoacompatibleraceof rice blast compared to thewild-type plants.OsLMS shares amoderateamino-acidsimilaritytotheArabidopsis FIERY2/CPL1gene,whichisknowntocontrolmanyplantprocessessuchasstressresponseanddevelopment.Thelmsmutantalsoshowssensitivitytocoldstressattheearlygrowthstage,suggestingthatLMSisaregulatorofstressresponseinrice.

PS13-481Functional characterization of Arabidopsis WRKY55 gene inplantdefenseagainstabacterialpathogenJeong-PilRyu1,YuKyungLee1,Kwang-HyunMin1,BaikHoCho1,Kwang-YeolYang11Department of Plant Biotechnology (BK21 program), CollegeofAgriculture and Life Science, Chonnam National University,Gwangju,Korea

[email protected] identify the defense-related genesmediated by theMAPKK-MPK3/MPK6 cascade, genome-wide gene expression profilingwas performed using the commercially available ArabidopsisAffymetrix microarray from NtMEK2DD transgenic Arabidopsisplants after DEX treatment. Here, we describe that the roles ofAtWRKY55gene,which isoneof thegenesregulatedbyMPK3/MPK6cascade,involvedinplantdefenseresponse.Theexpressionof AtWRKY55 genes was partially compromised in NtMEK2DD/mpk3 and NtMEK2DD/mpk6 plants. Expression of AtWRKY55was induced by pathogen infection and SA treatment. Both theT-DNAinsertionmutantsandoverexpressiontransgeniclineswereexamined for responses to the bacterial pathogen Pseudomonas syringae pv. tomatoDC3000 (PstDC3000).Growthof bacterialpathogen was decreased in the overexpression transgenic lines.Futhermore, the AtWRKY55-overexpressing plants displayedenhancedexpressionofPR-1geneafterPstDC3000infection.Bycontrast,T-DNAmutantsshowedenhancedgrowthofPstDC3000andsuppressedexpressionofPR-1geneafterbacterial infection.Takentogether,theseresultssuggestthatAtWRKY55hasapositiveroleinplantresistancetobacterialpathogen.

PS13-482A dual Resistance-protein system confers resistance againstfungalandbacterialpathogensYoshihiro Narusaka1, Ken Shirasu2, Yoshitaka Takano3, MariNarusaka11Research Institute forBiologicalSciences,Okayama,Okayama,Japan,2RIKENPSC,3Grad.Sch.ofAgri.KyotoUniv.yo_narusaka@bio-ribs.comWefoundthatbothArabidopsis RPS4andRRS1arerequiredforresistancetoColletotrichum higginsianum,Ralstonia solanacearumandPseudomonas syringaepv. tomato strainDC3000expressingavrRps4. These two adjacentR genes confer resistance to threedistinctpathogenswithverydifferentinfectionstrategies.AlthoughthecomparisonofaminoacidsequencesoftheRPS4allelesfromtwenty ecotypes revealed the amino acid sequenceswere highlysimilar, we found several variations in the LRR domain andC-terminal region ofRRS1.Natural variation in receptor-typeRproteinsoftenoccursintheirLRRdomain,typicallyatthesolventexposedβ-strand/β-turnstructure.ThestrongselectionpressureattheLRRdomainsuggeststhatthisisthedomaindirectlybindstothe pathogen determinants that are evolving fast.To analyze thestructureandfunctionofRPS4andRRS1proteins,weintroducedaminoacidchanges intoRPS4andRRS1.In thisreport,wewillpresenttheanalysisofthesemutantsandthefunctionofRPS4andRRS1.

PS13-483BreakingrestrictedtaxonomicfunctionalitybydualresistancegenesMari Narusaka1, Ken Shirasu2, Yasuyuki Kubo3, TomonoriShiraishi4, Katsunori Hatakeyama5, Tadayoshi Hirai6, KeiichiKawamoto6,HiroshiEzura6,YoshihikoNanasato7,YutakaTabei7,YoshitakaTakano8,YoshihiroNarusaka11Research Institute forBiologicalSciences,Okayama,Okayama,Japan,2RIKENPSC,3Grad.Sch.Agri.,KyotoPref.Univ.,4Grad.Sch.Nat.Sci.&Tech.,OkayamaUniv., 5Natl.Res. Inst.Veg.&TeaSci.,6Grad.Sch.LifeEnv.Sci.,TsukubaUniv.,7Natl.Inst.Agr.Sci.,8Grad.Sch.ofAgri.,[email protected],introgressionofdiseaseresistance(R)genesfromwildrelativesintosusceptiblecropshasbeenusedfordecades.However,transgenictransferofNB-LRRtypeRgenesbetweendifferentplantfamilieshasnotbeensuccessful,representingaphenomenacalledrestrictedtaxonomicfunctionality.Inpreviousstudy,wedemonstratedthatapairofArabidopsis thalianaTIR-NB-LRRgenesRRS1andRPS4functiontogetherindiseaseresistance

Page 180: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession13-Plantresponse

178

Post

er 1

3

against multiple pathogens, i.e., fungal pathogenColletotrichum higginsianum, bacterial pathogens Pseudomonas syringae pv.tomato strain DC3000 expressing avrRps4 (Pst-avrRps4) andRalstonia solanacearum.We successfully transferred a genomicfragment containingRRS1 andRPS4 under control of the nativepromoter into the Brassicaceae, Solanaceae and Cucurbitaceaeplants. The dual R gene transgenic plants were resistant to thefungalandbacterialpathogens.Thetransgenicplantsdidnothavea stunted phenotype with spontaneous cell death. These resultsindicatethatdualRgenecanfunctionbetweendifferentfamilies,breaking the dogma of restricted taxonomic functionality of Rgenes.This implies that thedownstreamcomponentsofR genesmustbehighlyconservedandthatinterfamilyutilizationofRgenescanbeapowerfulstrategytocombatpathogens.

PS13-484Microarray analysis of gene expression profiles induced byneutralized phosphorous acid andPhytophthora parasitica intomatoChih-HangWu1,Chu-PingLin1,Pao-JenAnn2,Ruey-FenLiou11DepartmentofPlantPathologyandMicrobiology,NationalTaiwanUniversity,Taipei106,Taiwan,2PlantPathologyDivision,TaiwanAgricultureResearchInstitute,Taichung413,Taiwanwu.chihhang@gmail.comPhosphonateandrelatedfungicidessuchasneutralizedphosphorousacid (NPA)havebeen shown tobe effective in controllingplantdiseases caused by Phytophthora. In addition to its role as afungicide, phosphonate has the ability to induce plant resistanceagainst oomycete pathogens. To investigate the mechanismunderlying phosphonate-induced resistance, we analyzed thetranscriptomes of tomato, by using Tomato Genome Array(Affymetrix), in response to NPA treatment and NPA treatmentfollowedbyP. parasiticainfection.Theresultsshowedthat91geneswereup-regulated(>1.75fold)and20genesweredown-regulated(< 0.57) in response to NPA treatment. Functional classificationof up-regulated genes by GeneOntology (GO) analysis showedthatmostof thegenesareinthecategoryof“responsetostress”and“cellularprocess”.Noteworthy,theyincludedgenesinvolvedin biotic stress resistance, such as jasmonic acid and ethylenesignaling, polyamine biosynthesis, and chitinmetabolic process.Ontheotherhand,incomparisontowater-pretreatedcontrol,100geneswere induced and 59 geneswere repressed specifically inNPA-pretreated tomato plants after P. parasitica inoculation.GO term analysis indicated that those up-regulated genes arein the category of “cellular process”, “protein modification”,and “response to stress”. Interestingly, this group includes genesinvolved in “protein ubiquitination”, “respiratory burst”, and“response to chitin”. Our results suggested that phosphonateconfersplant resistanceagainstoomycetepathogens through twodistinctmechanisms: (1) accumulationof antimicrobialmaterialsbeforeencounteringpathogen,and(2)rapidchangesinoxidativeburstandproteinmodificationtoregulatedplantdefenseresponsesuponpathogeninfection.

PS13-485Molecular mechanisms for disease resistance in rice that isregulatedbythetranscriptionalactivatorOsWRKY53Satoshi Ogawa1, Koji Miyamoto1, Takafumi Shimizu1, YukaMasuda1, Tetsuya Chujo1, Yoko Nishizawa2, Eiichi Minami2,HideakiNojiri1,HisakazuYamane3,KazunoriOkada11BiotechnologyResearchCenter,TheUniversityofTokyo,Tokyo,Japan,2NationalInstituteofAgrobiologicalSciences,3DepartmentofBiosciences,TeikyoUniversitys_o_candy_will_save_the_earth@yahoo.co.jpOsWRKY53 is a transcriptional activator whose expression isenhanced in response to a chitin oligosaccharide elicitor fromthe rice blast fungus Magnaporthe oryzae. Overexpression ofOsWRKY53 in rice induced up-regulation of defense-relatedgenes,andresultedinenhancedresistancetoM.oryzae,suggesting

that OsWRKY53 plays important roles in elicitor-induceddefense signaling pathways. We previously demonstrated thatOsWRKY53isphosphorylatedinvitrobyaMAPkinasecascade,and transactivation activity of phospho-mimic OsWRKY53(W53PM),aconstitutivelyactiveform,ishigherthanthatofnativeOsWRKY53 (W53NT). In this study, we generated transgenicrice plants overexpressingW53PM andW53NT, and examinedblast-resistance in parallel with transcriptome changes to M.oryzae infection in theseplants.W53PMplants showed strongerresistancethanW53NTplantsandnon-transformants(NTr).Inthetranscriptomeanalysis,6842geneswereup-regulatedinNTrplants48hoursafterblast-infection.Welookedforgenesexpressedhigherin onlyW53PM plants (group 1) or bothW53PM andW53NTplants (group 2) in comparison with genes up-regulated in NTrplants. InW53PMplants,175geneswereup-regulatedathigherlevelsthaninW53NTplantsorNTrand71genesexpressedhigherinbothW53NTandW53PMplants, suggesting thatmanygeneshaveenhancedexpressiononlyinW53PMplants.GeneOntologyanalysis revealed that 6% and 9% of genes in group 1 and 2,respectively,werecategorizedasdefense-relatedgenes.ChIP-seqanalysisusingW53NT-overexpressingcellsenabledustoidentifythetargetgenesofOsWRKY53,whoseregulationmechanismsbyOsWRKY53areofcurrentinterest.

PS13-486Characterizationofanovelpathogenesis-relatedproteinfromSolanum lycopersicumSiao-HueiYi1,Ruey-FenLiou11DepartmentofPlantPathologyandMicrobiology,NationalTaiwanUniversity,Taipei,[email protected] fungicides such as neutralized phosphorousacid (NPA) are known to induce plant resistance against manydiseases, including thosecausedbyPhytophthora.To investigatethemechanismunderlyingNPA-inducedresistance,wepreviouslyperformedamicroarrayanalysisandfoundthatavarietyofdefensegeneswereinducedinresponsetoNPAtreatmentintomatoplants.Amongthem,onegene(namedNIPRa),whichshowedhomologytoaputativepathogenesis-related(PR)geneinbarley,issignificantlyinduced but functionally unknown.Hence, the aim of this studyis to uncover the characteristics of NIPRa. Analysis by semi-quantitative reverse transcriptase-PCR indicated that expressionofNIPRawasinducedwhenplantswerechallengedwitheitherP. parasiticaor thebacteriawiltpathogenRalstonia solanacearum.Aswell,NIPRawas up-regulated by salicylic acid and ethylenetreatment.To testwhetherNIPRa contributes to plant resistanceagainstpathogens,weoverexpressedNIPRabyPVXagroinfection,and then challenged the plants with either P. parasitica or R. solanacearum. Plants overexpressing NIPRa showed highertolerance to infection by these pathogens. In contrast, down-regulation of NIPRa by TRV-induced gene silencing increasedplantsusceptibilitytopathogeninfection.Furthermore,theNIPRarecombinantproteinpurifiedfromE. colishowedgreencolorandtendedtoformdimerstopolymerswhenanalyzedbygelfiltration.AnalysisbyICP-MSindicatedthattherecombinantNIPRaismostlikely ametalloprotein.These results suggested thatNIPRamayrepresent a novel category of PR protein, yet its function needsfurtherinvestigation.

PS13-487The transcriptional response in potato to infection byPectobacterium carotovorumsubsp.brasiliensisandtheroleofcoronafacicacidinmanipulatingplantdefencesPavithra Ramakrishnan1, Mark Fiers2, Preeti Panda1, AndrewPitman1,21Bio-Protection Research Centre, Lincoln University, Lincoln,NewZealand,2NewZealandInstituteforPlant&FoodResearch,PrivateBag4704,Christchurch,[email protected]

Page 181: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession13-Plantresponse

179

Poster 13

Pectobacterium carotovorum subsp. brasiliensis (Pbr) causesblackleg of potato stems and soft-rot of potato tubers. GenomesequencingofPbrNZEC1,ahighlyvirulentisolatecollectedfrompotato inNewZealand, identified the presence of a biosyntheticcluster encoding coronafacic acid (CFA). CFA was previouslyshown tobean importantvirulence factor in thebacterialpotatopathogens Pectobacterium atrosepticum and Streptomyces scabies. Here, we show that inactivation of CFA significantlyreduced the ability ofPbr NZEC1 to cause blackleg as well assoftrot,dependingonthephysiologicalageofthetubers.CFAisacomponentofcoronatine,aphytotoxininvolvedinpathogenicityofthehemibiotrophicpathogenPseudomonas syringaeonnumeroushosts. InP. syringae, coronatine functions as amolecularmimicofJasmonicAcid(JA),resultinginup-regulationofgenesrelatedtoJAsignalinguponinfectionandsubsequentsuppressionofthesalicylicacidsignalingpathway.Todate,however,theinfluenceofCFAonthehostresponsetoanecrotrophicpathogensuchasPbrremainsunknown.In thisstudy,Illumina-basedRNAsequencingwasusedtocomparethetranscriptionalresponseinpotatotubersinfected with either wild-type Pbr NZEC1 or a CFA- mutant.AnalysisofthetranscriptionaldatarevealedthatgenesinvolvedinbothJAandethylenebiosynthesisweresignificantlydifferentiallyregulated inwild-typecompared to theCFA-mutant, suggestingthat CFA regulates both the pathways in tubers that lead todefensinproduction.Defensinisrequiredforplantdefenceagainstnecrotrophicpathogens.

PS13-488Geneexpressionanalysisduringacibenzolar-S-methylinducedsystemic disease resistance in cucumber using cross speciesmicroarraysSaligramaA.Deepak1,HideoIshii21Genotypic Technology Pvt. Ltd., 2National Institute for Agro-EnvironmentalSciences,Tsukuba,Ibaraki305-8604,[email protected] this study, expressionwasanalyzed inorder to identifygenesofcucumber involved insystemic inductionof resistanceagainstanthracnose disease consequent to priming with the resistanceinducer, acibenzolar-S-methyl (ASM). The first true leaves ofcucumber plants were dipped inASM suspensions at 100mg/La.i. or distilled water. Treated and untreated upper leaves wereinoculated with Colletotrichum orbiculare 3 h after treatment.Sampleswerecollectedfromthirdleavesat24hafterinoculation.LeafdiscsweresoakedinRNAlater®TissueCollectionuntiluseforRNA isolation and cDNA synthesis.A custom (44k)Agilentmicroarrays comprising 29,756 probes were designed using thegenenecleotidesequencesfromcloselyrelatedandwellannotatedsequences ofArabidopsis, tobacco, cucumber etc.We identified449up-regulated and378down-regulatedgenes inASMprimedand pathogen inoculated cucumber plants, while ASM alonetreated plants showed 133 up-regulated and 276-down regulatedgenes. These differentially regulated genes belonged to severalhormonal pathways such as gibberellins (GA2ox8), abscisic acid(ZEP,NECD1),salicylicacid(NPR1),jasmonicacid(LOX,AOC)andethylene(ACS2)pathwaysaswellaschemicaldefensesystemssuch as phenolics (PAL,CAD etc.) and lignification (LPO). ThetreatmentwithASMaloneprovidedsignificantpatternwhichwillassisttheconceptofpriming.Thepatternofgeneexpressionisinagreementwithourpreviousstudiesandpublished literatures. Inspiteofrequirementforvalidations,theconceptofnearestneighbormicroarrayapproachprovidesquickmeansforviewingglobalgeneexpression profiles without the dependability on transcriptome/genomicsequencedata.

PS13-489Regulation of hypersensitive response by translationallycontrolledtumorproteininNicotiana benthamianaMeenuGupta1,KouheiOhnishi2,HiroyukiMizumoto1,YasufumiHikichi1,AkinoriKiba11Laboratory of plant Pathology and biotechnology, Kochi

University,kochi,Japan,2ResearchInstituteofMoleculargenetics,KochiUniversity,Nankoku,[email protected] response (HR) is the most characteristic plantimmune response. Ralstonia solanacearum (Rs8107) is nonpathogenic and induces hypersensitive response in Nicotiana benthamiana. We have isolated and analyzed genes, which areregulatedbyinoculationwithR. solanacearuminN. benthamianaplants (R. solanacearum-responsivegenes;RsRGs)related to theHRbyvirus-inducedgenesilencingusingNicotiana benthamianaand thePotato virus X vector system.We selected a RsRG308,since an HR induction was accelerated in RsRG308-silencedplantschallengedwithRs8107.Deducedaminoacidsequenceoffull length RsRG308 cDNA showed similarity to translationallycontrolledtumorprotein(TCTP)genesfromArabidopsis thaliana,Glycine max, Oryzia sativa,Triticum astivum.Then,wedesignatedthecDNAasNbTCTP(N. benthamiana translationallycontrolledtumorprotein).AccelerationofHRcelldeathandover-productionof reactive oxygen (ROS) were observed in NbTCTP-silencedplantsinoculatedwithRs8107,Pseudomonas syringae pv. syringaeandP. chichorii.AccelerationofHRcelldeathwasalsoobservedinNbTCTP-silencedplantsbyAgrobacterium tumefaciens-mediatedtransientexpressionofHRelicitorsandaconstitutivelyactiveformofmitogen-activatedproteinkinasekinase.ThebacterialpopulationofRs8107was reduced inNbTCTP-silenced plants compared tocontrol plants.These results suggested thatNbTCTPmight haveregulatoryfunctioninHRcelldeathviareactiveoxygenmediatedsignalingpathway.

PS13-490NOD1, a negative regulator of plant immune response, isrequired for establishment of disease susceptibility duringNicotiana benthamiana-Ralstonia solanacearuminteractionMasahito Nakano1,2, Masahiro Nishihara3, Kouhei Ohnishi4,YasufumiHikichi2,AkinoriKiba21The United Graduate School of Agricultural Sciences, EhimeUniversity, Ehime, Japan, 2Faculty of Agriculture, KochiUniversity,Kochi, Japan, 3IwateBiotechnologyResearchCenter,Iwate, Japan, 4Reaserch Institute of Molecular Genetics, KochiUniversity,Kochi,[email protected] have evolved an immune system to reject microbialinfections. However, adaptedmicrobes (pathogens) suppress theimmunesystemandinducediseasesusceptibilitybytargetinghostmoleculesthatfunctionasnegativeregulatorsofimmuneresponses.Inordertobetterunderstandthemolecularmechanismsofdiseasesusceptibility,wehaveusedtheNicotiana benthamiana-Ralstonia solanacearum pathosystem. Virus-induced gene silencing wasusedtoscreenfor theplants thatfailed todevelopwiltsymptomin response toR. solanacearum.Among the screened plants,wefocusedontheplantshowingahighlyresistancephenotypeagainstR. solanacearum, anddesignatedasNOD1(Nodisease1)plant.Silencing of NOD1 resulted in a dramatic increase of reactiveoxygenspecies(ROS),andoverproductionofROSinNOD1plantswasreducedbydoublesilencingofNOD1andNbrbohB.ThewiltsymptomwasobservedinNOD1/NbrbohB-silencedplantssimilartocontrolplants, indicatinginvolvementofROSsignalingintheresistanceofNOD1plants.Intriguingly,NOD1genewasdrasticallyexpressedinleavesinoculatedwithawildtypeofR. solanacearum,butnotwithatype3secretionsystem(T3SS)-deficientmutantofthebacteria.Takentogether,NOD1mayactasanegativeregulatorofplantimmuneresponses,andbetargetedbybacterialeffector(s)duringtheestablishmentofdiseasesusceptibility.

PS13-491ApositiveregulatoryroleofthewatermelonClWRKY70genefordiseaseresistanceintransgenicArabidopsisKwang-YeolYang1,SongMiCho2,BaikHoCho11Department of Plant Biotechnology, College ofAgriculture and

Page 182: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession13-Plantresponse

180

Post

er 1

3

Life Sciences, Chonnam National University, 2Department ofFloriculture, Chunnam Techno College, Jeonnam, Republic [email protected] from the leavesofwatermelonseedlings24hafterinoculationwithCladosporium cucumerinum. The deduced protein of the gene, designated asClWRKY70,was classified as a group IIIWRKYprotein basedonitssingleWRKYdomaincontainingaCys2HisCyszinc-fingermotif. Its Arabidopsis sequence homologue (AtWRKY70) hasbeendescribed as playing an important role in theplant defenseresponse.ClWRKY70genetranscriptswerehighlyaccumulatedinwatermelonbysalicylicacidtreatment,butnotbyjasmonicacid.By evaluating target gene expression in transgenic Arabidopsisoverexpressing the ClWRKY70 gene, it is suggested that thewatermelonWRKY genemay play a positive regulatory role inplantresistanceagainstpathogenattack.

PS13-492TheArabidopsisanionchannelsparticipateininnateimmunityWeiGuo1,XiChen1,CaijuanTian1,CanWu1,HualiLi1,Jin-LongQiu11InstituteofMicrobiology,ChineseAcademyofScience,Beijing,Chinaqiujl@im.ac.cnTheanioneffluxisoneoftheearlyresponsesofplantcellstopathogenattacks.However,whichandhowanionchannelparticipatesintheprocessisstillunknown.Inanimal,itwasfoundthatanionchannelis involved in the programmed cell death. In plants, it is alsoreported that anion efflux regulates hypersentive response (HR)celldeath.Weareaimingtoidentifytheanionchannelsinvolvedinplantdefenseresponses.WesystematicallystudiedtheArabidopsisanion channel families by isolation of T-DNA insertion lines,disease resistance assays and electrophysiology and Cl-sensoranalysesofanionfluxinhostcells.PreliminarydatashowedthatArabidopsis support that different anion channelsmayplay bothnegativeandpositiverolesinPAMP-triggeredimmunity(PTI)andeffector-triggeredimmunity.

PS13-493High-throughput screeningof chilipepperproteases functioninNicotiana benthamianafollowingpathogensinfectionsChungyun Bae1, DongJu Lee1, JungEun Kim2, Cheol-Goo Hur2,DoilChoi11Department of Plant Science, SeoulNationalUniversity, Seoul,Korea, 2Plants Systems Engineering Research Center, KRIBB,Daejeon,305-805,[email protected],whichbreakpeptidebondofproteins.Proteasesplaykeyroleinregulationofbiologicalprocesses in plantswhich include plantmetabolism, physiology,growth and defense. Proteases are classified into 5 families:Cysteinproteases,Serineproteases,Threonineproteases,Metalloproteases and Aspartic proteases based on the nucleophile andoxyanionstabilizer.Wehaveselected940putativeproteasesfromESTofCapsicum annuumusingproteasedomainfromMEROPSdatabase through blastX, hmmpfam and hmmsmart. To identifynovelfunctionsofpepperproteases,wehavecloned159proteasesintoTRV-LICvectortoperformvirus-inducedgenesilencing.Asagenesilencingresults,29proteases-silencedphenotypesshowedgrowthretardation,9showedseverestuntingwithcrinkledleaves,8showedseverestunting,7showedcrinkledleavesandlethality,4showedvariegatedleaves,3showedyellowingleaves,95showednodifferenceand theother4 showedvariousphenotypes.Theseresults may indicate that plant proteases have essential roles inplantgrowthanddevelopment.Currentlyweareworkingon theroles of plant protease in pathogen defense.To identify the roleofproteases inpathogendefense,wehave infectedavirulentand

virulent pathogen to the protease-silenced plant. As pathogeninfectionresults,12showedenhancedHR,31showeddelayedHRand14showeddelayeddiseasesymptom.Progressesofourworkonfunctionalgenomicsofchilipepperproteasegenesuperfamilywillbepresentedasposter.

PS13-494Capsicum-specificsecretedproteinCaSD1hasmultiplerolesinpathogendefense,delayofsenescence,andtrichomeformationEunyoung Seo1, Seon-In Yeom1, SungHwan Jo2, Heejin Jeong1,Byoung-CheorlKang1,DoilChoi11Department of Plant Science, SeoulNationalUniversity, Seoul,Korea,2SeedersInc.,Daejeon,[email protected] proteins have diverse functions involving in plantdevelopment,metabolism,anddefenseresponseagainstpathogens.Capsicum annuum senescence-delaying 1 (CaSD1), a geneencodinganovelsecretedprotein,wasisolatedfrompeppers(C. annuumCM334)using theyeast secretion trapsystemfollowinginoculation with Phytophthora capsici. CaSD1 is present onlyin species of the Capsicum genus and contains multiple repeatsequencesof“KPPIHNHKPTDYDRS”.Interestingly,thenumberof repeat units was variable among species and cultivars in theCapsicumgenus.CaSD1isexpressedinrootsatnormalcondition,butthetranscriptlevelsofCaSD1wererapidlyupregulatedinleaveswhen treated with either pathogens or defense-related signalingmolecules. Agrobacterium-mediated transient overexpression ofCaSD1inNicotiana benthamiana resultedindelayedsenescencewith a dramatically increased number of trichomes and enlargedcellsize.Furthermore,certainsenescence-andcelldivision-relatedgenes were differentially regulated by CaSD1-overexpressingplants.Theseobservationsimplythatthepepper-specificcellwallproteinCaSD1mighthaverolesinplantgrowthanddevelopmentaswellasinpathogendefense.

PS13-495Developmentofahigh-throughputsystemtomonitorpathogen-responsive gene expression in Arabidopsis thaliana seedlingsusingbioluminescentreportersMasahiroKusama1,NobuakiUrata1,GoBanzashi1,RiekoOgura2,Shin-ichiOgata1,KazuyukiHiratsuka11Graduate School of Environmental and Information Sciences,Yokohama National University, Kanagawa, Japan, 2VentureBusiness Laboratory,YokohamaNationalUniversity,Kanagawa,[email protected] develop a bioluminescencemonitoring of plant defense geneexpression,we exploitedfirefly luciferase (Fluc) reporter systemandtestedseveraldefense-relatedgenepromotersusingtransgenicArabidopsis.Resultsofin vivobioluminescenceassayindicatedthatthepromotersareinducedinresponsetotreatmentwithchemicalsorpathogeninoculationandtheluminescencelevelsareinparallelwith theendogenousmRNAlevels. Inorder toadapt to thehighthroughput screening (HTS) system in 96-multiwell format, wefurtherselectedpromotersthatarefunctional ingrowthstage1.0seedlings(cotyledonfullyopened),andfoundthatthePathogenesis Related protein 1a(PR-1a)fromtobaccoBY-2andtheVegetative Storage Protein 1 (VSP1) promoter from Arabidopsis thaliana,showedclearFlucactivityinductioninresponsetotreatmentwithchemicalsinA. thalianaseedlings.Usingthistechnology,wecouldsuccessfullyidentifychemicalswithdefensegeneinduceractivitythatcanbeapplicabletothedevelopmentofplantactivatorsfromthe chemical libraries. Also, we obtained mutants with altereddefensegeneexpressionfromthepopulationsofEMS-mutagenizedM2seedlings.To improve thesystemtoovercomeproblems,weare currently introducing the dual-color luciferase assay systemusingclickbeetle luciferases fromPyrophorus plagiophthalamusasreportergenes.

Page 183: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession13-Plantresponse

181

Poster 13

PS13-496TheinfluenceofinfectionpressureofSynchytrium endobioticum(Schilb.)Perc.onreactionofpotatoJaroslawPrzetakiewicz11PlantBreeding andAcclimatization Institute,NationalResearchInstitute,DepartmentofPlantPathology,LaboratoryofQuarantineOrganisms,Radzikow,[email protected] endobioticum isasoil-bornequarantinepathogenofpotatocausedPotatoWartDisease (PWD).There isnochemicalcontrol of PWD and the only natural resistance of the potato isthewayofeliminationthispathogen.Themostvarietiesofpotatoareresistantorsusceptibletopathotype1(D1)ofS. endobioticum.Somevarietiesarepartiallyresistant.TheyreactasresistantinlowinfectionpressureandsusceptibleinhighinfectionpressureofS. endobioticum. Four varieties (Erika, Signum, Bonus andAllora)of potatowere tested using twodifferentmethodof inoculation:Spieckermann method with winter sporangia (low pressure ofpathogen)andGlynne-Lemmerzahlmethodwithsummersporangia(highpressureofpathogen).Pathotype1(D1)ofS. endobioticumwasused inbothmethods.Althoughinoculumwascharacterized(40000wintersporesor2goffreshwart/tuber),thereisnopossibletodirectcontrolnumberofzoosporesduringinfection.Inthecaseofwintersporangiaonlyafewarecapableofgerminationduringinoculation period (6-8weeks) in contrary to summer sporangiawhenthemostofsorireleasezoosporesinthesametime(2days).Allvarietieswereresistantafterusingwintersporangiawhileusingof summer sporangia broke down partially resistant of varietiesleading to close the live cycle ofS. endobioticum.The presenceofwinter sporangia in host’s tissueof varietieswere a proof forsusceptibility. Only high infection pressure of S. endobioticumallowsforadequatereactionofhostanddistinguishtrulyresistantvarietiesofpotatoamongpartiallyresistantones.

PS13-497Suppression of autophagosome formation by cryptogein, aproteinaceouselicitorfromanoomycete,intobaccoBY-2cellsMasaakiOkada1, ShigeruHanamata1, TakamitsuKurusu1,2, KokiKawamura1,KazuyukiKuchitsu1,21Department of Applied Biological Science, Tokyo Universityof Science, Chiba, Japan, 2Research Institute for Science andTechnology(RIST),TokyoUniversityofScience,Chiba,[email protected] involvement of autophagy in immune responses hasextensivelybeendiscussedboth inplantsandanimals.However,littleisknownonthedynamicsofautophagyduringtheinductionof defense responses in plant cells. Cryptogein, a protein froman oomycete, elicits a series of defense responses includingreorganization of the vacuoles and hypersensitive cell death intobaccoBY-2cells(Higakietal.2007).Weheredevelopedanin vivoimagingsystemtomonitorthedynamicsofautophagyinBY-2cells expressing YFP-NtAtg8. The number of autophagosomesrapidlydecreasewithin15mininresponsetocryptogein.Notonlyinitial defense responses including NADPH oxidase-mediatedROSproductionbutalsosuppressionofautophagosomeformationtriggered by cryptogein required continuous recognition of theelicitor, and severely inhibited by a protein kinase inhibitor,K-252a. Possible physiological and pathological significance aswellas theregulationofautophagyduring the inductionofplantimmuneresponseswillbediscussed.

PS13-498RolesofanS-typeanionchannelSLAC1 in theregulationofcryptogein-induced initial responses and hypersensitive celldeathintobaccoBY-2cellsTakamitsuKurusu1,2,KatsunoriSaito1,SonokoHorikoshi1,ShigeruHanamata1,JuntaroNegi3,KohIba3,KazuyukiKuchitsu1,2

1Department of Applied Biological Science, Tokyo Universityof Science, Chiba, Japan, 2Research Institute for Science andTechnology (RIST), TokyoUniversity of Science, Chiba, Japan,3Department ofBiology, Faculty of Science,KyushuUniversity,Fukuoka,[email protected] through theplasmamembraneareoften rapidly inducedduringdefense responses inplant cells(Kuchitsu et al. 1993, 1997). Pharmacological analyses suggesttheir essential roles for the induction of innate immunity andhypersensitive cell death (Kadota et al. 2004). However, themolecular bases for the anion effluxes and their regulation inimmune responses remain largely unknown. SLAC1 (SLOWANION CHANNEL-ASSOCIATED 1) has recently beenidentifiedasaplasmamembraneslow-type(S-type)anionchannelin Arabidopsis stomatal guard cells (Negi et al. 2008; Vahisaluet al. 2008). We here overexpressed Arabidopsis SLAC1 genein tobaccoBY-2 cells and investigated its effects on cryptogein-inducedinitialresponsesincludingvariousionfluxesandNADPHoxidase-mediatedROSproductionaswell asdownstreameventssuchasexpressionofdefense-relatedgenesandhypersensitivecelldeath.TheSLAC1-GFPfusionproteinwaslocalizedattheplasmamembrane. The overexpressors showed enhanced sensitivity tocryptogein to induce a wide range of immune responses, whichwere suppressed by an S-type anion channel inhibitor. Possibleroles of SLAC family anion channels in plant immunitywill bediscussed.

PS13-499UV-B irradiation-induced suppression of necrotic symptomdevelopmentandTSWVaccumulationintobaccoplantsMichieKobayashi1,MakotoYamada2,MasakiIshiwata2,MamoruSatou1,TamotsuHisamatsu11NAROInstituteofFloriculturalScience,[email protected] (UV-B, 280-320 nm) irradiation triggers stressresponses accompanied by changes in the expression of a largenumber of genes in plants. The UV-B-responsive genes includethose involved in disease resistance; therefore, UV-B irradiationhas been thought to enhance resistance to pathogens. However,thereislittleexperimentalevidenceregardingtheeffectofUV-Bondiseaseresistance.Thrips-transmittedTomato spotted wilt virus (TSWV) causes an important disease in awide range of plants.Here, we report that UV-B irradiation reduces the incidence ofdisease caused by TSWV in tobacco. In tobacco plants, TSWVspreads systemically and triggers the development of necroticlesions.Exposureof the tobaccoplants toUV-B irradiationafterTSWV inoculation suppressed necrotic symptom developmentand TSWV accumulation in an intensity-dependent manner.Pretreatment of the tobacco plantswithUV-B irradiation beforeinoculation also produced the same inhibitory effect. However,TSWV inoculum exposed toUV-B irradiation exhibits the samelevel of infectability as the non-irradiated control. These resultssuggest that the suppression is attributable to theUV-B-induceddefenseresponsesinthehostplants.WealsoreportadifferenceingeneexpressiononTSWVinfectionbetweenUV-Birradiatedandnon-irradiatedplants.

PS13-500Cloningandexpressionanalysisofanargininedecarboxylasegenefrombottlegourd(Lagenaria siceraria)Su-hyunKim1,BaikHoCho1,Kwang-YeolYang11The Department of plant biotechnology, Chonnam nationaluniversity,Gwang-ju,Koreafalsetear@hanmail.netBottlegourdhasbeenusedasasourceofrootstockforwatermelonagainstsoil-bornediseaseandlowsoiltemperature.However,thewiltincucurbitcropscausedbyabioticstresssuchasdroughthas

Page 184: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession13-Plantresponse

182

Post

er 1

3

beenreportedrecently.Geneticallymodifiedplantbreedingcouldbe used to improve stress tolerance of bottle gourd rootstock.Therefore,wetriedtocloneanargininedecarboxylase(ADC)gene,whichisinvolvedinplantputrescine(Put)biosynthesis,frombottlegourdandtoanalyzeitsexpressioninabioticstressconditions.Thefull length of LsADC gene was isolated through RT-PCR usingprimersdesignedbasedonhighlyconserved regionofcucumberADC gene. Sequence analysis by BLASTX program revealedthat the putative amino acid sequence of LsADC shared highidentitieswithknownADCsfromotherplants,suchascucumber(96%), Nicotiana tabacum (76%), Arabidopsis thaliana (71%)andrice(64%).TheLsADCcontainedtwowell-conservedmotifscharacteristicofdecarboxylaseandapotentialchloroplast transitpeptideintheN-terminal.LsADCwasexpressedathighlevelinthestem,cotyledonandroot,whereasaweaksignalcouldbedetectedin the leaves.Transcripts ofLsADC in bottle gourd leaveswereinducedcontinuouslyinresponsetodroughtandhighsalttreatmentandpathogeninfectionaswell.Takentogether,LsADCisastress-responsivegeneandcouldbeusedasacandidategeneforbottlegourdgenetictransformationinthefuture.

PS13-501A novel communication between plants and soil bacteriathroughvolatilesubstancesJunMurata1,HajimeKomura11SuntoryFoundationforLifeSciencesmurata-j@sunbor.or.jpRecentstudiesdemonstratethat,whilevastmajorityofsoilbacteriadonotexhibitsignificanteffectonplantgrowth,selectedstrainsofbacteriaarecapableofeitherpromotingor inhibiting thegrowthofplantsthroughvolatilesubstances.However,toourknowledge,bacterial volatile substances that are responsible for this type ofplant-microbeinteractionhavenotfullyidentifiedsofar,andmoreover, little is known about how plants sense and respond to thecorresponding bacterial molecules.We report here that Bacillus subtilisstrainstestedinourstudycaninhibitthegrowthofvariousplant species including Arabidopsis, rice and basil seedlingswithoutdirectcontact.Inaddition,theplantseedlingsalsoexhibitsimilar growth retardation upon exposure to the volatiles ofAgrobacterium tumefaciens.Theseresultssuggestthattheplant’sresponsetobacterialvolatilesmightberegulatedbyamechanismthat is broadly conserved among plant kingdom.Bioassay-basedpurification of bacterial metabolites that are responsible for theplant-bacteria interaction led us to obtain a fraction enriched inselected classes of metabolites. Putative biological roles of thebacterialvolatileswillbealsodiscussed.

PS13-502Pathogen-induced ERF68 in tomato modulate production ofreactive oxygen species that cause cell death and pathogenresistanceAn-ChiLiu1,Chiu-PingCheng11Institute of Plant Biology, National Taiwan University, Taipei,[email protected] response factors (ERFs) are a large plant-specifictranscriptionfactorfamilyandintegrateexternalandendogenoussignals and control plant growth, development and defenseresponses.Bacterialwilt(BW)causedbyRalstonia solanacearumisaworld-widelyseriousandcomplexdisease,causingsignificantcrop losses; however, information on plant defense response toBWis limited.Ourpreviousstudysuggested the involvementofthermo-stress responsive factor1 (TSRF1), a member of tomatoERF Group IX (SlERF-IX), in defense against BW. This studyaimedtoelucidaterolesofadditionalERF-IXmembersindefenseresponse to BW. Six uncharacterized SlERF-IX members wereidentified in the tomato database. GFP-fused ERFs localized inthe nucleus of Arabidopsis protoplast and transactivation assayconfirmed theseproteins are functional transcriptional activators.

Interestingly,usingvirus-mediatedgeneoverexpression(VMGO)approach, we found overexpression of SlERF68 induced lesionsintomatoleaflets.SimilarphenotypewasconsistentlyobservedinNicotiana benthamianaandN. tabacumtransientlyoverexpressingSlERF68byAgro-infiltration.SlERF68wasabundantlyexpressedinrootandflowerbud,anditsexpressioninleavescouldbeinducedbysalicylicacidandethylene.Inaddition,SlERF68expressionwashighlyinducedbythewild-typeR. solanacearumstrain,butnotbyamutantstraindefectiveintheTypeIIIsecretionsystem,suggestingits involvement in effector-triggered immunity (ETI) response.Usinganinducibletransientexpressionsystem,ourresultsshowedthat SlERF68 overexpression triggered reactive oxygen species(ROS)accumulationand led tocelldeath.These results togetherrevealfunctionofSlERF68inregulatingROSproductioninplantdefenseresponseagainstpathogeninvasion.

PS13-503Regulation of elicitor-induced Ca2+ influx and phytoalexinproductionbyavoltage-gatedCa2+permeablechannelOsTPC1inriceKazuyukiKuchitsu1,2,HaruyasuHamada1,TakamitsuKurusu2,EijiOkuma3,YoshiyukiMurata3,KazunoriOkada4,HisakazuYamane41Department of Applied Biological Science, Tokyo Universityof Science, Noda, Japan, 2Research Institute for Science andTechnology,TokyoUniversityofScience,Noda,Japan,3GraduateSchoolofNaturalScienceandTechnology,OkayamaUniversity,Okayama, Japan, 4BiotechnologyResearchCenter,University ofTokyo,Tokyo,[email protected] types of microbe- or plant-derived signaling molecules(MAMPs/DAMPs) or elicitors induce various temporal patternsof changes in the cytosolic concentration of freeCa2+ prior to aseriesofdefenseresponsesincludingbiosynthesisofantimicrobialsecondarymetabolitescalledphytoalexins;however,themolecularlinks and regulatorymechanismsof thephytoalexinbiosynthesisremainslargelyunknown.Afungalxylanaseprotein(TvX)inducesdefenseresponsesincludinghypersensitivecelldeathinsuspension-culturedricecells.TvXinducedaprolongedincreaseincytosolicCa2+,mainlydue toaCa2+ influx through theplasmamembrane.Membranefractionationbytwo-phasepartitioningandimmunoblotanalyses revealed thatOsTPC1 is localizedpredominantly at theplasma membrane. In retrotransposon-insertionalOstpc1 knock-out cell lines harboring a Ca2+-sensitive photoprotein, aequorin,TvX-induced Ca2+ elevation was significantly impaired, whichwas restoredbyexpressionofOsTPC1.TvX-inducedproductionofmajor diterpenoid phytoalexins and the expressionof a seriesofditerpenecyclasegenesinvolvedinphytoalexinbiosynthesisaswellashypersensitivecelldeathwerealsoimpairedintheOstpc1cells.WholecellpatchclampanalysesofOsTPC1heterologouslyexpressed inHEK293Tcells showed itsvoltage-dependentCa2+-permeability.TheseresultssuggestthatOstpc1playsacrucialroleinTvX-inducedCa2+influxasaplasmamembraneCa2+-permeablechannel consequently required for the regulation of phytoalexinbiosynthesis and hypersensitive cell death in cultured rice cells.RecentadvancesindownstreamCa2+-mediatedsignalingnetworkinvolvingNADPHoxidase-mediatedproductionofreactiveoxygenspecieswillalsobediscussed.

PS13-504HSP70 regulates Tabtoxinine-β-lactam-induced cell death inNicotiana benthamianaMakoto Itoh1, Yu Yamamoto1, Chul-Sa Kim1, Kouhei Ohnishi2,HiroyukiMizumoto1,YasufumiHikichi1,AkinoriKiba11Faculty of Agriculture, Kochi University, Nankoku, Japan.,2Research Institute of Molecular Genetics, Kochi University,Nankoku,[email protected] syringae pv. tabaci causes wildfire disease toNicotiana benthamiana. This disease symptom is promoted by

Page 185: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession13-Plantresponse

183

Poster 13

Tabtoxinine-β-lactam(TβL),hostnon-specificbacterialtoxin.TβLis known to inhibit glutamine synthetase, and induce plant celldeaththroughtheabnormallyaccumulatedammonia.However,thedetailmechanismsofTβL-inducedcelldeathhavebeenobscured.In this study, we focused on SGT1, RAR1,HSP90 andHSP70,whichregulatevarioustypesofplantcelldeathinN. benthamiana.ToanalyzetherolesofSGT1,RAR1,HSP90andHSP70onTβL-induced cell death, we carried out virus-induced gene silencingwithN. benthamianaandPotato virus Xvectorsystems,and theleavesofsilencedandcontrolplantswereinfiltratedwithpurifiedTβL.TβL-inducedcelldeathwasobservedinSGT1-,RAR1-andHSP90-silencedplantssimilarlytocontrolplants.Incontrast,TβL-induced cell deathwasdrastically suppressed inHSP70-silencedplants.IntheHSP70-silencedplantstreatedwithTβL,amountofammoniawashigherthanthatincontrolplants.Furthermore,thesilencingofHSP70alsosuppressedcelldeathinducedbytreatmentwith L-methionine sulfoximine (MSX) that inhibit glutaminesynthetasesimilarly toTβL.OveraccumulationofammoniawasalsoobservedinHSP70-silencedplantsaftertreatmentwithMSX.TheseresultssuggestedthatHSP70mightbeessentialinTβL-andMSX-mediated cell death induction pathway, and have a role indownstreamofexcessammoniaaccumulation.

PS13-505Photosynthesis-mediated activation of PAMP-inducedbiosynthesisofsalicylicacidinArabidopsisTakashiShiina1,KanaNakai1,DaisukeTojo1,SatoshiSano1,YoichiNakahira11Graduate School of Life and Environmental Sciences, [email protected] crop diseases occasionally result from insufficientsunlight,suggestingthat lightmightberequiredforactivationofplantdefenseresponsesagainstpathogenattack.However,theroleoflightinplantinnateimmunityremainslargelyelusive.Recently,werevealedthatchloroplastsareinvolvedinbothPAMP-inducedbasal resistance and R gene-mediated hypersensitive cell death.Salicylic acid (SA) is a key regulator of plant defenses, whichaccumulatesininresponsetoavarietyofbioticstresses,includingpathogenassociatedmolecularpatters(PAMPs).ThepathwaysandregulationofSAbiosynthesisinplantsmaybemorecomplicatedthanpreviouslythought.Here,wedemonstratethatlightisrequiredforPAMP-inducedbiosynthesis ofSAand subsequent activationofdefenseresponses. Interestingly,wefoundthatphotosystemIIinhibitorDCMUseverelyreducedPAMP-inducedSAaccumulationin the light, suggesting dependence of SA biosynthesis on aphotosynthetic electron transport activity. Furthermore, PAMP-inducedexpressionofSAbiosynthesisgenesislargelydependenton light and suppressed byDCMU.The present study reveals apreviouslyunknownphotosynthesis-dependentsignalingpathwaylinkingphotosynthesis toPAMP-induced immunity includingSAbiosynthesisandsubsequentdefenseresponses.

PS13-506Molecular analysis of riceheme activator protein (OsHAP2E)andaspartic protease(OsAP77)genesinresponsetobioticandabioticstressesMd. Mahfuz Alam1, Hidemitsu Nakamura3, Hiroaki Ichikawa2,KappeiKobayashi1,NaotoYamaoka1,MasamichiNishiguchi11Faculty of Agriculture, Ehime University, Matsuyama, Ehime,Japan, 2National Institute of Agrobiological Sciences, 2-1-2Kannondai, Tsukuba, Ibaraki, Japan, 3Department of AppliedBiological Chemistry, Graduate School of Agricultural LifeSciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo,[email protected] expression of rice heme activator protein (OsHAP2E) andaspartic protease) (OsAP77) geneswas induced by probenazole(PBZ),achemicalinducerofdiseaseresistance.Toelucidateroles

ofthesegenes,thechimericgenes(OsHAP::GUSandOsAP::GUS)havebeenconstructedtocarrythestructuralgeneencoding&beta-glucuronidase (GUS) driven by the promoters from OsHAP2EandOsAP77, respectively.Theseconstructswere introduced intorice. Transgenic lines were tested for GUS staining. Only thewoundandsurroundingtissueswerestainedblueforOsAP::GUSbut not for OsHAP::GUS. However, when the chimeric gene(OsHAPin::GUS)wasconstructedtocarrytheOsHAP77promoteranditsfirstintron,thetransgeniclinesofOsHAPin::GUSshowedhigh GUS activity in the wound and surrounding tissues. Thusthesepromotersrespondedtowounding.Thetransgeniclineswerefurtherexaminedunderabioticandbioticstressconditions.Whenimmersedinasolutioncontainingsalicylicacid,isonicotinicacid,abscisicacidorhydrogenperoxide,theGUSactivitywasobservedexclusively in vascular tissues for OsAP::GUS, but in vasculartissuesandmesophyllcellsforOsHAPin::GUS.WheninoculatedwithMagneporthe oryzaeorXanthomonas oryzae pv. oryzae, thetransgeniclinesshowedtheGUSactivitesintheareasurroundingthenecroticlesionsinducedbytheinfection.Theseresultssuggestthattheexpressionofthesegenesisinducedbyabioticandbioticstresses.

PS13-507Tryptophan-derived metabolites in the immunity ofBrassicaceaespeciesMariolaPislewska-Bednarek1,2,KarolinaKulak1,EmielVerLorenvanThemaat2,PaulSchulze-Lefert2,PawelBednarek1,21Institute ofBioorganicChemistry, PolishAcademyof Sciences,2Max Planck Institute for Plant Breeding Research, Cologne,Germanybednarek@ibch.poznan.plOneoftheevolutionaryconservedresponsesoffloweringplantstopathogenattackinvolvesbiosynthesisandsecretionofsecondarymetabolites.ModelplantArabidopsis thaliana accumulatesuponinfection tryptophan derived indole-type metabolites includingindole-3-carboxylic acids, phytoalexin camalexin and indoleglucosinolates(IGs)withtheirdownstreammetabolismproducts.In this studywe investigate the conservation and diversificationof the pathogen-inducible tryptophan-derived metabolism incloseanddistantA. thaliana relativesbymetabolicprofiling.Wesubstantiate the observed species-specific metabolic patterns bythe presence or absence of candidate ortholog genes encodingenzymesinvolvedintryptophanmetabolisminaccessiblegenomesofA. thalianarelatives.Ourmetabolicsurveyrevealsasurprisingconservationofthepathogen-triggeredIGmetabolicandsecretorypathway between the tested plant species, suggesting an ancientand important function of thismetabolic branch inBrassicaceaepre-invasivedefence responses. In contrast, I3CAandcamalexinbiosyntheses appear to be clade-specific innovations withinthe conserved framework of pathogen-inducible tryptophanmetabolism and represent relatively recentmanifestations of theplant-pathogenarmsrace.

PS13-508SalicylicacidinducesgenesfortheunfoldedproteinresponsedependingonIRE1andbZIP60inArabidopsisYukihiroNagashima1,Kei-ichiroMishiba1,NozomuKoizumi11Graduate School of Life and Environmental Sciences, OsakaPrefectureUniversity,Osaka,[email protected] acid (SA) is a phytohormone involved in signalingof systemic acquired resistance. SA has been also reported toinducegenesrelatedto theunfoldedproteinresponse(UPR)thatis a cellular response highly conserved among eukaryotic cellsto prevent abnormal maturation of proteins in the endoplasmicreticulum (ER). Induction of UPR genes such as ER residentmolecularchaperonesbySAhasbeenconsideredtoberegulatedbyamolecularmechanismdifferentfromthatoftheUPR.Recently,itwasfoundthatanERmembrane-localizedsensorIRE1catalyzes

Page 186: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession13-Plantresponse

184

Post

er 1

3

cytoplasmic splicing of mRNA encoding a transcription factorbZIP60inArabidopsis.Asaresultofthissplicing,anactiveformofbZIP60istranslatedandenhancesexpressionofUPRgenes.Morespecifically,ArabidopsishastwoIRE1paralogsIRE1AandIRE1BwithredundantfunctioninsplicingofbZIP60mRNA.Inpresentstudy,wetriedtoclarifywhetheractivationofbZIP60byIRE1isinvolvedintheinductionoftheUPRgenesbySAtreatment.GenessuchasBiP3andSar1highlyregulatedbyIRE1andbZIP60wereinduced by SA treatment (0.5mM). Splicing of bZIP60 mRNAwas observed under this treatment. Induction ofBiP3 and Sar1wassuppressedinT-DNAinsertionmutantsofbZIP60andIRE1A/IRE1B, but not innpr1-1 lacking part of SA signaling pathway.Thus, inductionof theseUPRgenesbySAwasconsideredtoberegulatedbyIRE1andbZIP60,butnotbyNPR1.

PS13-509Toward understanding of spatial and temporal regulation ofhypersensitiveresponseuponR-AvrrecognitionShigeyukiBetsuyaku1,2,HirokoUrawa3,YasuhiroKamei3,KiyotakaOkada3,HirooFukuda21Graduate School of Arts and Sciences, University of Tokyo,Tokyo,Japan,2GraduateSchoolofScience,UniversityofTokyo,3NationalInstituteforBasicBiologybetsu@biol.s.u-tokyo.ac.jpPlants possess several layers of defense against pathogens. ThestrongestimmunesystemiscontrolledbyResistance(R)proteins,plantimmunereceptors.Specificrecognitionofapathogeneffectorprotein(knownasAvirulence(Avr)protein)byacognateRproteinresultsinarapidplantimmuneresponse,so-calledhypersensitiveresponse (HR), involving localized programmed cell death andaccumulation of reactive oxygen species, salicylic acid andantimicrobial compounds, such as pathogenesis-related (PR)proteinsandphytoalexins.AlthoughHRistriggeredbyaspecificR-Avrrecognition,itstillremainsunclearwhetheralltheresponsesconstituting HR occur sequentially in a cell or differentiallyin different cells. In order to understand spatial and temporalregulation ofHR, various transgenicArabidopsis plants carryingdifferent promoter-reporter constructs for plant defense-relatedmarkergeneshavebeengenerated.Theuseoffluorescentproteins,aswell as an inducibleAvr expression system, should provide abetterresolutionfordissectingtemporalandspatialcontroloftheHR.Currentprogressinthisstudywillbediscussed.

PS13-510Two histone-modifying proteins regulate plant immuneresponseagainstPseudomonasinfectionHoWonJung1,2,MinJoKim1,JungKwonPark21Department ofGeneticEngineering,Dong-AUniversity,Busan,Korea, 2Department of Medical Bioscience, Dong-A University,Busan,[email protected], recognitionof invadingpathogenicmicroorganismsbypattern recognition receptor and race-specific resistance proteinactivates diverse cellular responses to defend themselves againstpathogen infection.Oneofwell-known immune responses is thetranscriptional reprogramming occurring when pathogen infectsplant. The transcriptional reprogramming also takes place inprimingofdefenseresponsethatmakesplantrapidlyandstronglyexpresses defense-related genes against secondary pathogeninfection. Chromatin remodeling caused by change of histonemarksandreplacementofhistonevariantsaffectsgeneexpressionthat is important for either development or disease resistance.Arabidopsis mutants corresponding histone acetyltransferase,histonedeacetylase,histonemethyltransferase,histonedemethylaseandcorehistoneproteinswerecollectedtoidentifyeitherimmune-defective or enhanced-immune mutants. Here we reported twonovel enhanced-immune mutants showing disease resistanceagainst thepathogenPseudomonas syringae pv.maculicola.Theenhanced disease response only limited the growth of virulence

pathogen.One ofmutant, but not the other, accumulated higherlevel of salicylic acid than wild-type plants. Also the histone-modifyingproteinseemedtobephysicallyinteractedwithaseriesofproteins.Wewilldiscussthemolecularfunctionofthehistonemodifyinggenesinplantimmunity.TheseworksaresupportedbyNationalResearchFoundationofKorea-Excellentscientistsfromlocal universities and Rural Development Administration-WooJangChoonProject.

PS13-511RoleofceramidasesinArabidopsismorphogenesisanddiseaseresistanceJian-xinWu1,ZheLiu1,Zhen-yiChang1,JianLi1,NanYao11StateKeyLaboratoryofBiocontrol,SchoolofLifeSciences,SunYat-senUniversity,Guangzhou,[email protected] are the prime lipid components of eukaryoticmembranes and function through their metabolites as bioactiveregulators of many cellular processes. Ceramidases, hydrolyzeceramide to long chain base, are key regulators in sphingolipidshomeostasis. Little is known about the roles of ceramidases inplants.HerewereportanalysisofahomozygousT-DNAinsertionceramidase mutant cds-1 (a homolog of yeastYPC1P/YDC1P).Thecds-1mutantsexhibitedsmaller,narrowerandslightlygreenerleavesthanthewildtypeleaves.Wefoundthatcds-1plantsweremoresusceptibletobacterialpathogensandmycotoxinFumonisinB1.AnalysisofthepatternsofGUSexpressioninproAtACER::GUSindicatedthattheceramidasewashighlyexpressedinpollengrainsand leafprimordium.Usingquantitativesphingolipidprofiling,ahighceramide levelwas found inFB1 treatedcds-1plantswhencomparedwithwildtypeplants.Thepossibilityroleofceramidasesinplantdevelopmentanddiseaseresistancewillbediscussed.

PS13-512SeveralEARmotif-containingERFsingroupVIIIareinvolvedinHRcelldeathinductionTakuyaOgata1,YasuhikoMatsushita11Gene Research Center, Tokyo University of Agriculture andTechnology,Tokyo,[email protected] response factors (ERFs) conform one of the largesttranscriptionfactors’familiesinplant.Recently,manyERFgenesin various plant species have been reported to be involved inthe responses to environmental stresses, both biotic and abiotic.Previously,we reported that transient overexpression ofNtERF3gene induced hypersensitive response (HR)-like cell death intobaccoleaves.TheERF-associatedamphiphilicrepression(EAR)motifintheC-terminalregionofNtERF3wasessentialforitscelldeath-inducingability. InNtERF3-silencedTobacco mosaic virus(TMV)-resistanttobacco,lesionformationbyTMVinfectionhadatendencytoexpandthanthatinnon-transgenictobacco(Ogataetal,JGenPlantPathol(2012)78:8-17).NtERF3isclassifiedintogroupVIII when the ERF family proteins are divided based onthehomologyoftheAP2/ERFDNA-bindingdomain.Weisolatedseveral EAR motif-encoding ERF genes in group VIII fromtobacco, Arabidopsis and rice that harbored cell death-inducingability.SomeoftheclonedtobaccogeneswereupregulatedduringHR inductionbyN gene-TMV interactionwhileotherswerenotinduced.Co-expression of a dominant-negative formofNtERF3suppressedthecelldeathinducedbysomeotherERFsingroupVIII.TheseresultssuggestthatthedeletionmutantofNtERF3operatedinadominant-negativemannertogroupVIIIERFsandthatthereare common target genes responsible for cell death induction totheseERFs.Usingthedominant-negativeformofNtERF3,wealsoshowanevidencethatNtERF3isregulateddownstreamofNtSIPKandNtWRKY1.

Page 187: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession13-Plantresponse

185

Poster 13

PS13-513BacteriainducesystemicacquiredresistanceinbarleySanjuktaDey1,MarionWenig1,ClaudiaKnappe1,A.CorinaVlot11Institute of Biochemical Plant Pathology, Helmholtz ZentrumMuenchensanjukta.dey@helmholtz-muenchen.deThisworkshowsforthefirsttimethatsystemicdiseaseresistancecan be induced by a localized infection of barley. Until now, ithas beenunclear if systemic acquired resistance (SAR) exists inmonocotyledonousplantspeciesand/orhowitcompares towell-established SAR systems in dicotyledonous plants. Salicylicacid (SA), the key hormone for SAR in dicotyledonous plants,appears toplay a role indisease resistance in, for instance, rice.Inaddition,SAsignallingpartnerssuchasNPR1areconservedinvariousmonocotyledonousplants.WeinvestigatedthepossibilitytoinduceSARinbarleyinordertogenerateamonocotyledonousSARpathosystem to testpossibleprotectionofcerealsviaSAR/priming.Infectionofthefirstleafof4-week-oldbarleyplantswitheitherP. syringaepathovar japonica orXanthomonas translucenssignificantly enhanced resistance in the systemic tissue againstX. translucens. P. syringaegrew,butonlytolimitedlevelsintheinoculatedleafandcausedbrownspotsreminiscentofHRlesions,whereasX. translucens seemed virulent, growing to high levelswithin the leavescausingsevereyellowingandeventuallydeath.Both primary inoculi caused increased accumulation of SA andglucosylatedSAintheinfectedleaf,butnotsystemically.Wehaveperformedmicroarrayanalysesoftheinfectedandsystemictissueto investigate which genes are induced and/or repressed duringsystemic resistance induction inbarley.Resultsof theseanalysesshouldrevealwhichdiseaseresistancepathwaysareinvolvedintheinducedresistanceresponse.

PS13-514The transcriptome of Verticillium dahliae-infected Nicotiana benthamianadeterminedbydeepRNAsequencingLuigiFaino1,RonniedeJonge1,BartThomma11Phytopathology,WUR,Wageningen,TheNetherlandsluigi.faino@wur.nlVerticilliumwiltsarediseasescausedbyfungioftheVerticilliumgenus that occur on a wide range of host plants, includingSolanaceous species such as tomato and tobacco. Currently, thewellcharacterizedVe1geneoftomatoistheonlyVerticilliumwiltresistance gene cloned. During identification of the VerticilliummoleculethatactivatesVe1resistanceintomato,RNAsequencing(RNA-seq) of Verticillium-infected Nicotiana benthamiana wasperformed.Intotal,over99%oftheobtainedreadswerederivedfromN. benthamiana.Here,wereporttheassemblyandannotationoftheN. benthamianatranscriptome.Intotal,142,738transcripts>100bpwereobtained,amountingtoatotaltranscriptomesizeof38.7Mbp,whichiscomparabletotheArabidopsistranscriptome.About30,282 transcripts couldbeannotatedbasedonhomologyto Arabidopsis genes. By assembly of the N. benthamianatranscriptome, we provide a catalogue of transcripts of aSolanaceousmodelplantunderpathogenstress.

PS13-515Thebilateralroleoflightinplant-pathogeninteractionKukkaK.Aho1,TarjaKariola1,TapioE.Palva1,HannuSaarilahti11The Department of Biological and Environmental Sciences,UniversityofHelsinki,Helsinki,[email protected] have evolved sophisticated defense mechanisms againstvarious stresses like diseases caused by pathogens. However,alsopathogenshave learned torespondtoandevade thedefensemechanisms of plants and this complex arms race is furtheraffected by abiotic environmental factors such as light. Light

plays a central role in plant-pathogen interaction as many plantdefense responses are light-dependent. Intriguingly, since lightalsoaffectspathogengrowthandvirulence,weaimtocharacterizethis bilateral role of light in more detail and thus, expand thebig picture of plant-pathogen interactions. Arabidopsis thalianagene Early Responsive to Dehydration 15 (ERD15) is rapidlyinduced in response to various environmental factors includingpathogens. Plants overexpressingERD15 are insensitive toABAresulting in e.g. impaired stomatal closure, but also, improvedpathogen tolerance. Furthermore, localization studies place thisprotein to chloroplast, which is an important organelle in plantlightadaptation.Interestingly, light isalsooneof thetriggersforstomatalclosure.ThesefactsmakeERD15overexpressionplantsaverygoodmodelforstudyinglight-relatedphenomenainplant-pathogeninteraction.Indeed,ourresultsindicatethattheimprovedresistanceofERD15overexpressor plants results from increasedROSproduction.Inaddition,wetakethelight-responsesofplantpathogens into consideration. Our preliminary results indicatethat the growth of various plant pathogenic bacteria is severelycompromisedbycontinuouslight.

PS13-516Functionalanalysisof the interactionbetweenPuccinia psidiiandEucalyptusgrandisDavid Moon1, Thiago F. Leite1, Maria C. Quecine1,Ana C. M.Lima1,LiviaM.Franceschini1,CarlosA.Labate11LaboratorioMaxFefferdeGeneticadePlantas,DepartamentodeGenetica,ESALQ-USP,Piracicaba,[email protected],Puccinia psidiislispotentiallyoneofthemostdangerousbiotrophic fungalpathogenswhichprimarily attacksmembersoftheMyrtaceae, including eucalypts.This pathogen has spread to4of thefivecontinentsand iscurrently threateningAustralia thelargestsourceofeucalyptgermplasm.Wedesignedamodelsystembasedontheselectionofresistant(R3)andsusceptible(S4)plantsfrom a half-sib population using Brasuz1 (Eucalyptus referencegenome) as the pollen receptor. First we defined the importantstepsduringtheinitialinteractionbetweenhostandpathogenintheresistantandsusceptibleplants(0-72hr)usingmicroscopy.Basedon these data we designed transcript sequencing experiments tocover themost important intervals: 0hr, 6hrs (germinationR3 +S4),12hrs(penetrationR3+S4),18hrs(resistanceprocessinitiatesR3),24hs (resistanceprocess already installedR3and formationofhaustorialmothercellsS4)and72hrs(nopathogendetectedR3anddevelopmentofsecondaryhyphaeandcolonizationS4).ThetranscriptsequencesweremappedtoESTsfromPucciniaspecies(NCBI) to remove any fungal sequences. The reference databaseused for theRNA-seq analysis containedpublicly availableeucalyptus ESTs and transcripts sequences from the eucalyptusgenomicdatabase(Phytozome).RNA-Seqanalysiswasperformedandbasedondifferentialexpressionlevelsandfunctionalannotation(Blast2GO), 14 candidate genes were selected to validate thesequencingdataandproposeamodelfortheinteractionbetweenR3andP.psidiiresultinginhostresistance.

PS13-517Regulation of intracellular redox by glyceraldehyde-3-phosphate-dehydrogenaseduringplantinnateimmunityElizabethM.Henry1,JunLiu1,JamesM.Elmore1,GittaCoaker11DepartmentofPlantPathology,UniversityofCaliforniaatDavis,Davis,California,[email protected] dehydrogenases (GAPDHs) areimportant enzymes with diverse cellular regulatory roles invertebrates,butfewreportshaveinvestigatedGAPDHimportanceoutside of their role in glycolysis in plants.We have found thatGAPDHs are upregulated during effector triggered immunity attheprotein level.Ageneticapproachwasused to investigate theimportance of different GAPDH members during plant innate

Page 188: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession13-Plantresponse

186

Post

er 1

3

immune responses using the interaction between Arabidopsis thaliana and thebacterial plant pathogenPseudomonas syringaepv. tomato. A subset of GAPDH knockouts exhibit enhanceddiseaseresistancephenotypes.Theseknockoutsshowacceleratedprogrammed cell death and increased electrolyte leakage inresponsetoeffectortriggeredimmunity.Characterizationofreactiveoxygenspecies(ROS)productioninsomeGAPDHknockoutlinesshowed increasedROSproduction in response to stresselicitors.Additionally, oneGAPDH isoform dynamically re-localizes to asite of ROS production during defense responses. These resultsindicatearoleforGAPDHsincellularredoxregulationduringplantimmuneresponsesagainstmicrobialpathogens.ROSarenecessaryintra-and intercellular signaling molecules and are importantfor resistance against many types of pathogens. UnderstandingthemechanismsofROSflux through regulationbyproteins likeGAPDHsisimportanttotheelucidationofdownstreamsignalingeventsduringinnateimmuneresponsesinplants.

PS13-518Transcriptome analysis of rice leaf and root cells inoculatedwithMagnaporthe oryzaeShigeru Tanabe1, Yukiko Fujisawa1, Mamiko Kimura1, YokoNishizawa1,EiichiMinami11NationalInsutituteofAgrobiologicalSciences,Ibaraki,[email protected] plants show a variety of defense responses upon pathogenattack.Tounderstandtheresponsesofriceduringtheinfectionbypathogens,weanalyzedthegeneexpressionprofilesinriceleavesand roots inoculated withM. oryzae using rice 44k oligo-DNAarray.We used two isogenic rice cv. Nipponbare, NB(Pia) andNB(++),whichare incompatible andcompatiblewithM.oryzaestrainP91-B15,respectively.Hierarchicalclusteringofmicroarrayresults of roots revealed that the most remarkable difference ingene expression profiles between incompatible and compatibleinteractionwasobservedat5dayspostinoculation,incontrasttotheresultswheregeneexpressionprofilesofleavesinincompatibleinteractionweremostdistinctfromthoseincompatibleinteractionat3dayspost inoculation.Itwassuggestedthat thesesignificantdifferences corresponded to the temporal elongation patterns ofinfectious hyphae in the leaf and root tissue.Comparison of theresultsofleaveswiththeresultsofrootsshowedthat155and725genesweredifferentiallyregulatedin leafandrootcellsattackedbyM. oryzae,respectively.Thedetailedexpressionprofilesofthesegeneswillbediscussed.Inaddition,wewillreportthelocalgeneexpressionchangesnearinfectionsitesusingLaserMicrodissectionmethod.

PS13-519DifferentresponsestoFliCsofsoft-rotpathogensisattributedto plant species and their sequence composition containingflg22homologousregionTaiki Ono1, Hidehiko Yamamoto1, Miyako Fujishiro1, OsamuNetsu1,ShinjiTsuyumu1,HisaeHirata11FacultyofAgriculture,ShizuokaUniversity,Shizuoka,Japantaiki.4041@gmail.comOurpreviousdatashowedthatthemajorflagellarcomponent(FliC)of Pectobacterium carotovorum subsp. carotovorum EC1 (Pcc-FliC)inducedgrowthinhibitionandcelldeathintobaccoBY-2cellsthroughtherecognitionofflg22homologousregion(flg22Pcc)anditsdownstream residues51-70 [fliC(51-70)Pcc], respectively.Ontheotherhand,FliCoftheothersoft-rotpathogenDickya dadantii3937(Dd-FliC)didnotinducethoseplantresponses.Inthisstudy,weexaminedinresponsesofArabidopsis thalianaT87cellsandA. thalianaseedlingstoPcc-FliCandDd-FliC.UpontheirtreatmenttoA. thalianaT87cells,bothFliCsinducedcelldeathandgrowthinhibition.Furthermore, in theassayusingA. thaliana seedlings,Dd-FliC induced severer growth inhibition thanPcc-FliCdid. Inaddition,adeletionmutantofPcc-FliC[Pcc-FliC(δ1-50)],lackingtheN-terminal50aminoacidregioncontainingflg22homologous

region,failedtoinducegrowthinhibition,whilethechimericPcc-FliCreplacingtheflg22homologousregionwiththatofDd-FliC,[FliC(Pcc1-28/Ddflg22/Pcc51-290)], induced growth inhibitionwhichwasindistinguishablefromthatinducedbyPcc-FliC.Theseresults suggested that the recognition mechanism for the FliCswould be different among plant cells or species, and the otherregionsbesidestheflg22homologousregionwouldbeinvolvedininductionoftheseverergrowthinductioninA. thalianaseedlings.

PS13-520FunctionoftomatoERF36andERF39inresponsetobacterialwiltandabioticstressSimChong1,Tsung-LinYang1,Chiu-PingCheng11GraduateInstituteofPlantBiology,NationalTaiwanUniversity,Taipei,Taiwanchongsim86@yahoo.comPlantconstantlyencountersabioticandbioticstresses.Forinstance,bacterialwilt(BW),whichiscausedbyRalstonia solanacearum,isaverycomplexdeadlydiseaseandsharescertaincommonfeatureswithwaterstressresponses.However,informationoncropdefensemechanisms against this disease is largely not known.Ethylene-responsefactors(ERFs)arealargefamilyofplant-specificstressresponsivetranscriptionfactors.OurpreviousstudiesrevealedthatSlERF3,amemberofgroupVIIIrepressorERFs,playsapositiveroleintomatotolerancetoRsandsaltstress.Theaimofthisstudywas to study function of two uncharacterized tomato ERF-VIIImembers,ERF36andERF39,inbioticandabioticstressresponses.SubcellularlocalizationtestshowedthenuclearlocalizationofGPFrecombinant proteins of ERF36 and ERF39 and transactivationassayconfirmedthefunctionalityoftheseproteinsastranscriptionalrepressors. These two genes displayed differential spatial andresponseexpressionpatterns.Virus-inducedgenesilencing(VIGS)assayssuggestedthatSlERF36andSlERF39playapositiveroleintomatodefenseagainstBWbutanegativeroleindroughttolerance.OverexpressionofSlERF36orSlERF39intransgenicplantsledtoreducedtolerancetosaltandmannitoltreatment,furtherevidencingtheirnegativeroleinregulationofplanttolerancetowaterstress.Thisstudyrevealsfunctionofthesegenesinbothbioticandabioticstressresponses.

PS13-521FunctionalstudyoftomatoERF35andERF38Ying-JuWang1,Tsung-LinYang1,Chiu-PingCheng11GraduateInstituteofPlantBiology,NationalTaiwanUniversity,Taipei,[email protected] constantly encounter a wide range of abiotic and bioticstresses,leadingtotremendouscroplosses.Forexample,bacterialwilt(BW),whichiscausedby,Ralstonia solanacearum,isaverycomplexdeadlydiseaseandsharescertaincommonfeatureswithwater stress responses. During evolution, plants have becomeequippedwithversatiledefensemechanismstocopewithdifferentstressesandsustaintheirlife.However,ourknowledgeabouthowplantscoordinateandoptimizetheirmachineriestosimultaneouslymaintainphysiologicalfunctionsandreducestress-causeddamagesis still rudimentary.Ethylene-response factors (ERFs)area largefamily of plant-specific transcription factors involved in variousstressresponses.Theobjectiveofthisstudywastostudyfunctionof two uncharacterized tomato ERF-VIII members, ERF35 andERF38, in biotic and abiotic stress responses. Our data showedthat GPF recombinant proteins of ERF36 and ERF39 localizein nucleus and they function as transcriptional repressors.Thesetwo genes displayed differential spatial and response expressionpatterns. Virus-induced gene silencing (VIGS) assays suggestedthat ,SlERF35 plays a negative role in defense against BW anddrought, and that SlERF38 plays a positive role in BW defensebut a negative role in drought tolerance. To determine whetherthesegenesarealsoinvolvedinPAMP-triggeredimmunity(PTI),we have established tomato PTI response assays to treatments

Page 189: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession14-Pathogenicbacteria/phytoplasma

187

Poster 14

of various PAMPs and R. solanacearum related components.Transgenicplantswith increasedor reducedexpression levelsofthesetwogeneshavebeencreatedandbeingcharacterizedinordertoverifytheirfunctionsinplantstressresponses.

PS14-522Cell-cell sinaling regulates common and contrasting traits inXanthomonas oryzaepv.oryzaeBinod B. Pradhan1, Rikki Rai1, Manish Ranjan1, SubahdeepChatterjee11CentreforDNAFingerprintingandDiagnosticsxoohyd@yahoo.co.inXanthomonads and Xylella fastidiosa shares many genes incommon which are involved in the synthesis of a cell-cellcommunicationmoleculecalledasDSF(DiffusibleSignalFactor).InXanthomonas campestrispv.campestris(Xcc),DSFpositivelyregulates production of type II effectors like endoglucanase,proteaseaswell asEPS.However,DSFappears to regulate ironuptakeinXanthomonas oryzaepv.oryzae(Xoo)asDSFdeficientmutants of Xoo are proficient in EPS and extracellular enzymeproductionbutaredeficientinironuptake.TheXooDSFdeficientmutants overproduce aswell as hyper secretesType II effectorslike-cellulase, lipase, xylanase and hyper secretion of theseType II effectors is partlyType II secretion system independent.We hypothesize that over secretion of these cell wall degradingenzymes (whichare inducersofplantdefense response),maybecontributingpartlyforthevirulencedeficiencyoftherpfFmutantsof Xoo. The rpfF mutants of Xoo are also deficient in formingbiofilm,astheyaredeficientinthesynthesisofadhesinsandTypeIpili.StudyofthemechanismofregulationofvirulenceassociatedtraitsbyDSFinXooindicatesthatXooexhibitsatypicalmodeofregulationbymodulatingthelevelsofcyclicDi-GMP(intracellularsignalmolecule)andnovelsignaltransductioncomponents,whichisincontrasttootherXanthomonadstosuiteitslifestyle.

PS14-523TzsisinvolvedinAgrobacteriumvirulenceandgrowthHau-HsuanHwang1,2,Ying-LingLee1,Yi-HoLi1,Fong-JhihYang1,Tun-FangCheng1,Yun-LongTsai2,Erh-MinLai21DepartmentofLifeSciences,NationalChung-HsingUniversity,Taichung, Taiwan, 2Institute of Plant and Microbial Biology,AcademiaSinica,Taipei,[email protected] tumefaciensisanorganismcapableoftrans-kingdomDNAtransfer,transformingmainlyplantsbutalsoothereukaryoticspecies.GenetictransformationbyA. tumefaciens,whichinplantscauses neoplastic growths called “crown gall”, results from thetransfer and integration of a specific DNA fragment (T-DNA)fromthebacteriumintotheplantgenome.Here,wecharacterizedaTi-plasmidencodedgene,tzs(trans-zeatinsynthesizing),thatisresponsible for the synthesis of a plant hormone cytokinin inA. tumefacienswhenbacteriawereinducedbyaphenoliccompoundacetosyringone (AS). To determine the role(s) of tzs in A. tumefaciensvirulence,twotzs deletionmutantsandthreetzsframe-shiftmutantsweregeneratedandcharacterized.Highperformanceliquid chromatography (HPLC) analyses demonstrated the tzsdeletion and frame-shift mutants produce no trans-zeatin underAS inductions.Both tzs-deletion and frame-shiftmutants reducestableandtransienttransformationefficiencyinArabidopsisroots,suggesting thatTzs is likely involved in step(s) prior toT-DNAintegrations. The exogenous applications of cytokinin duringinfectionsalsorestoredthetransienttransformationefficienciesinthetzsmutants,suggestingthatthecytokininisresponsiblefortheefficienttransformationonArabidopsisroots.Thetzsmutantswereable to enhance transformation efficiency on green pepper, andreduce transformation efficiency onwhite radish and other plantspecies.ThesedatastronglysuggestthatTzs,likelyviasynthesizingtrans-zeatinatearlystage(s)ofinfectionprocess,isinvolvedinthetransformationefficiencyofA. tumefaciensandmayplaydifferent

rolesindifferenthostplants.

PS14-524Integrated management of citrus canker disease caused byXanthomonas citrisubsp.citriinSaudiArabiaAryaWidyawan1,YounesY.Molan11KingSaudUniversityaryawidyawan@yahoo.com.auCitruscanker isoneof themost seriousdiseasesaffectingcitrusproduction worldwide including Saudi Arabia. Studies wereconducted to investigate prospective combinations of indigenousbio-control agents (Pseudomonas fluorescens and phage),Serenade,salicylicacid,andDrexide;forthediseasemanagementunder greenhouse conditions. Combination of salicylic acid(10mM)withP. fluorescensandcombinationofsalicylicacidandSerenadewithlocalphagewereabletoreduceareaunderdiseaseprogressivecurve(AUDPC)by75%and79%respectively.ThesecombinationsdidnotgiveasignificantdifferenceascomparedtoDrexidealone,acommoncontrolmeans,whichreducedAUDPCby87.4%.Resultssuggeststhatthesecombinationarepromisingtobeusedinintegratedmanagementofcitruscankerdisease.

PS14-525Secretomeanalysisofricebacterialblight,Xanthomonas oryzaepv.oryzaeSangGonKim1,YimingWang1,SunTaeKim2,JingniWu3,KyuYoungKang1,31Plant Molecular Biology and Biotechnology Research Center,GyeongsangNationalUniversity,Jinju,SouthKorea,2DepartmentofPlantBioscience,PusanNationalUniversity,Miryang,627-706,SouthKorea,3DivisionofAppliedLifeScience(BK21program),GyeongsangNationalUniversity,Jinju,660-701,[email protected] oryzaepv.oryzaecausesbacterialblight(BB)ofrice,whichisoneofthemostimportantdiseasesofriceinmostofthericegrowingcountries.Inplants,bacterialpathogensareunabletopenetrateintothehostcell.Therefore,molecularsignalinteractionbetweenmicrobial pathogen and host occurs in the extracellularspace,socalledapoplast.Inthisstudy,weemployed2-DEanalysistoinvestigatechangesinextracellularproteomefromBBculturedfrom in vitro and in vivo, respectively. Extracellular proteinswere isolated by CaCl2 infiltration and applied into 2-D gels.Quantitative and statistical analyses of the resolved spots usingImageMastersoftwarerevealedthat153proteinsweredifferentiallyupordown regulated from in vivo and in vitro culturedBBandthey were analyzed using MALDI-TOF-MS and µLC-ESI-MS/MS and identified.Among them, 60 spots identifiedwhich havesignalpeptideattheirN-terminalregionincludeVirKprotein,outmembrane protein,TonB dependent receptor,HrcC protein, zincprotease,andseveralhypotheticalproteins.Among the identifiedproteins,VirKprotein,yetunknownfunctionwasconfirmedbyRT-PCR analysis, revealing that the protein up-regulated by in vivocultured BB cells was transcriptionally regulated as well. Theseresults are for thefirst report, onwhich in vivo specific secretedproteinsofBBmaybeinvolvedinbacterialpathogenecity.

PS14-526GenomiceraofthemodelsoftrotphytopathogenPectobacteriumsp. SCC3193provides surprises in the collectionof virulencedeterminants and the phylogenetic diversity of potatopathogenicsoftrotbacteriaJohannaS.Nykyri1,OutiNiemi2,PatrikKoskinen2,JussiNokso-Koivisto3,Miia Pasanen1,Martin Broberg1,2, Ilja Plyusnin3, PetriToronen3,LiisaHolm2,3,MinnaPirhonen1,ErkkiT.Palva21DepartmentofAgriculturalSciences,PlantPathology,Universityof Helsinki, Helsinki, Finland, 2Department of Biosciences,Division of Genetics, P.O. Box 56 (Viikinkaari 5), FI-00014

Page 190: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession14-Pathogenicbacteria/phytoplasma

188

Post

er 1

4

UniversityofHelsinki,Finland, 3InstituteofBiotechnology,P.O.Box56(Viikinkaari5),FI-00014UniversityofHelsinki,[email protected] aim of our work was to enhance understanding of soft rotdisease, which is economically one of the most devastatingbacterialdiseasesofplantsworldwide.Weinvestigatedphylogenyandnovelties invirulence ina long timesoft rotmodelstrainofPectobacterium isolated from a diseased potato stem in Finlandintheearly1980s.Wecombinedgenomicapproachandinplantaexperiments to characterize the strain further.We found that themodel strain SCC3193 belongs to a different species than waspreviously thought. We experimentally established novel genesneeded for full virulence ofPectobacterium on potato. Genomecomparisonalsorevealedotherinterestingtraitsthatmayberelatedtolifeinplantaorneededinotherspecificenvironmentalconditions.We conclude that the genomic approach and comparison of oursoftrotmodelstrainSCC3193toothersequencedPectobacteriumstrains,includingselectedtypestrains,couldprovideasolidbaseforfurtherinvestigationofthevirulence,distributionandphylogenyofsoftrotbacteriaandmaybeotherbacteriaaswell.

PS14-527Dissociation of bacterial population: a strategy of effectiveplantcolonizationVladimirY.Gorshkov1,AminaG.Daminova1,MarinaV.Ageeva1,OlgaE.Petrova1,PolinaV.Mikshina1,NataliaE.Gogoleva1,YuriV.Gogolev11KazanInstituteofBiochemistryandBiophysics,KazanResearchCentre,RussianAcademyofSciences,Kazan,[email protected] bacterial species colonize plant interior,which consists ofvarioustissuesheterogeneousinchemicalandimmunepropertiesandthus,formsdiversenichesformicroorganisms.However,thealterationofbacterialpopulationstructure in suchheterogeneousand changing system is poorly understood. In our research wedescribed the population cycle of plant pathogenic bacteriumPectobacterium atrosepticumSCRI1043(Pba)duringcolonizationofNicotiana tabacum.Theinitialexpansionofbacteriainsidetheplant occurred via xylemvessels.As a result somevesselswerecompletely occluded by bacteria due to formation of specializedmulticellularstructures,whichwecalledbacterialemboli.Bacterialemboliwerecomposedofcellswithspecificmorphologyandhadapeculiarwayof formation,which includedutilizationofplant-derived compounds as a component of bacterial extracellularmatrix.Colonizationofxylemwasfollowedbyactivepropagationof bacteria in parenchyma. Such an order of colonization ofvarious tissuesmay be related to high immunity of parenchymacells,whichisweakenedaftervesselocclusion.Afterplantdeath,bacteria transformed toviablebutnon-culturablestate.Theyhadultarstructure typical to dormant cells of Pba (Gorshkov et al.,2009),losttheabilitytoformcolonies,butweredetectedbyqPCR-analysisandwereabletoresuscitate.Partofthepopulationmigratedthrough the root system to rhizosphere employing collectivemotility.Thus,bacteriarealizedifferentprogramsindifferentplanttissues and at different stages of plant-microbe interaction.As awhole,thisstrategyisaimedtoeffectivecolonizationofplantandsuccessfulpassingthroughthepopulationcycle.

PS14-528Acid-induced ExoR degradation derepresses the ChvG/ChvI two-component system to activate typeVI secretion inAgrobacterium tumefaciensChih-FengWu1,2, Jer-Sheng Lin1, Gwo-Chyuan Shaw2, Erh-MinLai11InstituteofPlantandMicrobialBiology,AcademiaSinica,Taipei,Taiwan,2InstituteofBiochemistryandMolecularBiology,NationalYang-MingUniversity,Taipei,[email protected]

The typeVI secretion system (T6SS) is a widespread, versatileprotein secretion system in pathogenic Proteobacteria. SeveralT6SSs are highly regulated by various regulatory systems atmultiplelevels.However,thesignalsand/orregulatorymechanismsofmanyT6SSs remain unexplored.Here,we report on an acid-inducedregulatorymechanismactivatingT6SSinAgrobacterium tumefaciens, a plant bacterium causing crown gall disease inawide rangeof plants.Wemonitored the secretion of theT6SShallmark protein hemolysin-coregulated protein (Hcp) from A. tumefaciens and found that acidity is a T6SS-inducible signal.ExpressionanalysisoftheT6SSgeneclustercomprisingtheimpandhcpoperonsrevealedbarelydetectedimpexpressionandHcpsecretioninA. tumefaciensgrowninneutralminimalmediumbuthighlyinducedinacidicmedium.Withloss-andgain-of-functionanalysis,wedemonstratethattheA. tumefaciensT6SSispositivelyregulatedbyaChvG/ChvItwo-componentsystemandnegativelyregulatedbyExoR.Furtherepistasisanalysisrevealed thatExoRfunctionsupstreamoftheChvGsensorkinaseinregulatingT6SS.Interestingly,underacidicconditions,periplasmicExoRisrapidlydegraded,withconcomitantincreaseinChvGproteinlevel,whichis also stabilizedwith expression of ExoR variants incapable ofinteractingwithChvG.Thephospho-mimicbutnotwild-typeChvIresponseregulatorcanbindtotheT6SSpromoterregioninvitroandactivateT6SSwithgrowthinneutralminimalmedium.WepresentthefirstdemonstrationofT6SSactivationbyanExoR-ChvG/ChvIcascade, with acidity triggering ExoR degradation and therebyderepressingChvG/ChvItoactivateT6SSinA. tumefaciens.

PS14-529Identification of two new type-III effectors in Xanthomonas oryzaepv.oryzicolarequiredforpathogenesisinriceLifangZou11SchoolofAgricultureandBiology,[email protected] Gram-negative plant pathogenic bacterium Xanthomonas oryzae pv. oryzicola, the causal agent of bacterial leaf streak,employsatype-IIIsecretionsystem(T3SS)toinjectsrepertoiresofeffectorproteins(T3SEs)intoricecells.Ithasbeendemonstratedthat a consensus sequence motif PIP-box (plant-induciblepromoter) recognizedbyakeyhrp regulatoryproteinHrpXwasfoundtopresentinthepromotersofhrpandsomeofT3SSeffectorgenes. In this study,anT3Seffector translocationassaywith thebiological activitydomainofAvrXa10as a reporterwasutilizedto evaluate the 29 genes with the PIP box from a gene pool ofmicroarrays. Two novel T3SS effectors, XopAU and XopAVare indentified and verified. XopAU and XopAV were highlyconserved inXanthomonas spp. The T3SS secretion of XopAUwasnotdependentonexitcontrolproteinsHpaBandHpaP(HpaChomology), whereas the secretion of XopAV was dependent onHpaBbut notHpaP.Moreover,xopAU andxopAVwere inducedinahrp-inducingmediumXOM3and regulatedbyHrpG,HrpXand HrpD6 regulators. The expression of xopAU was positivelyregulated by bothHrpG andHrpXwhereas negatively regulatedby a recently identified hrp regulator HrpD6. In contrast, theexpressionofxopAVwasnegativelycontrolledbyHrpG,HrpXandHrpD6.Finally,deletionmutagenesisdemonstratedthatxopAUandxopAVwererequiredforfullvirulenceofX. oryzaepv.oryzicolainrice.

PS14-530A highly-conserved single-stranded DNA-binding protein inXanthomonasWorksasaPAMPforPTIGong-youChen1,Yi-ZhouChe1,Yu-RongLi1,Wen-XiuMa1,Li-FangZou1,Hua-SongZou11SchoolofAgricultureandBiology,ShanghaiJiaoTongUniversity,Shanghai,[email protected](PAMP)-triggeredimmunity(PTI) enables plants to surpass infections by diverse pathogens.

Page 191: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession14-Pathogenicbacteria/phytoplasma

189

Poster 14

HarpinsofGram-negativeplantpathogenicbacteriaareconsideredasonetypeofPAMPsthattypicallyelicitshypersensitiveresponse(HR) in nonhost plants. However, harpins in Xanthomonasspecies remain largely unknown. We here demonstrated that ahighly conserved single-strandedDNA binding protein (SSB) inXanthomonasspecies,ratherthanotherprokaryoticbacteria,elicitsHRintobacco.SSBisanacid,glycine-rich,cystine-lacking,heat-stable, and proteolysis-sensitive protein. SSB-triggered HR intobaccoisnotonlyaprogrammedcelldeath,butalsoaccompaniedwith active oxygen burst, activation of the expression of HRmarkergenesandpathogenesis-relatedproteingenes,andcallosedeposition. SSB-induced HR can be inhibited by eukaryoticmetabolisminhibitors,butrequirestheinvolvementofBAK1andBIK1whichareessentialforPTIinplantspriortotheactivationofMAPKandsalicylicacidsignalpathways.ThedeletionmutantofssbofX. oryzaepv.oryzicola,arepresentativeofXanthomonasspecies causing bacterial leaf streak in rice, reduced bacterialvirulence and growth in planta, but retained to trigger HR innonhosttobacco.AnimperfectPIP-box(plant-induciblepromoter)in thepromoterregionofssbenables thepathogentoco-expresswiththekeyregulatorHrpX.Inaddition,SSBwassecretedviathetypeIIIsecretionsysteminHrpE-,HpaB-andHpaP-independentmanners.Thisisthefirstreportthatthehighly-conservedSSBinxanthomonadsispositivelyregulatedbyHrpX,secretedviaT3SS,worksasaPAMPforPTI.

PS14-531Phytoplasma effector SAP54 induces indeterminate leaf-likeflowerdevelopmentinArabidopsisplantsAllysonM.MacLean1,AkikoSugio1,OlgaV.Makarova2,KimC.Findlay1, Victoria M. Grieve1, Reka Toth3, Mogens Nicolaisen2,SaskiaA.Hogenhout11Cell & Developmental Biology, John Innes Centre, Norwich,UnitedKingdom,2AarhusUniversity,DepartmentofAgroecology,Plant Pathology and Entomology, Slagelse, Denmark, 3MaxPlanckInstituteforPlantBreedingResearch,DepartmentofPlantDevelopmentalBiology,Cologne,Germanyallyson.maclean@jic.ac.ukPhytoplasmasareinsect-transmittedbacterialplantpathogensthatcauseconsiderabledamagetoadiverserangeofagriculturalcropsglobally.Symptoms induced in infectedplants suggest that thesephytopathogens may modulate developmental processes withinthe plant host.We report herein thatAsterYellows phytoplasmastrainWitches Broom (AY-WB) readily infects the model plantArabidopsis (Arabidopsis thaliana) ecotype Columbia, inducingsymptomsthatarecharacteristicofphytoplasmainfection,suchastheproductionofgreenleaf-likeflowers(virescenceandphyllody)and increased formationof stemsandbranches (witchesbroom).We found that the majority of genes encoding secreted AY-WB proteins (SAPs), which are candidate effector proteins, areexpressedinArabidopsisandtheAY-WBinsectvectorMacrosteles quadrilineatus. To identify which of these effector proteinsinduce symptoms of phyllody and virescence, we individuallyexpressedtheeffectorgenesinArabidopsis.Fromthisscreen,wehave identified a novelAY-WB effector protein, SAP54, whichaltersfloral development, resulting in the production of leaf-likeflowersthataresimilartothoseproducedbyplantsinfectedwiththisphytoplasma.Thisstudyoffersnovelinsightintotheeffectorprofileofan insect-transmittedplantpathogenandreports toourknowledge the first example of a microbial pathogen effectorproteinthattargetsflowerdevelopmentinahost.

PS14-532Hcp2, a secreted protein of the phytopathogenPseudomonas syringaepv.tomatoDC3000,isrequiredforcompetitivefitnessagainstbacteriaandyeastsMinnaHaapalainen1, HannaMosorin2, FedericoDorati3, Ru-FenWu4,ElinaRoine2,SuviTaira2,RiittaNissinen1,LauraMattinen1,RobertJackson3,MinnaPirhonen1,Nai-ChunLin41Department of Agricultural Sciences, University of Helsinki,

Helsinki, Finland, 2Department of Biosciences, University ofHelsinki, Helsinki, Finland, 3School of Biological Sciences,University of Reading, Reading RG6 6AJ, UK, 4Departmentof Agricultural Chemistry, National Taiwan University, Taipei,TaiwanR.O.C.minna.haapalainen@helsinki.fiWhenanalysingthesecretomeoftheplantpathogenPseudomonas syringae pv. tomato (Pst) DC3000, we identified hemolysin co-regulated protein (Hcp) as one of the secreted proteins. Hcpis assumed to be an extracellular component of the type VIsecretion system (T6SS). The genome of Pst DC3000 harbourstwoT6SSgeneclusters,eachofwhichhaveonehcpgene,namedhcp1 (PSPTO_2539) and hcp2 (PSPTO_5435). We studied theexpression patterns of the hcp genes and tested fitness of hcpknock-outmutantsinhostplantcolonizationandininter-microbialcompetition.We found that thehcp2 gene is expressed and thatthe expression level is dependent on the bacterial growth phase,reachingthehighestlevelatstationaryphase.TheHcp2proteinwasfoundtobesecretedintotheculturemedium,whereasHcp1proteinwas not detected. Expression ofhcp2was not induced in plantaand it did not contribute to virulence or colonization in tomatoor Arabidopsis plants. Instead, hcp2 was required for survivingcompetitionwithenterobacteria,includingPectobacteriumspecies,thesoft-rottingplantpathogens,andeukaryoticmicrobes,suchasamoebaandyeast.Deletionofhcp2geneabolishedtheabilityofPstDC3000to inhibit thegrowthofenterobacteriaandyeasts inmixedcultures.Forfullcompetitivefitnessagainstyeasthcp1wasalsoneeded,althoughplayingaminorrolecomparedtohcp2.OurresultssuggestthattheT6SSofP. syringaemaybeimportantforthebacterialfitnessinconditionswherethisplantpathogenhastocompetewithothermicro-organismsforresources.

PS14-533Virulencedeterminantsof thecucurbitpathogenicbacteriumAcidovorax citrulliSaul Burdman1, NoamLevi1, Ofir Bahar1, Tamar Zimmermann1,Tally Rosenberg1, Anita Castro-Sparks2, Ron Walcott2, Sy M.Traore3,BingyuZhao3,GregWelbaum3,JohannesSikorski41Department of Plant Pathology andMicrobiology, The HebrewUniversity of Jerusalem, Rehovot, Israel, 2Department of PlantPathology,UniversityofGeorgia,AthensGA,USA,3Departmentof Horticulture, Virginia Tech, Blacksburg VA, USA, 4LeibnizInstitute DSMZ-German Collection ofMicroorganisms and CellCultures,Braunschweig,[email protected] Gram-negative bacterium Acidovorax citrulli is the causalagent of seedling blight and bacterial fruit blotch (BFB) ofcucurbits.Duringthelast20years,seriouseconomiclossescausedbyBFBhavebeenreportedworldwide,primarilyinwatermelonsandmelons.Despitetheeconomicimportanceofthedisease,thereislittleknowledgeonbasicaspectsofA. citrulli-hostinteractions.To identify A. citrulli genes associated with pathogenicity, weoptimized molecular manipulation techniques and inoculationassays for this bacterium. A transposon mutant library wasgeneratedinthebackgroundofstrainM6andscreenedforreducedvirulence in seed transmission assays with melon. One of theidentifiedmutantswasimpairedinproductionoftypeIVpili(T4P).Characterizationof thisandadditionalT4PmutantsrevealedthatA. citrullirequiresT4Pfortwitchingmotilityandwildtypelevelsofbiofilmformationandvirulence.A. citrullimutantsimpairedinsynthesisofpolarflagellumwerealso shown topossess reducedvirulence in various pathogenicity assays. The possible roles ofT4Pandpolarflagellainvirulenceofthispathogenarediscussed.Inaddition,usingmarkerexchangemutagenesis,wedemonstratedthat,assimilarasotherGram-negativephytopathogenicbacteria,A. citrullirequiresafunctionaltypeIIIsecretionsystemtosecretevirulence effectors into host cells and promote disease.We arecurrently investigatingtheroleofvarious typeIII-secreted(T3S)effectorsinthevirulenceofA. citrulli.HerewealsoreportonthegeneticvariabilityofT3Seffectorgenesfromacollectionofstrainsisolatedfromdifferenthostsandlocations.

Page 192: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession14-Pathogenicbacteria/phytoplasma

190

Post

er 1

4

PS14-534GlobalgenesexpressionprofilingofXanthomonas axonopodispv.glycines12-2duringinfectioninsoybeanTiyakhon Chatnaparat1, Steven E. Lindow2, SutruedeePrathuangwong11Department of Plant Pathology, Kasetsart University, Bangkok,Thailand,2DepartmentofPlantandMicrobialBiology,UniversityofCalifornia,Berkeley,[email protected] axonopodis pv. glycines strain 12-2 (Xag) causespustulediseaseonsoybean.ToidentifythegenesinXagthatarealteredinexpressionduringinfectionofsoybeanplantscomparedto growth in aminimalmedium in vitro,Xagdraft genomewasdevelopedandtranscriptomeanalysisusingdeepRNAsequencingof mRNA was performed. Of 5062 predicted genes in the Xagdraftgenome,534geneswereidentifiedasbeingup-regulatedintheplantwhile289weredown-regulated.Plantup-regulatedgenesincludedthehrpcluster,andgenesencodingavirulenceandtypeIIIeffectorproteins,extracellularenzymes,chemotaxiscomponents,detoxification,nutrientacquisitionandseveralotherknownornewputative virulence factors. Plant down-regulated genes includedthoseinvolvedinattachmentandthemovementprocess.Thisstudyis thefirst to reportonXaggenesexpressionduring infectionofsoybeanandtheinsightsintothebehaviorofthepathogenshouldproveusefulfordevelopingstrategiesforcontrollingdiseaseinthisimportantagriculturalcrop.

PS14-535Transcriptional control of Arabidopsis responses to thepathogenic effector protein AvrRpm1 from Pseudomonas syringaeOlgaKourtchenko1,ErikKristiansson2,AndersK.Nilsson3,OskarN. Johansson3, Andreas Czihal4, Mats X. Andersson3, DavidMackey5,HelmutBaeumlein3,4,MatsEllerstrom3

1Department of Chemistry and Molecular Biology, GothenburgUniversity, 2Department of Mathematical Statistics, ChalmersUniversity of Technology, 3Department of Biological- andEnvironmentalSciences,GothenburgUniversity,4InstituteofPlantGenetics andCropPlantResearch (IPK),Gatersleben,Germany,5DepartmentofPlantCellularandMolecularBiology,OhioStateUniversityoskar.johansson@bioenv.gu.seBacterial-andfungalpathogenssecreteeffectorproteinsintohostplant cells to increase virulence. Plants, on the other hand, haveresistanceproteinswhosefunctionistocounteracttheactivityofpathogenic effectors. Wild type Arabidopsis thaliana recognizethePseudomans syringae effectorAvrRpm1 and induces the socalled hypersensitive response (HR).Themutant rpm1 does notrecognizetheeffectorandinthisbackgroundtheeffectorenhancethe virulence of P. syringae. In this study we investigated theexpressionchangesoftranscriptionfactorgenesinArabidopsisasaresponsetotheAvrRpm1inthepresenceorabsenceofitscognateresistancegeneRPM1.Incontrasttopreviousstudies,wedetectedtranscriptional responses already 15 min after the induction ofexpressionofabacterialeffectorproteinin planta.Asaresult,weprovideadetailedviewoftheearlychangesoftranscriptionfactorgeneexpressioninresponsetotheAvrRpm1actionin planta.Thedatashows thatplant resistance responsesandpathogenicdrivendiseaseresponseseachhaveuniquetranscriptionalresponses.Wehavethus,expandedthelistoftranscriptionalregulatorspotentiallyinvolved in controlling plant resistance responses and identifiedpossibledirectand/orindirecttargetsofthevirulencefunctionofAvrRpm1. Finally, a subset of the identified transcription factorgeneswasselectedforareversegeneticsapproach.Nosingleknockout mutant displayed severe resistance phenotypes. However, afewknockoutmutants diddemonstrate changes in cell deathorexpressionofpathogenesisrelatedprotein1afterinoculationwithavirulentP. syringae.

PS14-536Specific induction mechanism of rice immune responses byflagellinsfromAcidovorax avenaeHiroyukiHirai1,YutaUno1,Fang-SikChe11Graduate School of Biosciences, Nagahama Institute of [email protected] avenaeisagram-negativeplantpathogenicbacterium.TheflagellinfromA. avenae riceavirulentN1141strain inducedseveralplantimmuneresponsesincludingH2O2generation,whiletheflagellinfromricevirulentK1straindidnot.ToclarifymolecularmechanismthatleadstothesedifferingbetweentheN1141andK1flagellins, recombinant N1141 and K1 flagellins were generatedusinganEscherichia coli expression system.Whencultured ricecellswere treatedwith recombinantK1orN1141flagellin, bothflagellins equally inducedH2O2 generation, suggesting that post-translational modifications of the flagellins are involved in thespecificinductionofimmuneresponses.Massspectralanalysisandglycananalysisshowedthat1,600and2,150glycanswerepresentontheN1141andK1flagellins,respectively.AdeglycosylatedK1flagellin inducedH2O2 generation in the samemanner asN1141flagellin.Trypticpeptidemappingswithreverse-phaseHPLCandsite-directedmutagenesis revealed that glycanswere attached tofour amino acid residues (178Ser, 183Ser, 212Ser and 351Thr) in K1flagellin and threeaminoacid residues (178Thr, 183Thr and 351Thr)in N1141 flagellin.Among mutant K1 flagellins in which eachglycan-attachedaminoacidresiduewaschangedtoalanine,178Ser/Alaand183Ser/AlaK1flagellinsinducedastrongimmuneresponseinculturedricecells,indicatingthattheglycansat178Serand183SerinK1flagellinpreventepitoperecognitioninrice.

PS14-537The role of two-component response regulator in biofilmformationandpathogenicitybyXanthomonasaxonopodis pv.citriTzu-PiHuang1,Kuan-MinLu11DepartmentofPlantPathology,NationalChung-HsingUniversity,[email protected] bacterial canker caused by Xanthomonas axonopodis pv.citriisaseriousdiseaseimpactingoncitrusproductionworldwide.Biofilmformationhasbeen indicated tobe important forvariousbacteria to successfully develop pathogenic relationships withtheir host. To understand the mechanisms of biofilm formationbyX.axonopodispv.citri strainXW19, thestrainwassubjectedto transposon mutagenesis. One mutant with mutation in two-component regulatory protein, TCR, and deficient in biofilmformationinpolystyrenemicroplatewasselectedforfurtherstudy.ThestrainXW19TCRshares100%aminoacidsequenceidentitywith XAC1284 of X. axonopodis pv. citri strain 306 and 84-100%identitywithtwocomponentregulatoryproteinsinvariouspathogensandenvironmentalmicroorganisms.Biofilmformationby TCR mutant was significantly decreased on leaf surfaces ofMexicanlimecomparedtothatbythewildtype.TCRmutantwascompromisedinitsabilitytocausecankerlesions.Thewild-typephenotypewas restoredbyprovidingpTCRF1,pTCRF2 in transinTCRmutant.OurdataindicatedthatTCRdidnotregulatetheproduction of virulence-related extracellular enzymes includingamylase, lipaseandlecithinase,orexpressionofhrpG,rfbC,andkatE,while controlled the expressionof rpfF inXVM2mediumwhichmimicscytoplasmicfluidsin planta.Inconclusion,biofilmformation on leaf surfaces of citrus is important for cankerdevelopment by X. axonopodis pv. citri XW19. The process iscontrolled by two-component regulatory protein TCR throughregulationofrpfF,whichisrequiredforbiosynthesisofdiffusiblesignalfactor.

Page 193: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession14-Pathogenicbacteria/phytoplasma

191

Poster 14

PS14-538InvolvementofaphosphinothricinN-acetyltransferasegeneinvirulencediversityofPseudomonas cichiriistrainSPC9018MasayukiTanaka1,WaliMd.Ullah1,HiroyukiMizumoto1,KouheiOhnishi2,AkinoriKiba1,YasufumiHikichi11LaboratoryofPlantPathology&Biotechnology,KochiUniversity,Kochi,Japan,2RIMG,KochiUniversity,Kochi,[email protected] cichirii strain SPC9018 (SPC9018) harbors thehrp. The hrp mutants from SPC9018 lose their virulence oneggplantbutnot lettuce.P. cichorii acquires thehrp through thehorizontalgene transfer fromacommonancestorwith thesinglepathogenicity island (S-PAI) inP. viridiflava.AphosphinothricinN-acetyltransferasegene(pat)islocatedintheflankingregionsofthehrp in bothP. cichorii and theS-PAI. Phylogenetic analysessuggestedthatP. cichoriimightacquirepatthroughthehorizontalgene transfer from the donor common to the S-PAI. The pat-deficientmutantfromSPC9018lostitsvirulenceoneggplantbutnotlettuce.Themutantgrewslowerineggplantleaves,comparedto SPC9018. Expression of pat in SPC9018 was not regulatedby HrpL, the transcriptional activator for the hrp. On the otherhand,deletionofpatresultedinadecreaseinthehrpexpression,which depended on the bacterial density. These results suggestthatpatisinvolvedingrowthofthebacteriainplantaandthehrpexpression,leadingtoimplicationofpatinthebacteriavirulenceon eggplant. Inoculation into P. cichorii-susceptible Asteraceaespecies including lettuceshowed that the involvementof thehrpandpatinP. cichoriivirulenceisindependentofeachotherandhasnorelationshipwiththephylogenyofAsteraceaespeciesbasedonthenucleotidesequencesofndhFandrbcL.Takentogether,afteracquisitionofthehrpandpatofwhichaPAIconsists,P. cichoriiimplicatesthehrpandpatinitsvirulencediversityonrespectiveAsteraceaespecies.

PS14-539Involvement of a lectin gene, fml, in virulence of Ralstonia solanacearumstrainOE1-1Yuka Mori1, Nobutake Shiba1, Hiroyuki Mizumoto1, KouheiOhnishi2,AkinoriKiba1,YasufumiHikichi11LboratoryofPlantPathology&Biotechnology,KochiUniversity,Kochi,Japan,2RIMG,KochiUniversity,Kochi,[email protected] hrp genes (hrp) is required for pathogenisity of Ralstonia solanacearum strain OE1-1 (OE1-1). Through a complexmultigene regulatory cascade PrhA-PrhR/PrhI-PrhJ-HrpG, hrpBexpressionisinducedinresponsetocontactwithplantcells.Thetranscriptional regulatorHrpBactivates theentirehrp.PhcA isaLysR-typetranscriptionalregulatoractivatedbyaquorum-sensingsystem. At high cell density, activated PhcA not only inducessynthesisofextracellularpolysaccharide,whichisthedeterminantofthebacterialvirulence,butalsoinhibitshrpexpressionthroughprhIRrepression.Inthisstudy,wefirstperformedthetranscriptomeanalysis with the next generation sequencer using the phcA-mutant, suggesting that a lectingene, fml, ispositively regulatedbyPhcA.Vallset al.(2006)havedemonstratedthatfmlexpressionispositivelyregulatedbyHrpG.TheRT-PCRanalysisconfirmedthatfmlexpressiondependsonnotonlyHrpGatlowcelldensitybutalsoPhcAathighcelldensity.Thefmlmutationresultedinlowgrowthabilityofthebacteriaintomatoplantsandreducedvirulenceof the bacteria on tomato.Therefore, fml is included in both thehrpregulonandthePhcAregulon,andis implicatedin in plantagrowth ofOE1-1 and its virulence. Furthermore, the fml-mutantshowed higher fliC expression, resulting in higher swimmingmotility,comparedtoOE1-1.Thefmlmutationresultedinreducedbiofilm productivity in the poor medium, and enhanced biofilmproductivityintherichmedium.Resultsinthisstudyalsosuggestinvolvementoffmlinswimmingmotilityandbiofilmproductivity.

PS14-540Functional roles of VirB2 in the type IV secretion system,T-pilus,andvirulenceofAgrobacterium tumefaciensHung-YiWu1,2,Chao-YingChen2,JenSheen3,4,Erh-MinLai1,21InstituteofPlantandMicrobialBiology,AcademiaSinica,Taipei,Taiwan, 2Department of Plant Pathology and Microbiology,National Taiwan University, Taipei, Taiwan, 3Department ofMolecularBiologyandCenterforComputationalandIntegrativeBiology, Massachusetts General Hospital, Boston, MA 02114,USA,4DepartmentofGenetics,HarvardMedicalSchool,Boston,MA02114,[email protected] tumefaciensisaphytopathogenicbacteriumwhichcauses crown gall disease by transferring T-DNA into the hostgenome. The translocation process is mediated by the type IVsecretion system (T4SS) comprising theVirD4 coupling proteinand 11VirB proteins (fromVirB1 toVirB11).AllVirB proteinsarerequiredtoassemble theT-pilus,whichconsistsofprocessedVirB2 (T-pilin) as a major subunit.WhileVirB2 is an essentialcomponentofT4SS,therolesofVirB2andtheassembledT-pilusremain unknown. Here, we generated a series of VirB2 aminoacid substitution mutants to study the mechanistic functions ofVirB2 involved in the assembly of T4SS, T-pilus and virulenceofA. tumefaciens.Basedon theability inT-pilusproductionandtumorigenesis on tomato stems, three major classes of mutants(T-pilus-/Vir-, T-pilus-/Vir+, and T-pilus+/Vir+) were isolated. Allmutationsinthefirsttrans-membranedomainofprocessedVirB2resulted in severe defects on T-pilus production, suggesting theimportanceofthisdomainforT-pilusbiogenesis.WealsoidentifiedseveralT-pilus-/Vir+uncouplingmutants,consistentwithpreviousconclusionthatT-pilusdoesnotplayanessentialroleforvirulence.However,whiletheseuncouplingmutantsremainwild-typeleveloftumorigenesisefficiencyonpotatotuberdiscs, theyarehighlyattenuated in transient transformation efficiency in Arabidopsisseedlings.Inconclusions,weprovidedthefirstdemonstrationforaroleofT-pilusinT-DNAtransformationprocessandrevealedthedomainsandaminoacidresiduescriticalforT4SS/T-pilusassemblyandvirulenceofA. tumefaciens.

PS14-541Hemin transported protein of Xanthomonas axonopodis pv.glycinesfunctionsonleafcolonizationandvirulenceonsoybeanSutruedeePrathuangwong1,DusitAthinuwat2,WilawanChuaboon1,LawanKladsuwan1,TiyakhonChatnaparat11Department of Plant Pathology, Kasetsart University, Bangkok,Thailand, 2Major of Organic Farming Management, FacultyScienceandTechnology,[email protected] axonopodis pv. glycines (Xag) causes bacterialpustule disease on soybean. This bacterium is worldwild spreadaroundhotandhumidgrowingregionlikesinSoutheastAsia.Tounderstand the gene coding for hemin transporter protein (hem)involvedinvirulenceofthepathogeninsoybean,wegeneratedahemmutantinXagbyoverlappingPCRmutagenesis.Disruptionofhemsignificantlyreducedthediseaseincidencewhensprayedonsoybeanbutnotfunctionwhenitwasinjecteddirectlyintoplant.ThehemmutantcausedthehypersensitiveresponseinductionontobaccoasXagwildtype.Interestingly,thehemexpressionwasalsoreducedwhenXagwildtypegrewin planta.Thehemintransporterproteininvolvedintheproductionofextracellularpolysaccharide,biofilmformation,motilityandattachmentbutnotforextracellularenzymes. This confirmed that epiphytic fitness by Xag stronglyrequired hem function. The result suggests that hem gene isessentialforvirulenceofXagonsoybeanduringinfectionprocess.

Page 194: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession14-Pathogenicbacteria/phytoplasma

192

Post

er 1

4

PS14-542Biosynthesis of diffusible signal factor (DSF) signals inXanthomonas campestris pv. campestris is induced by hostmetabolitesYinyueDeng1,ChangqingChang11InstituteofMolecularandCellBiology,[email protected] sensing (QS) denotes a widely conserved cell-to-cellcommunication mechanism which coordinates bacterial groupbehavior and often regulates virulence, biofilm formation,antibiotic production and plasmid conjugal transfer. The cell-cell communication signal cis-11-methyl-2-dodecenoic acid(also known as DSF) was originally identified in Xanthomonas campestrispv.campestris(Xcc),representingawidelyconservedsignalingmechanisminmanyGram-negativebacterialpathogens.The signal is involved in the regulation of biofilmdispersal andvirulence. Previous work showed that DSF biosynthesis in XccisdependentonRpfFandRpfB,butitisnotclearhowhostmayaffectitsproduction.Herewereportthatexogenousadditionofthecell-freeextract fromChinesecabbage to thegrowthmediumofXcc significantly induces theDSF-family signal production.ThefurtherstudyshowedthatthebiosynthesisofBDSFandDSFaresignificantlyenhanced.OurworksrevealthatXcccanutilizehostmetabolitesinChinesecabbagetoincreasequorumsensingsignalproduction,andfacilitateitsinfection.

PS14-543Functional characterization of genes encoding HD-GYPdomainproteinsinXanthomonas oryzaepvoryzicolaYuanbaoZhang1,LeiWang1,WendiJiang1,DongliJin1,MaxwellDow2,WenxianSun11Department of Plant Pathology, China Agricultural University,Beijing, China, 2BIOMERIT Research Centre, Department ofMicrobiology, BioSciences Institute, University College Cork,[email protected] oryzaepv.oryzicola(Xoc)isoneofimportantdiseasesinrice.However,littleisknownaboutthepathogenicitymechanismsofXoc.Here,weinvestigatedthefunctionofthethreeXocHD-GYPproteinsincludingRpfGinbiofilmformation,theproductionofextracellularpolysaccharides,the secretion of extracellular enzymes, as well as virulenceon rice. Deletion of rpfG resulted in decreased production ofextracellular polysaccharides, abolished Xoc virulence on rice,but enhanced biofilm formation. Biochemical studies includingcolorimetric assays, HPLC andmass spectrometry demonstratedthatRpfG is a phosphodiesterase that hydrolyses c-di-GMP intoGMP via linear pGpG as an intermediate degradation product.Cross-complementationoftheXocrpfGmutantwithrpfGfromX. campestris(Xcc)restoredthemutantphenotypes,butXoc rpfGdidnotcross-complementtheXcc rpfGmutantinEPSproductionandthesecretionofextracellularenzymes.ExpressionanalysisshowedthatdeletionofrpfGsignificantlyincreasedexpressionofthetypeIIIsecretionsystem(T3SS)andpgaABCDoperonthatisrequiredfor biofilm formation in Escherichia coli. The other two HD-GYPdomainproteinshavenoeffectonvirulencefactorsynthesisand tested phenotypes. The results indicated that RpfG in Xocpositivelycontrolstheproductionofextracellularpolysaccharidesandvirulenceon rice,butnegatively regulatesbiofilm formationandT3SSexpression.TheresultsalsosuggestedthatthepgaABCDoperonislikelyinvolvedinbiofilmproductioninXoc.

PS14-544InteractionsofHrpBproteinsinXanthomonasoryzaepathovaroryzaeHeejungCho1,Eun-SungSong1,IngyuHwang2,Byoung-MooLee11NationalAcademy ofAgricultural Science, Rural Development

Administration, Suwon, Korea, 2Department of AgriculturalBiotechnology and Center for Agricultural biomaterials, SeoulNationalUniversity,,Seoul,151-921,[email protected] pathovaroryzae is the causal agent of ricebacterialblightdisease.ThetypeIIIsecretionsystemofX.oryzaepathovar oryzae, encoded by hrp (hypersensitive response andpathogenicity)genecluster,isnecessaryforbothpathogenicityinsusceptiblehostsandtheinductionofthehypersensitiveresponseinresistant.Inthiscluster,wewerefocusingatthefunctionofHrpBproteinsencodedbythehrpBoperon-HrpB1,HrpB2,HrcJ,HrpB4,HrpB5,HrcN,HrpB7andHrcT,whichwerenotwellcharacterizedexceptHrcNasATPase.WehypothesizedthattheseHrpBproteinsmayworktogether,sowetestedtheinteractionsamongtheseeightproteinsbyyeasttwo-hybrid.WeclonedtheseeighthrpBgenestobaitvector-pGBKT7andpreyvector-pGADT7.Wecarriedoutco-transformationwiththeseeightbaitsandeightpreystoyeaststrainAH109and64combinatorialtranformantswereformed.Sixty-fouryeast transformantswere testedabout livabilityon theauxotrophmediumandbluecoloron thex-α-galplate.Asa result,HrpB2,HrpB4,HrpB5,HrcNandHrpB7proteinshaveinteractionsamongthem, but,HrpB1,HrcJ andHrcT proteins have no interactions.Specially,incaseHrpB2,HrpB5,HrcNandHrpB7proteinsshowedself-interactions.SowesuggestthattheproteinsencodedbyhrpBoperonworktogethertotheirplantpathogenicfunction.

PS14-545Substrate specificity switching during type III secretion inthe plant pathogenic bacterium Xanthomonas campestris pv.vesicatoriaJensHausner1,SteveSchulz1,ChristianLorenz2,NadineHartmann1,DanielaBuettner11Department of Genetics, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany, 2Harvard Medical SchoolMicrobiology,Boston,[email protected] Gram-negative bacterial plant pathogen Xanthomonas campestrispv.vesicatoria(Xcv)utilizesatypeIIIsecretion(T3S)system to translocate a large set of bacterial effector proteinsdirectly into the eukaryotic cell. The T3S system is a highlycomplexnanomachinethatspansbothbacterialmembranesandisassociatedwith an extracellular pilus and a predicted transloconintheplantplasmamembrane.GiventhearchitectureoftheT3Ssystem,itisassumedthatpilusandtransloconformationprecedeseffectorproteintranslocationandthatthereisaswitchintheT3Ssubstrate specificity from early to late substrates. T3S substratespecificity switching in Xcv presumably depends on the switchproteinHpaCandthecytoplasmicdomainoftheinnermembraneproteinHrcU(HrcUC),whichisautoproteolyticallycleavedandispresumablyinvolvedintherecognitionofsecretedproteins.HrcUCinteractswithHpaCandtheearlyT3SsubstrateHrpB2,whichisrequiredforpilusassemblyandprobablyfunctionsasaperiplasmiccomponentoftheT3Ssystematthebaseofthepilus.ApredictedconformationalchangeinHrcUCthatpresumablyoccursafterthebinding of HpaC leads to the substrate specificity switch afterpilusformation.Interestingly,theresultsofmutantandinteractionstudiessuggestthatHrpB2andHpaCcompeteforthesamebindingsite inHrcUand that thesecretionofearlyand latesubstrates iscontrolledbydifferentmechanismsthatcanbeuncoupled.

PS14-546VariationsintypeIIIeffectorrepertoiresdonotcorrelatewithdifferencesinpathologicalphenotypesandhostrangeobservedforXanthomonas citripv.citripathotypesAline Escalon1, Stephanie Javegny1, Karine Vital1, ChristianVerniere1,LaurentNoel2,OlivierPruvost1,MatthieuArlat2,3,LionelGagnevin11CIRAD-Universite de la Reunion, St Pierre, Reunion Island,France, 2Laboratoire des Interactions Plantes Micro-organismes

Page 195: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession14-Pathogenicbacteria/phytoplasma

193

Poster 14

(LIPM),UMRCNRS-INRA2594/441,F-31320Castanet-Tolosan,France.,3UniversitedeToulouse,F-31062Toulouse,[email protected] citripv.citri(Xac)isaquarantinebacteriumcausingAsiatic citrus canker. Strains ofXac are classified as pathogenicvariants i.e. pathotypes, according to their host range: strains ofpathotype A infect a wide range of rutaceous species, whereasstrainsofpathotypeA*/AwinfectarestrictedhostrangeconsistingofMexican lime(C. aurantifolia)andalemow(C. macrophylla).Basedonacollectionof55strainsweinvestigatedtheroleoftypeIIIeffectors(T3E)inhostspecialization.ByPCRwescreened56Xanthomonas T3Es and showed that Xac possesses a repertoireof 28 effectors, 24 of which are shared by all strains, while 4(xopAI, xopAD, xopAGandxopC1)arepresentonlyinsomeA*/Awstrains.However, theirdistributioncouldnotaccountforhostspecialization.XopAGispresentinallAwstrains,butalsointhreeA*strainsgeneticallydistantfromAw,andallxopAG-containingstrainsinducedHR-likereactionsongrapefruitandsweetorange.Astrainsaregeneticallylessdiverse,induceidenticalphenotypicresponses, and share exactly the same T3Es. Conversely, A*/Aw strains exhibited a wider genetic diversity in which cladescorrelated to geographical origin andT3Es repertoire but not topathogenicity.A*/Aw strains showed a broad range of reactionson several Citrus, but genetically related strains did not sharephenotypic responses.Our results showed thatA*/Aw strains aremore variable (genetically and pathogenetically) than initiallyexpectedandthatthisvariabilityshouldnotbeignoredwhentryingto describemechanisms involved in the pathogen evolution andhostspecialization.

PS14-547RegulonsofexpAandrsmAinPectobacteriumstrainSCC3193MartinE.Broberg11Department of Biosciences, University of Helsinki, Helsinki,[email protected];rsmAandexpAarewelldistributedamongmany enterobacteria and have been extensively studied to date.Thesetwogeneshavebeenshowntohaveanimpactonfunctionssuchasmetabolism,motilityandvirulence.Theyhavealsobeenlinked to the same regulatory pathway when concerning theproductionofplantcell-walldegradingenzymes(PCWDEs),withexpA controlling rsmA expression through genes such as rsmB.ThegenomeofthePectobacteriumstrainSCC3193,wasrecentlysequenced.Previousworkwiththisstrainhasrevealedthatknock-outmutants in expA exhibit highly reduced virulence on plants,alongwithreducedproductionofPCWDEs.Incontrast,knock-outmutants of rsmA in SCC3193 demonstrate increased productionofPCWDEs,and increasedexpressionofmanyvirulencerelatedgenes.SincepreviousstudiesindicatethatexpAandrsmAoperatein the same pathway of regulating the production of PCWDEs,wewantedtofurtherexploretheoverlapoftheirregulonsandtodetermineifexpAexertsitsinfluencethroughrsmAinotheraspectsofbacterialphysiology.Wehavethusconductedgeneexpressionmicroarrayexperimentstodeterminethetranscriptomeofknock-outmutantsinexpAandrsmA,aswellasadoubleknock-outmutant.Ourworkrevealssynergiesanddivergenceofthetranscriptomesofthesetwogenesinvolvedinglobalgeneticregulation,withimpactongenesdirectlyandindirectlyinvolvedinvirulence.Inadditiontothemicroarraywehaveperformedassaysofgrowth,virulenceandenzymeproduction, linking the transcriptomicdifferencesofthemutantstophenotypicdifferencesinvirulence.

PS14-548QuorumsensingmechanismmediatesvirulencecontrolintheplantpathogenXylella fastidiosaMichael Ionescu1, Ellen Beaulieu1, Clelia Baccari1, SubhadeepChatterjee1,NianWang1,2,NabilKilliny2,RodrigoP.P.Almeida2,StevenE.Lindow1

1Department of Plant and Microbial Biology, University ofCalifornia,Berkeley,USA,2DepartmentofEnvironmentalScience,PolicyandManagement,UniversityofCalifornia,Berkeley,[email protected] fastidiosa,thatcolonizesthe grape vascular system employs a Diffusible Signal Factor(DSF)tocontrolvirulence.DSFissynthesizedbyRpfFandsensedbytheRpfCGphosphorelaysystemthatmodulatescyclicdi-GMPmetabolismthatservesasaswitchtotransitionbetweenamotileplant-colonizingphaseandamoreadhesive,non-motileformthatcanbevectoredbyinsectvectors.rpfFandrpfGmutantsmigratefasterintheplant,proliferatemore,causemoresymptoms,areless“sticky”thanthewild typestrain,butarenot transmissible;bothmutantsexhibit lowerexpressionof traitscontributing tobiofilmformationsuchashemagglutinin-likeproteinsincludingHxfAandhigher expression of genes associatedwithmotility, growth andproliferation.DSFconsistsofoneormoreunsaturatedfattyacidsincluding2-Z-tetradecanoicacidDSF;itisactiveatconcentrationsaslowas1μMasmeasuredusinghxfA::phoAtranscriptionalfusionsinX. fastidiosa.Inaddition,adhesivenessofX. fastidiosaincreasedwhilegrowthwassuppressed inresponse toexogenoussynthetic2-Z-tetradecanoicacid.WeproposethatDSFanti-virulenceactivitymayhaveevolvedtoavoidexcessivecolonizationofxylemvesselsthatislethaltoX. fastidiosa.DiseasecontrolcanbeachievedinaprocessofpathogenconfusioninwhichDSFlevelsareelevatedinplantsinadvanceofpathogeninfectionbytopicalapplicationandbyexpressionofrpfFintransgenicgrape.

PS14-549Identifying factors involved in pathogenicity of Ralstonia solanacearum strainsat lowtemperaturesusingaproteomicsapproachAna M. Bocsanczy1, Ute C. Achenbach2, Arianna Mangravita-Novo3,DavidJ.Norman11Department of Plant Pathology, University of Florida, MREC/IFAS, Apopka, Florida, U.S.A., 2Development Lead North-EastEurope.SyngentaAgroGmbHAm,Maintal,Germany, 3Sanford-BurnhamMedicalResearchInstitute,Orlando,Florida,[email protected] solanacearumspeciesiswelladaptedtolifeinsubtropicaland tropical regions thus most of the populations are non-pathogenicbelow20oC,howeverR3B2strainsnotestablished intheU.S.havebeenidentifiedtocausediseaseatlowtemperatures.Due to risks associated with cool virulent strains, knowledgeregardingpathogenicityatlowtemperaturesisneededtofacilitateeffective disease control. In order to identify putative proteins/pathwayspossiblyinvolvedinpathogenicityatlowtemperatures,wecomparedproteinlevelsoftwostrainsofR. solanacearumthatarenotnaturallypathogenicatlowtemperatures(P597,GMI1000)andtwostrainsthatarecoolvirulent(P673,UW551)at30oCand18oC.Proteinswereextractedand2-DDIGEproteingelswererunin several experiments.Comparisonsweremade for cellular andsecreted proteinswhenR. solanacearum cellswere incubated inco-culturewithtomatoseedlingsgrownin vitroinliquidmedium,focusing our attention to the root colonization phase of diseaseprogress. The differential profiles of various comparisons in 5experimentsproduced164proteinsmostlyinvolvedwithsurvivalinahostileenvironment.Afterexhaustiveanalysis29uniqueproteinswere identified as best potential candidates for cold virulencefactors.Thecandidatesincludeacatalase,PilQ,exoglucanaseA,adrugeffluxpump,andtwohypotheticalproteins.CurrentlyweareconfirmingdifferentialregulationofselectedcandidatesusingqRT-PCRandtestingtheirputativeroleinvirulenceatlowtemperature.Preliminary experiments suggest that virulence at 30oC of P673PilQdefectivemutants isnotsignificantlyreduced;however it isat18oC.

Page 196: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession14-Pathogenicbacteria/phytoplasma

194

Post

er 1

4

PS14-550Experimental evolution of host specificity in Pseudomonas syringaeHonourC.McCann1,PaulB.Rainey2,DavidS.Guttman11Dept. of Cell& SystemsBiology,University ofToronto, 2NewZealand Institute forAdvanced Study, Massey University, [email protected] TTSS is required for virulence in pathogenic P. syringae,and the structuralcomponentsof the secretionsystemarehighlyconserved across all pathovars, though there is considerablevariation in the effector complement of each strain. While thesuiteofeffectorsdeliveredintothehostcellcytosolclearlyplaysan important role in determining its virulence, additional factorssuch as toxins, adhesins and host innate immunity elicitors alsocontribute to P. syringae virulence and host range. I employedan experimental evolution approach to identify thegeneticbasesofhost specificity inP. syringae andelucidatewhether there aremultipleevolutionarytrajectoriestopathogenicityonasinglehost.ReplicateisogenicpopulationsofPph1448Awereseriallypassagedin the Moneymaker cultivar of tomato for 12 weeks.AlthoughPph1448A has a functional TTSS and can successfully infectbean,itisnonpathogenicontomato.Notonlydomultipleevolvedpopulations exhibit higher growth than the ancestral Pph1448A,some grow nearly as well as the tomato pathogen PtoDC3000.Interestingly,mostevolvedpopulationsmaintainmaximalbacterialdensitiesbetweenday3and7,ratherthanexperiencingpopulationdecline characteristic of PtoDC3000. In addition, no Pph1448Aderived lines produce the phenotypic symptoms of necrosisand chlorosis characteristic of PtoDC3000 infection, indicatingheightenedlevelsofhostdamagedonotaccompanytheirenhancedgrowth in tomato. Illumina paired-end sequencing of evolvedpopulationrevealedthepresenceofmultiplemutations,includingaSNPinthetransmembranedomainofFlhA,acomponentoftheflagellartypeIIIproteinexportapparatus.

PS14-551N-acetyl-L-cysteine preventsXylella fastidiosa colonization incitrusplant,therebydecreasingvirulenceThais E.Giorgiano1,HelvecioDella Coletta Filho1, Juarez PiresTomaz1,MarcoA.Takita1,MarcosA.Machado1,AlessandraAlvesdeSouza11CentroAPTA Citros SylvioMoreira, Cordeiropolis, Sao Paulo,Brasilthais@centrodecitricultura.brCitrusproductionisoneofthemainBrazilianagribusinessactivities.However,citrusproductioninBrazilisgreatlyaffectedbydiseases.TheCitrusVariegatedChlorosis (CVC) causedby thebacteriumXylella fastidiosa(Xf)isoneofthemostimportantcitrusdiseases.Xfmultiplyandattachto thexylemvessels, formingbiofilmthatcan block water and nutrient transport. Disulfide bonds play animportant role in folding and stability of fimbrial and afimbrialproteins,whichareimportantfactorsforcolonizationandbiofilmformation.N-acetyl-L-cysteine(NAC),ananalogueofcysteinecandisrupt these bonds being used in treatment of bacterial humandiseases. We previously demonstrated that NAC can disrupt Xfbiofilmin vitro,decreaseEPSproductionandsignificantlydecreasethe symptoms of CVC in planta (hydroponic system). Thus toverify the potential use of this molecule in field condition weevaluatedtheeffectsofNACappliedbyfertigationsystemonthe(i)evolutionofCVCsymptoms,(ii)movementandcolonizationofXf,and(iii)populationofXf,comparingsweetorangeplantstreatedor notwithNAC.After sixmonthswithweeklyNAC treatmenttherewasasignificantsymptomsreductioninplantstreatedwithNAC, mainly in leaves showing chlorosis but not necrosis. Asignificant reduction in the bacteria populationwas observed forplantstreatedwithNAC.TheseresultsindicatethatNACmayhaveaneffectonXfpopulationandthesymptomsremissioncouldbeapossibleconsequenceofrestorationof thexylemflow,openinga

newperspectiveforitsuseonXfcontrol.

PS14-552Deprivingsugarsfromapoplastlocatedbacterialpathogensbyregulatingnutrient efflux is aplantdefense strategyand is acomponentofnonhostresistanceMuthappa Senthil-Kumar1, Avinash C. Srivastava1, YongfengZhang1,KirankumarS.Mysore11PlantBiologyDivision,TheSamuelRobertsNobleFoundation,2510SamNobleParkway,Ardmore,[email protected] resistance (NHR) is the resistance of a plant speciesagainstawiderangeofpathovarsofaparticularpathogen.UnlikeRgene-mediatedresistance,NHRmechanismisnotwellstudied.Unraveling NHR mechanism may help us develop plants withdurablediseaseresistanceagainstabroadspectrumofpathogens.We have identified a role for sucrose transporter, NbSUT1, inNHR fromavirus-inducedgene silencing-based forwardgeneticscreen in Nicotiana benthamiana. Plants silenced for NbSUT1compromisedNHRagainstPseudomonas syringaepv.tomatoT1.The apoplast of the silenced plants had higher levels of varioussugars compared to non-silenced control plants.Apoplastic fluidfromthesilencedplantssupportedhigherin vitrogrowthofseveralbacterial pathogens.Gene expression profiling ofAtSUC2 gene,an Arabidopsis homolog of NbSUT1 gene, and other AtSUCfamilymembersinArabidopsistreatedwithvarioushost/nonhostpathogens and pathogen associated molecular patterns (PAMPs)indicated that expression of some of the sucrose transporterfamilymemberswere induced.We hypothesize that fewAtSUCgenefamilymemberscanbetargetedbyahostpathogentofavorits growth in the apoplast. Using interaction studies of severalPseudomonasstrainswithtwomodelplants,N. benthamianaandArabidopsis,weexplainthebroaderconceptfortheregulationofsucroseeffluxintophloeminthesourceleaftissueduringpathogeninfection.Basedonthisstudyandoneofourpreviousstudies(PlantPhysiology158;1789-1802),wewillpresentamodelexplainingthe importanceofnutrient regulationasacomponentofNHRinplants.

PS14-553TypeIVpilinisglycosylatedinPseudomonas syringaepv.tabaci6605andrequiredforsurfacemotilityandvirulenceChi L. Nguyen1, Fumiko Taguchi1, Quang T.Minh1,YoshishigeInagaki1,KazuhiroToyoda1,TomonoriShiraishi1,YukiIchinose11Graduate School of Environmental and Life Science, OkayamaUniversity,Okayama,[email protected](PilA)isamajorconstituentofpilusandisrequiredforbacterialbiofilmformation,surfacemotility,andvirulence. Itis known thatmature PilA is produced by cleavage of the shortleadersequenceofthepilinprecursor,followedbymethylationofN-terminalphenylalanine.ThemolecularmassofthePilAmatureproteinfromthetobaccobacterialpathogenPseudomonas syringaepv. tabaci 6605 (Pta 6605)waspredicted to be 12,329Da fromits deduced amino acid sequence. We previously detected PilApilinasanapproximately13kDaproteinbyimmunoblotanalysiswithanti-PilA-specificantibody.Inaddition,wefoundtheputativeoligosaccharide-transferasegene tfpOdownstreamofpilA.Thesefindings suggest that the PilA inPta 6605 is glycosylated. Thedefective mutant of tfpO showed reductions in pilin molecularmass, surfacemotility, andvirulence towardhost tobaccoplants.Thus pilin glycan plays important roles in bacterialmotility andvirulence.Ontheotherhand, thegeneticregionaroundpilAwascomparedamongP. syringae.ThetfpOgeneexistsinsomestrainsofpvs.tabaci, syringae, lachrymans, mori, actinidiae, maculicola,andP. savastanoi pv. savastanoi.However, some strains of pvs.tabaci, syringae, glycinea, tomato, aesculi, and oryzae do notpossess tfpO, and the existence of tfpO is independent of theclassification of pathovars/strains in P. syringae. Interestingly,

Page 197: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession14-Pathogenicbacteria/phytoplasma

195

Poster 14

thePilAaminoacidsequencesin tfpO-possessingstrainsshowedhigher homologywith each other thanwith tfpO-non-possessingstrains.TheseresultssuggestthattfpOandpilAmightco-evolveinsomespecificbacterialstrains.

PS14-554A novel non-ribosomal peptide synthetase is required forpathogenicityofPectobacteriumonpotatoesPreetinandaPanda1,MarkA.W.J.Fiers2,KarenArmstrong1,TonyConner3,AndrewR.Pitman1,21Bio-Protection Research Centre, Lincoln University, Lincoln,NewZealand,2NewZealandInstituteforPlant&FoodResearch,Lincoln,NewZealand,3AgResearch,Lincoln,[email protected] carotovorum subspecies brasiliensis (Pbr) is anaggressivephytopathogenofpotatocausingblacklegofstemsandsoft rotof tubers.Originallydetected inBrasil,PbrwasrecentlyidentifiedinSouthAfricaandNewZealand.GenomesequencingofPbrNZEC1,ahighlyvirulent isolatecollectedfrompotato inNewZealand,revealedseveralputativevirulencefactorsencodedon large segments of DNA predicted to have been acquired byhorizontal gene transfer. These regions, known as HorizontallyAcquiredIslands(HAIs),areinsertedintothebacterialchromosome.ComparativegenomicsofPbrNZEC1withotherPectobacteriumstrainsshowedthatoneHAIcarriesanovelnon-ribosomalpeptidesynthetase(NRPS)cluster,whichispresentinallblackleg-causingstrains of Pectobacterium (e.g. Pectobacterium atrosepticumSCRI1043)but absent inPectobacterium strainsunable to causeblackleg.ToassesstheroleoftheNRPSinvirulenceofbothPbrand the related blackleg-causing species P. atrosepticum, genesencoding the synthetase and its related ABC transporter wereinactivated. Pathogenicity assays were subsequently carried outonpotatostemsandtubersusingtheresultingknockoutmutants.InactivationofgenesintheNRPSclusterabolishedtheabilityofbothPectobacteriumspeciestocauseblacklegaswellassoftrot,demonstrating the importanceof theNRPS invirulenceof thesepathogens.Since, theNRPSshowshomologytosyringomycin,aputativephytotoxininvolvedincausingnecrosisinhostplantsbyotherplantpathogens,wepredictthatthepeptidesynthetaseisanimportantvirulencefactorinallblackleg-causingPectobacteriumspecies.

PS14-555IdentificationandcharacterizationofStreptomycesspp.causingpotatocommonscabinVietnamThaoT.P.Nguyen1,ThuyT.Nguyen1,LinhT.T.Nguyen11Department of Plant Biotechnology, Faculty of Biotechnology,HanoiUniversityofAgriculture,Vietnamntpthao@hua.edu.vnTheidentificationandcharacterizationofStreptomycesspp.causingcommonscabofpotatoinnorthernVietnamwasforthefirsttimeinvestigated.FiftyeightStreptomycesspp.isolateswerecollectedfrom disease lesions of potato tubers harvested from 4 differentprovinces of Vietnam. Base on morphological, arial mycelliumand diffusible melanoid pigment ability on ISP mediums, theywere classified into 8 groups. These groups were characterizedby white to grey colonies with spiral or flexuos spores chain.From these 8 groups, 12 representative isolates were amplifiedwith species-specific PCR primers.Among that, 7 isolates wereidentifiedasS. bottropensis,3isolatesasS. Stelliscabies,1isolateasS.turgidiscabies,2isolatesasS.groupXand2isolateshavePCRproductwithS. scabies/S. euroscabies specificprimers.Cloningand sequencing the 16s rRNA showed theywere closely relatedto known pathogenicS. scabies strains and therewere sequencevariation in three regions. Pathogenicity- and virulence-relatedgenes(txtAB,nec1, tomA)werePCR-amplifiedfromeachisolateshowing that all of them lack thenec1 gene,1 isolatehas txtABand 4 isolates have tomA. Using these isolates for pathogencitytestingshowedthattheyallinducedcommonscablesiononvariety

Atlanticwithdifferent degreesof severity evenwith the isolatesthat lack all main genes of PAI. We proposed that there mayhavedifferentpathogenstrains inducingcommonscabonpotatoin Vietnam. The results of this study contribute the additionalcomplexityinthepathogenicstrainscausingpotatocommonscabdiseaseintheworld.

PS14-556Iron acquisition by phosphinothricin N-acetyltransferase-regulatedsiderophoremaybeoneofdeterminantsforvirulenceofPseudomonas cichoriiWaliMd.Ullah1,MasayukiTanaka1,HiroyukiMizumoto1,KouheiOhnishi2,AkinoriKiba1,YasufumiHikichi11Lab. of Plant Pathology & Biotechnology, Kochi University,Kochi,Japan,2RIMG,[email protected] cichorii strain SPC9018 (SPC9018) harborshrp which is involved in virulence diversity of the bacteria. AphosphinothricinN-acetyltransferase gene (pat) is located in theflankingregionofhrpinthegenomeofP. cichorii.Ourpreviousstudy showed thatpat is implicated in virulence diversity of thebacteria, independent of hrp. It is thought that a pathogenicityisland inP. cichorii consists ofhrp andpat,which are acquiredthroughhorizontal transfer fromthedonorcommonto thesinglepathogenicity island of P. viridiflava. To elucidate function ofpat on virulence of P. cichorii, phenotypical characteristics ofthe pat-deleted mutant of SPC9018 were analyzed. Swarmingmotility of thepat-deletedmutant inmediawith FeCl3 reduced,compared to that without FeCl3, suggesting involvement of patin iron acquisition.Therefore,we then analyzed the siderophoreactivity by the pat-deletedmutant.At low cell density, the pat-deletedmutant showedweakersiderophoreactivity,compared totheSPC9018.Thedeletionofpat resulted in reducedexpressionof siderophorepyoverdine synthesis-relatedpvdL andproductionofthepyoverdine.Interestingly,co-treatmentof20μMmugineicacid, an iron chelator, with SPC9018 resulted in suppression ofin planta growth of the bacteria. Furthermore, co-treatment ofmugineicacidresultedinlossorreductionofSPC9018virulenceonP. cichorii-susceptibleplantsincludingeggplant,onwhichpatisinvolvedinvirulenceofthebacteria.Resultsinthisstudysuggestthatironacquisitionbypat-regulatedsiderophoreproductivitymaybeoneofdeterminantsforvirulenceofP. cichorii.

PS14-557Identification of novel effectors inPseudomonas syringae pv.actinidiaethecausalagentofkiwifruitcankerMatthew D. Templeton1,2, Mark Fiers3, Ashley Lu3, Erik H.A. Rikkerink1, Frederic Bertels4, Bernhard Haubold5, CyrilBrendolise1,WeiCui1,JonathanRees-George1,MarkT.Andersen1,Honour McCann4,6, Jennifer Michtavy4, Pauline Wang6, DavidGuttman6,PaulB.Rainey4,51Bioprotection,PlantandFoodReserch,AucklandNewZealand,2University of Auckland, Auckland, New Zealand, 3Plant andFoodResearch,Lincoln,NewZealand,4NZAISandAllanWilsonCentre,MasseyUniversity,Auckland,NewZealand,5MaxPlanckInstituteforEvolutionaryBiology,Plön,Germany,6UniversityofToronto,Toronto,[email protected] incursion of the devastating disease of kiwifruit caused byPseudomonas syringaepv.actinidiae (Pan)wasdetected inNewZealandinNovember2010.Thispathogenisexceptionallyvirulentand has caused significant damage to the kiwifruit industry inEurope over the past three years.The infection rapidly becomessystemicresultingvinedeathwithinamatterofweeks.Therearecurrentlynomethodsforcontrollingthedisease.Awholegenomesequencing project, with the aim of analysing the sequences ofover40isolatesofPanfromaroundNewZealandandoverseashasbeencompleted.Phylogeneticanalysisofthesesequencesbasedon400genesconserved inPseudomonas, indicates that thevirulent

Page 198: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession14-Pathogenicbacteria/phytoplasma

196

Post

er 1

4

isolate(Pan-V)ismostcloselyrelatedtothePanisolatesfirstfoundinJapan.Althoughverycloselyrelatedphylogenetically, thePanisolates from Japan and New Zealand are significantly differentin their complement of effectors and pathogenicity factors. Wehavecompared thegenomearrangementof these related isolatesusingacombinationofIlluminaand454sequencing.Ananalysisof the effector complement of Pan-V indicates the presence oftwo effectors, co-located in the genome, and a putative toxinbiosyntheticclusterthatareabsentfromotherPanisolates.Oneofthese,HopH1,ispresentinotherP. syringaepathovars.Theother,HopZ2b,isamemberoftheYopJclassofeffectorsmostcloselyrelatedtothosefromAcidovoraxandXanthomonas.Putativehosttargetsoftheseeffectorsarebeingsoughtusingyeasttwohybrid.

PS14-558TranscriptionalresponsesofPseudomonas syringae togrowthinepiphyticversusapoplasticleafsitesXilanYu1,StevenLund2,RussellScott3,JessicaWilliams4,AngelaRecords41Department of Plant Pathology and Microbiology, Iowa StateUniversity,Iowa,U.S., 2DeptofStatistics,IowaStateUniversity,U.S.,3DeptofPlantandMicrobialBiology,UniversityofCalifornia-Berkeley,CA,U.S., 4DeptofPlantPathologyandMicrobiology,TexasA&MUniversity,TX,[email protected] syringae has a pronounced epiphytic phase thatprovides inoculum for infection and a pathogenic phase thatinvolves multiplication in the leaf apoplast. To characterize thestimulons and traits contributing to growth in association withleaves,weperformedwhole-genometranscriptomeprofilingofP. syringaepv.syringaeB728acellsrecoveredfromtheleafsurfaceand leaf apoplast, aswell as cells exposed to invitro treatmentsthat reflect the predicted environmental conditions encounteredonand inhostplant leaves.Theanalysis indicated thatexposureto leafepiphyticandapoplastic sites induced transcriptomes thatweremoresimilartothoseinducedbyosmoticstressandnitrogenstarvationthanbyoxidativestressandironstarvation.Furthermore,greater transcript levels of genes involved in water deprivationtolerance in apoplastic sites suggested that, surprisingly, waterlimitationismoresevereintheleafthanonleafsurfaces.Alargenumberoftranscriptsrespondeddifferentlytogrowthinepiphyticversus apoplastic sites. For example, the transcripts of genesinvolved in flagellar synthesis, chemotaxis and phenylalaninemetabolismwere inducedprimarily inepiphyticsites,suggestingmovement prior to infection and degradation of phenylalanine,a precursor for phenylpropanoid-based defenses. In contrast, thetranscripts of genes involved in themetabolism and transport ofGABA,phytotoxinsandsyringolinwereinducedmorewithintheleaves, supporting known roles in virulence aswell as roles forsyringolininsuppressingdefensesbeyondstomatalclosure.Thesedataarecontributingtoacoherentmodeloftheadaptationsofthiswidespreadbacterialphytopathogen todistincthabitatswithin itshost.

PS14-559Identification and characterization of new type III effectorsfromXanthomonas campestrispv.vesicatoriaSebastianSchulze1,AlexanderU.Singer2,3,RobertSzczesny1,AntjeKrueger1, Frank Thieme1, Sabine Thieme1,Alexei Savchenko2,3,UllaBonas11Department of Genetics, Martin Luther University Halle-Wittenberg,Halle ,Germany, 2Banting andBestDepartment forMedical Research, University of Toronto, C.H. Best Institute,Room24,112CollegeStreet,Toronto,OntarioM5G1L5,Canada,3Department of Chemical Engineering and Applied Chemistry,UniversityofToronto,WalbergStreet,Toronto,OntarioM5G1L5,[email protected] of most Gram-negative plant-pathogenic bacteria

depends on the type III-secretion (T3S) system which deliverseffectorproteins into theplantcellcytosol. Insusceptibleplants,type III effectors (T3E) interferewith host cell processes to thepathogen´s benefit. In resistant plants, however, recognition ofindividualeffectorproteinsismediatedbyplantresistancegenes,often leading to thehypersensitive response, a fast and localizedprogrammedcelldeathrestrictingpathogeningress.Ourlabstudiesthe interaction betweenXanthomonas campestris pv. vesicatoria(Xcv)and itshostplantspepperand tomato.We identifiedsevennewT3EgenecandidatesinXcvstrain85-10basedonhomologyoftheirgeneproductstoknownT3Es,thepresenceofeukaryoticmotifsandconservedpromoterelementssuggestingco-regulationwiththeT3Ssystem.RT-PCRanalysesshowedthatexpressionofsixcandidategenesdependsontheT3SsystemregulatorsHrpGandHrpX.TheeffectorcandidateswereconfirmedtobetruetypeIIIeffectors (Xops=Xanthomonas outer proteins) using translationalfusionstothereporterproteinAvrBs3Δ2intypeIIIsecretionandtranslocation assays.Among the new T3Es, two Xops suppressplant defense responses and are crucial for bacterial virulence.We will discuss recent progress on the genetic and functionalcharacterizationoftheseT3Es.

PS14-560XOO0635, a hybrid histidine kinase sensor ofXanthomonas oryzaepv.oryzae,isactivatedbysensingthelowO2concentrationandinvolvedinstresstoleranceandvirulenceYumiKametani-Ikawa1,AyakoFurutani2,HirokazuOchiai3,SeijiTsuge11Laboratory of Plant pathology, Graduate School ofAgriculture,Kyoto Prefectural University, 2Gene Research Center, IbarakiUniversity,3NationalInstituteofAgrobiologicalSciencesy_kametani@kpu.ac.jpThetwo-componentsignaltransductionsystems,whichconsistofa histidine kinase sensor and a response regulator, are dominantmolecularmechanisms tomonitor and respond to environmentalstimuli in prokaryotes. Gene XOO0635 in Xanthomonas oryzaepv.oryzae,acausalagentofbacterialleafblightofrice,encodesa histidine kinase-response regulator hybrid protein harboringa PAS domainwith a heme pocket.To investigate the functionsofXOO0635,wegeneratedadeletionmutantof thegene.WhensusceptiblericecultivarIR24wasinoculatedwiththemutant,thelesion lengths of themutantwere shorter than those of thewildtype, suggesting that the gene is involved in bacterial virulence.Microarray assay revealed XOO0635-dependent up-regulationof XOO0131 (predicted protein required for attachment to hostcells),XOO3715(predictedosmoticshockprotectionprotein)andXOO0635 itself alongwithothervariousgenes including stress-responsivegenes,whichwasconfirmedbyGUSreporterassayandsemi-quantifiedRT-PCR(semi-qRT-PCR)analysis.Theexpressionof XOO0131 and XOO3715 was increased under the low O2condition, suggesting that XOO0635 containing a heme pocketfunctionsasanO2sensor.Whenwecomparedthestresstolerancebetween the XOO0635 mutant and the wild type, the mutantshowed lower tolerant to osmotic (40% sorbitol), sodium (1 MNaCl)andH2O2stressesthanthewildtype.TheseresultssuggestthatXOO0635 is activatedby sensing lowO2 concentration andinvolvedinbacterialvirulencebyactivatingexpressionofstress-responsivegenes.

PS14-561TheHSI-II gene cluster inPseudomonas syringae pv. tomatoDC3000encodesafunctionaltypeVIsecretionsystem,whichis required for growth fitness in tomato and interbacterialcompetitionNai-Tan Hsu1, Cheng-Yin Liu1, Yung-Chun Wang1, Chih-TengSheu1,Yi-HanHow1,Nai-ChunLin11Department of Agricultural Chemistry, National TaiwanUniversity,Taiwan,[email protected]

Page 199: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession14-Pathogenicbacteria/phytoplasma

197

Poster 14

Type VI secretion system (T6SS) in Gram negative bacteriawas extensively studied during the past five years. In themodelphytopathogenicbacteria,Pseudomonas syringaepv.tomato(Pst)strainDC3000,twogeneclusters(namedHSI-IandHSI-II)wereidentifiedusingin silicoanalysis,butwhetherthesetwogeneclustersencodingfunctionalsecretionsystemsisstilluncertain.ByusingaGUSreportersystem,wedemonstratedthatHSI-IIandhcp2wereexpressedinbothrichandminimalmediumwhereasHSI-Iandhcp1were not. Expression of theseT6SS-related genes is affected bythepresenceofdifferentsugarsinminimalmedium.WhenicmF2andclpV2, twogenes inHSI-IIencodingcorecomponents,weredeleted,secretionofHcp2wasblocked,indicatingthattheHSI-IIgeneclusterencodesafunctionalsecretionsystem.Bymeansofacompetitive indexmethod,wesuccessfullyshowed thevirulencefunctionofT6SSinPstDC3000.Moreimportantly,wefoundthatinterbacterialcompetitionabilityoficmF2andclpV2mutantswasreducedwhencomparedtowildtypePstDC3000.Fromthedataofgeneregulationandthebiologicalfunctionsweexhibited,T6SSinPstDC3000islikelytoplayanimportantroleinecologicalfitness.

PS14-562Aconitase B is required for optimal growth ofXanthomonas campestrispv.vesicatoriaonpepperleavesJanineKirchberg1,KingaWesolowska1,GarySawers11Institute of Microbiology, Martin-Luther University Halle-Wittenberg,Halle(Saale),Germanyjanine.kirchberg@mikrobiologie.uni-halle.deTheaerobicphytopathogenicbacteriumXanthomonas campestrispv.vesicatoria (Xcv)colonizes the intercellularspacesofpepperandtomato.Xcvprobablyhastocopewithreactiveoxygenspecies(ROS)andironlimitation,whichpotentiallyformpartofthehostdefenseresponse.AnenzymeknowntorespondtoROSandironlimitationandthatmightcontributetothesuccessfulproliferationof Xcv in the host is the iron-sulfur [Fe-S] protein aconitase,which converts citrate to isocitrate. Xcv contains three putativeaconitases,twoofwhichbelongtotheAcnAclassandtheotherisanAcnBenzyme.In vitrogrowthofacnBmutantsinshake-cultureswaslikewildtype,whereasin plantagrowthanddiseasesymptomformationonpepperplantswerebothdelayedintheacnBmutant.The acnB mutant also showed enhanced susceptibility towardsthe superoxide-generating chemicalmenadione.Moreover,whentheacnBmutantwasgrownwithcitrateascarbonsource,itgrewmore poorly than thewild-type confirming thatAcnBhas a roleincitrateutilizationinXcv.TheacnBgeneisco-transcribedwithtwoupstreamgenesXCV1925andXCV1926,whicharepredictedto encode a toxin/antitoxin system.AnXcvmutant lacking bothXCV1925andXCV1926exhibitedstrongup-regulationofAcnB.Thus, we propose that optimal growth and survival of Xcv inpepperplantsdependsonAcnBandthatthelevelsofAcnBappeartobetightlycontrolledbyatoxin/antitoxinsystem.Thesignaltowhich this regulatory system responds is currently unclear, butpossibilitiesincludecitrate,ironoroxidativestress.

PS14-563Identification of genes involved in Ralstonia solanacearumphageinfectionandLPSbiogenesisChien-Hui Li1,Kuan-ChungWang1,Yu-HauHong1,Yu-JuChu1,Der-KangLu1,Wen-ChiehYang1,GaryN.Gussin2,I-ChunChou1,Chiu-pingCheng11Institute of Plant Biology, National Taiwan University, Taipei,Taiwan, 2Department of Biology, The university of Iowa, IowaCity,IA,[email protected] solanacearum causes a deadly wilting disease on abroad rangeof crops.However, informationon thedeterminantsinvolved in biogenesis of its lipopolysaccharides (LPS), whichplayscrucialrolesforbacterialfitnessinvariousenvironmentsandinteractionwithphages,wasunavailable.Inthisstudy,wescreenedfor phage-resistantR. solanacearum mutants, aiming to identify

keycomponentsinvolvedinphageinfectionandLPSbiogenesis.In addition to conserved proteins involved in lipidA and innercore synthesis, we identified a group of new LPS-biosynthesislociwhosehomologsareabsent inE. coli.Bycharacterizing themutants,ourresultsrevealedthatR. solanacearumR-LPSsynthesisissufficienttomaintainmembraneintegrityandcauselocaldiseaseresponse in Nicotiana benthamiana, while S-LPS production isa determinant for phage adsorption, resistance to polymyxin Bandeffective in plantaproliferation.Moreover,disruptionoflociputativelyinvolvedinphospholipidtraffickingandpeptidoglycanrecycling enables the bacterium resistant to the phage, probablybyobstructingphageadsorptionandDNAinjection,respectively.Comparative sequence analysis showed conservation of some oftheselociamongrepresentativeGram-negativebacteria,implyingtheir common functions. This study is the first to extensivelydeciphergeneticnatureofR. solanacearumLPSbiogenesis, andprovidesnewinsightsintoR. solanacearum-phageinteraction.

PS14-564The Clavibacter michiganensis subsp. michiganensis-tomatointeractome reveals perception of pathogen by host andsuggestsmechanismsofinfectionAlon Savidor1, Doron Teper1, Karl-Heinz Gartemann2, RudolfEichenlaub2, Laura Chalupowicz3, Shulamit Manulis-Sasson3,IsaacBarash1,HelenaTews2,KerstinMayer2,RichardJ.Giannone4,RobertL.Hettich4,GuidoSessa11DepartmentofMolecularBiologyandEcologyofPlants,TelAvivUniversity, Tel Aviv, Israel, 2University of Bielefeld, Bielefeld,Germany,3TheVolcaniCenter,BetDagan,Israel,4TheOakRidgeNationalLaboratory,OakRidge,Tennessee,[email protected] Gram-positive bacterium Clavibacter michiganensis subsp.michiganensis (Cmm) is the causal agent of wilt and cankerdiseaseof tomato (Solanum lycopersicum).MechanismsofCmmpathogenicityandtomatoresponsetoCmminfectionarenotwellunderstood.ToexploretheinteractionbetweenCmmandtomato,multi-dimensional protein identification technology (MudPIT)andmassspectrometrywereusedtoanalyzein vitroandin plantagenerated samples. The results show that during infectionCmmsenses theplantenvironment, transmitssignals, inducesandthensecretes multiple hydrolytic enzymes, including several familiesofserineproteases,glycosylhydrolases,andotherplantcell-walldegrading enzymes.We identified and further characterized twoCmmpathogenicityspecificputativetranscriptionalregulators,andshowthattheirdeletionaffectsexpressionofCmmvirulencefactors.Tomato induction of pathogenesis-related (PR) proteins, LOX1,and other defense-related proteins during infection indicates thattheplantsensestheinvadingbacteriumandmountsabasaldefenseresponse, although partial with some suppressed components,includingclass-IIIperoxidasesandasecretedserinepeptidase.Thetomato ethylene-synthesizing enzymeACC-oxidasewas inducedduringinfectionwiththewild-typeCmm,butnotduringinfectionwithanendophyticCmm strain, identifyingCmm-triggeredhost-synthesis of ethylene as an important factor in disease symptomdevelopment.

PS14-565MolecularcharacterizationofAvrBs3fromXanthomonasTomSchreiber1,DoreenSchmidt1,AnikaSorgatz1,UllaBonas11Department of Genetics, Martin-Luther-University Halle-Wittenberg,Halle,[email protected] campestris pv. vesicatoria is the causal agent ofbacterial spot disease on pepper and tomato plants. Essentialfor pathogenicity is the type-III-secretion (T3S) system, whichtranslocateseffectorproteinsintothecytoplasmof theplantcell.Onewell-studiedeffectorisAvrBs3,thefoundingmemberofthelargetranscriptionactivator-like(TAL)effectorfamily.AvrBs3actsasatranscriptionalactivatorintheplantcellandupregulatesUPA

Page 200: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession14-Pathogenicbacteria/phytoplasma

198

Post

er 1

4

genese.g.theresistancegeneBs3andUPA20.ExpressionofBs3inducesthehypersensitiveresponse(HR)whereasUPA20inductionleads to hypertrophy, a cell enlargement on susceptible pepperplants.AvrBs3containsaT3SsecretionandtranslocationsignalintheN-terminal region, twofunctionalnuclear localisationsignalsand an acidic activation domain in the C-terminal region. DNAbindingismediatedbyacentralrepeatdomainwhichiscomposedof17.5repeatsofanearlyidentical34aminoacidmotif.TherepeatregionisanovelDNA-bindingfold.Recentstudiesrevealedthatonerepeatspecificallybindsonebasepair in thetargetpromoterDNA.Specificityisdeterminedbythevariableresiduesatposition12and13ofeachrepeat,termedrepeat-variablediresidue(RVD).BesidesDNAbinding the repeat region is also required for self-interactionofAvrBs3,whichoccursin vitroandin vivo.Here,weshowthatself-interactionisaffectedbymutationsinthenon-RVDsoftherepeatregion.OurdatarevealtheunderlyingmechanismforAvrBs3self-interactionanditsinfluenceonDNAbindingandgeneinduction.

PS14-566Arabidopsis thaliana as an experimental host for Xylella fastidiosa,causalagentofcitrusvariegatedclorosisJuarez P. Tomaz1, Raquel Caserta1,2, Marcos A. Machado1,AlessandraA.deSouza11InstitutoAgronomico de Campinas, CentroApta Citros SylvioMoreira,Cordeiropolis,SãoPaulo,Brazil,2UniversidadeEstadualdeCampinas,Campinas,SãoPaulo,[email protected](CVC)isoneofthemostseveresweetorangedisease,thatleadstosignificantlossestothecitrusindustryinBrazil.Itiscausedbythexylem-restrictedgramnegativebacteriaXylella fastidiosa.Althoughbreedingapproachesbeastrategytoobtaintolerantorresistantgenotypes,transgeniclineswithgenesfromresistantspeciesofcitrusorevenfromthebacteria(PathogenDerivedResistance)havebeenused.However,gettingtransgenicorangeplantstakeslongtime,becauseoftheirlongjuvenileperiodand low transformation efficiency.Therefore, it is recommendedthat all candidate genes should be previously validated. Toacceleratetheevaluationofthesegenes,Arabidopsis thalianahasbeentestedinitsabilitytobeinfectedbyX. fastidiosa,forfutureCVCresistancecandidategenesevaluation.WechallengedCol-0,Van-0 andTsu-1 ecotypeswith aGFP-transformedX. fastidiosastrain11399.Fiveweeksoldplantswereinoculatedwitha4,6.107CFUbacteriasolution.After14days,GFP-microscopyandqRT-PCR detection of X. fastidiosa were performed. Bacteria weredetected in all ecotypes evaluated by GFP-microscopy. Col-0plantshadhigherbacteriatitersthanTsu-1andVan-0.Comparedwith previously published data, these two ecotypes were moresusceptible thanCol-0 infectedwithX. fastidiosa causingPiercedisease, suggesting that different responses may occur amongArabidopsisecotypesandX. fastidiosastrains.TheseresultspointoutthatA. thalianacanbeusedasmodelplanttoevaluateplant-bacteria interactions, but A. thaliana ecotypes and X. fastidiosastrainsshouldbepreviouslytestedforsuitablebettercompatibility.

PS14-567Adaptation of Pectobacterium atrosepticum SCRI1043: tosurviveinordertoinfect.OlgaE. Petrova1,VladimirY.Gorshkov1,AminaG.Daminova1,MarinaV.Ageeva1,NataliaE.Suzina2,YuriV.Gogolev11Department: Laboratory of Molecular Biology, Kazan Instituteof Biochemistry and Biophysics, RussianAcademy of Science,RussianFederation, 2InstituteofBiochemisrtyandPhysiologyofMicroorganisms,Pushchino,[email protected] populations are highly integrated holistic communities,consistingofphysiologically andmorphologicallyheterogeneouscells. This allows microorganisms to adapt flexibly to differentenvironmental conditions and persist in prolonged stress. The

adaptationofpathogenicmicroorganismstostarvationisrequiredduringthestageofthelifecyclewhichtakesplaceoutsidethehostorganism.We studied the adaptive reactions of plant pathogenicbacteriumPectobacterium atrosepticum SCRI1043 (Pba) duringcarbonandphosphorusstarvation.Bacteriaimplementeddifferentadaptive programs, depending on the physiological state of theculturesandinoculationtiter.Athighinitialtiter(108CFU/ml)thenumber of colony-forming units decreased due to the processesof theautolysisand the formationofdormantcells (Gorshkovetal., 2009). Ultrastructural modifications of cells took place: thecells with intracellular polyhydroxyalkanoate granules, and thecells with friable polysaccharide capsules were observed. Butat low initial titer (103 CFU/ml) cell division coupled with theformationofparticularcellmorphotypewithcondensednucleoidandaugmentedperiplasmaticspaceoccurred.Thus,theinitialstageoftheresponsetostarvationwasstabilizationofthecelldensityintherangeof106-107CFU/ml.asaresultthebacterialpopulationsresistant to high temperature, oxidative stress and rifampinwereformed. Starving bacteria retained the ability to subsequentlyinfectthehostplant.Thus,regardlessoftheadaptationtacticsthestrategic result of the processes occurring in starving cultures ofPbawastheformationofspecializedbacterialphenotypes,whichwerecapableofpersistenceduringtheunfavorableconditionsandinfectingahostplant.

PS14-568DiversityofHrpLregulonsinPseudomonas syringaeisolatesTatiana S. Mucyn1, Abigail L. Lind1, Surojit Biswas1, ScottYourstone1,MarcT.Nishimura1,JasonS.Cumbie2,SarahR.Grant1,JeffreyH.Chang2,CorbinD.Jones1,JefferyL.Dangl11University of North Carolina, Chapel Hill, US, 2Oregon StateUniversity,Corvallis,[email protected] syringae (Ps) is a Gram-negative bacterial plantpathogen with high phylogenic diversity responsible for diseaseonmanycropspecies.HrpListhemasterregulatorytranscriptionfactor of Ps that controls expression of the genes encodingcomponents of the type-III-secretion system, essential forvirulence,andexpressionofthetype-III-secretedeffectors(T3Es).HrpLalso regulatesexpressionofgenesencoding“non-effector”proteins including toxin producing enzymes and proteins notpreviouslyassociatedwithvirulence.WeimplementedandrefinedtranscriptionalanalysismethodsusingcDNAandhigh-throughputsequencingdatatoidentifyHrpL-regulatedgenesforfourisolatesof Ps using either complete or draft genomes. The quality ofour methods was confirmed using the well-studied pathogen,PtoDC3000,alongwith real-timeRT-PCR.ComparativeanalysisoftheHrpL-regulonacrossPtoDC3000,Pph1448a,PsyB728aandPor1_6definedstrain-specificvariabilityfornotonlyT3Esbutalsoforgenesencodingnon-effectorproteins.PsyB728hasthesmallestHrpL-regulon,encodingnotonlyfewerT3Esthanotherstrainsbutalsofewernon-effectorproteins.Variationin thenumberofnon-effector genes in theHrpL-regulons of our strainswas not onlydue to thepresence/absenceofgenes,butalsoa resultofgroup-specific hrp box mutations, or variability in upstream regions.We demonstrated the virulence function of several non-effectorgenes by testing the growth of mutants in planta.We highlightthe advantages of next generation transcriptomics to identifyputativevirulencefactorsandtheirrecruitmentintoandoutoftheHrpL regulon across the Ps phylogeny by integrating genomic,transcriptomic, andphylogenetic information togain insight intopathogenicity.

PS14-569DifferentialexpressionofSU91-linkedQTLintheinteractionsbetweencommonbeanandstrainsofcommonbacterialblightpathogensWeilong Xie1, SarahMcClymont1, KangfuYu2, K. Peter Pauls1,AlirezaNavabi1,21UniversityofGuelph,2GreenhouseandProcessingCropsResearch

Page 201: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession14-Pathogenicbacteria/phytoplasma

199

Poster 14

Centre,AgricultureandAgri-FoodCanada,2585CountyRoad20,Harrow,Ontario,[email protected] bacterial blight (CBB), caused by Xanthomonas campestris pv. phaseoli (Xcp) andXanthomonas fuscans subsp.fuscans(Xff),isadamagingdiseaseofcommonbean(Phaseolus vulgarisL.) throughout theworld.TwoXcpstrains (nos.18and98)andtwoXffstrains(nos.12and118),collectedlocally,showeddifferential virulence on a set of bean genotypes. Ninety F4:5recombinant inbred lines (RILs) derived from a cross betweensusceptible Sanilac and resistantOAC 09-3were phenotyped inan artificially inoculated field disease nursery and in the growthroomusingamixtureofthosefourstrainsaswellasusingsinglestrains (eitherno.98orno.118),whichwerehighlypathogenic.TheRILsweregenotypedusingmolecularmarkerSU91,knownto be associated with a major CBB resistance QTL. SU91accountedfor30to40%ofphenotypicvariationswhentheRILpopulationwasinoculatedwithamixtureoffourstrains,butonly5to10%ofvariationswheninoculatedwithasinglestrainno.98or no. 118.These results suggested the existence of interactionsbetween different pathogen strains, or between pathogen strainandresistanceQTL.ResultshighlighttheimportanceofselectingappropriatepathogenstrainsforCBBscreeninginbeanbreedingprogramsandemphasizetheneedforselectionofgenotypeswithresistancetomultiplestrainsofthepathogen.

PS14-570InitialcharacterizationofthetwotypeVIsecretionsystemsinPseudomonas syringaepathovartomatoDC3000JoyC.Valenta1,LisaM.Schechter11Department of Biology, University of Missouri-St. Louis, St.Louis,Missouri,[email protected] syringae pathovar tomato strain DC3000 causesdiseaseinplantsbysecretingeffectorproteinsandthephytotoxincoronatine.Effectors,whichareinjectedintoplantcellsbyatypeIIIsecretionsystem(T3SS),inhibitplantdefensesinsusceptiblehostsandallowbacterialcolonizationoftheleafinterior.BesidesfortheT3SS,otherproteinsecretionsystemsinDC3000maycontributeto plant infection. Here, we examined the roles of two putativetypeVIsecretionsystems(T6SS-IandT6SS-II)inDC3000-plantinteractions.WeshowthatT6SS-IIgenesarehighlyexpressedinminimalmedium,whereasT6SS-Igenesare transcribedat lowerlevels. We also constructed DC3000 strains containing largedeletionsintheT6SS-IandT6SS-IIloci.OurresultsshowthattheT6SS-IIlocusisrequiredforoptimalDC3000growthandvirulencein tomato andArabidopsis. T6SS-II is additionally required forDC3000 suppression of callose deposition in Arabidopsis. TheT6SS-IImutation did not affectT3SS or coronatine function, asitdidnotalter theabilityofDC3000 tocause thehypersensitiveresponse,inducechloroticringsarounddiseaselesions,orexpresstheeffectorgeneavrPto.Overall,ourresultsindicatethattheT6SS-IImutationinDC3000mayaffectsecretionofproteinsthatsuppressplantdefenses.However,T6SSdeletionmutantsalsoaggregateinstaticculturesandformdenserbiofilmsonplastic.Therefore,theT6SS-IImutationcouldindirectlyaffectDC3000survivalinplantsbycausingincreasedbacterialaggregation.CurrentworkisfocusedoncharacterizingtheeffectsofmutationsinindividualT6SSgenesonplantinfectionandbacterialaggregation.

PS14-571RelationshipbetweenmoleculardiversityandHRinductionintobaccoofJapanesestrainsofRalstonia solanacearumKouhei Ohnishi1, Yingqin Liu1, Li Chen1, Yong Zhang1, AyamiKanda2,AkinoriKiba2,YasufumiHikichi21Research Institute of Molecular Genetics, Kochi University,Kochi, Japan, 2Laboratory of Plant Pathology & Biotechnology,KochiUniversity,Kochi,[email protected]

Ralstonia solanacearum is a species complex with exceptionaldiversity amongst strains from different hosts and geographicalorigins. The genetic diversity of 120 R. solanacearum strainsisolated from a variety of host plants across Japanwas assessedon the basis of hypersensitive response (HR) in tobacco leavesandphylogenetic analysesof endoglucanasegeneegl,hrpB, andgyrB.Phylogeneticanalysisofeglrevealedthatonlythreestrainsbelonged tophylotypeIV,and117strainsbelonged tophylotypeI. Partial sequences of HrpB were identical among phylotype Istrainsexceptforonestrain.AnalysesusingthepartialnucleotidesequencesofthegyrBandeglgenefragmentsgroupedphylotypeIstrainsinto11gyrBand8egltypes,respectively,whereasanalysesusingthepartialaminoacidsequencesofGyrBandEglgroupedphylotype I strains into 4 GyrB and 5 Egl types, respectively.DendrogramsbasedonGyrBandEgldiffereachother,indicatingthathousekeepinggenesandvirulence-relatedgeneshaveevolvedindependently. Biovars of Japanese isolates did not seem to berelated to genetic diversity.Usingmultilocus sequence typingofGyrBandEgl,weidentified10uniquesequencetypeswithintheJapanese phylotype I strains. Strains belonging to the GyrB42orGyrB66 type causedwilt in tobacco, and strainsbelonging toGyrB2orGyrB9typeelicitedHR,demonstratingthatHRinductionintobaccoisgeneticallydifferentiatedintheJapanesestrainsofR. solanacearum.

PS14-572Agrobacterium tumefaciens 6b gene onT-DNAhas activity ofhistone chaperon and represses expression of auxin-responsegenesinArabidopsisShinji Terakura1,2,YokoMatsumura1, Hideaki Tagami3,YasunoriMachida11GraduateSchoolofScience,NagoyaUniversity,Nagoya,Japan,2Takara-bio Inc., Japan, 3Graduate School of Natural Sciences,NagoyaCityUniversity,Mizuho,Nagoya,Nagoya,[email protected] tumefaciensharboringaTiplasmid isacausativeagentforcrowngalltumors.Agene,6b,encodedbyT-DNAintheTiplasmidhasbeenreportedtohavearoleinhostrangedeterminationofAgrobacteria.The6bstimulatestheplanthormone-independentdivision of cells and cause morphological abnormalities. Weshowed that 6b interacts with tobacco nuclear proteins (NtSIP1andNtSIP2)andhistoneH3,andhasahistonechaperoneactivity,suggesting that 6b might affect chromatin structures. It is alsoreported that 6b disturbsmiRNApathway.These data suggestedthat6bmightaffectexpressionofvariousgenesthatareinvolvedincellproliferationandplantmorphology.Aroleof6binthegeneexpressionintheplants,however,remainstobedetermined.Herewereporttheresultsofmicroarrayandreal-timeRT-PCRanalyseswithArabidopsisplantsoverexpressingthe6bgene.Thetranscriptlevels of genes involving in cell differentiation and proliferationwerealteredin6b-trasgenicplants.Interestingly, transcript levelsofseveralauxin-induciblegenesweredecreasedin6b-tragsgenicArabidopsis.Ourresultsalsoshowedthat6b-transgenicArabidopsisplantswereinsensitivetoauxin,similarlytothebodenlossmutant.

PS14-573Diversity inErwinia amylovora virulence on differentMaluscultivarsJoanna Pulawska1, Artur Mikicinski1, Anita Kuras1, MariuszLewandowski1,PiotrSobiczewski11ResearchInstituteofHorticulture,Skierniewice,Polandjoanna.pulawska@inhort.plTerminalshootsofone-yearoldappletreescvs.Idared,ElstarandQuinte grown on M9 rootstock in greenhouse were inoculatedwith8Erwinia amylovorastrains.SixofthemwereisolatedfromdifferenthostsinPolandwhileothertwooriginatedfromMalusintheUSA.Virulenceoftestedstrainswasexpressedasapercentageof shoot necrosis in relation to entire length of shoot measured

Page 202: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession15-Systemsbiology

200

Post

er 1

5

sixweeks after inoculation. Cultivar Elstar appeared to bemostsusceptibletoallstrainswhileIdaredshoweddifferentialreactiondependingonstrainused.ThelowestvirulencewasshownbytwostrainsisolatedfromCrataegus-52.6and62%whileotherstrainscaused over 75.6% shoot necrosis.The highest differentiation indisease development to tested strains was observed on Quinte.ThelargestnecroseswereproducedbybothstrainsfromtheUSA(84.1and89.4%,respectively)whereasotherstrainsproducedonlylittlenecrosesincludingstrainE2(fromCrataegus)whichwasnotpathogenictothiscultivar.ThehighestdiversitybetweenvirulenceofallstrainswasobservedonQuinte.StudyongeneticdiversityofE. amylovorastrainsincludingsequenceanalysisofgenesinvolvedin pathogenicity process and RAPD tests showed their highsimilarity.TheonlydifferenceswereprovedusingAFLPanalysiswith two sets of restriction enzymesEcoRI+PstI andEcoRI+MseI and 6 out of 11 selective primers. Strains originating fromUSAgroupedtogetherbutnocorrelationbetweenAFLPpatterns,geographicalorigin,hostplantorvirulencewasfound.

PS14-574Two avirulence effector genes of Japanese Ralstonia solanacearumstrainsareinvolvedinpathogenicitytotobaccoLiChen1,YongZhang2,AkinoriKiba3,YasufumiHikichi3,KouheiOhnishi11ResearchInstituteofMolecularGenetics,KochiUniversity,Kochi,Japan, 2DivisionofMicrobiology,GraduateSchool ofMedicine,UniversityofTokyo,Tokyo,Japan,3LaboratoryofPlantPathology&Biotechnology,KochiUniversity,Kochi,[email protected] of phylotype-I strains of gram-negative pathogenRalstonia solanacearum on tobacco plants results in differentdisease symptoms. While a wild type strain GMI1000 isolatedfromSouthAmerica elicitsHR, themutant lacking two effectorgenes, avrA and popP1, causes tobacco plants to wilt. Weinvestigated the involvement of two effector genes of Japanesestrains inpathogenicity to tobacco.Weused twovirulentstrains,OE1-1 and MAFF241653, and four HR-eliciting strains, 8107,MAFF211471,MAFF211496, andMAFF301520.There are twotypes avrA sequences, a GMI1000-type and an RS1000-type,in Japanese strains.BothAvrAsare59% identical inaminoacidsequences.WhileMAFF211496 carries theGMI1000-typeavrA,otherfivestrainshavetheRS1000-typeavrA.Threestrains,8107,MAFF211471,andMAFF241653,containpopP1,however,otherthreestrainshavenopopP1gene.WedeletedavrAand/orpopP1genesfromHR-elicitingstrains.Allthemutants,nomatterwhichtypeofavrAgenewasdeleted,stillelicitedHR.WhenpopP1genewas transferred into the virulent strain OE1-1, the transformantstrainsignificantlyreducedthevirulenceontobacco.TheseindicatethatavrAandpopP1ofJapanesestrainshavedifferenteffectsontobaccowiltincidentfromthoseofGMI1000.

PS14-575TheroleofhrpRSinregulationofvirulencegeneexpressioninPseudomonas syringaepathovartomatoDC3000Srinivas S.Thota1, EkaterinaLoginicheva1, Jennifer L. Stauber1,LisaM.Schechter11DepartmentofBiology,UniversityofMissouri-St.Louis,St.Louis,Missouri,[email protected] syringaeutilizesatypeIIIsecretionsystem(T3SS)totranslocatevirulenceproteinscalledeffectorsdirectlyintoplantcells. In order to deploy the T3SS at appropriate times, T3SSgene expression is tightly controlled by a complex network oftranscription factors. The alternative sigma factor HrpL directlyregulates expression of genes encoding secreted effectors andstructural components of the secretion apparatus. In turn, hrpLtranscriptionisdirectlyactivatedbytwomembersofthebacterialenhancerbindingprotein family,HrpRandHrpS.Ourgoal is tobetterunderstandhowexpressionofthehrpRSoperoniscontrolled,

and how HrpR and HrpS regulate P. syringae pathovar tomatoDC3000virulence.To this end,hrpRS expressionwasmeasuredduring DC3000 growth in various media and environmentalconditions.We found thathrpRS expressionwas not induced ashighly as hrpL in all conditions tested. To examine HrpR/HrpSactivation of hrpL, lacZ reporter plasmids containing variouslengthsofthehrpLpromoterregionwereconstructed.HrpR/HrpSactivatedhrpL transcription via enhancer sequences significantlyupstream of the hrpL promoter in bothE. coli andP. syringae.CurrentstudiesarefocusedonidentifyingtheHrpR/HrpSbindingsite(s) upstream ofhrpL.To this end,we are carrying outDNAbindingassaysin vitrowiththehrpLpromoterregionandpurifiedHrpRandHrpSproteins.Overall, thesestudieswillcontributetoabetterunderstandingofvirulencegeneregulationinP. syringaeandaidinidentificationofgenes(besidesforhrpL)thataredirectlyregulatedbyHrpR/HrpS.

PS14-576Differentialexpressionofin vivoandin vitroproteinprofileofoutermembraneofAcidovorax avenaesubsp.avenaeMuhammad Ibrahim1,YuShi1,QiuHui1,Amara Jabeen1, LipingLi1,HeLiu1,BinLi1,MichaelKube1,GuanlinXie11InstitueofBiotechnology,ZhejiangUniversity,Hangzhou,[email protected] thiswork,we examined and compared the expressionofOMproteinsofricepathogenAcidovorax avenaesubsp.avenaestrainRS-1,aGramnegativebacterium,bothin vitroculturemediumandin vivoriceplants.GlobalproteomicprofilingofA. avenaesubsp.avenaestrainRS-1comparingin vivovs.in vitrorevealeddifferentialexpressionofproteinsgearedtowardssurvivalandpathogenicityofthericepathogeninhostplants.TheshotgunproteomicsanalysisofOMproteinsresultedinidentificationof97proteinsin vitroand64proteinsin vivobymassspectrometry.AmongtheseOMproteins,there were a high number of porins, TonB-dependent receptors,lipoproteins of the NodT family, ABC transporters, flagellins,andhypotheticalproteinsinbothconditions.However, themajorproteinssuchasphospholipaseandOmpAproteinsareexpressedin vitro,whilethesurfaceanchoredproteinF,ATP-dependentClpprotease,OmpA/MotBdomaincontainingproteinsareexpressedin vivo,indicatingthatthesein vivoOMproteinsmayhaveroleinthepathogenicityofA. avenaesubsp.avenaestrainRS-1.Inaddition,theLC/MSidentificationofOmpAandMotBvalidatedthein silicopredictionofTypeVIsecretionsystemcorecomponentsbasedonthegenomewideanalysisofA. avenaesubsp.avenaestrainRS-1.Tothebestofourknowledge,thisisthefirststudyrevealingthein vitroandin vivoproteinprofilingincombinationwithLC/MSMassspectra,in silicoOMproteomeandin silicogenomewideanalysisofpathogenicityorplanthostrequiredproteinsofplantpathogenicbacteria.

PS15-577CFGP 2.0: A standard web-based bioinformatics portal forcomparativeandevolutionarygenomicsJaeyoungChoi1,KyeongchaeCheong1,Gir-WonLee2,Yong-HwanLee11Department of Agricultural Biotechnology, Seoul NationalUniversity, Seoul 151-921, Korea, 2Research Institute forAgriculture and Life Sciences, Seoul National University, Seoul151-921,[email protected] than 200 fungal genomes have been sequenced,presenting the largest number of genomes in the eukaryoticdomain. With the availability of increasing sequenced fungalgenomes aided by Next-Generation Sequencing technologies,fungal genomes could be one standard subject for comparativeand evolutionary bioinformatics.A standardized data warehouseis required to compromise heterogeneous formats of genomesequencesandtoenablethecomparativestudies.Asnosequencerepositoriesfocusedonthefungi,archivingalltheavailablefungal

Page 203: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession15-Systemsbiology

201

Poster 15

genomes and developing standardized platform had immediateimportance. As one solution, Comparative Fungal GenomicsPlatform (CFGP; http://cfgp.snu.ac.kr/) was released in 2007aiming for the comprehensive bioinformatics workbench withthe standardized data warehouse. Now the CFGP embraces 284fungalgenomesfrom152differentspecies,39fromplantsand105from thekingdomMetazoa.Toprovide easy-to-use and efficientwaytomanageandanalysesequencedata,theCFGPoffersadataanalysishub,calledFavorite.TheFavoriteprovidesvirtualstoragefor sequences collected by users and 27 bioinformatics tools fordirectanalysis.Furthermore,theFavoriteisimplementedinFungalTranscription Factor Database (http://ftfd.snu.ac.kr/), FungalCytochrome P450 Database (http://p450.riceblast.snu.ac.kr/) andFungalSecretomeDatabase(http://fsd.snu.ac.kr/),syncedinreal-timewiththeCFGP.Collectivelywiththestandardizeddatawithbioinformatics tools expandedwith diverse secondary databases,the CFGP 2.0 can be a representative platform for comparativegenomicsandphylogenomicresearchesintheeukaryoticdomain.

PS15-578Laboratory Information Management System for functionalgenomicsofMagnaporthe oryzaeKyongyongJung1,2,SunghyungKong1,2,JaejinPark1,2,Sook-YoungPark1,2,Yong-HwanLee1,21Department of Agricultural Biotechnology, Seoul NationalUniversity, Seoul 151-921, Korea, 2Center for Fungal GeneticResources,CenterforFungalPathogenesisandResearchInstituteforAgricultureandLifeSciences,SeoulNationalUniversity,Seoul151-921,[email protected] Laboratory Information Management System (LIMS) isa computer software for the management of all laboratoryinformation and instruments using online database. With rapidaccumulation of genome information, experimental data arebeing generated at genome-wide scale. However, majority ofdatasetswasnotcomparablebecausethereisnogloballyacceptedstandardizedexperimentalprotocolsanddataacquisitionformats.Although much progress has been accomplished in plant andanimal genomics studies, LIMS has not been implemented inthe field of functional genomics studies in fungal biology andmolecular plant-microbe interaction. LIMS was designed forMagnaporthe oryzae,thericeblastpathogen,toprovidenotonlyintegratedmanagement system for functionalgenomics research,butalsostandardizedexperimentalprotocolsthathaveguidelinesfor phenotype assays and data acquisition formats. As the firststep,wecollectedallexperimentalprotocolsanddataacquisitionmethods used for phenotype characterization from publishedresearch papers,compared and analyzed for each specific assays,andproposed the standardguidelines for eachphenotypeassays.Todevelopaweb-basedmanagementsystem,workprocessesaredivided by time-dependent/independent processes for generatinggenereplacementmutantsandphenotypeassays.Alldatageneratedfrom each experimental step can be stored and comparativelyanalyzedinLIMS.LIMSwillprovidenewparadigmforfunctionalgenomics and phenomics ofmolecular plant-microbe interactionresearch.

PS15-579KNApSAcKFamilyDatabasesconnectbiologicalactivitiesofmetabolitesandplantswithmicroorganismsYukikoNakamura1, FaritMochamadAfendi1, TetsuoKatsuragi1,ShunIkeda1,KenTanaka2,AkiHiraiMorita1,Md.Altaf-Ul-Amin1,ShigehikoKanaya11GraduateSchoolofInformationScience,NarainstituteofScienceand Technology, Nara, Japan, 2Institute of Natural Medicine,UniversityofToyama,Toyama,[email protected] mutually/unilaterally beneficial/harmful relationshipsbetween plants and microorganisms affect plant health such as

diseasecontrolandsymbioticnitrogenfixation.Systematicanalysisof enormous numbers of plant-microorganism interactions ishelpfultocomprehensivelyunderstandtheagriculturalproductivityand the environmental preservation using information derivedfromplantandmicroorganism-omics.Toattainthispurpose,wedeveloped KNApSAcK Family databases (DBs). In the presentstudy,weintroducetheDBsfocusedontheplant-microorganismrelationship.TheKNApSAcKFamilyconsistsoftheMetabolomicsDB system (KNApSAcK Core, contains 101,500 species-metaboliterelationshipsencompassing20,741speciesand50,048metabolites) and theMultifaceted Plant Usage DB including (i)KNApSAcKWorldMap,41,548geographiczone-plantpairentriesemcompassing222geographiczones; (ii)KAMPO,336 formulanamesforKampoinJapanencompassing278plants;(iii)JAMU,5,310formulasforJamuinIndonesiaencompassing550plants;(iv)NaturalActivity, 2,418 biological activities and 33,706 pairwiserelationshipsbetweenplantsandtheirbiologicalactivities;and(v)MetaboliteActivity,2,087biologicalactivitiesand5,043pairwiserelationships between metabolites and their biological activities.In theNatural/MetaboliteActivityDBs,users can retrieveplantsormetabolitesbyinputtingasearchtermpertainingtobiologicalactivity,includingbiochemicalactivitiesanddiseasesinatextbox.Allofthedataregardingbiologicalactivitiesarelinkedtorelevantcitationsfromtheliterature.Thus,usingtheseintegratedplatforms,wecaneasilygeneratesystems-levelinformation,beginningwiththe identification of the plants/microorganisms and progressingthroughthebiologicalactivities,toaddresstheinteractioneffects.The KNApSAcK family can be accessed freely via the websitehttp://kanaya.naist.jp/KNApSAcK_Family/.

PS15-580SystemsbiologyapproachtostudypotatoPVYinteractionSpelaBaebler1,KamilWitek2,Tjasa Stare1,MarkoPetek1,KatjaStare1,MarusaPompe-Novak1,MajaRavnikar1,DraganaMilkovic3,IgorMozetic3,KristinaGruden11Department of Biotechnology and Systems biology, NationalInstituteofBiology,Ljubljana,Slovenia,2InstituteofBiochemistryandBiophysics,PolishAcademyofSciences,Poland,3Departmentofknowledgetechnologies,JosefStefanInstitute,[email protected] virus Y (PVY) is a severe plant pathogen responsible foryearlylossesinproductionofSolanaceaecropsworldwide.Plantresponsestovirusesandthediseasedevelopmentaredifferentandmuchlessexploredincomparisontobacterialorfungalinfections.Insinglecomponentstudiesthecomplexityoftheplantpathogeninteractionatmolecularlevelcanleadtolimitedconclusionsthatmay fail to notice important changes in physiological processes.Omics approaches in combination withmodelling, offer a moreholisticviewof theprocessesare thereforeamajor step forwardinunderstandtheseinteractions.Inourstudies,geneexpressioninthediseaseresponseofthesusceptible,tolerantandresistantpotato(Solanum tuberosumL.)cultivarstoPVYinfectionwasinvestigatedatdifferenttimesafterinfection,usingtranscriptomicsapproaches,among them subtractive hybridization, cDNA microarrays andreal-time PCR. We are additionally combining the results ontranscriptome level with proteome and metabolome profiling.Mostpronouncedistheregulationofphotosynthesis-relatedgenesexpression,expressionofgenesinvolvedinsugarmetabolismandredox statemaintenance aswell as regulation of several defensesignallingrelatedgenes.Dynamicsofselectedgeneexpressionwassignificantly different if observing sensitive, tolerant or resistanttypeofinteraction.Ourresultsshowthatnotonlythecomponentsinvolvedbutalsothetimingandintensityofresponseareextremelyimportantfortheoutcomeofplantvirusinteraction.ToenablebetterunderstadingofthesystemunderinvestigationamodelofpotatoPVY interaction signalling was built and results of simulationscomparedtoexperimentaldata.

Page 204: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession15-Systemsbiology

202

Post

er 1

5

PS15-581Codon usage pattern of predicted operon-like genes inArabidopsis thalianaShunIkeda1,MasayoshiWada1,ManabuOoi1,TetsuoKatsuragi1,Md.Altaf-Ul-Amin1,ShigehikoKanaya11GraduateschoolofInformationscience,NAIST,Nara,Japans-ikeda@is.naist.jpOperon-likegenesineukaryotesaredefinedbyco-regulationandneighborhood position in genome. It is known that operon-likegene clusters implicate several secondarymetabolic pathways inplants.Genome-widepredictionofoperon-likegeneclustersshouldcontributetofunctionalannotationeffortsandmightprovidenovelinsightintogeneexpressionsystemaspects.Initially,wepredictedtheco-expressedneighborhoodgeneclustersbyastatisticalmethodbased on 1469microarray dataset ofArabodipsis thaliana.As aresult,wepredicted34operon-likegeneclusterseachincluding3to22genes.Further,weestimatedannotationofgenesforfunctionalrelationshipanalysis.Wefoundthatanumberofoperon-likegenecluster candidates are associated with metabolism, containingP450 genes restricted to the Brassia family and predicted to beinvolvedinsecondarymetabolisms.Interestingly,severaloperon-likeclusters tend tocontainribosomalgenes.Theseobservationssuggest thatneighborhoodgenesencodeproteins involved in thesamebiologicalprocesses.To investigate the expression systemsof the gene clusters, we performed an analysis of codon-usagebias. Some operon-like genes have a different codon patternfromtheothergenesinthesamecluster.Itmaybesuggestedthatthose heterogeneity of codon usage of genes reflects efficacy oftranslationwhichpartitionstheoperon-likeclusters.

PS15-582Stochastic simulation of metabolic network of Arabidopsis thalianausingexperimentaldataTetsuoKatsuragi1, Shun Ikeda1,Md.Altaf-Ul-Amin1,MasamiY.Hirai2,3,KansupornSriyudthsak2,3,YujiSawada2,YuiYamashita4,Yukako Chiba4,5, Hitoshi Onouchi3,6, Toru Fujiwara3,8, SatoshiNaito4,6,FumihideShiraishi7,ShigehikoKanaya11The Graduate School of Information Science, Nara Institute ofScience and Technology, Nara, Japan, 2RIKEN Plant ScienceCenter, Yokohama, Kanagawa 230-0045, Japan, 3JST, CREST,Kawaguchi, Saitama 332-0012, Japan, 4Graduate School of LifeScience,HokkaidoUniversity,Sapporo060-0810,Japan,5CreativeResearch Institution, Hokkaido University, Sapporo, 001-0021,Japan, 6Graduate School of Agriculture, Hokkaido University,Sapporo 060-8584, Japan, 7Graduate School of Bioresource andBioenvironmentalScience,KyushuUniversity,Fukuoka812-8581,Japan,8TheFacultyofAgriculture,theUniversityofTokyo,Tokyo113-8657,Japantetsuo-k@is.naist.jpPredictivesimulationsofthemetabolitesusingexperimentaldataarecomplicatedbecause themetabolicnetwork itself is complexandhuge.Inaddition,evenifexperimentaldataareobtained,astheabsoluteamountof themetabolitescannotbeobtained.Toattainthissituation,wedevelopedamethodofstochasticsimulationforpredictionoftheamountofmetabolitesusingtheexperimentaldata.Therelativeamountsofthe269metabolitesinArabidopsis thalianaweremeasuredwithamassspectrometry.First, twodurationsoftheexperimentswereselectedbymultivariateanalysis,wheretheamount ofmetabolites changed remarkably.Then a product thatincreased themost and 10 substrates that decreased themost intheexperimentsineachdurationwereselected.Next,theshortestpathwaysandrelatedmetabolitesfromthesubstratestotheproductwere searched from theAracyc database.Using these pathways,wemadeaseriesofstochasticsimulationssettinginitialvalueto0fortheproduct.Thesimulationresultsshowthatalmostallofthesubstratesdecreasedandtheproductincreasedwithtimeasitwasexpected according to the experimental results. The metabolitesclassified in the same group by a hierarchical clusteringmethodtended tohavesimilar timeseriesprofiles.These results indicate

thatthissimulationmakesitpossibletoreproducethetrendsofthetimeseriesoftheexperimentaldata.

PS15-583Developmentofthemicro-particletransportationsystemusingphotorepellentresponseinapo-symbioticgreenparameciaKoheiOtsuka1,TomonoriKawano11GraduateSchoolofEnvironmentalEngineering,TheUniversityofKitakyushu,Fukuoka,[email protected], the areas ofmicro-robotic studies havebeen expandedtocovertheuseoflivingmicroorganismsasnoveltargetmaterialscontrollablewithinthemicro-sizedsystems.Weemployedthecellsof green paramecia (Paramecium bursaria) as aworkingmodelformicro-roboticstudy.Naturally,greenparameciacanbefoundinfreshwaterenvironmentssuchasrivers,ponds,andlakes.Thegreen paramecia can swim through ciliarymovements based onthe action of motor proteins precisely controlled under cellularsignalingevents.Cellsofapo-symbioticgreenparameciamayfulfilltwokeycriteria tobeusedas theelectricallycontrollablemicro-particlecarriers.Firstly, thematerialshaveacapacityforforeignnano-andmicro-sizedparticlesbyreplacingtheintracellularspacefor endogenouslygrowing symbioticgreenalgal cells.Secondly,the apo-symbiotically conditioned cells canmigrate towards thedarknesswhen exposed strong light stimulus,whereas thewild-typecellsofgreenparameciawithsymbioticalgaeoftenfavortheilluminated conditions. This type of cellular behavior is knownas photorepellent response.Taken together, the conditioned apo-symbioticcellsofgreenparameciacanbeusedasmovingcapsulesdesignedtocontainanyparticlesofinterests,controlledunderlightstimuli.Here,we report on our novel approach on photo-drivenmicro-particletransportationusinggreenparamecia.

PS15-584Gene discovery of Colletotrichum acutatum - strawberryinteractionDanielAmby1,ThomasSundelin1,MikaelAgelinPetersen2,HenrikToftSimonsen1,CorinnaWeitzel1,BirgitJensen11DepartmentofPlantBiologyandBiotechnology,FacultyofLifeSciences,University ofCopenhagen,FrederiksbergC,Denmark,2Department of Food Science /Quality andTechnology, Facultyof Life Sciences, University of Copenhagen, Frederiksberg C,[email protected] fungal pathogen Colletotrichum acutatum has a wide hostrange and causes diseases and severe yield lossesworldwide oneconomicallyimportantfruitcrops.Severalsecondarymetaboliteshave been identified during the necrotrophic development ofColletotrichumspp.,butonlyfewhaveshownphytotoxicactivity.Colletotrichumspp.alsoproducesarangeofhydrolyticenzymesthat play a role in the infection biology.The aimof this projectis to screen for enzyme activity and to investigate differentiallyexpressed genes of importance in the strawberry -C. acutatuminteraction. Flask cultures with liquid strawberry media wereinoculatedwithC. acutatum.Microscopy,pH-measurements andenzymeactivitiesweremonitoredinatimecourseexperiment.Theenzyme activity was determined using (AZCL)-polysaccharideplates. Fungal secondary metabolites were studied by GC-MSanalysis.C. acutatumproducedcasein,collagen,arabinoxylanandβ-glucan degrading enzymes in flask cultures.The pH increasedrapidly during culture growth.Two timepoints of interest basedonpHandenzymeactivitywere selected forRNA isolationandsubsequent SSH to identify differentially expressed genes. Bothfungalhousekeepinggenesandgenesencodingproteinsinvolvedinthebiosyntheticpathwaysofsecondarymetaboliteswereidentified.Selectedgeneswill be further characterisedbygenomewalking,heterologousexpressionandqRT-PCR.Severalinterestingfungalsecondarymetaboliteswerealsoidentifiedandmorebiochemicalanalyseswillbecarriedout.Inaddition,transcriptomeanalysisis

Page 205: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession18-Endophytesandparasiticplants

203

Poster 18

goingtobeperformedinfuture.TheimportanceoftheidentifiedgenesandmetaboliteswillbefurtherstudiedduringC. acutatuminfectionofstrawberryfruits.

PS18-585Infection pattern and growth promotion effects betweenBurkholderia cepaciaandZea maysLi-SenYoung1,Hsuan-YuanPeng21Department of Biotechnology, National Formosa University,Yunlin,Taiwan,2DepartmentofBiotechnology,YuanpeiUniversity,Hsinchu,Taiwanlsyoung69@nfu.edu.twBacteriaarecommoninhabitantsoftherhizosphereandtheinternaltissuesofplants.Amongst,Burkholderiaisagenusrichinplant-associatednitrogenfixersandwithphosphatesolubilizingabilities.Phosphate solubilizingbacteria (PSB)has foundmanyusages inagriculture, including enhancements of crop growth, crop yield,and crop disease-resistance. Recently, laboratory experimentshavediscoveredthataTaiwannativePSB,Burkholderia cepacia,can solubilize Ca-, Fe-, and Al-bound phosphates and, moreinterestingly, this genus of bacteria also acts as an endophyte.Atpresent, little isknownwith regard to the infectionpatternofthisparticularmicrobiumand itsbeneficialeffectsoncrops.Ourstudy revealed thatB. cepacia can only infectmaize during theseedgerminationstageandpersistasanendophyteovertheperiodof time of our analysis.Maize seedlings infected ofB. cepaciashowed a significant 23% increase in plant height and otherparameters.Nutrient analysis also showed an increased value ofNandPelementsininfectedmaizeseedlingsascomparedtothenon-infected controls.Utilization efficiencyofP in the culturingmediumwasalsoincreasedinseedlingsinfectedofB. cepacia.Onthecontrary,B. cepaciadoesnotestablishendophyticrelationshipwithrice.Insummary,thesepreliminaryresultsallowustoidentifylocalbeneficialmicrobesthatmeritfurtherfieldtests.

PS18-586RhizopheresignalstrigolactoneproducedbyplantcellculturesTakahito Nomura1, Koichi Yamanaka1, Xiaonan Xie1, KaoriYoneyama1,TakayaKisugi1,KoichiYoneyama11WeedScienceCenter,UtsunomiyaUniversity,Tochigi,[email protected] parasitic plants and arbuscular mycorrhizal fungi receivestrigolactones(SLs)ashostrecognitionsignalsintherhizosphere.In host plants, SLs play a key role in the regulation of shootbranching. Despite their important functions, the biosynthesispathwayofSLshasnotbeenfullyelucidated.As it is ingeneraldifficulttocharacterizeendogenousSLsinplantssincetheirlevelsareextremelylow,weattemptedtoanalyzeendogenousSLsusingplantcellculturesasatoolforstudyonendogenousSLs.SuspensioncellculturesofArabidopsisandricewereprovidedfromRIKENBioResourceCenter of Japan.The suspension cell cultureswereseparated into cells and culture media and extracted with ethylacetate.Theneutralethylacetate-solublefractionswereexaminedbyabioassayusingseedsofrootparasiticplantOrobancheminor.Remarkableactivitieson thegerminationstimulationwere foundinboththecellsandculturemedia.ItwasshownbyLC-MS/MSthatboththecellsproducedSLsincludingorobanchol,orobanchylacetateand7-hydroxyorobanchylacetate,andalsoreleased theseSLstotheculturemedia.Furthermore,weinvestigatedtheeffectontheSLexudationbynutrientconditions.Whentheculturedcellsweregrowninaphosphate-deficientmedium,theexudationofSLsintoculturemediawaspromoted.ThisfindingindicatesthatplantcellcultureswouldbeagoodtoolforunderstandingtheexudationmechanismofSLsintherhizophere.

PS18-587PrCYP707A1, an ABA catabolic gene, is a key componentof Phelipanche ramosa seed germination in response to thestrigolactoneanalogGR24PhilippeDelavault1,Marc-MarieLechat1,Jean-BernardPouvreau1,ThomasPeron1,MathieuGauthier1,ChristopheVeronesi1,GregoryMontiel1,YasushiTodoroki2,FabriceMonteau3,DavidMacherel4,PhilippeSimier1,SeverineThoiron11Laboratoire de Biologie et Pathologie Vegetales, SFR 4207QUASAV, LUNAM University, Nantes, France, 2Department ofApplied Biological Chemistry, Faculty ofAgriculture, ShizuokaUniversity, Shizuoka, Japan, 3LABERCA, Oniris, LUNAMUniversity,Nantes,France,4InstitutdeRechercheenHorticultureet Semences, INRA-Agrocampus Ouest-UniversiteAngers, SFR4207QUASAV,Angers,[email protected] dormancy in obligate root-parasitic plants is released,followingaconditioningperiod,byachemicalstimulussecretedbytherootsofhostplants.UsingPhelipanche ramosaasmodel,wedemonstratedthatseedsrequiredaconditioningdurationofatleastfour days to be receptive to the synthetic germination stimulantGR24. By applying a cDNA-AFLP procedure on the seeds, weisolated58TranscriptDerivedFragments(TDF)showingchangein their expression pattern upon GR24 treatment. Among theisolated TDFs, two up-regulated sequences corresponded to anABA-catabolic gene, PrCYP707A1, encoding an abscisic acid8-hydroxylase.UsingRACEexperiments,twofull-lengthcDNAs,PrCYP707A1andPrCYP707A2,wereisolatedfromtheseeds.BothgeneswereconstantlylowexpressedduringconditioningwhileafirstdeclineinABAlevelwasregistered.Afterconditioning,GR24application triggered a strongPrCYP707A1 up-regulation duringthefirst 18h followedbya second8-folddecrease inABA leveldetectable3daysaftertreatment.In situhybridizationexperimentson GR24-treated seeds revealed a specificPrCYP707A1 mRNAaccumulation in the perisperm cells beneath the micropyle. Theinhibitory activity on seed germination of Abz-E2B, a specificinhibitor of CYP707A enzymes, was demonstrated as a non-competitive antagonist of GR24 with a reversible inhibitoryactivity.ThosefindingsdemonstratethatP. ramosaseeddormancybreakdown relies on anABA catabolism mediated by a GR24-dependent activation of PrCYP707A1. These also corroboratedpreviousstudiesontheputativelocationofgerminationstimulantreceptorsinperispermcellsofseeds.

PS18-588ThephloemnetworkintheparasiticplantPhelipanche ramosa;carboxyfluorescein labelling and characterization of threesucrosetransporteursThomasPeron1,PhilippeDelavault2,PhilippeSimier21Agrocampus-Ouest, UMR Institut de Recherche en HoricultureetSemences(INRA,AgorcampusOuest,AngersUniversity),SFRQUASAV,Angers,France,2LaboratoiredeBiologieetPathologieVegetales,NantesUniversity,Nantes,[email protected] attachment to host roots, broomrapes (Orobanche sppand Phelipanche spp) develop a tubercle, then a subterraneanshoot that flowers after emergence from the soil. Due to theachlorophyllous nature of broomrapes, sucrose uptake fromthe host phloem supports the parasite growth. By using a nonpermeant fluorescent tracer of symplasmic phloem connexions(carboxyfluorescein),theoccurrenceofdirectphloemconnexionsat thehost-parasite interfacewasdemonstrated.Besides, phloemnetwork organization and phloem unloading inside the parasiticplant need clarification. By applying carboxyfluorescein tohost leaves (rapeseed and tomato),we observed that, except theadventitious root apices of young tubercles, all the sink areas ofthe parasitic plant P. ramosa, including tubercle parenchyma,shootapicalmeristemsandshootaxillarybudsaresymplasticallyisolated from the parasitic phloem network. Consequently, an

Page 206: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession18-Endophytesandparasiticplants

204

Post

er 1

8

active apoplastic unloading of the host-derived sucrose shouldoccurinthosesinkareas.Inthiscontext,threesucrosetransportercDNA were isolated from P. ramosa (PrSUT). While PrSUT2expressionwaslowoverallparasitedevelopment,PrSUT1wasbyfar themoreexpressedPrSUT gene in all theorgans and in situhybridization experiments emphasized transcript accumulationspecificallyinphloemcells.PrSUT1proteinhasacellmembranelocationprediction.PrSUT3 expressionwas low in tuberclesbutincreasedstronglyinshootsduringgrowth,concomitantlytoahighhexose accumulation in vacuoles. Interestingly, PrSUT3 proteindisplaysatonoplastlocationprediction.WeproposethatPrSUT1and PrSUT3 could play complementarily roles in parasitic sinkareasforsucroseunloadingfromphloemandsucrosetransportinvacuoles,respectively.

PS18-589EndophyticBradyrhizobiumfixnitrogeninsweetpotatoesJunkoTerakado-Tonooka1,2,ShinsukeFujihara1,YoshinariOhwaki11Soil Science and PlantNutrition division,NationalAgriculturalResearchCenter,Tsukuba,Japan,[email protected], nitrogen fixation by endophytic diazotrophs has beenobserved in a wide variety of plants. Sweet potatoes (Ipomoea batatas) are known for its ability to growwell in nitrogen-poorcondition and the possible input of N by biological nitrogenfixationwas suggested.Toclarify thecontributionof endophyticnitrogenfixation,weisolatedandidentifieddiazotrophicendophyteassociatedwithsweetpotatoes.Theisolate,whichpossessnifH ,ageneencodingoneofthesubunitsofnitrogenase,wereidentifiedasstrainsofBradyrhizobiumsp.AT1basedontheir16SrRNAgenesequences. The B. sp.AT1 showed acetylene reduction activityin sweetpotatoextractsundermicro-aerobicconditions.Wealsoexamined the infectionofB. sp.AT1 insweetpotatoesand theirinfluenceon thegrowthandN2-fixationasassessedbyacetylenereductionmethodand15Ndilutionmethod.The inoculationofB.sp.AT1resultedinanincreaseintheshootsandrootsfreshweightcomparedtouninoculatedcontrol.Theacetylenereductionactivitywasalsodetectedinthestemsofinoculatedplants.Moreover,the15Natom%excessvaluesoftheshootsininoculatedsweetpotatoeswere lower than those in control plants.These results suggestedthattheisolatedB.sp.AT1expressesnitrogenaseactivityinsweetpotatoesandcontributestotheirnitrogennutrition.

PS18-590Vertical and horizontal transmission of endophyte fungusNeotyphodium lolii in perennial ryegrass (Lolium perenneL.)plantsBarbaraWiewiora1,GrzegorzZurek21DepartmentofSeedScienceandTechnology,PlantBreedingandAcclimatization Institute, National Research Institute,Radzikow,Poland, 2Departament of Grasses, Legumes and Energy Plants,Plant Breeding andAcclimatization Institute, National ResearchInstitute,Radzikow,Polandb.wiewiora@ihar.edu.plTheaimofourstudieswastoassesstheextenttowhichendophytesmoveverticalinecotypesofperennialryegrass,andwhetherthereareanysignsofhorizontaltransmissionofendophytes.Materialsfor vertical transmission analysis were ecotypes collected frompermanent grasslands from three separate regions inPoland in aformof livingplants.Plants, seedcollected from thisplants andplants grown from mentioned seed were tested for endophyteinfection.Thehighestendophytepresencewasnoted inecotypesfromSwietokrzyskieregion,whilelowerinPodlasieandMazowszeregions. Itwas found thatvertical transmissionofNeotyphodiumendophyte in perennial ryegrass ecotypes is almost complete,providedallproducedseedwillbeviableandabletogerminateandproduceseedlings.Fortheexperimentonhorizontaltransmission,four cultivars were selected. Endophyte-hosting plants (E+) andendophyte-freeplants(E-)ofmentionedvarietieswereplantedthe

fieldinclosedistanceonsmallplotsandfrequentlymown.After7monthsplantsgrowninthemiddleandattheedgeofeachplotwereexamined for the presence of endophytesmycelium.The resultsindicatedthepossibilityofhorizontaltransmissionofendophytesbetweenplants,especiallybetweenplantsgrownsidebyside.ThestudieshaveshownthatinE-plants,after7monthofgrowthnexttotheE+plants,thecharacteristicmyceliumofNeotyphodiumspp.were found.Thiswasespecially true forplantsgrowing inclosedistancetotheinhabitedplants.Thepossibilityofaboveplant-to-planttransmissionofendophytehasnotbeendemonstratedsofar.

PS18-591Germination stimulants of Phelipanche ramosa in therhizosphereofBrassica napusarederivedfromtheglucosinolatepathwayBathilde Auger1, Jean-Bernard Pouvreau1, Zachary Gaudin1,Karinne Pouponneau2, Kaori Yoneyama3, Gregory Montiel1,BrunoLeBizec2,KoichiYoneyama3,PhilippeDelavault1,RegineDelourme4,PhilippeSimier11LaboratoiredeBiologieetPathologieVegetales,IFR149QUASAV,LUNAMUniversite,Nantes,France,2LUNAMUniversite,Oniris,LABERCA,44307Nantes,France,3UtsunomiyaUniversity,WeedScienceCenter,Utsunomiya321-8505,Japan,4INRA,AgrocampusOuest,UniversitedeRennes1,UMR1349IGEPP,35653LeRheu,[email protected] ramosa is a major parasitic weed of Brassica napus.Thefirst step inhost-parasite interaction is stimulationofparasiteseedgerminationbycompoundsreleasedfromhostroots.However,germinationstimulantsproducedbyB. napushavenotbeenidentifiedyet.Inthisstudy,wecharacterisedthegerminationstimulants that accumulate in B. napus roots and are releasedinto the rhizosphere. Eight glucosinolate-breakdown productswere identified and quantified in B. napus roots by GC-MS.Two (3-phenylpropanenitrile and 2-phenylethyl isothiocyanate,2-PEITC) were identified in the B. napus rhizosphere. Amongthese glucosinolate-breakdown products, P. ramosa germinationwas strongly and specifically triggered by isothiocyanates,indicatingthat2-PEITCplaysakeyroleintheB. napus-P. ramosainteraction.KnownstrigolactoneswerenotdetectedbyUPLC-MS/MSandseedsofPhelipancheandOrobanchespeciesthatrespondtostrigolactones,butnotisothiocyanates,didnotgerminateintherhizosphereofB. napus.Modificationof strigolactone exudationby P starvation is known in strigolactone-producing plants. Incontrast, P starvation did not affectP. ramosa seed germinationinB. napus rhizosphere while S deficiency did, in concordancewiththeinvolvementofglucosinolatepathwaysinthesynthesisofgerminationstimulantsinB. napus.Furthermore,bothwild-typeandstrigolactonebiosynthesismutantsofArabidopsis thalianaAtccd7andAtccd8inducedsimilarlevelsofP. ramosa seedgermination,suggesting that compounds other than strigolactone function asgermination stimulants forP. ramosa inotherBrassicaceae.Ourresultsopenperspectiveson thehighadaptationpotentialof rootparasiticplantsunderhost-drivenselectionpressures.

PS18-592TranscriptomeanalysisoftheparasiticplantPhtheirospermum japonicum indicatesrole of Subtilisin-like proteases in plantparasitismJuliane K. Ishida1, Satoko Yoshida2, Eric Wafula3, Claude W.dePamphilis3,ShigetouNamba1,KenShirasu21GraduateSchoolofAgriculturalandLifeScience,TheUniversityof Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan ZIP code113-8657, 2Plant Science Center, RIKEN, Yokohama, Japan,3DepartmentofBiology,ThePennsylvaniaStateUniversity,[email protected] plants invade host roots to take water and nutrientsthroughaspecialized structure, thehaustorium.Tofind thegenesessentialforparasitismthetranscriptomeofthefacultativeparasite

Page 207: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession19-Biotechnology

205

Poster 19

Phtheirospermum japonicum on autotrophic and parasitic stagesweresequenced.Thede novoassemblyresultedin58,137contigswithminimumsizeof300bp.Amongthetranscriptenrichedfromparasitic stage, many of the highly expressed sequences wereannotatedassubtilisin-likeserineproteases (SBT).To investigatetheroleoftheseproteasesintheplantparasitism,theirexpressionpatternsweremonitoredbyqRT-PCRduringtheinteractionoftheparasitePhtheirospermumwithahost(Oryza sativa)andanonhost(Lotus japonicus) plants for1, 2, 3 and7daysof infection.TheexpressionofthreeSBTgenes(PjSBT1,PjSBT2andPjSBT3)wasdetectedonlyat7daysaftertheinteractionwiththehost,whilenoexpressionofthesegeneswasdetectedincontactwithnonhostL. japonicus.Inthesimilarway,theexpressionofgenesencodingtosubtilisin-likeserineproteasesfromanotherparasiticplantStriga hermonthica was observed onlywhen the parasite is infecting asusceptible host. Morphological studies of haustoria stained bySafranin-O revealed that the formation of vascular bridgewhichconnectsxylemvesselsbetweenahostandaparasiteoccursafter7daysofinteraction.Takingtogether,ourresultssuggestapossibleroleofsubtilisin-likeserineproteasesinparasitization.

PS18-593FunctionalanalysisofNADPHoxidasesandregulatoryfactorsof fungal endophyte Epichloë festucae in cell fusion andconidiationYukaKayano1,AikoTanaka1,BarryScott2,DaigoTakemoto11Graduate School of Bioagricultural Sciences, University ofNagoya,Aichi,Japan,2InstituteofMolecularBioSciences,Masseyuniversity,PalmerstonNorth,[email protected] endophytic fungus Epichloë festucae systemically colonizethe intercellular spaces of host grass to establish a mutualisticsymbioticassociation.Colonizationofepichloëendophytesconfersvariousbenefitsonhostplantgrowthandfitnesstoenvironmentalconditions, including enhancement of plant tolerance to drought,disease and insect herbivory. Previously, we have shown thatreactive oxygen species producedby a specificNADPHoxidaseisoform,NoxA, and associated regulatorsNoxR andRacA havecritical role in regulating hyphal growth in the host plant andestablishment of symbiosis. We also have identified homologofyeastpolarityprotein,BemAasaninteractorofNoxR.Inthisstudy, we assessed morphological characteristics of mutants ofNoxsandtheirregulatorsinculture.Onnutrientrichmedium,mostoftestedmutantsgrewnormallybutracAmutantsshowedhyphalswelling and increased branching.On poormedium, in contrast,noxA,noxBandnoxRmutantsshowedincreasedhyphalbranchesandswelling,whereasbemA showedhyphalwinding.WhileWTstrains produced few conidia, noxA mutants showed significantincreaseofconidiation,andnoxABmutantsproducedfurthermoreconidia,suggestingthatNoxAandNoxBhaveredundantfunctionsto regulate conidiation. Unexpectedly, increased production ofconidiawasnotobservedinnoxRandracAmutants.AlthoughWTstrains frequently formedhyphal fusions,most of testedmutantstotallylosttheabilitytoformhyphalfusionsexpectbemAmutantthat showed significantly reduced number of hyphal fusions.Our study indicated thatNoxs and these regulators have distinctor overlapping functions for the regulation of different hyphalmorphogenesis.

PS18-594DraftgenomesequencesoftheparasiticStrigaspeciesSatoko Yoshida1, Ri-ichiroh Manabe2, Michael P. Timko3, KenShirasu11PlantScienceCenter,RIKEN,Yokohama,Japan,2OmicsScienceCenter,RIKEN,3DepartmentofBiology,[email protected] spp. (common name witchweeds) are parasitic plantsbelongingtoOrobanchaceae.Strigainfestsmajorcropsandcausesdevastatingyield losses in sub-SaharanAfrica andpartsofAsia.

To develop efficient methods controlling Striga infestation, themolecularbasisofparasitismshouldbestudiedindetail.However,themolecularandgenomicresourcesofStrigaspecieshavebeenlimited.Among Striga spp., Striga asiatica is idealmaterial forcompletegenomesequenceassemblybecauseofitsrelativelysmallgenome size (approx. 600Mbp) and self-pollinating nature.WefirstculturedasingleS. asiaticaplantinaxenicconditiontoobtaina large volume of homogeneous genomic DNA. Six paired-endandmate-pair libraries of different insert sizeswere constructedandmorethan200GbpsequenceswereobtainedbytheIlluminaHiSeq2000 sequencer. These short reads were assembled andresulted in the scaffoldswithN50 size of over 120Kbp.About50%of thegenome is occupiedby repeat sequences, suggestingStriga genome is expanded by repeat sequences like other plantspecies.Theobtainedgenomesequence isbeingannotatedusingtheinformationofcloselyrelatedplantgenomesandtranscriptomesequences.Inaddition,aBAClibrarywith5-timescoveragewasprepared and its end-sequences will be analysed by the Sangersequencer to improve the quality of the S. asiatica genomesequence assembly. *We acknowledge the sequence support byRIKENGeNAS.

PS18-595Identificationofanovelfungalnuclearprotein,NsiA,essentialforsymbioticinfectionofendophyticfungusEpichloë festucaeYoshinoOzaki1,FumitakeAkano1,AikoTanaka1,SaikiaSanjay2,BarryScott2,DaigoTakemoto11GraduateSchoolofBioagriculturalSciences,NagoyaUniversity,Nagoya, Japan, 2Institute of Molecular BioSciences, Masseyuniversity,PalmerstonNorth,[email protected]ë festucaesystemicallycolonizetheintercellular spaces of host grass plant to establish amutualisticsymbiotic association. Previous studies have established that E. festucae and related endophytes confer bioprotective benefits totheir host plants.A screen to identify symbiotic genes isolated afungalmutantFR405thatalteredtheinteractionfrommutualistictoantagonistic.Perennialryegrassinfectedwiththismutantbecomeseverely stunted, show precocious senescence, as previouslyisolated noxA (a NADPH oxidase) mutant. FR405 has plasmidinsertioninthecodingregionofuncharacterizedAlanineGlycineSerineandProline-richprotein.AsGFPfusionofthisproteinwaslocalizedtonuclei,wedesignatedthisgeneNsiAfornuclearproteinforsymbioticinfection.WehavefoundthatnoxAmutantlosttheabilitytoformhyphalfusionsandshowedsignificant increaseofconidiation. nsiA mutant also showed no hyphal fusion as noxAmutant,however,conidiationwasnormalaswildtype.TheseresultsindicatedthatNsiAisinvolvedinsimilarprocessestoNoxA,butplayrolesdownstreamofNoxAinthesignaltransductionfortheregulationofsymbiotichyphalgrowth.Byyeasttwo-hybridassay,it was shown than NsiA can directly interact with Ste12, a C2/H2-Zn

+2fingertranscriptionfactor, impliedthatNsiAregulatetheactivityoftranscriptionfactortocontrolsymbiotichyphalgrowthofendophyteinhostplant.

PS19-596Effects of sowing density on yield and quantitativecharacteristicsofsoybeanKeyvanShamsi1,S.Kobraee11DepartmentofCropProductionandPlantBreeding,KermanshahBranch,IslamicAzadUniversity,Kermanshah,[email protected] order to investigate the effects of different densities on yieldand yield components in soybean, an experimentwas conductedin a factorial based on randomized complete block design withthree replications at research farm, Islamic Azad University ofKermanshah at 2007-2008. Cultivars factor were placed in theblocks at 3 levels includingM7,M9, and Gorgan3 and densityfactorsat3levelsincludingplantwereplacedon3,5,7cmintra

Page 208: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession19-Biotechnology

206

Post

er 1

9

rows spacing (53, 32 and 23 plant/m2) in the blocks. The endof growth stage and harvesting time, the grain yield and yieldcomponentsweredetermined.Theresultsshowedthatdensityof23 and53plant/m2hadhighest and lowest numbersof branchesperplant,respectively.Thehighestnumberofnodeperplantand100grainweightper(mainstem,branchesandplant)relatedtoM7cultivarandhighestnumberofpodper(branchesandplant)relatedtoGorgan3cultivar.alsoM7andGorgan3hadhighestnumberofgrainperplantandnumberofgrainperbranches,respectively.Asignificantcorrelationcoefficientwerefoundbetweengrainyieldwithplantheight(r=0.71**),numberofgrainperplant(r=0.73**),100 grain weight (r=0.43**), biological yield (r=0.85**) andharvest index (r=0.34**). Gorgan3 had highest yield than twocultivars,M7andM9.Thehighestyield related todensityof23ofplants/m2.

PS19-597Multiple mechanisms for soil phosphate solubilization: acidandmoreTimothyRepas1,2,DavidGreenshields2,SusanKaminskyj11DepartmentofBiology,UniversityofSaskatchewan,,2NovozymesBioAgLtd.,3935ThatcherAve.,Saskatoon,[email protected] is an essential plant nutrient. In agriculture, solublemineralphosphatefertilizerisusedtoincreaseproductivity.Rockphosphate, from which this fertilizer is derived, is a dwindlingnon-renewable resource, which creates a future food securityconcern.Insoil,solublephosphateisreadilytrappedasinsolublephosphatecomplexes,typicallywithAl,Fe,orCa.Thephosphatesolubilizing (PSOL) fungus,Penicillium bilaiae, in Novozymes’JumpStart liberates soil phosphate, reducing fertilizer use andattendantproblems.PSOLfungi canacidify the soil surroundingthem,liberatingphosphateforplantgrowth.However,AlandFephosphate are soluble at alkaline pH, whereas Ca phosphate issolubleatacidpH.ItappearsthatPSOLmechanism(s)maydifferbetweenPminerals.WeexaminedthreePSOLfungiwithdistinctlifestyles (soil dwelling, endophytic, rhizoplanar: Penicillium bilaiae and two novel isolates, respectively) for their ability tosolubilize Al, Fe, and Ca phosphate in dilute potato dextrosebroth. Each of these PSOL strains solubilized all ofAl, Fe, andCaphosphates,butuseddistinctmechanismsbasedonmediumpHchanges.OnlyPenicillium bilaiaestronglyacidifiedthemedium.Thus, PSOL activity is more complex mechanistically thanpreviouslythought.

PS19-598Host-inducedgenesilencinginfungalpathogensofcerealsDaniela Nowara1, Goetz Hensel1, Jochen Kumlehn1, PatrickSchweizer11LeibnizInstituteofPlantGeneticsandCropPlantResearch(IPK),Gatersleben,Germanynowara@ipk-gatersleben.deRNAiisanestablishedmeanstoknock-downgenesinplantsandfungi. Both sequence-specificity as well as systemic spreadingof gene silencing is essentially mediated by small interferingRNAs.Consideringthatthereisintimatecellularcontactbetweenplants and fungal pathogens during infection, we hypothesizedthat fungal genes may effectively be targeted by RNAs derivedfromappropriatelydesignedhairpinconstructsexpressedbyhostplant cells.This phenomenon called host-induced gene silencing(HIGS) has already been described in plant parasitic nematodes,insects, and parasitic plants. Blumeria graminis is a powderymildew-causingfunguswhichinfectsmanygrassspeciesincludingcereals. Intensive research is going on to better understand thebarley-powdery mildew pathosystem, which is an establishedexperimental model for biotrophic plant-pathogen interactions.Thirty nine independent transgenic barley lines were generatedusing a hairpin RNAi construct targeting a fragment of the B. graminis hordei GLUCANOSYLTRANSFERASE 1 (GTF1) gene.

GTFs are specifically found in fungiwhere they are involved incellelongationandvirulence.WehavechosenGTF1asaHIGS-target since it was found to be significantly upregulated duringhostcolonization.InthreeoftheT1-populationsobtained,colonyformation of B. graminis was significantly reduced whereasa transgenic control line lacking the hairpin cassette was assusceptibleaswild-typecontrolplants.TheresultssuggestuptakeofRNAmoleculesbythepowderymildewfungusfromattackedplantcells,whichmaycauseknock-downoftargetedfungalgenesand reduced disease severity as a means to effectively combatfungaldiseasesofcropplants.

PS19-599EffectofcompostandchemicalfertilizeronvegetablegrowthandmicrobialcommunitystructureinsoilSidik Marsudi1, Yuki Sago1, Shuuhei Yamada1, Yoichi Atsuta1,HiroyukiDaimon11Department of Environmental and Life Sciences, ToyohashiUniversityofTechnology,Japanmarsudi@water.ens.tut.ac.jpCompostprovidesarichgrowingmediumthatusefultoimprovephysical and chemical property of soil.Application of chemicalfertilizertosoilisexpectedtoimproveplantgrowthbysupplyingone or more plant nutrients. The application of both compostand chemical fertilizer affectsmicrobial structure and activity insoil.On theotherhand,applyingexcessiveamountsofchemicalfertilizer has negative effects such as inhibit microbial growththat responsible for humus formation.To avoidover-application,it is important to study theoptimumapplicationof the fertilizer.In this research, the effectof compost andchemical fertilizeronvegetablegrowthofkomatsuna(Brassicarapavar.perviridis)wereinvestigated.Thecompostandchemicalfertilizerwereappliedtosoilsimultaneouslyatdifferentcomposition.Microbialcommunitystructure in soil was also characterized by microbial quinoneprofile.Theresultsshowedthatatamixtureof50%compostand100% chemical fertilizer, the shoot length of 12.3 cm was thehighestamongalltheapplications.Atarecommendedapplication,100%compostand100%chemicalfertilizer,theshootlengthwas8.7cm.Therewasalsoachangeonmicrobialcommunitystructureafter application of the compost and chemical fertilizer. Totalquinoneconcentrationofthebestsoilforthevegetablegrowthwas8.3 μmol/kg-dry soil in which menaquinone-7, menaquinone-6,menaquinone-8(H2), menaquinone-10(H4), menaquinone-10 werethemostdominantamong12microbialquinonesspeciesdetected.

PS19-600Engineering plant cell walls for second generation biofuelproductionCharisCook1,PaulG.Bolwell1,AlessandraDevoto11School of Biological Sciences, Royal Holloway, University ofLondon,Egham,[email protected] substrate for second generation biofuels is lignocellulosicmaterial obtained from plant cell walls. Geneticmodification ofthe cell wall has the potential to improve cellulose accessibilityand hydrolysis, therefore decreasing the cost and energy inputinbiofuelproduction.This studyaims to improveunderstandingof cell wall biosynthesis and organisation to increase cellulosecontentandextractabilitybygeneticmodificationandpretreatmentwithwhite rot fungusPhanerochaete chrysosporium. Enzymaticsaccharification assays have shown differences in soluble sugarsreleased from transgenic tobacco lines down-regulated in bothlignin and xylan. Significantly, TOBACCO PEROXIDASE 60 down-regulated line 1074 shows 30% increase in glucoserelease as compared to the wildtype. Xylan down-regulation bysuppressionofUDP-GLUCURONATE DECARBOXYLASE,whichsynthesises thexylanprecursorxylose,alsocaused improvementinsaccharification.TreatmentofthecellwallmodifiedlineswithP. chrysosporium, a white rot fungus that naturally hydrolyses

Page 209: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession19-Biotechnology

207

Poster 19

and metabolises lignin further improved saccharification afterpretreatment.We also show that lignin biosynthesis pathway isdown-regulatedatthetranscriptionallevelinligninmodifiedlines,while thepolysaccharidebiosynthesis responsediffersdependingonthepositionofdisruptioninligninbiosynthesis.

PS19-601EvaluationofIRES-mediatedtranslationefficiencyofviral5’untranslatedregions(UTRs)bymulti-colorluciferasereportersysteminhigherplantsRieko Ogura1, Chiaki Hara2, Atsushi Inamoto2, KatsuhikoNakahama2,NaokoMatsuo2,KazuyukiHiratsuka21Venture Business Laboratory, Yokohama National University,Kanagawa, Japan, 2Graduate School of Environmental andInformationSciences,YokohamaNationalUniversity,Kanagawa,[email protected] Ribosome Entry Site (IRES) allows cap-independenttranslation initiation. Recent studies revealed the presence ofIRES-mediatedtranslationmechanismsamongplantviruses.Ithasbeenshownthat the5’UTRsequencefromseveralplantvirusescanmediatecap-independenttranslationinplantcells.Inordertoevaluate various IRES-dependent translation efficiencies in plantcells, we have developed a dual-color bioluminescence reportersystemusingluciferasegenesderivedfromaluminousclickbeetle,Pyrophorus plagiophthalamus. Two luciferase genes, designatedCBRandCBG,areseparatedbyanIRESelementandexpressedunder the control of theCauliflower mosaic virus 35Spromoter.Althoughtheyshare99%identicalaminoacidsequences,theCBRemitsredlightwhiletheCBGemitsgreenlight.Theseluciferasescatalyze D-luciferin that is also catalyzed by firefly luciferase,andtheredandgreenlightcanbeseparatedbytheopticalfilters.Usinganappropriatedetectionsystem,weareabletomonitortheIRESactivityasared/greenratioin planta.Tofurtherimprovetheassaysystem,wecombinedRenilla luciferase(hRluc)asinternalstandard for CBR and CBG. This makes it possible to evaluatethe relativeactivityofCBRandCBG, respectively.Towards theunderstanding of the 5’ UTR functions and the application forthemulti-geneexpression system inplant cells,wearecurrentlyusingthistechnologyforcharacterizationandevaluationofIRESactivitiesof5’UTRsfromvariousplantviruses.

PS19-602Detectionofquantitative trait loci forpartialblastresistanceby next-generation whole genome re-sequencing in the ricecultivarNortaiHirokiTakagi1,2,AkiraAbe1,KentaroYoshida3,ShunichiKosugi4,Hiroki Yaegashi1, Satoshi Natsume1, Muluneh Tamiru1, LilianaCano3,SophienKamoun3,RyoheiTerauchi11Iwate Biotechnology Research Center, Iwate, Japan, 2UnitedGraduateSchoolofIwateUniversity,Iwate,Japan,3TheSainsburyLaboratory,Norwich,UK,4KazusaDNAResearchInstitute,Chiba,[email protected] blast,which is caused byMagnaporthe oryzae, is a highlydestructivediseaseofricewidelydistributedthroughoutthemajorrice growing regions of theworld.The rice cultivarsNortai andHitomeboreshowhighandlowlevelsofpartialresistancetoleafblast, respectively. To detect the quantitative trait locus (QTL)conferring resistance in Nortai, we first developed a set of 241recombinant inbreed lines (RIL) from the cross between NortaiandHitomeboreasamappingpopulation.TheconventionalQTLmappinginvolveslinkageanalysisusingsuchRILs.However,thisapproachcouldn’tbeappliedinthisstudy.NortaiandHitomeboreboth belong to the O. sativa spp. Japonica sub-group, and aretherefore genetically closely related. Although their closenesspermitseasyobservationofthesegregationinquantitativetraitssuchaspartialresistance,itposesadifficultyindevelopingpolymorphicDNAmarkersforconventionallinkageanalysis.Toovercomethis

problem,we developed a novel approach forQTL identificationusingnext-generationwholegenomere-sequencingoftwobulkedDNAs of progeny showing extreme phenotypic values. ThisapproachallowstherapididentificationofQTLbecauseitdoesnotrequireDNAmarkerdevelopment, themost time-consumingandcostly procedure associatedwith the conventionalQTL analysis.Inthecurrentstudy,weappliedthisnewmethodforthedetectionQTLsconferringpartialresistanceinNortaianddetectthemajorQTLonchromosome6.Additionalexperimentsareunderway toisolatethegeneassociatedwiththismajorQTL.

PS19-603Development of endophytic bacterial inoculants possessinggrowthpromotiontraitsforpracticalapplicationinbio-energyplantspeciesNicholas A. Otieno1, John Culhane1, Kieran Germaine1, DinaBrazil1,DavidRyan1,DavidDowling11InstituteofTechnology(IT)Carlow,Carlow,[email protected] plant tissue colonisation has made endophytic bacteriavaluable for agriculture as a tool to improve crop performanceparticularly for those bacteria having traits such as plant growthpromotion(PGP).Thisprojectinvolvedscreeningandidentifyingendophyticbacterialstrains,sourcedfromthebacterialcollectionavailableattheInstituteofTechnologyCarlow,withthepotentialtoenhancegrowthrateinbio-energyplantcropspecies.Intheinitialstageundergreenhousecondition,atotalof140strainsinmastermix (MM)groupsof10strains,were inoculated intoRyeGrass.TheinoculatedRyeGrassseedsweresowninpotsandarrangedincompleterandomiseddesignandtheirgrowthwasmonitoredforaperiodof3months.Theplantfreshweights(FW)anddryweights(DW)wereused as growthparameters.ThreeMMs (comprising30 strains) showed PGP potential in Rye Grass, significantlyincreased themean FW andDWofRyeGrass plants comparedto the negative controls. The 30 selected strains were furthercharacterised forPGP traitsunder in vitro study.Results showedthreestrains inhibitedPythium spp.growth indualcultureassay,whereas theculturefiltrates toquantifygluconicacidproductionnecessary for inorganic phosphate solubilisation, had six strainsrecording more than 20mg/ml of gluconic acid production. Tenstrains showed Indole acetic acid (IAA) production in the range(10-18µg/ml)whilethreestrainsshowed1-aminocylopropane-1-carboxylicacid(ACC)deaminaseactivity.Thisstudyindicatesthatthe selectedbacterial endophyteshave thepotential forPGPanddevelopmentinplantcrops.

PS19-604Homology-independent breakdown of papaya transgenicresistancebysupervirusstrainandthesolutionYi-JungKung1,Bang-JauYou1,Kuan-ChunChen1, Chiung-HueiHuang1,Huey-JiunnBau1,Shyi-DongYeh11DepartmentofPlantPathology,NationalChungHsingUniversity,Taichung,[email protected] ringspot potyvirus (PRSV)limitstheproductionofpapayaworldwide.Underlyingthemechanismofpost-transcriptionalgenesilencing (PTGS),wegeneratedCP-transgenicpapaya lineswithresistancetodifferentstrainsofPRSV.However,duringfieldtrials,an unrelatedPapaya leaf-distortion mosaic potyvirus (PLDMV)able tobreakdown theCP-transgenic resistancewasnoticed.Toovercomethis threat, transgenicpapayalinescarryingachimericuntranslatable construct with partial CP coding sequences ofbothPRSVandPLDMVwerefurthergeneratedtoconferdoubleresistance to both viruses.However, during field tests of doublevirus-resistant lines, super strainsofPRSVable toovercome thesingle-virus or double-virus resistance were discovered. TherecombinationbetweenPRSVsuperstrain519andcommonstrainYK indicated that a recombinant virus containing the silencingsuppressor HC-Pro from the super strain 519 can break down

Page 210: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession20-Genomicsandevolutionofvirulenceinpathogenicfungiandoomycetes

208

Post

er 2

0

the transgenic resistance in a transgene-homology independentmanner. Agroinfiltration of PRSV YK and PRSV 5-19 genesilencingsuppressorHC-Prosfurtherconfirmedthat5-19HC-Prohasstrongercapabilityofgenesilencingsuppression.ComparisonofYKand5-19HC-Prosrevealedvariationsinfiveaapositionsintheregionresponsibleforgenesilencingsuppressionandgenomeamplification.Consequently,newtransgenicpapayalinescarryinganuntranslatableHC-ProconstructofthesupperPRSVstrain519todisarm its abilityof suppressingPTGSweregenerated.Thesetransgenic lines conferred complete resistance to PRSV superstrains and other PRSV geographic strains. Currently, we arepyramiding single, double, and super transgenic resistances in apapayahybridvarietyforglobalapplication.

PS19-605Development of abaca (Musa textilis Nee) putative resistantlinesagainstBanana bunchy top virusandBanana bract mosaic virusthroughinducedmutationbreedingTeodoraO.Dizon1,OliviaP.Damasco1,MaritaS.Pinili2,IrishT.Lobina1,AntonioG.Lalusin1,KeikoT.Natsuaki21Crop Science Cluster-Institute of Plant Breeding, University ofthe Philippines Los Banos, Laguna, Philippines, 2Departmentof InternationalAgricultural Development, Tokyo University ofAgriculture,Tokyo,[email protected] (Musa textilis Nee), or known worldwide as Manilahemp,were in vitropropagatedandsubjectedtovaryingdosagesof gamma irradiation Cobalt 60 (60Co). Irradiated shoots weresub-cultured (M1V4-M1V5) to minimize chimeras and evaluatedfor radiosensitivity response and post-radiation recovery. LD30was established at 10-15 Gy on cvs. Tinawagan Pula (TP) andTangongon (TG) with high shoot proliferation and plant vigor45daysafter irradiation.Twostagesof screenhouse inoculationtestswereconductedonbothirradiatedandnon-irradiatedcontrolplants.Banana bunchy top virus(BBTV)andBanana bract mosaic virus (BBrMV) were inoculated using aphids and mechanicaltransmission, respectively. Screening tests showed 0.6%TP and0.9% TG putative resistant (PR) lines were consistently foundnegative to BBTV and 1.6% TP and 0.9% TG uninfected withBBrMV.Consequently,fieldtrialshowedthatpropagatedPRlines(motherplant)were92.75%(64/69)consistentlyuninfectedwithBBTVwhereas 66.67% (46/69)were found negative toBBrMVand 59.4% (41/69) were free from both viruses. In addition,detectionassaysalsoconfirmedthecompleteabsenceofendo-andexogenousbadnavirusinabacainwhichcommonlyobservedfrommicropropagatedbanana.Asgammairradiationdosecoupledwithin vitro propagation was established in this study, screening forandgeneratingPRlinescanbefast-trackedovertheconventionalbreedingworkswithsafemutationagainstbadnavirus.

PS19-606AsinglechainvariablefragmentantibodyagainstaFusarium virguliformetoxinforenhancingtoleranceofsoybeantosuddendeathsyndromeHargeetK.Brar1,MadanK.Bhattacharyya11AgronomyDepartment,IowaStateUniversity,Ames,Iowa,[email protected] do not produce antibodies. However, plants can correctlyassemble functional antibodymolecules encoded bymammalianantibodygenes.Manyplantdiseasesarecausedbypathogentoxins.Oneofsuchdiseasesisthesoybeansuddendeathsyndrome(SDS).SDSisaseriousdiseasecausedbythefungalpathogen,Fusarium virguliforme.Thepathogen,however,hasneverbeenisolatedfromthediseasedfoliartissues.Thus,oneormoretoxinsproducedbythepathogenhavebeenconsideredtocausefoliarSDS.Oneofthesepossibletoxins,FvTox1,wasrecentlyidentified.Weinvestigatedifexpressionofanti-FvTox1singlechainvariablefragmentantibodyin transgenic soybean can confer resistance to foliar SDS. Wehave created two single-chain variable fragment (scFv) antibody

genes, Anti-FvTox1-1 and Anti-FvTox1-2, encoding anti-FvTox1scFvantibodiesfromRNAsofahybridomacelllinethatexpressesmousemonoclonal anti-FvTox1 7E8 antibody.Both anti-FvTox1scFv antibodies interactedwith an antigenic site of FvTox1 thatbindstomousemonoclonalanti-FvTox17E8antibody.BindingofFvTox1 by the anti-FvTox1 scFv antibodies, expressed in eitherEscherichia coliortransgenicsoybeanroots,wasinitiallyverifiedon nitrocellulose membranes. Expression of Anti-FvTox1-1 instable transgenic soybeanplants resulted inenhanced foliarSDSresistanceascomparedtothatinnon-transgeniccontrolplants.Ourresultssuggestthat(i)FvTox1isanimportantpathogenicityfactorforfoliarSDSdevelopment,and(ii)expressionofscFvantibodiesagainstpathogentoxinscouldbeasuitablebiotechnologyapproachforprotectingcropplantsfromtoxin-induceddiseases.

PS20-607Deep-sequencing ofmultiple race-leaf rust,Puccinia triticinagenomesandtranscriptomesduringwheatinfectionGuus Bakkeren1, David L. Joly1, XibenWang2, Nina Thiessen3,GregTaylor3,ShaunD.Jackman3,InancBirol3,StevenJ.M.Jones3,BrentD.McCallum2,RichardC.Hamelin4,BarryJ.Saville51Agriculture & Agri-Food Canada, Pacific Agri-Food ResearchCentre, Summerland, BC, 2Agriculture & Agri-Food Canada,CerealResearchCenter,Winnipeg,MB,3MichaelSmithGenomeSciences Centre, Vancouver, BC, 4Canadian Forest Service,Laurentian Forestry Centre, Sainte-Foy, QC & Dept. of ForestSciences,UniversityofBritishColumbia,Vancouver,BC, 5TrentUniversity,ForensicScienceProgram,Peterborough,[email protected]. triticinagenomicresources(referenceplus three isolate genomes [1]www.broadinstitute.org and ESTs[2]) spawned follow-up projects targeted at revealing genomefluidityamonghistoricalfieldisolates.ManyisolatesresultedfromrustracesthatovercameintroductionsofresistantwheatvarietiesTheinvestigationsaimtorevealalterationinfungalgeneexpressionduringwheatinfectionwiththegoalofidentifyingthemolecularbasisof fungaladaptation tovarioushostcultivars.Thatcherandnear-isogenic wheat lines carrying resistance gene Lr2a or Lr3were inoculatedwithP. triticina isolates of virulence phenotypeBBBD,MBDS,SBDGorFBDJ(producingavarietyofinfectiontypes, from IT0 to IT4). Total RNA was isolated from infectedleavesatvarioustimepointsduringtheinfection.Inaddition,30isolateswereinoculatedonsusceptiblecvThatcherandtotalRNAwasisolatedfrominfectedleaves5dai.Deep-sequencingusingtheIlluminaplatformwasperformedtoassesstranscriptomes.Fungaland wheat tags were separated via bioinformatics. All fungalgenomeswerealsosequencedtosupporttranscripts,andtorevealvariation(SNPs)anduniquenessamongisolates.Amajorfocusison effectors. However, comparative analyses to poplar leaf rust,Melampsora larici-populina fungal isolate transcriptomes is alsoperformedtoanalyzecommonalityandvariationbetweentheserusts.Funding:StrategicOpportunitiesFund3,GenomeBritishColumbia(R Hamelin, G Bakkeren); Ontario Research Fund - ResearchExcellence(BSaville,BMcCallum,GBakkeren);[1]Inter-agencyNSF/USDA-CSREESMicrobialGenomeSequencingProgram(CCuomo,JFellers,LSzabo,GBakkeren).[2]Xuetal.,2012.BMCGenomics12:161.

PS20-608An analysis of gene families evolution in SordariomycetesrevealsahighlevelofgenelossinmanyphytopathogensRicardoA.Tiburcio1,LeandroC.Nascimento1,MarcosH.Moraes1,GoncaloG.Pereira1,OdalysG.Cabrera11Instituto de Biologia da Universidade Estadual de Campinas [email protected] class Sordariomycetes includes species withmany differentlife styles. Among them we can found human pathogens,entomopathogens, fungi pathogens and many important

Page 211: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession20-Genomicsandevolutionofvirulenceinpathogenicfungiandoomycetes

209

Poster 20

phytopathogens,includingthosefromgeneraFusarium,Gibberella,Verticillium,CeratocystisandMagnaporthe.Theclassalsoincludesaprotrophs, some from extreme habitats and holding enzymeswhich have been recently studied for biotechnological purposes.Additionally,twoofthemostimportantmodelspeciesamongfungi-Neurospora crassaandPodospora anserinaareSordariomycetes.Therefore,itisnotasurprisethatthisclasspresentsalargenumberof complete genome sequences publicly available, making theSordariomycetesoneofthemostsuitablefungigroupstoperformcomparative genomics studies. In this work we investigate thepatterns of gene gain and loss in 16 Sordariomycetes, includingsaprotrophs, plant pathogens and fungi pathogens, as well themodels speciesN. crassa andP. anserina.The results indicate aremarkableheterogeneityintheratesofgenegainandlossamongdifferent species.Moreover,we detect strong bias favoring genelossinmanyphytopathogens,includingCryphonectria parasitica,Magnaporthe griseaandespecially,Ceratocystis cacaofunesta.AbiasinfavortogenelosswasalsofoundinthegenusNeurospora,butatasmallerrate.Wehypothesizethatthetendencytogenelosscouldberelatedtoageneralizedoccurrenceofrepeat-inducedpoint(RIP)mutationinthesepathogens,sinceRIPisdescribedinmanySordariomycetes.

PS20-609Various stress conditions induce somatic homologousrecombinationinMagnaporthe oryzaeTakayuki Arazoe1, Shuichi Ohsato1, Tsutomu Arie2, KatsuyoshiYoneyama1,ShigeruKuwata11School of Agriculture, Meiji University, Kanagawa, Japan,2Graduate School of Agricultural Science, Tokyo University ofAgricultureandTechnology,Tokyo,[email protected] rice blast fungusMagnaporthe oryzae iswidely recognizedasoneofthemostvariablepathogensandmanyraceshavebeenidentified.Newpathogenracescanemergethroughmultiplegenemodification mechanisms, such as modifying or removing theAvirulence(Avr)genefromtheirgenome.Inthisstudy,wefocusedon one type of gene modification mechanisms, in M. oryzae,namelyuponsomatichomologousrecombination(HR).InordertodetectHRandcalculateitsfrequency,wedesignedarecombinationsubstrate, two nonfunctional recipient and donor genes froman enhanced yellow fluorescent protein (EYFP) / blasticidine S deaminase (BSD) fusion gene that allowed visual detection ofthe HR events as the restoration of EYFP fluorescence and BStolerance. The constructed substrate genes were transformedintoM. oryzae (isolate Hoku-1) and the effect of various stressconditions were examined using the spores obtained from thetransformants.ChemicalStressconditionsincreasedthefrequencyof HR, especially primary metabolism inhibitors. In addition,HRwas inducedbymethylviologen treatment.Methylviologencauses an overproduction of reactive oxygen species withinM. oryzaecells.Moreover,oneofthefirstplantresponsestomicrobialattack is toproduceextracellular reactiveoxygen speciesaroundthe infection sites.Thus,we inoculated the spores to susceptiblericecultivar (Nihonbare)and reisolatedspores from typicalblastlesions. Reisolated spores showed higher frequency of HR thanoriginal spores. These results suggest that the increased geneticflexibilitymightfacilitateevolutionaryadaptationofM. oryzaetochemicalstressandplantresistance.

PS20-610Genomic and transcriptomic analysis of two ColletotrichumspeciesPamela Gan1, Yoshitaka Takano2, Ri-ichiroh Manabe6, RichardO’Connell3,YasuyukiKubo5,YoshihiroNarusaka4,KenShirasu11RIKEN Plant Science Center, RIKEN Yokohama Institute,Yokohama, Japan, 2Graduate School of Agriculture, KyotoUniversity,Kyoto,Japan,3Max-Planck-InstituteforPlantBreedingResearch, Department of Plant-Microbe Interactions, Germany,4Research Institute for Biological Sciences, Okayama, Japan,

5Graduate School of Life and Environmental Sciences, KyotoPrefecturalUniversity,Japan,6RIKENGenomicSciencesCenter,RIKENYokohamaInstitute,[email protected] of the genus Colletotrichum represent a group ofhemibiotrophic plant pathogens, infecting a wide-range ofcommercially important crops. With the aim of developing abetterunderstandingofthemolecularbasisofdiseasescausedbythisgenus, thegenomesofColletotrichum orbiculare, thecausalagentofcucurbitanthracnose,andColletotrichum gloeosporioides,isolated from strawberry, were sequenced and analysed. Thisrevealed the expansion of the C. orbiculare genome, but nocorrespondingincreaseingenecontent.Candidateeffectorsfrombothgenomeswere identifiedand itwas found that themajorityof small, secreted proteins in gene families were conservedbetweenspecies.TranscriptomicanalysisofC. orbiculareduringpathogenesisofN. benthamianawasperformedprovidinginsightintogenesandprocessesimportantforpathogenestablishmentandmaintenanceofinfection.

PS20-611Genomics, transcriptomics and proteomics analyses of thefungalpathogenCeratocystis cacaofunestaprovidenewinsightsonthecontrolofthewiltdiseaseofcacaoOdalysG.Cabrera1,AlinneB.Ambrosio1,LeandroC.Nascimento2,Paulo J. P. L. Teixeira1, Bruno V. Oliveira1, Daniela P. T.Thomazella1,RicardoA.Tiburcio1,MarcosH.Moraes1,AdrianaF.P.Leme2,MarceloF.Carazzolle1,3, PiotrMieczkowski4,GoncaloA.G.Pereira11Department of Genetic, Evolution and Bioagents, University ofCampinas,SaoPaulo,Brazil,22LaboratorioNacionaldeBiociecias-LNBio,Associacao Brasileira de Tecnologia de Luz Sincrotron,Campinas,SP,Brazil.,3CentroNacionaldeProcessamentodeAltoDesempenho, Universidade Estadual de Campinas, SP, Brazil.,4High-Throughput Sequencing Facility, University of NorthCarolina,ChapelHillNC,[email protected] cacaofunestaisanascomycete(ClassSordariomycetes)thatcausesalethaldiseaseincacao,leadingtogreateconomiclossesintheinfectedareas.Thedevelopmentofcontrolstrategiesreliesontheknowledgeofthepathogenbiologyandontheunderstandingofthemechanismsinvolvedinitsinteractionwiththehost.Inthiscontext, integrated-omicsapproacheshaveproventheirpotentialtoprovidevaluable informationoffungal-plant interactions.Thiswork presents the analysis of theC. cacaofunesta genome (30.4Mbpwith126Xcoverage).Genepredictionshowedtheexistenceof7.200genes,whichwerevalidatedbyRNA-seq.Weobservedadrasticreductioninthenumberofgenefamiliesincomparisontoother Sordariomycetes.Thiswork describes themore contractedgene families and discusses the possible implication of thisphenomenon with the fungus lifestyle. Our results indicate thatC. cacaofunestapresentsrepeat-inducedpointmutation(RIP)forgenomedefense,explainingthelowdensityofgenes.Furthermore,using genomics, transcriptomics and proteomics approaches, wepresentacomprehensiveanalysisofthemitochondrialfunctioninC. cacaofunesta.The fungalmitochondrion appears to contain atotalof1480putativeproteins,ofwhich23.4%(347)wasidentifiedbyLC-MS/MS.Remarkably,threeunknownproteinsandagroupof 35 hypothetical polypeptides are among the experimentallyvalidated proteins. We studied the effects of mitochondrialtargetedinhibitorsonfungalgrowth.Ourresultssuggestapossibleparticipation of the alternative respiratory pathway in the C. cacaofunesta development and open new possibilities to controldiseasescausedbyCeratocystisspecies.

PS20-612Difference in pathogenicity relating genes of Magnaporhe oryzae infecting ryegrass and rice based on next-generationgenomesequencing

Page 212: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession20-Genomicsandevolutionofvirulenceinpathogenicfungiandoomycetes

210

Post

er 2

0

Takao Tsukiboshi1, Takako Kiyoshi1, Ikuko Okabe1, AkiraMasunaka11NAROInstituteofLivestockandGrasslandtuki@affrc.go.jpRyegrass blast by Magnaporhe oryzae is a major disease intemperate regions of Japan and caused by the same fungalspecieswithriceblast.Butitneverattacksriceandahostspecificpathogenicity is differentiated in ryegrass blast.The structure ofgenomesofryegrassblastfungusisknowntodifferfromriceblastonebasedonrep-PCRanalysis,eveniftheyarethesamespecies.Weanalyzed thegenomeof the ryegrassblast fungusbyanext-generation sequencer and compared the pathogenicity relatinggeneswith those of rice blast fungus. In results of 84000 readson sequences, 10692 contigs (29Mb) were obtained and it wasthought to cover about two third of the whole genome.Amongthe pathogenicity relating genes detected, polyketide synthetasegene, protein kinaseC, ubiquitin activating enzyme gene, cyclicAMP depending protein kinase and so on had 100% similaritycomparedwiththoseofriceblastfungusonnucleotidebases.Buttriacylglycerollipasegene,thiamine-pyroricacidsyntheticenzymegene, membrane penetrating protein subunit gene, GTPase Rabgenethatactsasmolecularswitchesonsignalingandsoonrelatingtocellmembranesignaling,had98.8-99.1%similarity.Thegenesthatdifferfromthoseofriceblastfungusareassumedtocontributeto the specific pathogenicity against ryegrass and the possibilitywillbediscussed.

PS20-613Comparative genome structure analysis and screening ofpathogenicityrelatedgenesofMagnaportheisolatesbySOLiDwholegenomeresequencingShingoUrushizaki1,YuhkoKobayashi1,IsseiKobayashi11Grad.Schl.ofRegion.Innova.Studies/LifeSci.Res.Cntr,[email protected] oryzaeisacausalagentofblastdiseaseongramineousplants. Different isolates of the fungus from various host plantsshow different host specificity. Signal perception between theplantandthefungusappeartooccurbynolaterthanpenetrationattempts of the fungus, 18-24h after inoculation. However,molecular basis of nonhost recognition in the early infectionstage still remains to be elucidated.To identify fungal effectors,whichplayimportantrole in theearlysignalperception,genomesequenceof sixMagnaporthe isolates fromrice,commonmillet,foxtail millet, finger millet and crabgrass were re-sequenced bythenextgenerationsequencer,SOLiDandgenomestructureswerecomparedwithreferencegenomeofaM. oryzae rice isolate,70-15.Betweenriceisolates,KEN53-33and84-10B,comparingwith70-15, percentages of genes containing SNPswere considerablylow, whereasmuchmore SNPs containing genes were found ingenomesofcommonmilletandfoxtailmilletisolates.Ontheotherhand, therearemarkedly largenumberof suchgenes inafingermilletandacrabgrassisolates.Theseresultsaresuitabletoknownmolecularphylogenicrelationships,inwhichfingermilletandthecrabgrass isolates are far-related to other isolates.Moreover, 42geneswerescreenedascandidateofriceisolatesspecificeffectorgenes,whicharecommonlypreservedinriceisolatesandabsentinotherisolates.Thesecandidategenescontainedsomewell-knowneffecter genes, such as BAS1. The possibility is suggested thatsomeofthesegenesplayimportantrolesindeterminationofhostspecificityofM. oryzae.

PS20-614Structure of a conditionally dispensable pathogenicitychromosomeofthetomatopathotypeofAlternaria alternataYasunoriAkagi1,TakashiTsuge2,MotoichiroKodama1,31Faculty of Agriculture, University of Tottori, Japan, 2Graduateschool of bioagricultural sciences, University of Nagoya, Japan,3Fungus/mushroomresourceandresearchcenter

[email protected] tomato pathotype of A. alternata, the causal agent of thestem canker of tomato, produces host-specific AAL-toxin andinduces apoptotic cell death on susceptible tomato cells. AAL-toxinisstructurallysimilartoamycotoxinfumonisinproducedbyunrelatedfungiGibberella(Fusarium)spp.AAL-toxinbiosynthetic(ALT)geneclusterconsistsofatleast13geneshomologoustothefumonisinbiosynthetic(FUM)genesinF. verticillioideshasbeenidentifiedinthetomatopathotype.TheALTclusterincludesgenesforpolyketidesynthase(ALT1),cytochromeP450monooxygenase(ALT2)andothers.Functionalanalysisof theALTgenesshowedthatsomeofthemareinvolvedinAAL-toxinbiosynthesisbythepathogenandpathogenicity/virulenceagainstsusceptibletomatoes.TheALT cluster locates only on the 1.0Mb small chromosomefound in the tomato pathotype. Based on biological andpathological observations, the small chromosome was indicatedto be a conditionally dispensable chromosome (CDC) and apathogenicitychromosome.WehaveproposedahypothesisfortheabilitytoproduceAAL-toxinandtoinfectplantcouldpotentiallybe distributed among A. alternata by horizontal transfer of theCDC.ThecompletesequenceoftheCDCofthetomatopathotypehasbeendeterminedusing454FLXsequencing.Thesequencedataled to identificationofmanynovelORFs in addition to theALTgenes,suchasgenesfortransporters,transcriptionfactorsandcellsignaling factors.TheALT cluster is locatedon the subtelomericregions of the CDC and transposase-like sequences were foundaroundthecluster.

PS20-615TheLaeA-likemethyltransferasegene(AaLAE)regulateshost-specifictoxinsproductionandpathogenicityinthefungalplantpathogenAlternaria alternataKazumi Takao1, Yasunori Akagi1, Yoshiaki Harimoto2, TakashiTsuge2,MotoichiroKodama11Faculty of Agriculture, University of Tottori, Japan, 2GraduateSchoolofBioagricultualSciences,UniversityofNagoya,Japantotoro518jp@yahoo.co.jpFilamentousfungiproduceavarietyofsecondarymetabolites.TheLaeAgene,aglobalregulatorofsecondarymetabolites,hasbeenidentifiedinAspergillus nidulans.LaeAencodesmethyltransferaseandregulatesproductionofsecondarymetabolitessuchaspenicillinandaflatoxininAspergillusspp.Inthisstudy,weidentifiedLaeAortholog (AaLAE1) that encodes a methyltransferase by whole-genome draft sequencing of the tomato pathotype ofAlternaria alternata known to produce a toxic secondary metabolite, host-specific AAL-toxin, as a disease determinant on susceptibletomatoes.AAL-toxin production and pathogenicity of AaLAE1-deletedmutantswere significantly reduced and spore productionandhyphalgrowthwerealsoaffected.GeneexpressionoftheAAL-toxinbiosynthetic gene clusterwas reduced in themutant.LaeAhomologues were further identified in the strawberry and applepathotypesofA. alternata anddesignatedAaLAE2 andAaLAE3,respectively.Productionofhost-specificAF-andAM-toxinswasreducedin theAaLAE2andAaLAE3mutant, respectively,withadecreaseofvirulenceoneachhostplant.Themutantsalsoshoweddecreasedaerialhyphalgrowthandsporulation.Thus,AaLAEgenespositivelyregulatehost-specifictoxinsbiosynthesis,pathogenicityandhyphalgrowthoftheA. alternatapathotypes.

PS20-616GeneticchangeofPyricularia griseaindifferenthostgenomeUtut W. Suharsono2, Sri Listiyowati2, Gayuh Rahayu2, AlexHartana21Department of Biology, Bogor Agricultural University, Bogor,INDONESIA,2BogorAgriculturalUniversityututsuharsono2002@yahoo.comGrasshasbeenknownasanalternativehostbesidericeforthericeblastfungus.Theaimofthisstudywastoinvestigatetheabilityof

Page 213: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession21-Structuralbiology

211

Poster 21

geneticchangeofblastfungusofgrassaroundthericefieldwhentheypassedthroughdifferenthostgenome.AssessmentofgeneticchangeduringhostalterationwasinvestigatedthroughthegeneticanalysisofthebasalsamplesofisolatedPyriculariafromDigitaria ciliarisafterinfectionthisisolateintoriceandPanicum repensusingSCARmarkers(Cut1,Erg2,PWL2),rep-Pot2,Amplifiedfragmentlength polymorphism (AFLP) and pathotype. The result of thisstudyshowedthatcrossinfectionofPyriculariad4fromD. ciliarisgrass intoriceinducedgeneticvariationintheirCut1andPWL2markers,AFLP and rep-Pot2 patterns, aswell as pathotype.Theinfectionintosusceptiblericeplantcouldinducedgeneticchangemorehigherthanintoresistantplant.However, theinfectionintodifferentgenusofgrass(P. repens)inducedgeneticchangeonlyinAFLPandrep-Pot2patterns,butnotinSCARmarkers.ResultofthisstudyindicatedthatthecrossinfectionindifferenthostgenomemightinducemicroevolutionofPyriculariad4.

PS20-617EvolutionaloriginoftheconditionallydispensablechromosomescontrollingpathogenicityofAlternaria alternatapathogensYoshiakiHarimoto1,YusukeCho1,ChiakiMase1,AkihisaShinjo1,Rieko Hatta1, Megumi Kawase1,Ayumi Hara1, Hikari Kondou1,Chiho Goto1, Kosuke Hanada2, Yasunori Akagi3, MotoichiroKodama3,MikihiroYamamoto4,KazuyaAkimitsu5,HiroshiOtani5,TakashiTsuge11GraduateSchoolofBioagriculturalSciences,NagoyaUniversity,Nagoya, Japan, 2Plant Science Center, Riken,Yokohama, Japan,3FacultyofAgriculture,TottoriUniversity,Tottori,Japan,4FacultyofAgriculture,OkayamaUniversity,Okayama,Japan,5FacultyofAgriculture,KagawaUniversity,Kagawa,[email protected] filamentous fungus Alternaria alternata includes sevenpathogenic variants (pathotypes), which produce host-specifictoxins (HST)andcausenecroticdiseases indifferentplants.TheHST biosynthetic genes have been isolated from six pathotypes(Japanese pear, strawberry, tangerine, apple, tomato and roughlemon)ofA. alternata.Thegenes forbiosynthesisof each toxinare located at the same locus in the genome, defining a genecluster.TheHSTbiosyntheticgeneclustersof thesixpathotypeswere found to reside on single small chromosomes of <2.0Mb in most strains tested. Loss of the small chromosomes wasobserved in the strawberry, apple and tomato pathotypes, andthesmallchromosomesappeared tobeconditionallydispensable(CD) chromosomes. We determined the structures of the CDchromosomes of the strawberry, apple and tomato pathotypesand identifiedputative toxinbiosyntheticgenecluster regionsonthe chromosomes. Pairwise comparison of the entire regions ofCDchromosomesfromthesepathotypesidentifiedlargesyntenicregionsamongthethreeCDchromosomes.TheregionsincludingHSTgeneclustersareuniquetotherespectivepathotypes,buttheremainingregionsofCDchromosomesfromthethreepathotypesareconserved.Theco-linearorderofgeneshasbeenmaintainedwithintheCDchromosomesofthethreepathotypes.Theseresultssuggest that the CD chromosomes have a common origin, andthat thesyntenicregionsare thecoreof theoriginal,dispensablechromosome.

PS20-618Genome evolution of fungal pathogens from Magnaporthe oryzae/griseacladeMarc-Henri Lebrun1, Ludovic Mallet2, Cyprien Guerin2, HeleneChiapello2,EnriqueOrtega-Abboud3,AnnieGendrault2, JonathanKreplak4,ThomasKroj3,ArnaudCouloux5,CorinneCruaud5,JoelleAmselem4,DidierTharreau3,ElisabethFournier31INRA,URBIOGER,CampusAgroParisTech,Thiverval-Grignon,France, 2INRA,URMIG, 78352 Jouy-en-Josas, France, 3INRA-CIRAD, UMR BGPI, TA 54K, 34398 Montpellier, 4INRA,URGI,78026Versailles,France, 5Genoscope,CentreNationaldesequencage,2rueGastonCremieux,91507Evry,[email protected]

Magnaporthe oryzae is a fungal species complex gatheringpathogensofdifferentPoaceaesthatcausesthemainfungaldiseaseofriceandsevereepidemicsonwheatinSouthAmerica.Thisprojectaims at characterizing genomic determinants and evolutionaryeventsinvolvedintheadaptationoffungitodifferenthostplants.EightstrainsfromM. oryzaespeciescomplexpathogeniconeitherrice,wheat,SetariaorEleusineandonestrainoftherelatedspeciesM. grisea pathogenic on Digitaria, have been sequenced usingNGS.DenovoannotationwascarriedoutwithEugene forgeneandwithREPETfortransposons.MostfrequentfamiliesareLTRretro-transposons,butsomeDNAtransposonswerefound.Repeatscoverabout10-12%ofthesegenomes.Variablegenomesizes(36-42Mb)andgenecontents(12300-20500genes)wereestimatedforthesegenomes,eventhough4genomesweremorefragmented(poorscaffolding,shortand truncatedCDS).OrthoMCLanalysisincludingM. oryzae 70-15 reference genome, identified 20 443clusters, including8154singlecopysharedby-all families(coregenome) and variable number of species-specific gene families(305-1550).Genefamiliesexpectedtobeinvolvedinpathogenicityincluding genes encoding enzymes involved in the biosynthesisof secondary metabolites, enzymes involved in plant cell walldegradationandsmallsecretedpeptidesarecurrentlyanalyzed.12-14%ofthepredictedCDSencodeputativesecretedproteinswithamedian length of 260 aa.A dedicated databasewas developedtofacilitateevolutionaryanalysesandintegrationofRNAseqdatafrominplantainfectionkinetics.Additionalcomparativeanalyseswillbepresented.

PS21-619Structural insights intoTIRdomain and effector function ineffector-triggeredimmunityinflaxandArabidopsisBostjan Kobe1, ThomasVe1, SimonWilliams1,2, LiWan1, MaudBernoux3,PradeepSornaraj2,EmmadeCourcy-Ireland2,JeffreyG.Ellis3,PeterA.Anderson2,PeterN.Dodds31School of Chemistry and Molecular Biosciences, Institute forMolecularBioscience,andCentreforInfectiousDiseaseResearch,University of Queensland, Brisbane 4072, Australia, 2Schoolof Biological Sciences, Flinders University, G.P.O. Box 2100,Adelaide 5001, Australia, 3CSIRO Plant Industry, Canberra,[email protected] plant immunity is initiated through therecognitionofapathogeneffectorproteinbyaplantresistance(R)protein,leadingtotheactivationofplantdefensesandalocalizedcelldeathresponse.Theeffectorsusuallyhaveroles invirulenceandarestructurallydiverse,whileRproteinsgenerallyfallintoafewconservedfamilies.Wehaveusedthefungalpathogenflaxrustinteractionwithflaxasamodelsystemtocharacterizethisprocess.TheflaxRproteinsconsistofacorenucleotide-bindingdomain,an N-terminal Toll-interleukin 1-receptor (TIR) domain, and aC-terminal leucine-rich repeat (LRR) domain. We have shownthedirect interactionof theeffectorproteinsAvrL567andAvrMwithRproteinsL6andM, respectively,andalsodetermined thecrystalstructuresofAvrL567andAvrM.Recently,wedeterminedthecrystalstructureofaTIRdomainfromL6at2.3Aresolution.ThestructurerevealsimportantdifferencesfromthestructuresofmammalianTIRdomains,andhighlightsthreeseparatefunctionallyimportantproteinsurfaces,involvedinoligomerization,interactionwithadownstreamsignalingpartner,andregulatoryintramolecularinteractions, respectively.Wehave also complemented thisworkwith a study of the TIR domains ofArabidopsis proteins RPS4andRRS1,whichwork inconcert toconfer resistance toseveralpathogens.Ourresultsbringusastepclosertounderstandingthemolecularbasisforthediseaseresistanceprocess.

PS21-620Structure analysis of Tomato spotted wilt virus nucleocapsidproteinsKeisukeKomoda1,MasanoriNarita1,MinYao1,IsaoTanaka1

Page 214: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

PosterSession21-Structuralbiology

212

Post

er 2

1

1Faculty of Advanced Life Science, Hokkaido University,Hokkaido,[email protected] spotted wilt virus(TSWV)isamemberofTospovirusgenusinthefamilyBunyaviridae.TSWVinfectsover650plantspeciesincluding many crops. TSWV virions are spherical membrane-bound particles decoratedwith two glycoproteins (Gn,Gc).Thevirions contain three negative/ambisense genomic RNAs (S,M,L),whichareassociatedwithnucleocapsidproteins(NP)andRNApolymerases(LP).NPplaysvariousandsignificantrolesinthelifecycleof thevirus.TheNP-LP-genomicRNAcomplex invirionspossesses an ability to synthesize RNA genomes. InteractionbetweenNPandtheviralglycoproteinsisproposedtoberequiredforthevirionformation.However,thestructureofNPofthegenusTospovirushasnotbeensolved,and the interactionmannerwithotherviralfactorsremains tobeelucidated.Weobtainedcrystalsof recombinant TSWVNPs diffracting to 2.7 Å resolution. Thestructurewas solvedbySADmethodusingaSe-Metderivative.TheasymmetricunitcontainsthreeNPmoleculesformingtrimericring-likestructure.EachoftheN-andCterminaldomainsofNPforms an arm-like structure, which interacts with adjacent NP.Moreover,theinsideofTSWVNPtrimericringshowsthepositivechargerichsurface,suggestingthattheseregionsareexpectedtobegenomicRNAbindingsite.

PS21-621Crystal structure of a flax cytokinin oxidase and interactionstudieswithafungaleffectorLi Wan1, Markus Koeck2, Simon Williams1, Xiaoxiao Zhang1,JeffreyEllis2,PeterDodds2,BostjanKobe11School of Chemistry and Molecular Biosciences, Institute forMolecularBioscience,andCentreforInfectiousDiseaseResearch,UniversityofQueensland,Brisbane4072,Australia,2CSIROPlantIndustry,Canberra,[email protected] flax rust effectorAvrL567-A has been shown to physicallyinteract with the flax resistance protein L6. This interactionactivates the L6 protein, which results in the initiation of thehypersensitive response defense pathway. Using yeast-2-hybridassays and bimolecular fluorescence complementation assaysin planta, we have identified another host protein, the cytokininoxidaseLuCKX1,tointeractwithAvrL567-A.LuCKX1iscloselyrelatedtoAtCKX7,oneofsevenproteinsinArabidopsis thalianaresponsibleforirreversibledegradationofcytokinins.Theseplanthormonesareinvolvedindevelopmentalprocessessuchaslateralroot formation and their cellular concentration changes duringpathogen infection.Currently, the function ofAvrL567-A duringflaxrustinfectionisunknownandweareinterestedindeterminingif the targeting of LuCKX1 promotes pathogen virulence.Interestingly,kineticanalysishasshownthatthecytokininoxidaseactivityofLuCKX1increasesinthepresenceofAvrL567-A.WedeterminedthecrystalstructureofLuCKX1ataresolutionof1.8angstrom.Utilizing the structure ofLuCKX1 and the previouslydetermined AvrL567-A structure, we are investigating theinteractioninterfacebetweenthe twoproteins.Weanticipate thatthiscombinedstructuralandbiochemicalstudywillprovideinsightas to the functionofAvrL567-Aduring infectionand the roleofLuCKX1indiseaseresistanceand/orsusceptibility.

PS21-622TheGTP-formstructureofsmallGTPaseOsRac1,akeyplayerinriceinnateimmunityKen-Ichi Kosami1, Izuru Ohki2, Kokoro Hayashi2, Ryo Tabata2,Sayaka Usugi2, Tsutomu Kawasaki2,3, Atsushi Nakagawa1,ToshimichiFujiwara1,KoShimamoto2,ChojiroKojima11Inst.Prot.Res.,OsakaUniv,Osaka,Japan,22Grad.Sch.Nat.Sci,Nara,Japan,3Sch.ofAgri,KinkiUniv,Nara,[email protected]

Plantshaveanumberofdefensemechanismstoprotectthemfrominfectionbypathogens.InOryza sativa(rice),OsRac1,aplantsmallGTPaseandamemberofRac/Ropfamily,hasemergedasakeyactivatorofdownstreamdefenseprocessesuponelicitormediatedsignaling.Forexample,aconstitutivelyactivatedmutantofOsRac1shows increased resistance to rice bacterial blight disease, dueto an increased formationof reactive oxygen species (ROS) andsubsequentcelldeath.Onthecontrary,adominant-negativemutantofOsRac1showsdecreasedresistance.TheseresultssuggestthatOsRac1playsanimportantroleasamolecularswitchinplantinnateimmunity.However,themolecularmechanismsbywhichOsRac1isactivatedininnateimmunityremainlargelyunknown.Here,wehavedeterminedacrystalstructureofOsRac1atresolutionof1.9Åcomplexedwithanon-hydrolyzableGTPanalogGMPPNP,asafirststepforbetterunderstandingthemolecularmechanismsofdefenseinplants.ThisisthefirstGTP-formstructureoftheplantsmallGprotein.

Page 215: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

213

IND

EX

Abad,Pierre,CS06-1Abbott,JamesC.,PS07-288Abd-El-Haliem,Ahmed,CS01-3, CS04-5Abd-Elsalam,Kamel,PS07-303Abe,Akira,CS14-6,CS19-5, PS13-480,PS19-602Abe,Hiroshi,CS06-4,PS06-276, PS13-464Abe,Mikiko,PS02-109,PS02-135Abidi,Imene,PS01-012Abouelnasr,Hesham,PS08-373Abraham,Anne-Laure,CS13-3Abzalov,Miradham,PS02-096Achenbach,UteC.,PS14-549Adachi,Hiroaki,CS11-5,PS01-064, PS01-065Adachi,Yuka,PS02-098Adam-Blondon,Anne-Françoise, CS11-6Addy,HardialS.,CS05-6Adhikari,BishwoN.,PS04-187Adkar-Purushothama,CharithR., PS08-357Adolfsson,Lisa,PS13-466Afendi,FaritMochamad,PS15-579Ageeva,MarinaV.,PS14-527, PS14-567Aggarwal,Rajat,CS20-4Aguilar,Geziel,PS03-144Aguilera,Veronica,PS09-382Ahern,Kevin,CS17-6Ahmadinejad,Nahal,PL2-2Aho,KukkaK.,PS13-515Akagi,Aya,CS10-3,PS10-388Akagi,Yasunori,PS20-614,PS20-615, PS20-617Akai,Rie,PS02-098Akamatsu,Akira,PL1-3,PS01-013, PS01-015Akano,Fumitake,PS18-595Akhtar,Mohd.S.,PS08-331Akhtar,Nosheen,PS11-417Akhunov,Eduard,PS03-159Akimitsu,Kazuya,PS03-155,PS03-167, PS04-238,PS07-298,PS10-410, PS10-411,PS11-419,PS13-448, PS13-461,PS13-463,PS20-617Akimoto-Tomiyama,Chiharu,CS07-2Akira,Shizuo,OL-1Akiyama,Kohki,PS02-131Alam,Md.Mahfuz,PS13-506Alaux,Ludovic,PS04-225Aldawood,AbdulrahmanS.,PS06-275Alfano,JamesR.,CS07-3,PS07-318, PS07-324,PS07-325Alghamdi,SalemS.,PS06-275Ali,Ashfaq,PS04-241Ali,Md.Emran,PS08-364Ali,Md.Sarafat,PS04-244Ali,Shawkat,PS07-316Almeida,RodrigoP.P.,CS14-3, PS14-548Al-Shihi,AdelA.,PS08-339Al-Sohim,Abdullah,PS05-251Altaf-Ul-Amin,Md.,PS15-579, PS15-581,PS15-582Altmann,Simone,PS13-452AlvesdeSouza,Alessandra,PS14-551

Al-Zaidi,AmalM.,PS08-331Amano,Kanako,PS03-157Amaral,Alexandre,CS03-4Amatya,Salona,PS13-454Ambrosio,AlinneB.,PS20-611Amby,Daniel,PS15-584America,AntoineH.P.,CS01-3Amselem,Joelle,PS20-618Amyotte,Stefan,CS20-1An,Gynheung,CS17-6,PS02-101An,Kyungsook,CS17-6,PS02-101Anda,Mizue,CS18-1Anderluh,Gregor,PS01-072Andersen,KeldE.,PS05-265Andersen,MarkT.,PS14-557Anderson,Claire,CS11-6Anderson,ClaireL.,PS01-033Anderson,JonathanP.,PS11-424Anderson,PeterA.,CS21-5, PS01-092,PS21-619Anderson,Ryan,CS12-5,CS20-4, PS01-045Andersson,MatsX.,PS13-466, PS14-535Ando,Sugihiro,PS08-365Andreasson,Erik,PS04-241Andrews,SimonC.,PS11-414Ane,Jean-Michel,CS15-3,CS17-3Anh,VuVan,PS04-181Anjum,Tehmina,PS11-417Ann,Pao-Jen,PS13-484Antignani,Vincenzo,CS20-4Antoniw,John,CS03-4,PS06-279Antony,Ginny,PS04-195Anurugsa,Bundit,PS05-269Aoi,Ryousuke,PS07-308Aoki,Koh,PS13-441Aono,Toshihiro,PS02-099Aoyama,Chihiro,PS05-256,PS05-257, PS05-258Arakawa,Ryota,CS18-5Arase,Fumi,PS10-397Arazoe,Takayuki,PS20-609Arbuckle,John,PS02-101Arguel,Marie-Jeanne,CS06-1Argueso,Cris,PS10-413Arie,Tsutomu,PS03-160,PS07-309, PS20-609Arikawa,Mikihiko,PS04-184Arima,Sakiko,PS01-068Arima,Susumu,PS02-133Arino,Joaquin,PS07-314Arlat,Matthieu,PS14-546Armstrong,Karen,PS14-554Armstrong,Miles,PS04-199,PS07-299Arora,DilipK.,PS11-415Arribas,Laura,CS16-6Arthur,KierenR.,PS01-061Asai,Shuta,PL3-2,PS07-289Asakura,Nobuhide,PS10-391Asamizu,Erika,CS06-3Asano,Hokuto,PS04-210Asano,Mai,PS03-148Asano,Tomoya,PS03-172Asiegbu,FrederickO.,PS01-058, PS03-149Asman,Anna,PS07-291Asokan,Ramasamy,PS11-415Assenza,Federica,PL2-2

Asurmendi,Sebastian,PS08-369Athinuwat,Dusit,PS05-269,PS14-541Atsumi,Go,PS01-076,PS08-345, PS08-346Atsuta,Yoichi,PS19-599Aubourg,Sebastien,CS11-6Auger,Bathilde,PS18-591Ausubel,Fred,PS10-389Avrova,Anna,CS20-5Ayaka,Hieno,PS05-252Azevedo,RicardoA.,PS11-428Baccari,Clelia,CS14-3,PS14-548Badalyan,Olga,PS07-283Bae,Chungyun,PS13-493Baebler,Spela,PS15-580Baek,JongMin,PS02-117Baek,Kwang-Hyun,PS04-244Baeumlein,Helmut,PS14-535Bahar,Ofir,PS14-533Bahkali,Ali,CS11-3,PS07-303Bai,Yuling,CS04-5,CS13-4Bailey,DerekJ.,CS15-3Bajpai,Vivek,PS04-244Bak,Aurelie,PS08-329,PS08-337Bakker,PeterA.H.M.,CS05-4, PS05-262Bakkeren,Guus,CS20-3,PS20-607Balidion,Johny,CS10-5Balzergue,Coline,PS01-028Banfield,MarkJ.,PL2-3,CS21-4, PS07-299Baniulis,Danas,PS04-186Banzashi,Go,PS13-495Bao,Zhihua,CS18-1Bapaume,Laure,CS13-3Barahona,Emma,PS01-016Barash,Isaac,PS14-564Bardoel,BartW.,PS01-049Barker,DavidG.,PS01-028Barker,GaryL.A.,PS04-183Barrett,GlynA.,PS05-251,PS11-414Barry,Daniel,CS05-1Bartel,Xavier,CS09-2,PS09-377Bartels,Sebastian,PS01-048, PS13-450Bartetzko,Verena,PS07-295Barton,Geraint,PS07-288Bau,Huey-Jiunn,PS19-604Baulcombe,DavidC.,PS01-046Bauters,Lander,PS06-271Bautor,Jaqueline,PS13-440Bayles,Rosemary,PS04-183Beau,Jean-Marie,PS01-075Beaulieu,Ellen,PS14-548Becard,Guillaume,PS01-028Beck,Martina,PS01-022Beckers,Gerold,PS07-286Bedair,Mohamed,PS04-206Bedina,Polona,PS01-072Bednarek,Pawel,PS13-507Beenen,Henriek,CS11-3,PS07-303Bélair,Guy,PS07-316Belter,Natalia,PS07-327Ben,Cecile,PS13-454BenDavid,Roi,PS04-234Benedetti,Manuel,CS19-6Bent,AndrewF.,CS09-4,PS01-082Bentahar,Nadia,CS11-6Berendsen,RoelandL.,PS05-262

IS-MPMI XV CONGRESS AUTHOR INDEX Pages 213-228

OL=OpeningLecture,AL=AwardLecture,PL=PlenaryLecture,CS=ConcurrentSession,PS=PosterSession

Page 216: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

214

IND

EX

Bergelson,Joy,PS13-446Bernoux,Maud,PL5-1,CS21-2, PS01-014,PS21-619Bertels,Frederic,PS14-557Bethke,Gerit,PS01-051Betsuyaku,Shigeyuki,PS13-509Beuter,Christine,PS01-037Beynon,Jim,PS10-395Bhattacharjee,Saikat,CS12-2Bhattacharyya,MadanK.,PS19-606Bi,Fang-cheng,CS15-4,PS04-193Biedenkopf,Dagmar,PS07-317Bielska,Ewa,CS03-5Bijsterbosch,Gerard,PS04-180Bindschedler,LaurenceV.,PS07-288Bini,Andressa,PS03-170Birch,PaulR.J.,PS04-199, PS07-299Bird,DavidM.,PS02-136,PS06-273Birkenbihl,RainerP.,PS04-226Birol,Inanc,PS20-607Bisseling,Ton,PL4-2Biswas,Surojit,PS14-568Blackman,LeilaM.,PS04-184, PS04-188,PS04-189Blanc,Stephane,PS08-329,PS08-337Blancaflor,ElisonB.,PS08-349Blanvillain-Baufume,Servane, PL3-1Bleiss,Wilfrid,CS05-5Block,Anna,CS07-3Bocsanczy,AnaM.,PS14-549Boehlenius,Henrik,PS03-143Boehm,Hannah,PS01-030Boernke,Frederik,PS07-295Bogdanove,AdamJ.,CS14-1, CS19-3,PS07-305,PS07-322Boller,Thomas,PS01-048,PS13-450Bolton,MelvinD.,PS07-319Bolwell,PaulG.,PS19-600Bomblies,Kirsten,CS12-6Bonardi,Vera,PS01-027Bonas,Ulla,PS14-559,PS14-565Bonfante,Paola,PS01-028Bono,Jean-Jacques,PS01-075Boonnadakul,Chatuporn,PS05-269Bordeleau,EmilyA.,PS04-242Borras-Hidalgo,Orlando,CS19-6Borriss,Rainer,CS05-5Bosland,PaulW.,PS04-239Botella,MiguelA.,PS04-201Boudsocq,Marie,PL5-2Bouquet,Alain,CS11-6Boutemy,LaurenceS.,CS21-4Boyd,Lesley,PS04-200Bozkurt,TolgaO.,PL2-3, CS07-6Bradshaw,RosieE.,CS11-4Brar,HargeetK.,PS19-606Brauer,ElizabethK.,PS01-088Braun,Pascal,PS07-294Braus,GerhardH.,PS04-194Braus-Stromeyer,SusannaA., PS04-194Brazil,Dina,PS19-603Breakspear,Andy,CS17-5,PS02-120Brefort,Thomas,PS07-292Brendolise,Cyril,PS14-557Bressendorf,Simon,PS01-039Briggs,AmyG.,CS09-4Brinch-Pedersen,Henrik,PS11-426Broberg,Martin,PS14-526Broberg,MartinE.,PS14-547

Brotman,Yariv,PS04-198Bruce,MyronA.,PS03-159Bruckner,FernandaP.,PS08-370Brunelli,Agostino,PS03-173Brunner,Frederic,PS01-041, PS04-199Brunner,Susanne,CS11-2Bruskin,SergyA.,PS07-293Brutnell,Tom,CS15-1,CS17-6Buecherl,Christoph,PS01-037Buell,C.Robin,PS04-187Buesing,Gabriele,PS04-234Buettner,Daniela,PS14-545Bui,NganT.,PS06-280Burdman,Saul,PS14-533Burikhanov,ShavkatS.,PS02-096Burketova,Lenka,PS04-236Burrow,Meike,CS09-3Bush,Daniel,PS10-413Bush,Jenifer,PL5-2Butterbach,Patrick,CS08-5Buttermann,Dagmar,PS04-192Buxdorf,Kobi,PS05-254Cabral,Adriana,PS04-227Cabrera,OdalysG.,PS20-608, PS20-611Cadle-Davidson,Lance,CS11-6Cahill,DavidM.,PS10-395Cai,Rongman,CS14-4Cai,Xin-Zhong,PS04-235Caillaud,Marie-Cécile,PL3-2,PS07-289Camargo,LuisE.A.,PS03-169Cameron,Robin,PS01-023,PS11-420Campan-Fournier,Amandine,CS06-1Campe,Ruth,PS04-219,PS07-286Cano,LilianaM.,PL2-3,CS19-5, PS19-602Canova,Sophie,PS01-075Cao,Xiuling,PS12-436Cao,Yangrong,PS01-082Capelluto,DanielG.S.,CS20-4Caplan,JeffreyL.,PS08-338Caprari,Claudio,CS19-6Carazzolle,MarceloF.,PS20-611Carella,Philip,PS01-023Cartwright,Gemma,PS04-205Carvalho,LeonardoC.B.,PS03-169Cascardo,RenanS.,PS08-370Caserta,Raquel,PS14-566Cassin,Andrew,CS20-6Castresana,Carmen,PS09-382Castro-Sparks,Anita,PS14-533Catana,Vasile,PS11-420Catanzariti,Ann-Maree,PL5-1, PS04-214Ce,Fang,CS15-4Cernadas,Andres,PS07-322Cernadas,R.Andres,CS14-1Cervone,Felice,CS19-6Cesari,Stella,PS01-012Ceserani,Teresa,PS01-084Cevik,Volkan,PS04-245,PS10-395Chabaud,Mireille,PS01-028Chae,Eunyoung,CS12-6Chai,Jijie,CS21-1Chakrabarty,Pranjib,PS07-323Chakravarthy,Suma,PS01-057Chalupowicz,Laura,PS14-564Chalvon,Veronique,PS01-012Champigny,MarcJ.,PS01-023, PS11-420Champouret,Nicolas,CS19-2Chang,Changqing,PS14-542

Chang,Cheng,CS16-5Chang,JeffreyH.,CS13-2, PS01-054,PS14-568Chang,Junbiao,CS21-1Chang,Xiaoli,PS01-001Chang,Ya-Chun,PS08-363Chang,Zhen-yi,PS13-511Chan-Rodriguez,David,PS03-161Chaparro-Garcia,Angela,PL2-3, PS07-311Chatnaparat,Tiyakhon,PS14-534, PS14-541Chatterjee,Subahdeep,PS14-522Chatterjee,Subhadeep,PS14-548Che,Fang-Sik,PS01-066,PS07-308, PS08-353,PS14-536Che,Yi-Zhou,PS14-530Chen,CartonW.,PS13-470,PS13-471Chen,Chao-Ying,PS09-376,PS14-540Chen,Cheng-En,PS08-358Chen,Gong-you,PS14-530Chen,Hsin-Chuan,PS08-368Chen,Hui,PS01-076,PS08-354Chen,Hui-Ting,PS08-348Chen,Jianghua,PS04-206Chen,Jiongjiong,PS12-433Chen,Kuan-Chun,PS19-604Chen,Letian,PS07-300Chen,Li,PS14-571,PS14-574Chen,Li-Qing,PS04-195Chen,Mei-Ya,PS04-223Chen,Pei-Yin,PS04-222Chen,Rujin,PS04-206Chen,Shen,PS04-213Chen,Shiyan,PS06-270Chen,Shumin,PS12-433Chen,Tianyuan,PS01-011Chen,Wen-Jen,PS05-263Chen,Xi,PS13-492Chen,Xianming,CS20-3Chen,Xiaohua,CS05-5Chen,Xiaolin,CS03-1,PS04-229, PS04-231Chen,Xuemei,CS04-4Chen,Xujun,PS07-304,PS10-398Chen,Yan-Jun,PS04-203Chen,Ying,PS04-199,PS13-437Chen,Yuanling,PS07-300Cheng,Chi-Ping,PS08-340Cheng,Chiu-Ping,PS13-502,PS13-520, PS13-521,PS14-563Cheng,Shun-Fang,PS08-340,PS08-348Cheng,Tun-Fang,PS14-523Cheng,Wei-Shun,PS04-235Cheng,Yuqin,PS08-355Cheong,Kyeongchae,PS15-577Cherk,Candice,CS09-6Chettri,Pranav,CS11-3,CS11-4Chezem,WilliamR.,CS15-5Chi,Myung-Hwan,PS03-150Chiang,KokHoong,PS03-168Chiapello,Helene,PS20-618Chiba,Yukako,PS15-582Chien,I-Ling,PS08-358Chinchilla,Delphine,PS01-024Chmielarz,Marcin,PS04-182Cho,BaikHo,PS01-062,PS11-422, PS13-481,PS13-491,PS13-500Cho,Heejung,PS14-544Cho,SongMi,PS13-491Cho,WonKyong,PS08-335Cho,Yusuke,PS20-617Choi,Doil,PS01-069,PS04-246,

Page 217: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

215

IND

EX

PS08-344,PS13-493,PS13-494Choi,Il-Ryong,CS10-5Choi,Jaeyoung,CS20-2,PS03-150, PS03-174,PS15-577Choi,Min-Seon,PS01-034Choi,SunHee,PS08-342,PS08-347Chong,Sim,PS13-520Chou,I-Chun,PS14-563Christopoulou,Marilena,PS01-087Chronis,Demosthenis,PS06-270Chu,Yu-Ju,PS14-563Chuaboon,Wilawan,PS14-541Chujo,Tetsuya,CS05-1,PS03-171, PS04-224,PS13-458,PS13-485Chuma,Izumi,CS04-6,PS13-459Chungopast,Sirinapa,PS02-126Cimerman,Agnes,PS03-175Clarke,ChristopherR.,CS14-4, PS01-024Claverie,Etienne,PS04-234Clay,NicoleK.,PS01-083,PS01-084Coaker,Gitta,CS16-2,PS01-081, PS13-517Coleman,AlexanderD.,PS06-272Coll,Anna,PS01-072Coll,NuriaSanchez,PS10-397Collemare,Jerome,CS11-3, CS11-4,PS07-303Collinge,DavidB.,PS01-036, PS04-203,PS05-265Collmer,AlanR.,PS01-057,PS13-478Compant,Stéphane,PS03-146Conner,Tony,PS14-554Conrath,Uwe,CS13-1,PS04-219, PS07-286Conti,Gabriela,PS08-369Cook,Charis,PS19-600Cook,DouglasR.,CS17-3,PS02-117, PS02-134Coon,JoshuaJ.,CS15-3Cordewener,JanH.G.,CS01-3Cornelissen,Ben,PL1-2Côté,Olivier,PS07-316Cottaz,Sylvain,PS01-075Couloux,Arnaud,PS20-618Cournoyer,Patrick,PS08-338Cox,MurrayP.,CS11-4Cramer,Rainer,PS07-288Creason,Allison,CS13-2Cruaud,Corinne,PS20-618Cui,Wei,PS14-557Cui,Weier,PS10-412Culhane,John,PS19-603Cullerne,Darren,PS04-189Cullimore,JulieV.,PS01-075Cumagun,ChristianJosephR., PS03-141,PS04-181Cumbie,JasonS.,PS14-568Cuomo,ChristinaA.,CS20-3Curtis,RosaneH.C.,PS06-279Czajkowski,Robert,PS05-249Czihal,Andreas,PS14-535DaRocha,Martine,CS06-1DaSilva,AlineM.,CS14-3Dagdas,Gulay,CS03-5Dagdas,YasinF.,CS03-5,CS04-3, PS04-179Daimon,Hiroyuki,PS19-599Dalby,Melinda,CS04-3Dalmais,Berengere,PS03-175Damasco,OliviaP.,PS19-605Daminova,AminaG.,PS14-527, PS14-567

Danchin,EtienneG.J.,CS06-1Dang,ThuT.,PS13-447Dangl,JefferyL.,PL2-1, PS01-027,PS07-294,PS10-397, PS10-413,PS14-568Davide,Bulgarelli,PL2-2Davidsson,ParR.,PS01-042, PS09-378Davies,Kelli,CS10-6Day,Brad,CS12-4,CS13-2, PS01-054,PS04-187Dayaratne,Sajeewani,CS10-6DeAzevedoSouza,Clarice,PS01-055DeBoer,WaldoJ.,PS05-249DeCourcy-Ireland,Emma,PS21-619DeJonge,Ronnie,CS01-3,PS13-514DelaTorre,Fernando,PS01-093DeLeon,InesP.,PS01-039DeLorenzo,Giulia,CS09-1,CS19-6DeRonde,Dryas,CS08-5DeSain,Mara,PL1-2DeSouza,AlessandraA.,CS14-3, PS14-566DeVleesschauwer,David,CS10-5DeVries,Sacco,PS01-037DeWit,PierreJ.G.M.,CS11-3, CS11-4,PS07-303Dean,Ralph,CS20-2,PS07-296Debellé,Frédéric,PS01-075Debieu,Marilyne,PS13-446DeCourcy-Ireland,Emma,PS01-092Deepak,SaligramaA.,PS13-488Deganello,Juliana,PS10-386DelPozo,Olga,PS01-093Delavault,Philippe,CS18-6, PS18-587,PS18-588,PS18-591Delgado,Magdalena,CS09-2DellaColettaFilho,Helvecio, PS14-551Delourme,Regine,PS18-591Delventhal,Rhoda,PS04-200Demar,Monika,CS12-6Denance,Nicola,CS09-2Deng,Wen-Ling,PS07-315Deng,Yinyue,PS14-542DePamphilis,ClaudeW.,PS18-592Desaki,Yoshitake,PS01-002Desclos-Theveniau,Marie,CS01-6Deslandes,Laurent,PL3-1, CS12-3Détry,Nicolas,PS03-174Devers,Emanuel,PS02-139Devoto,Alessandra,PS19-600Dey,Sanjukta,PS13-513DiGennaro,Peter,PS02-136Dinesh-Kumar,S.P.,PS08-338Ding,Shengli,PS04-229Ding,Shou-Wei,PL8-3Ding,XinShun,PS08-349Ding,Yi,PS04-237Dinh,PhuongKim,PS04-236Dinh,Thi-Sau,PS12-436Dinse,Theresa,CS18-2Diodati,MichelleE.,CS02-6Dixelius,Christina,PS03-154, PS07-291Dizon,TeodoraO.,PS19-605Djordjevic,MichaelA.,PS02-136, PS06-273Dodds,PeterN.,PL5-1,CS21-2, CS21-5,PS01-014,PS21-619, PS21-621Domoki,Monika,PS04-178

Dong,Caihua,PS10-409Dong,Suomeng,PL2-3Dong,Xinnian,CS10-2Dong,Z.,PS04-212Doornbos,RogierF.,PS05-262Doraiswamy,Vanthana,PS04-206Dorati,Federico,PS14-532Dotson,BradleyR.,CS09-6Dou,Daolong,CS20-4Dourado,ManuellaN.,PS11-428Dow,Maxwell,PS14-543Dowling,David,PS19-603Doyle,ErinL.,CS14-1,CS19-3, PS07-322Driguez,Hugues,PS01-075Drucker,Martin,PS08-329,PS08-337Drurey,ClaireL.,PS01-050Dry,IanB.,CS11-6Du,Juan,PS04-180Du,Xiao-Min,PS03-156Du,Xinran,PS13-442Du,Yumei,PS01-011Dubery,IanA.,PS13-467,PS13-473Dubiella,Ulli,PS01-086Dumas,Bernard,PS07-328Durian,Guido,PS01-086Dybal,Katarzyna,PS06-279Ebine,Kazuo,PS13-445Edwards,Owen,PS06-277Egusa,Mayumi,PS04-215Eichenlaub,Rudolf,PS14-564Eickhorst,Thilo,PL2-2Ejima,Chika,PS06-280Ellendorff,Ursula,PS04-228Ellerstrom,Mats,PS13-466,PS14-535Ellis,JeffreyG.,PL5-1,CS21-2, CS21-5,PS01-014,PS21-619, PS21-621Elmore,J.Mitch,PS01-081Elmore,JamesM.,PS13-517Elsaesser,Janett,PS07-320Endo,Naoki,PS02-094Engelsdorf,Timo,CS09-5Enoki,Ayao,PS02-124Epel,BernardL.,CS08-2,PS09-381Epple,Petra,PS10-397Errampalli,Deena,PS04-242Escalon,Aline,PS14-546Eschen-Lippold,Lennart,PS01-040, PS13-452Eulgem,Thomas,PS01-091Ezawa,Tatsuhiro,CS06-3,CS18-5, PS02-110Ezura,Hiroshi,PS13-483Fabro,Georgina,PS07-289Faino,Luigi,PS13-514Fan,Jun,PS04-230Fang,Ce,PS04-193Fanstone,Vicky,PS04-183Farman,Mark,CS04-3Faure,Nathalie,PS13-446Fedorova,Elena,PL4-2Feechan,Angela,CS11-6Feher,Attila,PS04-178Fei,Zhangjun,PS13-478FekihEpLaribi,Rym,CS14-6, PS13-480Felix,Georg,PS01-024Fellers,John,CS20-3,PS03-159Fermaud,Marc,PS03-175FerreiraSantos,Patricia,CS12-4Feussner,Ivo,PS10-383Fiers,MarkA.W.J.,PS13-487,

Page 218: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

216

IND

EX

PS14-554,PS14-557Figueira,Antonio,PS10-386Findlay,KimC.,PS14-531Fisher,Robert,CS02-6Flaskamp,Yannick,PS07-282Fleetwood,Damien,PS02-121Flemetakis,Emmanouil,PS02-138Fliegmann,Judith,PS01-075Flor,Liane,CS02-4Flores,Cristina,CS04-4Flury,Pascale,PS13-450Foley,RhondaC.,PS10-406Foo,Eloise,CS17-4Forester,NatashaT.,PS02-128Forshey,KariL.,CS17-3Fort,Sébastien,PS01-075Fosu-Nyarko,John,PS06-278Fournier,Elisabeth,PS04-225, PS20-618Fradin,Emilie,PS04-228Fraiture,Malou,PS01-041,PS04-199Franceschini,LiviaM.,PS03-170, PS13-516Francesco,Vinale,PS05-261Franck,Bill,PS07-296Frommer,WolfB.,PS04-195Fuerst,Greg,CS15-1Fuji,Kentaro,PS10-405Fujie,Makoto,CS05-6Fujihara,Shinsuke,PS18-589Fujikawa,Takashi,PS04-196Fujimoto,Shunsei,PS02-100Fujimoto,Taketo,PS06-276Fujinaga,Masashi,PS07-309Fujisaki,Koki,PS04-218Fujisawa,Yukiko,PS13-518Fujishiro,Miyako,PS13-519Fujita,Yoshikatsu,CS04-6Fujiwara,Kazuki,PS05-256,PS05-257, PS05-258Fujiwara,Masayuki,PS01-005, PS01-090,PS13-441,PS13-468Fujiwara,Sumire,PS10-392Fujiwara,Tadashi,PS01-077, PS01-090Fujiwara,Toru,PS15-582Fujiwara,Toshimichi,PS21-622Fukada,Fumi,PS03-165Fukai,Eigo,PS02-098Fukao,Yoichiro,PS13-441,PS13-468Fukuda,Hiroo,PS13-509Fukumoto,Takeshi,PS03-167, PS04-238,PS13-461,PS13-463Fukunaga,Satoshi,PS01-008Fukusaki,Eiichiro,PS10-392, PS10-404Fukushima,Setsuko,CS10-3, PS10-388Fukuzawa,Noriho,PS08-351Furuichi,Takuya,PS10-404Furutani,Ayako,CS07-2,PS14-560Furuya,Naruto,PS08-371Furzer,Oliver,PL3-2Futamata,Natsuru,CS04-6Gabriel,DeanW.,PS07-323Gafni,Aviva,PS05-254Gagic,Milan,PS02-130Gagnevin,Lionel,PS14-546Gallie,Jenna,PS05-251Gal-On,Amit,CS08-4Gan,Pamela,PS20-610Gao,Dongli,CS13-4Gao,Lingling,PS06-277

Gao,Mingjun,PS13-438Garcia,AnaV.,PS13-440Garcia,Christel,PS13-466Gargani,Daniel,PS08-329Gartemann,Karl-Heinz,PS14-564Gasciolli,Virginie,PS01-075Gassmann,Walter,CS12-2Gatz,Christiane,PS10-383Gaudin,Zachary,CS18-6,PS18-591Gaulin,Elodie,PS07-328Gauthier,Mathieu,PS18-587Gawehns,Fleur,PL1-2Geiger,Otto,CS02-5Gelvonauskiene,Dalia,PS04-186Gendrault,Annie,PS20-618Genre,Andrea,PS01-028Gentzbittel,Laurent,PS13-454Ger,Marija,PS04-186Germaine,Kieran,PS19-603Gervasi,Fabio,PS01-048Geukes,Melanie,CS06-2Geurts,René,PL4-2Gheyselinck,Jacqueline,PS02-116Gheysen,GodelieveD.,PS06-271, PS10-385Ghoshal,Basudev,PS08-350Giannone,RichardJ.,PS14-564Gibbins,Nicola,PS11-427Gil-Quintana,Erena,PS02-134Gilroy,EleanorM.,PS04-199Giorgiano,ThaisE.,PS14-551Giraldo,MarthaC.,CS04-3, PS04-179Glazebrook,Jane,CS10-1,PS10-384Gleason,Cynthia,PS10-406Gleason,CynthiaA.,PS06-274Glorieux,Cedric,PS13-446Goellner,Katharina,PS04-219, PS07-286Goffner,Deborah,CS09-2,PS09-377Gogolev,YuriV.,PS01-003,PS14-527, PS14-567Gogoleva,NataliaE.,PS01-003, PS14-527Goh,Jaeduk,PS03-152Goldberg,Jonathan,CS20-3Goldenberg,Tzachi,PS04-198Golding,Brian,PS11-420Gomi,Kenji,PS03-155,PS03-167, PS04-238,PS10-410,PS10-411, PS11-419,PS13-448,PS13-461, PS13-463,PS13-464Gonzalez,EstherM.,PS02-134Goodwin,PaulH.,PS04-242Gordon,Anna,PS04-183Goritschnig,Sandra,PL5-3Gorshkov,VladimirY.,PS01-003, PS14-527,PS14-567Goto,Chiho,PS20-617Goto,Derek,CS06-3Goto,Shingo,PS10-388,PS10-393, PS10-403Gottfert,Michael,CS02-4Gough,Clare,PS01-075Grabherr,HeiniM.,PS01-002, PS01-029Graf,Alexander,PS01-073Graham,MichelleA.,CS15-6, PS04-233Grant,Paul,PS04-183Grant,SarahR.,PS14-568Gras,Marie-Christine,PS13-454Greenberg,JeanT.,CS07-1,

CS15-4Greenshields,David,PS19-597Greenspan,Alex,PS02-117Gregersen,PerL.,PS11-426Grieve,VictoriaM.,CS14-2, PS14-531Grimmer,Julia,PS01-047Grimsrud,PaulA.,CS15-3GroMalinovsky,Frederikke,PS01-020Gruden,Kristina,PS01-072,PS15-580Grundler,FlorianM.W.,CS06-2, PS13-456Gu,Biao,CS20-4Gu,Yangnan,PS04-176Guan,Dian,PS02-118,PS02-120Guan,Na,PS03-154Guerin,Cyprien,PS20-618Guiltinan,Mark,CS20-4Guo,Ming,PS07-318Guo,Sumin,PS06-277Guo,Wei,PS13-492Guo,Yanan,CS11-3,CS11-4Guo,Zejian,PS04-230,PS10-398Gupta,Meenu,PS13-489Gupta,YogeshK.,CS04-3,PS04-179Gussin,GaryN.,PS14-563Gust,AndreaA.,PS01-002,PS01-029, PS01-041Gutbrod,Philipp,PS13-456Gutierrez,Emilio,PS01-093Gutjahr,Caroline,CS02-1,CS17-6, PS02-101,PS02-104Guttman,DavidS.,CS01-4,PS14-550, PS14-557Haapalainen,Minna,PS14-532Haas,Dieter,CS05-3Hacquard,Stéphane,CS20-1, PS07-307Haegeman,Annelies,PS06-271Hafren,Anders,PS08-372Haga,Ken,CS02-1Hagiwara-Komoda,Yuka,PS08-342Haigis,Sabine,PS04-201Haikonen,Tuuli,CS08-1Haimi,Perttu,PS04-186Hajdu,Dawn,PS10-413Hakoyama,Tsuneo,PS02-098Halane,Morgan,CS12-2Haldemann,Lisa,PS04-234Halter,Thierry,PS01-037Hamada,Haruyasu,PS13-503Hamada,Satoshi,PL1-3,PS01-005, PS01-090Hamberg,Mats,PS09-382,PS13-466Hamelin,RichardC.,PS20-607Hamilton,JohnP.,PS04-187Hammond-Kosack,Kim,CS03-4, PS06-279Hammoudi,Valentin,PS01-017Han,Cheng-Gui,PS08-373,PS08-374, PS12-436Han,Jing-luan,PS04-213Han,Jung-Heon,PS08-344Han,Yulong,PS08-353Han,Yu-Tsung,PS08-336Hanada,Atsushi,PS11-418Hanada,Kosuke,PS20-617Hanamata,Shigeru,PS13-497, PS13-498Handa,Yoshihiro,PS02-123Hanisch,Susanne,PS03-144Hanley-Bowdoin,Linda,PS08-330Haque,Md.Ashraful,PS13-462,

Page 219: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

217

IND

EX

PS13-474Hara,Ayumi,PS20-617Hara,Chiaki,PS19-601Harada,Takeo,PS08-357Hara-Nishimura,Ikuko,PS13-441Harashima,Satoko,PS03-160Harata,Ken,PS03-163Hardham,AdrienneR.,PL5-1, PS04-184,PS04-188,PS04-189Harimoto,Yoshiaki,PS20-615, PS20-617Harris,CliffordJ.,PS01-046Harrison,MariaJ.,PL4-1Hartana,Alex,PS20-616Hartmann,Anton,CS05-5Hartmann,Nadine,PS14-545Hartung,MaraL.,PS04-195Hasan,Shamim,PS13-456Hase,Yoshihiro,PS02-098Hasegawa,Morifumi,PS10-408Hasegawa,Sachiko,PS05-253Hashimoto,Masahito,PS02-135Hashimoto,Masayoshi,CS16-4Hata,Shingo,PS02-104,PS02-114, PS02-115,PS02-125,PS04-205Hatakeyama,Katsunori,PS13-483Hatsugai,Noriyuki,PS12-430Hatta,Rieko,PS20-617Haubold,Bernhard,PS14-557Hausner,Jens,PS14-545Haweker,Heidrun,PS01-056Hayafune,Masahiro,PS01-032, PS01-063,PS01-068Hayashi,Hideo,PS02-131Hayashi,Kokoro,PS21-622Hayashi,Makoto,CS17-1,PS02-105, PS02-122,PS02-126Hayashi,Nagao,PS10-393,PS10-407Hayashi,Shuhei,CS06-3Hazuma,Kazuya,PS02-098He,Chaozu,PL6-1He,Ping,PL5-2He,ShengYang,PL7-3,CS01-5, PS07-302He,Zuhua,PS13-437,PS13-438Heard,Will,PS01-080Hedden,Peter,PS06-279Hedil,Marcio,CS08-5Hee,Wil,PS04-184Heidrich,KatharinaE.,PL3-1, CS12-3Held,Mark,PS02-107Hennecke,Hauke,PS02-095Henry,ElizabethM.,PS13-517Hensel,Goetz,PS19-598Henty,JessicaL.,PS01-054Heo,WonDo,PS08-362Herath,Harshini,PS06-278Herklotz,Siska,PS01-051Herman,Ran,PS04-198Herschbach,Cornelia,PS02-138Hettich,RobertL.,PS14-564Heuer,Sigrid,PS02-116Hieno,Ayaka,PS05-264Higashi,Shiro,PS02-109Higgins,ColleenM.,PS01-061Higuchi,Masayuki,PS01-010Hikichi,Yasufumi,PS08-333, PS08-341,PS13-457,PS13-489, PS13-490,PS13-504,PS14-538, PS14-539,PS14-556,PS14-571, PS14-574Hill,JohnH.,CS15-6,PS04-233

Hillmer,Rachel,CS15-2Himeno,Misako,CS16-4Hio,Junpei,PS01-073Hirabuchi,Akiko,PS04-217,PS04-225Hirai,Hiroyuki,PS14-536Hirai,MasamiY.,PS15-582Hirai,Tadayoshi,PS13-483Hirakawa,Hideki,PS02-103,PS02-127Hirata,Hisae,PS13-519Hirata,Yuki,PS08-332Hiratsuka,Kazuyuki,PS13-495, PS19-601Hirayama,Junta,CS05-2,CS18-3, PS05-267,PS10-401Hirochika,Hirohiko,PS02-116, PS10-399,PS13-479Hirose,Aya,PS02-114Hirsch,PennyR.,PS11-414Hiruma,Kei,CS04-1,PS01-018Hisamatsu,Tamotsu,PS13-499Ho,Yi-Ping,PS07-281Hoefle,Caroline,CS04-2,PS04-178Hoerger,AnjaC.,CS21-6Hoffmeister,Anne-Katrin,CS02-4Hofmann,Joerg,CS09-5Hofte,Monica,CS10-5,PS06-271Hogenhout,SaskiaA.,CS14-2, PS01-050,PS06-272,PS14-531Holm,Liisa,PS14-526Holm,PrebenB.,PS11-426HoltIII,BenF.,PS10-397Homkratoke,Tanita,PS11-416Hong,Yu-Hau,PS14-563Hopkins,Donald,PS07-323Hoppe,Markus,CS02-4Hoppenau,ClaraE.,PS04-194Horikoshi,Sonoko,PS13-498Horst,Robin,CS09-5Horvath,Diana,CS19-2Hosogi,Naoki,PS04-191Hosokawa-Shinonaga,Yumi,PS10-411, PS11-419Hotta,Yuma,CS04-6Hou,Bi-Huei,PS04-195Housen,Yusuke,PS01-013Houterman,Petra,PL1-2Hovmoeller,MogensS.,PS11-426How,Yi-Han,PS14-561Howes-Podoll,Maegen,CS15-3, CS17-3Howlett,Barbara,CS20-6Hsu,Fu-Chen,PS08-367Hsu,Nai-Tan,PS14-561Hsu,Yau-Heiu,PS08-348,PS08-367, PS08-368Hu,Wen-Chi,PS08-363Hu,Yunfei,CS21-1Hua,L.,PS04-212Huang,Chiung-Huei,PS19-604Huang,Jinguang,PS04-230,PS04-231Huang,Junyan,PS04-240,PS10-409Huang,Shaobai,PS10-406Huang,Tao,PS03-156Huang,Tzu-Pi,PS14-537Huang,Ying-Ping,PS08-348Huard-Chauveau,Carine,PS13-446Hueckelhoven,Ralph,CS04-2, CS09-5,PS04-178Huesmann,Christina,PS04-178Huetten,Marion,CS06-2Hughes,RichardK.,CS21-4Hugill,Cassandra,CS17-4Huh,Aram,CS20-2

Hui,Qiu,PS14-576Huibers,Robin,CS13-4Hulbert,Scot,CS20-3Hummel,AaronW.,CS14-1,CS19-3Hung,Ting-Hsuan,PS08-361Hur,Cheol-Goo,PS13-493Husen,Edi,PS02-137Hwang,Hau-Hsuan,PS14-523Hwang,Hyun-Ju,PS02-117Hwang,Ingyu,PS14-544Hyakumachi,Mitsuro,PS05-264Hyodo,Kiwamu,PS08-352Hyon,Gang-Su,PS04-190,PS04-191, PS13-459Iba,Koh,PS13-498Ibaragi,Kana,CS04-6Ibrahim,Muhammad,PS14-576Ichikawa,Hiroaki,PS13-506Ichikawa,Kaori,PS01-078Ichimura,Kazuya,CS01-2,PS01-045, PS01-067,PS01-073,PS03-155, PS03-167,PS04-238,PS07-298, PS13-461,PS13-463Ichinose,Yuki,PS09-375,PS09-379, PS09-380,PS13-464,PS14-553Ide,Aiko,PS02-133Idehara,Kengo,PS08-346Igarashi,Daisuke,CS15-2Ignatov,AlexanderN.,PS07-293Iida,Yuichiro,PS07-303Iino,Moritoshi,CS02-1Iio,Kentaro,PS09-379Iizuka,Kazuya,PS10-387Ikeda,Kenichi,PS03-153,PS04-191, PS05-259,PS05-260,PS05-266Ikeda,Kyoko,PS04-217Ikeda,Seishi,CS18-1Ikeda,Shun,PS15-579,PS15-581, PS15-582Ikegami,M.,PS08-343Ikeuchi,Rei,PS05-267Ilyas,Muhammad,CS21-6Imai,Keiko,PS01-015Imaizumi-Anraku,Haruko,CS18-1, PS02-122Imamura,Maki,PS01-079Imboden,Lori,PS07-302Imin,Nijat,PS02-136Inada,Noriko,PS04-191Inagaki,Yoshishige,PS09-375, PS09-379,PS09-380,PS14-553Inami,Keigo,PS07-309Inamoto,Atsushi,PS19-601Ingvardsen,ChristinaR.,PS11-426Innan,Hideki,CS19-5Innes,Roger,PS04-176Inoue,Haruhiko,PS10-393,PS10-407Inoue,Kanako,PS03-153,PS05-259, PS05-260,PS05-266Inoue,Tsuyoshi,CS21-3Inoue,Yoshihiro,PS04-190,PS04-210, PS12-431,PS13-459Inoue,Yuki,PS02-114Ionescu,Michael,CS14-3,PS14-548Iqbal,Sadia,PS06-278Irieda,Hiroki,PS04-217,PS07-287Isawa,Tsuyoshi,CS05-2,PS05-267Ishibashi,Kazuhiro,CS08-6,CS21-3, PS08-334,PS08-341Ishida,JulianeK.,CS18-4,PS18-592Ishida,Yutaka,PS13-461,PS13-463Ishiga,Yasuhiro,PS04-206Ishiguri,Futoshi,PS10-387

Page 220: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

218

IND

EX

Ishihama,Nobuaki,CS11-5,PS01-038, PS01-064,PS01-065,PS13-472Ishii,Akira,PS03-147Ishii,Hideo,PS13-488Ishikawa,Atsushi,PS04-215Ishikawa,Kazuya,CS01-2,PS07-290, PS07-312Ishikawa,Masayuki,CS08-6,CS21-3, PS08-334,PS08-341,PS08-364Ishikawa,Toshiki,PS01-007Ishimoto,Masao,PS02-114Ishiwata,Masaki,PS13-499Isobe,Chihiro,CS04-6Isshiki,Masayuki,PS01-025Ito,Akiko,PS04-218Ito,Tsutae,PS03-142,PS03-162Itoh,Makoto,PS13-504Iven,Tim,PS10-383Iwamoto,Saya,PS02-133Izquierdo,Yonanny,PS09-382Izumi,Minoru,PS09-379Izumi,Yuriko,PS03-167,PS04-238Izumikawa,Keiichi,PS03-160Izumori,Ken,PS13-461,PS13-463Jabeen,Amara,PS14-576Jackman,ShaunD.,PS20-607Jackson,RobertW.,PS05-251, PS11-414,PS14-532Jacob,Florence,PS01-004Jacobsen,Evert,PS04-180Jacques,Alban,PS03-146Jafra,Sylwia,PS05-268Jahan,Sultana,PS07-291Jakobsen,Iver,PS02-116Jarsch,IrisK.,PS01-074Javegny,Stephanie,PS14-546Jay,Florence,CS13-3Jayaraman,Dhileepkumar,CS17-3Jelenska,Joanna,CS07-1Jenke-Kodama,Holger,PS01-031Jensen,Birgit,PS15-584Jeon,Hyesung,PS12-434Jeon,Junhyun,CS20-2,PS03-150Jeong,Byeong-ryool,PS07-324Jeong,Heejin,PS13-494Jermakow,Angelica,CS11-6Ji,Hongli,PS06-271Jiang,Chang-Jie,CS10-3,PS10-402, PS10-407,PS11-425Jiang,Shushu,CS01-5Jiang,Wendi,PS14-543Jiao,Jian,CS16-5Jikumaru,Yusuke,PS11-418Jin,Changwen,CS21-1Jin,Dongli,PS14-543Jin,Hailing,PS04-232Jing,Shaojun,CS16-5Jo,Kyoung-Min,PS08-335Jo,SungHwan,PS13-494Jo,Yeonhwa,PS08-335Joe,Anna,PS07-324Joergensen,Kirsten,PS13-477Johansson,OskarN.,PS13-466, PS14-535Johnson,LindaJ.,PS02-128, PS02-130Johnson,Richard,PS02-121,PS02-130Joly,DavidL.,PS20-607Jones,Alex,PS01-056,PS01-080Jones,AlexandraM.E.,CS01-3, PS01-043Jones,CorbinD.,PS14-568Jones,David,PL5-1

Jones,DavidA.,PS01-033,PS04-214Jones,JonathanD.G.,PL3-2, PS01-089,PS07-289Jones,MichaelG.K.,PS06-278Jones,StevenJ.M.,PS20-607Joosten,MatthieuH.A.J.,CS01-3, CS21-6Jorda,Lucia,CS09-2Jordan,Tina,CS11-1,CS11-2, PS04-234Jørgensen,HansJ.L.,PS05-265Judelson,Howard,CS04-4Jun,Yang,PS04-231Jung,HoWon,PS13-510Jung,Kyongyong,PS15-578Jurca,ManuelaE.,PS04-178Kabir,Shahjahan,CS11-3,CS11-4Kado,Tomohiro,PS02-109Kadota,Yasuhiro,PS01-043Kahmann,Regine,PL7-2,PS07-292Kahnt,Joerg,PS07-292Kaido,Masanori,PS01-076,PS08-352Kajimoto,Hirofumi,PS01-066Kajiyama,Kohsuke,PS01-066Kaku,Hanae,PL4-4,PS01-032, PS01-063,PS01-068,PS02-129, PS04-197Kaku,Hisatoshi,PS03-171Kalaitzoglou,Ioanna,PS04-247Kale,ShivD.,CS20-4Kalloniati,Chrysanthi,PS02-138Kamada,Chie,PS09-379Kamakura,Takashi,PS03-147, PS03-157,PS03-160Kamei,Yasuhiro,PS13-509Kametani-Ikawa,Yumi,PS14-560Kamimura,Mayu,PS08-353Kaminaka,Hironori,PS01-038, PS04-215,PS10-397Kaminskyj,Susan,PS19-597Kamiya,Kota,PS01-063,PS01-068Kamiya,Yuji,PS11-418Kamoun,Sophien,PL2-3,CS04-5, CS07-6,CS17-5,CS19-5, CS21-4,CS21-6,PS04-217, PS04-218,PS04-246,PS07-299, PS07-311,PS19-602Kamphuis,Lars,PS06-277Kanai,Satoru,PS05-267Kanaya,Shigehiko,PS15-579, PS15-581,PS15-582Kanda,Ayami,PS14-571Kanehara,Kazue,PS01-019,PS01-060Kanehara,Yoshiko,CS11-5Kaneko,Takakazu,CS02-3,PS02-103, PS02-127Kanematsu,Satoko,PS03-142, PS03-162,PS05-259,PS05-266Kang,Byoung-Cheorl,PS13-494Kang,KyuYoung,PS07-284,PS07-285, PS13-439,PS14-525Kang,Seogchan,PS03-150,PS04-248Kang,Wonhee,PS08-360Kang,Yongsung,CS07-1Kano,Akihito,PS10-410,PS13-461, PS13-463Kanzaki,Hiroyuki,CS19-5,PS04-225Karalias,Georgios,PS02-138Karas,Bogumil,PS02-107Karelina,Darya,CS12-6Kargakis,Modestos,PS04-243KarimiJashni,Mansoor,CS11-3Kariola,TarjaJ.,PS01-042,

PS09-378,PS13-515Kasai,Atsushi,PS08-357Kaschani,Farnusch,CS21-6Kashiwa,Takeshi,PS07-309Katagiri,Fumiaki,CS15-2, PS10-384Kato,Hiroaki,PS04-211Kato,Masahiko,CS08-6Kato,Masashi,PS04-205Katoh,Etsuko,CS08-6,CS21-3Katou,Shinpei,PS10-391Katou,Yuri,PS01-064,PS01-065Katsuragi,Tetsuo,PS15-579, PS15-581,PS15-582Katsuragi,Yuya,PS01-066Kaufman,Jamie,CS19-2Kaundal,Amita,PS13-455Kaupinis,Algirdas,PS04-186Kawaguchi,Masayoshi,CS02-2, CS06-3,CS17-2,PS02-098, PS02-105,PS02-106,PS02-107, PS02-108,PS02-113,PS02-123Kawahara,Chiharu,PS02-131Kawai-Yamada,Maki,PS01-007Kawakita,Kazuhito,PS04-208, PS04-211,PS04-216Kawamoto,Keiichi,PS13-483Kawamura,Kazue,PS08-334Kawamura,Koki,PS13-497Kawamura,Naoko,PS10-399Kawano,Tomonori,PS02-132,PS15-583Kawano,Yoji,PL1-3,PS01-013, PS01-015,PS01-077,PS01-090, PS07-310,PS13-447Kawasaki,Takeru,CS05-6Kawasaki,Tsutomu,CS01-2, PS01-015,PS01-025,PS01-077, PS07-290,PS07-312,PS21-622Kawase,Megumi,PS20-617Kawashimo,Midori,PS03-151Kayama,Miyu,PS01-068Kayano,Yuka,PS18-593Kazan,Kemal,PS10-395Keevil,C.William,PS11-427Keller,Beat,CS11-1,CS11-2, PS04-234Kelloniemi,Jani,PS03-175Kemen,Ariane,PL3-2Kemen,Eric,PL3-2Kemmerling,Birgit,CS10-6, PS01-018,PS01-037Kendrick,MandyD.,PS04-233Keppler,BrianD.,CS09-4Kerio,Susanna,PS01-058Kerry,BrianR.,PS06-279Kezuka,Yuichiro,CS08-6Khamidova,KhurshedeM.,PS04-177Khan,AkhtarJ.,PS08-331,PS08-339Khan,Anar,PS02-130Khang,ChangHyun,CS04-3, PS03-150Khojiev,ZufariddinA.,PS02-096Kiba,Akinori,PS08-333,PS08-341, PS13-457,PS13-489,PS13-490, PS13-504,PS14-538,PS14-539, PS14-556,PS14-571,PS14-574Kida,Chiaki,PS05-259,PS05-266Kida,Tatsuya,PS11-418Kidd,BrendanN.,PS10-395Kieber,Joseph,PS10-413Kigawa,Takanori,PS07-311Kiguchi,So,PS12-431Kikic,Zana,PS01-030

Page 221: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

219

IND

EX

Kikuchi,Shoshi,CS10-5Killiny,Nabil,CS14-3,PS14-548Kim,ChongS.,CS17-2,PS02-107Kim,Chul-Sa,PS13-504Kim,Dosun,PS08-360Kim,EunHye,PS10-412Kim,Hyeran,PS04-201,PS04-246, PS13-445Kim,HyunJung,PS08-344Kim,Jinhee,PS08-360Kim,JungEun,PS13-493Kim,Jung-Gun,PL6-2,PS04-195, PS07-297,PS07-326Kim,Kook-Hyung,PS08-335Kim,MinJo,PS13-510Kim,Minkyun,PS12-434Kim,Myung-Shin,PS04-207Kim,Saet-Byul,PS01-069,PS04-207, PS08-344Kim,SangGon,PS07-284,PS07-285, PS13-439,PS14-525Kim,SangHee,CS12-2Kim,Sang-Cheol,PS02-117Kim,Sang-Tae,CS12-6Kim,Seryun,PS03-150Kim,Seungill,PS01-069Kim,Shin-Young,PS01-069,PS04-207, PS08-344Kim,Soonok,PS03-150Kim,Su-hyun,PS13-500Kim,SunTae,PS07-284,PS07-285, PS13-439,PS14-525Kim,Wol-Soo,PS11-422Kim,Yang,PS03-150Kim,Yong-Min,PS01-069Kim,Yungil,CS15-2Kimura,Kentaro,PS08-341Kimura,Mamiko,PS13-518King,StuartR.F.,PL2-3, CS21-4,PS07-299Kingdom,HeatherN.,CS14-2Kirchberg,Janine,PS14-562Kishi-Kaboshi,Mitsuko,CS01-2, PS13-479Kishimoto,Kyutaro,PS04-197Kisugi,Takaya,CS18-5,PS18-586Kitagawa,Hiroko,PS05-260Kitaoka,Harumasa,PS05-260Kitazawa,Hirotomo,PS05-266Kito,Hideki,PS13-444Kiyoshi,Takako,PS20-612Kladsuwan,Lawan,PS14-541Klauser,Dominik,PS13-450Kleemann,Jochen,CS20-1,PS07-307Klemptner,RobynL.,PS13-467Klingenberg,Hannah,CS18-2Klingler,John,PS06-277Klose,Jana,PS04-204Knappe,Claudia,PS13-513Knepper,Caleb,CS12-4Kobae,Yoshihiro,PS02-104,PS02-114, PS02-115Kobayashi,Issei,PS12-432,PS20-613Kobayashi,Kappei,PS01-076, PS08-345,PS08-346,PS08-354, PS08-364,PS13-506Kobayashi,Masatomo,CS06-4Kobayashi,Mayumi,PS02-098Kobayashi,Michie,PS10-396, PS13-464,PS13-499Kobayashi,Yuhko,PS12-432,PS20-613Kobe,Bostjan,PL5-1,CS21-2, CS21-5,PS01-014,PS01-092,

PS21-619,PS21-621Kobraee,S.,PS19-596Kodama,Motoichiro,PS01-038, PS04-215,PS20-614,PS20-615, PS20-617Koeck,Markus,PL5-1,PS21-621Kogel,Karl-Heinz,PS01-085, PS07-317Kohzaki,Keisuke,PS11-419Koizumi,Emiko,PS08-371Koizumi,Nozomu,PS13-508Koizumi,Yuki,PS03-147,PS03-157Kojima,Chojiro,PS07-290,PS21-622Kokudo-Yamasaki,Yumiko,PS11-419, PS13-448Kolb,Dagmar,PS01-002,PS01-029Komatsu,Ken,CS16-4Komatsu,Kunihiko,PS02-114Kombrink,Anja,CS01-3,CS07-5Komiyama,Kohei,PS13-458Kommander,Eileen,PS01-086Komoda,Eriko,PS01-070Komoda,Keisuke,PS21-620Komori,MarikoOnozawa,PS01-008Komura,Hajime,PS13-501Kon,T.,PS08-343Kondo,Machiko,PS07-308Kondorosi,Adam,AL-1Kondorosi,Eva,AL-1Kondou,Hikari,PS20-617Kong,Dongdong,CS12-5Kong,Lingan,CS03-1,PS04-229Kong,Sunghyung,PS03-150,PS03-164, PS03-166,PS15-578Konrad,Sebastian,PS01-074Kormelink,Richard,CS08-5Korneli,Christin,PS07-324Kosami,Ken-Ichi,PS21-622Koshiba,Seizo,PS07-311Koskinen,Patrik,PS14-526Kosugi,Shunichi,CS19-5,PS19-602Kouchi,Hiroshi,PS02-098,PS02-129Kourtchenko,Olga,PS14-535Kousaka,Yuya,PS08-353Kouzai,Yusuke,PS04-197Kovalski,Irina,PS04-198Kowitwanich,Krissana,PL2-3Kozik,Alexander,PS01-087Krajinski,Franziska,PS02-139Krasileva,Ksenia,PL5-3Kreplak,Jonathan,PS20-618Kretschmer,Matthias,PS04-204Kristiansson,Erik,PS14-535Kroj,Thomas,PS01-012,PS20-618Krompas,Panagiotis,PS02-138Kronbak,Remy,PS11-426Kronstad,Jim,PS04-204Krueger,Antje,PS14-559Krzyzanowska,Dorota,PS05-268Kuan,Tung,PS11-423Kuang,Hanhui,PS12-433Kube,Michael,PS14-576Kubo,Yasuyuki,CS03-6,PS03-151, PS03-163,PS03-165,PS07-306, PS10-392,PS13-451,PS13-483, PS20-610Kubota,Masaharu,PS07-303Kuchitsu,Kazuyuki,PS13-497, PS13-498,PS13-503Kucho,Ken-ichi,PS02-109,PS02-135Kuefner,Isabell,PS01-030Kuehn,Anika,PS04-194Kugimiya,Soichi,CS06-4

Kuhle,Katja,PS01-051Kulak,Karolina,PS13-507Kulasekaran,Satish,PS09-382Kumakura,Naoyoshi,PS08-366Kumari,Selva,CS21-6Kumasaka,Mayu,PS03-147Kumlehn,Jochen,PS19-598Kung,Yi-Jung,PS19-604Kunoh,Hitoshi,PS05-253Kuo,Hsiao-Che,PS03-149Kuras,Anita,PS14-573Kurusu,Takamitsu,PS13-497, PS13-498,PS13-503Kusaba,Motoaki,CS04-6Kusajima,Miyuki,CS05-2,PS10-401Kusaka,Masatoshi,PS04-191Kusama,Masahiro,PS13-495Kusch,Harald,PS04-194Kusumanegara,Kusumawaty,PS08-352Kusunoki,Keizo,PS03-160Kuwata,Shigeru,PS20-609Kwaaitaal,Mark,PS03-144Kwak,June,CS12-5Kwon,Chian,PS04-201Kwon,Junyoung,PS12-434Kyndt,Tina,PS06-271,PS10-385Labate,CarlosA.,PS03-170,PS13-516Labate,MonicaT.V.,PS03-170Lachaud,Christophe,PS01-075Lahaye,Thomas,PL8-1,PS07-320Lai,Erh-Min,CS14-5,PS14-523, PS14-528,PS14-540Lai,MingWei,PS04-220Lalonde,Sylvie,PS04-195Lalusin,AntonioG.,PS19-605Lamont,IainL.,PS02-128Landgraf,Ramona,PS13-452Lane,GeoffreyA.,PS02-128Lang,Ping,PS06-270Langenbach,CasparJ.G.,PS04-219, PS07-286Lanz,Christa,CS12-6Lanzuise,Stefania,PS05-261Larios-Zarate,Guadalupe,PS01-006Larrainzar,Estibaliz,CS17-3, PS02-117,PS02-134Lavelle,Dean,PS01-087Lawrence,ChristopherB.,CS20-4Lawrence,StaceyA.,PS01-083Lazar,Ana,PS01-072LeBizec,Bruno,PS18-591LePecheur,Pascal,PS03-175LealJr,GildembergA.,PS10-386Lebeis,SarahL.,PL2-1Lebrun,Marc-Henri,CS20-1, PS20-618Lechat,Marc-Marie,PS18-587Lee,Byoung-Moo,PS14-544Lee,DongYeol,PS13-439Lee,DongJu,PS13-493Lee,Gilwon,PS03-150Lee,Gir-Won,CS20-2,PS15-577Lee,Hee-Kyung,PS13-455Lee,Horim,PL5-2Lee,Hyeyun,PS12-434Lee,Hyun-Ah,PS01-069,PS04-207Lee,Jiyoung,CS07-1Lee,Jung-Youn,PS10-412Lee,Justin,PS01-040,PS01-047, PS01-051Lee,Miin-Huey,PS04-221,PS04-222, PS04-223Lee,Sang-Hyun,PS11-422

Page 222: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

220

IND

EX

Lee,Seonghee,PS01-059,PS13-455Lee,Shu-Chuan,PS08-363Lee,Soon-Gu,PS04-244Lee,Yeunsook,PS04-233Lee,Yi-Ching,PS08-367Lee,Ying-Ling,PS14-523Lee,Yong-Hwan,PL2-4,CS20-2, PS03-149,PS03-150,PS03-164, PS03-166,PS15-577,PS15-578Lee,YuKyung,PS13-481Lefebvre,Benoit,PS01-075Leibman,Diana,CS08-4Leite,ThiagoF.,PS03-170,PS13-516Leman,Scotland,PS01-024Leme,AdrianaF.P.,PS20-611Lenk,Andrea,PS01-009Lenman,Marit,PS04-241Leon-Reyes,Antonio,CS10-4Lepere,Gersende,CS13-3Levander,Fredrik,PS04-241Levi,Noam,PS14-533Levy,Amit,CS08-2,PS09-381Levy,Maggie,PS05-254Lewandowski,Mariusz,PS14-573Li,Bin,PS14-576Li,Chien-Hui,PS14-563Li,Da-Wei,PS08-373,PS08-374, PS12-436Li,Guangyong,PS07-325Li,He-Ping,PS03-156Li,Hua,PS07-311Li,Huali,PS13-492Li,Jian,PS13-511Li,Juan,PS04-193Li,Lei,PL5-2Li,Liping,PS14-576Li,Meng-Ying,PS07-281Li,Shuang-Sheng,PS04-235Li,Shundai,PS01-055Li,Wen,PS04-235Li,Xin,PL4-3Li,Yan,CS05-5Li,Yanping,PS04-230Li,Yi-Ho,PS14-523Li,Yuan-Yuan,PS08-373Li,Yu-Rong,PS14-530Liang,Hua,CS15-4Liao,Chein-Yao,PS04-221Liao,Yu-Cai,PS03-156Lichtenzveig,Judith,PS11-424Liebrand,ThomasW.H.,CS01-3Liller,Corinna,PS01-053Lim,GinnyT.,PS04-214Lim,Se-Eun,PS03-150Lima,AnaC.M.,PS13-516Limpens,Erik,PL4-2Lin,Chia-Hua,PS09-376Lin,Chun-Yi,PS08-361Lin,Chu-Ping,PS13-484Lin,F.,PS04-212Lin,Fengqiu,PS10-408Lin,Hong,PS07-281Lin,Jer-Sheng,CS14-5,PS14-528Lin,Nai-Chun,PS14-532,PS14-561Lin,Na-Sheng,CS08-3,PS08-367, PS08-368Lind,AbigailL.,PS14-568LindbergYilmaz,Jenny,PS03-154Lindow,StevenE.,CS14-3, PS14-534,PS14-548Link,TobiasI.,PS07-301Liou,Ruey-Fen,PS04-220,PS13-484, PS13-486

Listiyowati,Sri,PS20-616Liu,An-Chi,PS13-502Liu,Chengwu,PS02-120Liu,Cheng-Yin,PS14-561Liu,Dongfeng,PS10-398Liu,He,PS14-576Liu,Je-Ruei,PS05-263Liu,Jian-Zhong,CS15-6Liu,Jiqin,PS10-398Liu,Jun,PS01-081,PS13-517Liu,Junfeng,CS03-1Liu,Lin,CS04-4Liu,Shengyi,PS04-240,PS10-409Liu,Tingting,CS21-1Liu,Xingzhong,PS04-229Liu,Xinqiong,PS10-407Liu,Yaoguang,PS07-300Liu,Yingqin,PS14-571Liu,Yule,PS01-011Liu,Z.,PS04-212Liu,Zhe,CS15-4,PS13-511Liu,Zhou,PS08-330Liu,Zixu,CS21-1Lizama-Uc,Gabriel,PS03-161Lloyd,SimonR.,PS13-475Loake,GaryJ.,CS13-6Lobina,IrishT.,PS19-605Loehr,Julia,PS01-040Loehrer,Marco,PS07-282,PS07-286Loginicheva,Ekaterina,PS14-575Loh,PekChin,PS01-025,PS03-168Lohmus,Andres,PS08-372Lohuis,Dick,CS08-5Lojkowska,Ewa,PS05-268Long,SharonR.,CS02-6Longatto,DanielP.,PS03-169Loonen,AnneliesE.H.M.,CS13-4Lopez-Lara,IsabelM.,CS02-5Lorenz,Christian,PS14-545Lorito,Matteo,PS05-261Lott,Shaun,PS02-121Lowe,RohanG.T.,CS20-6Lu,Ashley,PS14-557Lu,Der-Kang,PS14-563Lu,Hua,CS12-5Lu,Kuan-Min,PS14-537Lu,Xunli,PS07-288Lund,Steven,PS14-558Lundberg,DerekS.,PL2-1Lyngkjaer,Michael,PS01-036, PS04-203,PS13-453,PS13-477Ma,JianFeng,PS02-112Ma,Ka-Wai,CS01-5Ma,Lay-Sun,CS14-5Ma,Li-Jun,CS20-1Ma,Lisong,PL1-2Ma,Wenbo,CS01-5,CS04-4Ma,Wen-Xiu,PS14-530MacDiarmid,Robin,PS01-061Mace,Wade,PS02-121Machado,MarcosA.,PS14-551, PS14-566Macherel,David,PS18-587Machida,Yasunori,PS14-572Macia,Jean-Luc,PS08-329,PS08-337Mackey,David,PS14-535MacLean,AllysonM.,CS14-2, PS14-531MacLean,Daniel,PS01-022Macleod,Mitch,PS11-420Maeda,Junko,CS15-3Maeda,Satoru,PS11-425Maejima,Kensaku,CS16-4

Maekawa,Shugo,PS01-021,PS01-071, PS13-443,PS13-468Maekawa,Takaki,PS01-004,PS02-105, PS07-288Maffei,MassimoE.,PS06-272Magculia,NicoleJohnF.,PS03-141Magne,Maxim,PS07-316Magori,Shimpei,PS02-108Mahmood,Riaz,PS11-415Mailhac,Nathalie,PS03-146Maita,Hiroko,PS02-103,PS02-127Makarova,OlgaV.,PS14-531Makinen,Kristiina,PS08-372Maldonado-Bonilla,Luis,PS01-040Mallet,Ludovic,PS20-618Manabe,Ri-ichiroh,CS18-4, PS18-594,PS20-610Manabe,Yuzuki,CS09-3Manacorda,CarlosAugusto,PS08-369Mangravita-Novo,Arianna,PS14-549Manners,JohnM.,PS10-395Manulis-Sasson,Shulamit,PS14-564Mao,Ching-Hua,PS08-363Marco,Yves,CS09-2,PS09-377Marcos,Ruth,PS09-382Marra,Roberta,PS05-261Marsudi,Sidik,PS19-599Martens,HelleJuel,CS09-3Martin,Francis,CS20-4Martin,GregoryB.,PS01-024, PS01-034,PS07-321,PS13-442, PS13-478Martin,Marta,PS01-016,PS05-255Martinez,EduardoA.,PS01-075Martinez,Marta,PS09-382Martinez,Yves,PS07-328Martinez-Granero,Francisco, PS01-016Martiniere,Alexandre,PS08-329Martins,PaulaF.,PS11-428Maruyama,Tsuyoshi,PS02-094Maruyama,Yosuke,PS01-021,PS01-026, PS13-460Mase,Chiaki,PS20-617Mase,Keisuke,PS01-038Masuda,Shinji,PS10-394Masuda,Yuka,PS13-485Masunaka,Akira,PS03-167,PS04-238, PS20-612Masuta,Chikara,PS08-351,PS08-365Masutani,Iuji,PS07-312Matei,Alexandra,PS01-020Matera,Christiane,PS13-456Mathieu,Guillaume,PS13-454Mathieu,Johannes,PS07-321Matsui,Hidenori,PS01-044,PS13-469Matsumoto,Chuta,PS02-110Matsumoto,Kouhei,PS08-341Matsumoto,Takashi,PS13-458Matsumura,Hideo,CS19-5Matsumura,Hiroyoshi,CS21-3Matsumura,Takeshi,PS08-351Matsumura,Yoko,PS14-572Matsuo,Naoko,PS19-601Matsushita,Akane,PS10-393, PS10-403,PS10-407Matsushita,Yasuhiko,PS13-512Matsuura,Hiroyuki,PS02-124Mattinen,Laura,PS14-532Mauchline,TimH.,PS11-414Mauleon,Ramil,CS10-5Mayer,Kerstin,PS14-564Mazur,MagdalenaJ.,PS01-017

Page 223: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

221

IND

EX

Mazzotta,Sara,PS01-037Mbengue,Malick,PS01-048,PS01-056McBeath,JeniferHuang,PS08-373McCallum,BrentD.,PS20-607McCann,HonourC.,CS01-4, PS14-550,PS14-557McClung,C.Robertson,CS12-5McClymont,Sarah,PS14-569McCormack,Matthew,PL5-2McDowell,JohnM.,CS12-5, CS20-4,PS01-045McGuffin,Liam,PS07-288McHale,Leah,PS01-087McLellan,Hazel,PS04-199,PS07-299Medeot,DanielaB.,CS02-5Meguro,Akane,PS05-253Mehrabi,Rahim,CS11-3,PS07-303Melas,Marisa,PS01-023Meliah,Siti,PS02-137Melotto,Maeli,PS01-052,PS13-476Melzer,Eric,PS01-035Memelink,Johan,CS10-4Meng,Menghsiao,PS08-336Menz,R.Ian,PS01-092Merdinoglu,Didier,CS11-6Mesters,Jeroen,CS07-5Mestre,Pere,CS11-6Miao,Min,PS13-442Michelmore,RichardW.,CS07-1, PS01-087,PS07-327Michtavy,Jennifer,PS14-557Mieczkowski,Piotr,PS20-611Miedes,Eva,CS09-2,PS09-377Miki,Ryuji,PS01-024Mikicinski,Artur,PS14-573Mikkelsen,BoletteL.,PS13-453Mikkonen,Hanne,PS01-042Mikshina,PolinaV.,PS14-527Milani,Samira,CS11-1Milkovic,Dragana,PS15-580Millar,A.Harvey,PS10-406Miller,AnthonyJ.,PS06-279Millet,Yves,PS10-389Mimee,Benjamin,PS07-316Min,Kwang-Hyun,PS11-422,PS13-481Minami,Eiichi,PS03-171,PS04-196, PS04-197,PS13-451,PS13-485, PS13-518Minamisawa,Kiwamu,CS05-2, CS18-1,CS18-3,PS02-103Minato,Nami,CS16-4Mine,Akira,PS08-352,PS10-384Minh,QuangT.,PS14-553Misas-Villamil,Johana,CS06-2Mise,Kazuyuki,PS08-352Mishiba,Kei-ichiro,PS13-508Mistral,Pascale,PS12-429Mitchum,MelissaG.,PS06-270Mitsuda,Nobutaka,PS10-392Mitsuhara,Ichiro,PS10-391, PS10-396,PS13-464Mitsuoka,Chikako,CS19-5, PS04-210,PS04-217Mitsuro,Hyakumachi,PS05-252Mittal,Shipra,PS04-206Miura,Chihiro,CS16-4Miwa,Takuya,PS04-215Miyagawa,Hisashi,PS01-070Miyagawa,Noriko,PS13-472Miyake,Chikako,PS03-155Miyamoto,Ayumi,PS10-410Miyamoto,Koji,PS10-399,PS10-408, PS13-458,PS13-485

Miyamoto,Yoko,PS03-167,PS04-238, PS13-448Miyao,Akio,PS10-399,PS11-425Miyashita,Masahiro,PS01-070Miyashita,Shuhei,CS08-6Miyata,Chika,PS07-308Miyazawa,Hikota,PS02-113Miyoshi,Seika,PS10-410,PS10-411, PS11-419Miyoshi,Takahiko,PS02-126Mizobuchi,Yuki,PS03-167Mizoguchi,Tsuyoshi,PS01-073Mizukubo,Takayuki,PS06-276Mizumoto,Hiroyuki,PS08-333, PS08-341,PS13-489,PS13-504, PS14-538,PS14-539,PS14-556Mochizuki,Shinichi,PS02-132Mochizuki,Susumu,PS13-451Mochizuki,Tomofumi,PS08-332Moeller,BirgerL.,PS13-477Moffett,Peter,CS16-1,PS07-316Mokryakova,MariaV.,PS07-293Molan,YounesY.,PS14-524Molina,Antonio,CS09-2,PS09-377Molinaro,Antonio,PS01-029Monaghan,Jacqueline,PS01-020Monroy-Barbosa,AriadnaL.,PS04-239Montanari,Sara,PS13-454Monteau,Fabrice,PS18-587Monteil,CarolineL.,CS14-4Monteiro-Vitorello,ClaudiaB., PS03-169Montiel,Gregory,PS18-587,PS18-591Montiel,Vera,PS03-154Moon,DavidH.,PS03-170,PS13-516Moon,JuYeon,PS08-362Moraes,MarcosH.,PS20-608, PS20-611Morel,Jean-Benoit,PS01-012Morgant,Guillaume,PS03-175Mori,Hitoshi,PS01-038,PS04-216Mori,Masaki,PS11-425Mori,Masashi,PS13-441Mori,Ryota,PS12-431Mori,Yuka,PS14-539Morikawa,Kyoko,PS04-191Morikawa,Yukino,PS08-341Morillo,Santiago,CS10-6Morimoto,Takumi,PS01-066Morishita,Yoshihiko,PS11-418Morita,AkiHirai,PS15-579Morita,Yuuichi,PS04-191Morris,CindyE.,CS14-4Moscou,Matthew,CS19-2Mosher,StephenL.,CS10-6Mosorin,Hanna,PS14-532Motoyama,Noriko,PL4-4,PS01-063Moury,Benoit,PS12-429Mozetic,Igor,PS15-580Mubarik,NisaRachmania,PS05-250Mucyn,TatianaS.,PS14-568Mudgett,MaryBeth,PL6-2, PS04-195,PS07-297,PS07-326Mun,Jeong-Hwan,PS02-117,PS02-134Mundy,John,CS16-6,PS01-039Muraguchi,Yuichiro,PS07-290Murakami,Ei-ichi,PS02-135, PS10-400Murakami,Shigeyuki,PS11-421Murakami,Tatsuya,PS12-432Murata,Hitoshi,PS02-094Murata,Jun,PS13-501Murata,Yoshiyuki,PS13-503

Murray,JeremyD.,CS17-5, PS02-118,PS02-120Murset,Valerie,PS02-095Myers,Chad,CS15-2Mysore,KirankumarS.,PS01-059, PS04-206,PS13-455,PS14-552Nadal,Marina,CS17-6,PS02-101Nafisi,Majse,CS09-3Nagae,Miwa,PS02-122Nagano,Minoru,PS01-007Nagasawa,Yumiko,PS10-392Nagashima,Yukihiro,PS13-508Nagata,Maki,PS02-135Nagesha,S.N.,PS11-415Nahal,Hardeep,CS01-4Nahar,Kamrun,PS06-271,PS10-385Naito,Satoshi,PS08-342,PS15-582Nakagami,Hirofumi,PS01-044, PS13-469Nakagawa,Atsushi,PS21-622Nakagawa,Tomomi,PL4-4,PS02-129Nakagome,Mariko,PS11-425Nakahama,Katsuhiko,PS19-601Nakahara,KenjiS.,PS08-342, PS08-347Nakahira,Yoichi,PS10-392,PS10-404, PS13-505Nakai,Kana,PS10-404,PS13-505Nakai,Yusuke,PS10-392Nakajima,Azusa,PS02-099Nakamura,Chihiro,PS13-465Nakamura,Hidemitsu,PS13-506Nakamura,Masako,PS01-067Nakamura,Yasukazu,PS02-127Nakamura,Yukiko,PS15-579Nakano,Akihiko,PS13-445Nakano,Masahito,PS13-490Nakano,Takaaki,PS13-472Nakashima,Jin,PS04-206Nakashita,Hideo,CS05-2,CS18-3, PS10-400,PS10-401,PS10-405, PS13-465Nakayama,Akira,PS10-393,PS10-407Nakayashiki,Hitoshi,CS03-3, CS04-6,PS04-191Nakazono,Mikio,PS02-112Nakiri,Kousuke,PS02-110Namba,Shigetou,CS16-4,PS18-592Nanasato,Yoshihiko,PS13-483Narita,Masanori,PS21-620Narusaka,Mari,PS13-482,PS13-483Narusaka,Yoshihiro,PS13-482, PS13-483,PS20-610Nascimento,LeandroC.,PS20-608, PS20-611Natsuaki,K.T.,PS08-343Natsuaki,KeikoT.,PS19-605Natsume,Satoshi,CS19-5,PS19-602Naumann,Kai,PS01-040Navabi,Alireza,PS14-569Navarro,Lionel,CS13-3Navazo,Ana,PS01-016Nawangsih,AbdjadA.,PS02-137Nawrath,Christiane,CS09-3Naznin,HushnaAra,PS05-252Naznin,Most.HushnaAra,PS05-264Negahi,Azam,PS13-454Negi,Juntaro,PS13-498Nekrasov,Vladimir,PL2-3Nelson,RichardS.,PS08-349Nemouchi,Ghislaine,PS12-429Neriya,Yutaro,CS16-4Netsu,Osamu,PS13-519

Page 224: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

222

IND

EX

Nettleton,Dan,CS15-1Neugebauer,Kerri,PS03-159Newman,Mari-Anne,PS01-029Ng,Gina,CS12-5Nga,NguyenT.T.,PS13-459Nguyen,ChiL.,PS14-553Nguyen,DacKhoa,PS05-265Nguyen,LinhT.T.,PS14-555Nguyen,Quoc,CS03-3Nguyen,ThaoT.P.,PS14-555Nguyen,ThuyT.,PS14-555Nicaise,Valerie,PS07-324Nical,Paul,PS06-278Nick,Peter,CS02-1,PS01-001Nicolaisen,Mogens,PS14-531Niefind,Karsten,PL3-1Nielsen,Dahlia,PS06-273Nielsen,MadsE.,PS03-143Niemi,Outi,PS14-526Niimi,Teruyuki,CS06-6Niiyama,Mayumi,CS21-3Nikolaichik,Yevgeny,PS07-283Niks,RientsE.,PS04-200Nilsson,AndersK.,PS13-466, PS14-535Nishida,Soshi,PS03-155Nishide,Keita,PS01-015,PS10-397Nishiguchi,Masamichi,PS01-076, PS08-346,PS08-354,PS08-364, PS13-506Nishihara,Masahiro,PS13-490Nishikiori,Masaki,CS21-3Nishimoto,Nami,PS10-397Nishimura,Aoi,PS02-110Nishimura,MarcT.,PS14-568Nishimura,Marie,PS04-196Nishimura,Satoshi,PS03-155Nishimura,Tomio,PS05-253Nishina,Yuta,PS11-418Nishiuchi,Takumi,PS03-172Nishizawa,Yoko,PS03-171,PS04-196, PS04-197,PS13-451,PS13-463, PS13-485,PS13-518Nissinen,Riitta,PS14-532Niu,Ben,CS05-5Niu,Yajie,PL5-2Noda,Munehiro,PS05-267Noel,Dominique,PS13-454Noel,Laurent,PS14-546Noguchi,Makiko,PS08-371Noguchi,Mami,PS08-346Nojiri,Hideaki,PS10-399,PS10-408, PS13-458,PS13-485Nokso-Koivisto,Jussi,PS14-526Nomura,Hironari,PS10-404Nomura,Kinya,PS07-302,PS07-304Nomura,Mika,PS02-124,PS02-126Nomura,Takahito,CS18-5,PS18-586Nomura,Takumasa,PS03-151Nomura,Yuko,PS01-044,PS13-469Noriyasu,Atsuko,PS02-132Norman,DavidJ.,PS14-549Normantovich,Michael,PS04-198Notsu,Ayumi,PS07-303Noutoshi,Yoshiteru,PS11-418Novakova,Miroslava,PS04-236Nowara,Daniela,PS19-598Nuernberger,Thorsten,CS01-1, PS01-002,PS01-018,PS01-029, PS01-030,PS01-037Nunes,FilipeS.R.,PS03-169Nykyri,JohannaS.,PS14-526Nyunoya,Hiroshi,PS13-462,PS13-474

Oakes,Marie,PS02-136Oberhaensli,Simone,PS04-234Obuchowski,Michal,PS05-268Obulareddy,Nisita,PS01-052Ochiai,Hirokazu,CS07-2,PS14-560Ochoa,Oswaldo,PS01-087O’Connell,Richard,CS20-1, PS07-307,PS20-610Oda,Masashi,PS01-070Oecking,Claudia,PS01-030Ogasawara,Kimi,PS12-430Ogata,Shin-ichi,PS13-495Ogata,Takuya,PS13-512Ogawa,Satoshi,PS13-485Ogawa,Takumi,PS11-418,PS13-449Ogawa,Tetsuhiro,PS02-099Ogiso,Hideki,PS07-309Ogiyama,Hiroshi,PS05-253Ogura,Rieko,PS13-495,PS19-601Oguri,Akinari,PS01-066Oh,Chang-Sik,PS01-034Oh,Mijin,PS02-117Oh,Sang-Keun,PS04-246Oh,Yeonyee,PS07-296Ohara,Toshiaki,PS13-461,PS13-463Ohashi,Yuko,PS13-464Ohki,Izuru,PS21-622Ohki,SatoshiT.,PS08-332Ohkouchi,Takeo,PS13-461,PS13-463Ohme-Takagi,Masaru,PS10-392Ohnishi,Kouhei,PS13-457,PS13-489, PS13-490,PS13-504,PS14-538, PS14-539,PS14-556,PS14-571, PS14-574Ohsato,Shuichi,PS20-609Ohta,Daisaku,PS13-449Ohta,Hiroyuki,PS10-394Ohtani,Kouhei,PS03-155,PS03-167, PS04-238,PS13-461,PS13-463Ohtsu,Mina,PS04-216Ohwaki,Yoshinari,PS18-589Oi,Ryo,PS02-098Oide,Shinichi,PS03-154Ojika,Makoto,PS04-208,PS04-216Oka,Kumiko,PS10-396Okabe,Ikuko,PS20-612Okada,Atsushi,PS13-458Okada,Kazuma,PS13-459Okada,Kazunori,CS10-3,PS01-068, PS03-171,PS10-399,PS10-408, PS13-458,PS13-485,PS13-503Okada,Kiyotaka,PS13-509Okada,Masaaki,PS13-497Okamoto,Satoru,PS02-108Okano,Yukari,CS16-4Okazaki,Masateru,PS11-418Okazaki,Shin,CS02-3Okmen,Bilal,CS11-3,CS11-4Okubo,Takashi,CS18-1Okuda,Jun,PS01-015Okuma,Eiji,PS13-503Okuno,Tetsuro,PS01-008,PS01-076, PS03-145,PS07-287,PS08-341, PS08-352Oldroyd,Giles,PL6-4,CS17-5, PS02-118Oliveira,BrunoV.,PS20-611Olsen,CarlErik,PS13-477Onate-Sanchez,Luis,PS11-424Onishi,Yasuro,PS10-391Ono,Taiki,PS13-519Ono,Yuji,PS01-070Ono,Yukiko,PS03-155

Onouchi,Hitoshi,PS15-582Ooi,Manabu,PS15-581Oome,Stan,PS04-227Ortega-Abboud,Enrique,PS20-618Ortiz-Vazquez,ElizabethL., PS03-161Osada,Yasuyuki,PS02-110Ose,Toyoyuki,PS07-313Oses-Ruiz,Miriam,PS03-158Ossowski,Stephan,CS12-6Osuki,Ken-ichi,PS02-109OSullivan,Donal,PS04-183Otani,Hiroshi,PS11-421,PS20-617Otieno,NicholasA.,PS19-603Otsuka,Kohei,PS15-583Ott,Thomas,PS01-074Ou,Tzu-Ying,PS08-336Oyaizu,Hiroshi,PS02-099Ozaki,Yoshino,PS18-595Ozawa,Rika,PS10-399,PS10-411, PS13-448Pacheco-Trejo,Gilda,PS03-161Pais,Marina,PL2-3Palhares,Alessandra,PS03-169Palloix,Alain,PS12-429Palma,Kristoffer,CS16-6Palm-Forster,Mieder,PS01-040Palva,ErkkiT.,PS14-526Palva,TapioE.,PS01-042,PS09-378, PS13-515Pan,Qinghua,PS04-212Panchal,Shweta,PS13-476Panda,Preetinanda,PS13-487, PS14-554Pandey,AjayK.,PS04-233Panstruga,Ralph,PS07-288,PS07-294Pantelides,IakovosS.,PS04-243Paplomatas,EpaminondasJ.,PS04-243, PS04-247,PS04-248Pappa,Sofia,PS04-243Parada,RoxanaY.,PS11-421Paredes,SurH.,PL2-1Pareja-Jaime,Yolanda,PS01-093Park,Jaejin,PS03-164,PS15-578Park,JeongMee,PS08-362Park,Jongsun,PS03-150,PS03-164Park,JungKwon,PS13-510Park,Kwanghyun,CS15-3Park,Pyoyun,PS03-153,PS04-191, PS05-259,PS05-260,PS05-266Park,Sook-Young,CS20-2,PS03-150, PS03-152,PS03-164,PS03-166, PS15-578Parker,JaneE.,PL3-1,CS12-3, PS13-440Parlange,Francis,PS04-234Parniske,Martin,PL6-3,PS02-105Pasanen,Miia,PS14-526Paszkowski,Uta,CS02-1,CS17-6, PS02-101,PS02-104,PS02-116Paulhiac,Estelle,PS12-429Pauls,K.Peter,PS14-569Pearce,Gregory,PS01-078Pecenkova,Tamara,PS01-045Pecher,Pascal,PS01-051Pedersen,Carsten,PS01-009, PS07-288Pedley,KerryF.,PS04-233Peele,Hanneke,PS03-154Peine,Nora,PL3-1Peine,NoraA.,PS13-440Pel,MichielJ.C.,PS01-049Peng,Hsuan-Yuan,PS18-585

Page 225: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

223

IND

EX

Peng,You-Liang,CS03-1,PS04-229, PS04-230,PS04-231Perchepied,Laure,PS13-446Pereira,GoncaloA.G.,PS20-608, PS20-611Peres,LazaroE.P.,PS10-386Perfus-Barbeoch,Laetitia,CS06-1Perl-Treves,Rafael,PS04-198Peron,Thomas,PS18-587,PS18-588Persson,Mattias,PS03-154Pessi,Gabriella,PS02-095Petek,Marko,PS15-580Petersen,MikaelAgelin,PS15-584Petersen,Morten,CS16-6,PS01-039Petrova,OlgaE.,PS14-527,PS14-567Pham,KieuT.M.,CS03-3Phinney,BrettS.,PS01-081, PS08-338Piater,LizelleA.,PS13-467Pichereaux,Carole,PS01-075Pierron,Romain,PS03-146Pieterse,CorneM.J.,CS05-4, CS06-5,CS10-4,PS01-049, PS05-262Piisila,Maria,PS01-042,PS09-378Pinili,MaritaS.,PS19-605Pinosa,Francesco,PS13-466PiresTomaz,Juarez,PS14-551Pirhonen,Minna,PS14-526,PS14-532Pislewska-Bednarek,Mariola, PS13-507Pitino,Marco,PS06-272Pitman,AndrewR.,PS13-487, PS14-554Pitorre,Delphine,PS01-075Plasencia,Javier,PS01-006Plett,Jonathan,CS20-4Plyusnin,Ilja,PS14-526Poinssot,Benoit,PS03-175Polle,Andrea,PS10-383Pompe-Novak,Marusa,PS15-580Popa,CrinaMihaela,PS07-314Popescu,SorinaC.,PS01-088Porter,Katie,CS13-2,PS01-054Postel,Sandra,PS01-037Potrykus,Marta,PS05-268Pouponneau,Karinne,PS18-591Pouvreau,Jean-Bernard,CS18-6, PS18-587,PS18-591Pouzet,Cecile,CS12-3Pouzoulet,Jérôme,PS03-146Pradhan,BinodB.,PS14-522Pradier,Jean-Marc,PS03-175Prathuangwong,Sutruedee,PS14-534, PS14-541Preuss,Jutta,PS04-178Prieto,ClaraP.,PS07-305Prince,David,PS01-050Prins,Marcel,PS07-320Prithiviraj,Balakrishnan,PS12-435Proels,Reinhard,CS09-5Proeschel,Marlene,CS09-5Pruvost,Olivier,PS14-546Pryor,BarryM.,PS03-173Przetakiewicz,Jaroslaw,PS13-496Puech-Pages,Virginie,PS01-028Puehler,Alfred,CS02-5Pulawska,Joanna,PS14-573Qi,Shan,PS07-305Qiao,Yongli,CS04-4Qiu,Jin-Long,PS13-492Qu,Bo,PS03-156Qu,Xiao-Qing,PS04-195

Quecine,MariaC.,PS03-170, PS11-428,PS13-516Queiroz,MarisaV.,CS03-2Quenouille-Lederer,Julie,PS12-429Quittenden,Laura,CS17-4Radzman,NadiatulA.Mohd,PS02-136Raffaele,Sylvain,PL2-3,CS07-6Raffaello,Tommaso,PS01-058Rafiqi,Maryam,PL5-1,PS07-317Rahat,Ido,PS05-254Rahayu,Gayuh,PS20-616Rahnama,Mostafa,PS02-121Rai,Rikki,PS14-522Rainey,PaulB.,PS05-251,PS14-550, PS14-557Rajamaki,Minna-Liisa,CS08-1Rajaraman,Jeyaraman,PS04-200Ralhan,Anjali,PS10-383Rallapalli,Ghanasyam,PS07-289Ramakrishnan,Pavithra,PS13-487Ramirez,Israel,PS07-320Ramirez-Garces,Diana,PS07-328Ramon-Sierra,Jesus,PS03-161Ranf,Stefanie,PS01-047Ranjan,Manish,PS14-522Ranocha,Philippe,CS09-2, PS09-377Rasmussen,Magnus,CS16-6Rathjen,John,PL7-1Ravensdale,Michael,PL5-1Ravichandran,Sridhar,PS12-435Ravnikar,Maja,PS15-580Rayapuram,Cb.Gowda,PS01-036, PS13-453Records,Angela,PS14-558Redondo-Nieto,Miguel,PS01-016Rees-George,Jonathan,PS14-557Reeves,GregoryP.,PS04-239Rehman,Sajid,PS04-200Reid,JamesB.,CS17-4Reiner,Tina,CS04-2,PS04-178Reinert,Armin,PS02-139Reinhold-Hurek,Barbara,CS18-2Reis,GislaineV.,PS03-169Reisch,Bruce,CS11-6Ren,Feihong,PS12-433Rennenberg,Heinz,PS02-138Rentsch,Doris,PS02-116Rep,Martijn,PL1-2Repas,Timothy,PS19-597Resjo,Svante,PS04-241Reuter,Patrick,PS01-045Rho,Hee-Sool,PS03-150Richter,DavidA.,PS01-031Rickauer,Martina,PS13-454Ridout,ChristopherJ.,PS01-053, PS06-272,PS13-475Riely,BrendanK.,CS17-3, PS02-117,PS02-134Riemann,Michael,CS02-1Rietz,Steffen,PL3-1Rikkerink,ErikH.A.,PS14-557Rincon,Mario,PS05-255Rivas-SanVicente,Mariana,PS01-006Riviere,MariePierre,CS09-2, PS09-377Rivilla,Rafael,PS01-016,PS05-255Robatzek,Silke,CS01-3,PS01-022, PS01-048,PS01-056,PS01-080Roberts,Melinda,PS01-027Robert-Seilaniantz,Alex,PL3-2Robins,RichardJ.,CS18-6Roby,Dominique,PS13-446

Rochange,Soizic,PS01-028RodríguezAlgaba,Julián,PS05-265Rodriguez,MariaCecilia,PS08-369Rodriguez,Patricia,CS10-6Roelsgaard,PernilleS.,PS13-477Rogers,Christian,PS02-120Roine,Elina,PS14-532Rojas,ClemenciaM.,PS13-455Romeis,Tina,PS01-086Roondo,Francesca,PS03-173Rosahl,Sabine,PS13-452Rose,ChristopherM.,CS15-3Rose,LauraE.,CS21-6Rosenberg,Charles,PS01-075Rosenberg,Tally,PS14-533RosieE.,Bradshaw,CS11-3Rosli,HernanG.,PS13-478Ross,Annegret,CS16-3,PS01-018, PS01-019Rossignol,Michel,PS01-075Rosso,Marie-Noëlle,CS06-1Roth,Charlotte,PS04-226Rott,Matthias,PL2-2Roudet,Jean,PS03-175Roux,Fabrice,PS13-446Roux,Milena,CS16-6Rouxel,Thierry,CS20-4Rovenich,Hanna,PS01-020Rowan,Beth,CS12-6Roy,Debanjana,PS13-476Rudd,Jason,CS03-4Rumore,Amanda,CS20-4Ruocco,Michelina,PS05-261Ryan,David,PS19-603Ryder,Lauren,CS03-5Ryu,Jeong-Pil,PS11-422,PS13-481Ryu,StephenB.,PS10-390Saarilahti,Hannu,PS13-515Saeki,Kazuhiko,CS02-3,PS02-112, PS02-127Saga,Hirohisa,PS13-449Sage-Palloix,Anne-Marie,PS12-429Sager,Ross,PS10-412Sago,Yuki,PS19-599Sahonero-Canavesi,DianaX., CS02-5Saida,Yuka,PS02-111Saijo,Yusuke,CS16-3,PS01-018, PS01-019,PS01-060Saikia,Sanjay,PS04-205Saito,Chieko,PS13-445Saito,Hikaru,PS10-394Saito,Katsuharu,PS02-110,PS02-123Saito,Katsunori,PS13-498Saito,Masanori,PS02-110Saitoh,Hiromasa,CS14-6,PS01-008, PS04-179,PS04-217,PS04-218, PS04-225,PS08-345Saitoh,Ken-ichiro,PS03-160, PS13-451Sakaguchi,Ayumu,PS03-165,PS04-196Sakai,Tatsuya,PS02-113Sakamoto,Kazuaki,PS07-290Sakthikumar,Sharadha,CS20-3Sakuragi,Yumiko,CS09-3Sakurai,Kazuo,PS02-132Sakurai,Tamito,CS06-4Salamin,Nicolas,PS02-116SaleemBatcha,RaspudinSaleemBatchab, CS07-5Salisbery,Josh,PS07-296Sanabria,Natasha,PS13-473SanchezVallet,Andrea,CS07-5

Page 226: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

224

IND

EX

Sanchez-Contreras,Maria,PS05-255Sanchez-Rodriguez,Clara,CS09-2, PS09-377Sanchez-Vallet,Andrea,CS09-2, PS09-377Sandin,Marianne,PS04-241Sanfacon,Helene,PS08-350Sanjay,Saikia,PS18-595Sano,Satoshi,PS10-404,PS13-505Sano,Teruo,PS08-357,PS08-359Sari,NitaR.,PS02-137Sarr,PapaS.,PS02-100Sasaki,Atsuko,PS03-162Sasaki,Haruka,PS07-308Sasaki,Kazuhiro,CS18-1Sasaki,Kengo,PS03-157Sasaki,Nobumitsu,PS13-462, PS13-474Sasaki,Ryosuke,PS13-441Sasaki-Sekimoto,Yuko,PS10-394Sasakura-Shimoda,Fuyuko,PS10-403Sasek,Vladimir,PS04-236Sato,Kazuhiro,PS13-459Sato,Kei,PS01-032Sato,MasaH.,PS10-392Sato,Shusei,CS02-3,PS02-098, PS02-103,PS02-107,PS02-108, PS02-112,PS02-127Sato,Tadashi,CS18-1Sato,Takeo,PS01-021,PS01-071, PS13-443,PS13-468Sato,Yosuke,PS01-032Sato,Yuki,PS07-313Sato,Yuko,PS03-171Sato,Yutaka,CS06-6Satoh,Kouji,CS10-5Satou,Mamoru,PS13-499Saucet,SimonB.,PL3-2,PS01-089Saunders,DianeG.O.,PL2-3Savchenko,Alexei,PS07-318, PS14-559Savidor,Alon,PS14-564Saville,BarryJ.,PS20-607Savio,Bruno,PS12-429Savory,ElizabethA.,CS12-4, PS04-187Sawa,Shinichiro,PS06-280Sawada,Yuji,PS15-582Sawers,Gary,PS14-562Sawers,Ruairidh,CS17-6,PS02-101Scala,Felice,PS05-261Schaffrath,Ulrich,PS04-200, PS07-282,PS07-286Schechter,LisaM.,PS14-570, PS14-575Scheel,Dierk,PS01-040,PS01-047, PS01-051Scheibel,Kate,PS01-024Scheller,HenrikVibe,CS09-3, CS09-6Schenk,PeerM.,PS10-395Schenk,Sebastian,PS01-085Schikora,Adam,PS01-085Schirrmeister,Jana,CS02-4Schlaeppi,Klaus,PL2-2Schlupp,Christian,PS07-282Schmidt,ClariceL.,CS14-1Schmidt,Doreen,PS14-565Schneider,KarinE.,PS04-242Schoen,Moritz,PS04-226Schoettle,Sonja,PS10-383Scholl,ElizabethH.,PS02-136Schoonbeek,Henk-jan,PS01-053,

PS13-475Schornack,Sebastian,PL2-3, CS04-5,CS07-6,CS17-5, PS07-311Schreiber,Karl,PL5-3Schreiber,Tom,PS14-565Schuermann,Janine,PS04-192Schultheiss,Holger,PS04-206, PS04-219Schulz,Steve,PS14-545Schulze,Sebastian,PS14-559Schulze,Waltraud,PS01-086Schulze-Lefert,Paul,PL2-2, CS16-5,PS01-004,PS04-201, PS13-445,PS13-507Schumacher,Julia,PS03-175Schweizer,Patrick,PS04-200, PS19-598Schwizer,Simon,CS11-1,PS07-321Scott,Barry,PS04-205,PS04-224, PS18-593,PS18-595Scott,D.Barry,CS05-1Scott,Russell,PS14-558Seeholzer,Sabine,CS11-1Segovia,Vanesa,PS04-185Seidl,MichaelF.,PS01-049Seitz,Nick,CS12-5Sekine,Ken-Taro,PS01-076,PS08-345, PS08-346Senga,Norihisa,CS06-6Senthil-Kumar,Muthappa,PS01-059, PS13-455,PS14-552Seo,Eunyoung,PS01-069,PS13-494Seo,Shigemi,CS06-4,PS06-276, PS10-391,PS10-396,PS13-464Sessa,Guido,PS14-564Seto,Hideharu,PS13-464Seybold,Heike,CS10-6,PS01-086Shabab,Mohammed,CS21-6Shahid,M.S.,PS08-343,PS08-343Shamsi,Keyvan,PS19-596Shan,Libo,PL5-2Shan,Weixing,CS20-4Sharma,Ajay,PS04-244Sharma,P.,PS08-343Sharma,Shailendra,CS14-6Sharma,Shiveta,CS14-6Sharon,Amir,PS04-242Sharpee,WilliamC.,PS07-296Shaw,ElizabethJ.,PS11-414Shaw,Gwo-Chyuan,PS14-528Sheen,Jen,PL5-2,PS14-540Shen,Bing-Nan,PS08-367Shen,Qian-Hua,CS16-5Shen,Qingtang,PS08-330Shenkwen,Lin-Ling,PS08-348Sherwood,JohnS.,PS13-467Sheu,Chih-Teng,PS14-561Shi,Lindan,PS08-374Shi,Yu,PS14-576Shi,Zi,CS20-4Shiba,Nobutake,PS14-539Shibata,Daisuke,PS11-418Shibata,Satoshi,PS02-098Shibata,Yusuke,PS04-208,PS04-216Shibuya,Naoto,PL4-4,PS01-015, PS01-032,PS01-063,PS01-068, PS02-129,PS04-197,PS13-458Shidore,Teja,CS18-2Shigematsu,Yoshio,PS13-461, PS13-463Shigenobu,Shuji,PS02-108Shih,Ming-Che,PS05-263

Shiina,Takashi,PS10-404,PS13-505Shima,Shuhei,PS10-400Shimada,Hikaru,PS01-063Shimada,TakashiL.,PS13-441Shimada,Tomoo,PS13-441Shimamoto,Ko,PL1-3,CS01-2, PS01-005,PS01-007,PS01-010, PS01-013,PS01-015,PS01-025, PS01-077,PS01-090,PS07-290, PS07-300,PS07-310,PS13-447, PS21-622Shimizu,Masafumi,PS05-264Shimizu,Takafumi,PS03-171, PS10-408,PS13-485Shimizu,Takeo,PL4-4,PS03-142, PS03-162Shimoda,Takeshi,CS06-4Shimoda,Yoshikazu,PS02-122Shimoi,Saki,PS05-260Shimomura,Norihiro,PS11-421Shimono,Masaki,CS10-3,CS13-2, PS01-054,PS03-171Shimotani,Koji,PS10-404Shinjo,Akihisa,PS20-617Shinohara,Makoto,PS05-256, PS05-257,PS05-258Shinozaki,Kazuo,PS01-073Shinozaki,Satoshi,CS05-2, CS18-3,PS05-267,PS10-401Shinya,Tomonori,PL4-4,PS01-032, PS01-063,PS01-068Shiraishi,Fumihide,PS15-582Shiraishi,Takuya,CS16-4Shiraishi,Tomonori,PS05-253, PS09-375,PS09-379,PS09-380, PS13-483,PS14-553Shirasu,Ken,CS18-4,PS01-043, PS01-044,PS01-045,PS01-065, PS01-067,PS01-073,PS07-311, PS10-394,PS11-418,PS13-482, PS13-483,PS18-592,PS18-594, PS20-610Shishido,Hodaka,PS10-410,PS10-411, PS13-448Shiu,Shin-han,PS04-187Shlykova,LubovV.,PS01-003Shoji,Hiromi,PS08-365Shorinola,Oluwaseyi,PS01-020Shrestha,Bipna,CS11-6Siarot,LowelaL.,PS02-099Siddique,Shahid,CS06-2,PS13-456Sikorskaite,Sidona,PS04-186Sikorski,Johannes,PS14-533Sillo,Fabiano,PL1-2Silvestro,Daniel,CS09-3Simier,Philippe,CS18-6,PS18-587, PS18-588,PS18-591Simon,Adeline,PS03-175Simon,Vincent,PS12-429Simonsen,HenrikToft,PS15-584Simpson,Wayne,PS02-121,PS02-130Sims-Huopaniemi,Karen,PS01-042, PS09-378Singer,AlexanderU.,PS07-318, PS14-559Singh,KaramB.,PS06-277,PS10-406, PS11-424Singh,Prashant,CS01-6Singh,Seema,PS04-194Sisaphaithong,Thongkhoun,PS02-115, PS02-125Sklenar,Jan,CS01-3,CS04-5, PS01-043,PS01-056,PS01-080

Page 227: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

225

IND

EX

Sliwka,Jadwiga,PS04-182Slootweg,Erik,PS01-046Smedley,Mark,PS01-053Smit,PatrickE.J.,CS01-3Smoker,Matthew,CS21-6Soanes,Darren,PS03-158Sobczak,Miroslaw,PS13-456Sobiczewski,Piotr,PS14-573Soe,KhinM.,PS02-102Soffan,Alan,PS06-275Sogame,Miho,PS01-008Sogawa,Aoi,PS02-126Sohlenkamp,Christian,CS02-5Sohn,KeeHoon,PL3-2,PS01-089Sole,Montserrat,PS07-314Somerville,Chris,CS09-6Somerville,Shauna,CS09-6, PS01-055,PS04-195,PS04-209Somsook,Suthichai,PS05-269Somssich,ImreE.,CS11-1, PS04-226Sone,Teruo,PS07-313Song,Bo,PS03-156Song,Chuangjun,CS21-1Song,Eun-Sung,PS14-544Song,Fengming,PS08-330Song,Junqi,CS09-4Song,Xiu-Shi,PS03-156Sonnewald,Sophia,PS13-452Sonnewald,Uwe,PS13-452Sørensen,Hilmer,PS05-265Sørensen,JensC.,PS05-265Sorgatz,Anika,PS14-565Soriano,Mica,PS07-297Sornaraj,Pradeep,PS01-092, PS21-619Souda,Narumi,CS06-3Souza,SilvanaA.C.,PS03-169Soyano,Takashi,CS17-1Spanu,PietroD.,PL3-3,PS07-288, PS07-305Spiridon,Laurentiu,PS01-046Sreekanta,Suma,CS10-1Srivastava,AvinashC.,PS14-552Sriyudthsak,Kansuporn,PS15-582Stacey,Gary,CS12-1Stacey,Nicola,PS02-118,PS02-120Stahl,Mark,CS10-6Staiger,ChristopherJ.,PS01-054Staiger,Dorothee,PS07-324Stallmann,Anna,PS01-027Staniene,Grazina,PS04-186Stanys,Vidmantas,PS04-186Stare,Katja,PS15-580Stare,Tjasa,PS15-580Staskawicz,Brian,PL5-3Stauber,JenniferL.,PS14-575Stefanato,FrancescaL.,PS04-200Steffenson,Brian,CS19-2Stegmann,Martin,PS01-045Stein,Elke,PS01-085Steinberg,Gero,CS03-5Steinbrenner,Adam,PL5-3Stephens,Amber,PS07-294Stergiopoulos,Ioannis,CS11-3, PS07-303Stirnweis,Daniel,CS11-2, PS04-234Stobvun,Nastacia,PS04-198Stone,Sophia,PS12-435Stork,WilliamF.J.,PL6-2, PS07-297,PS07-326Stougaard,Jens,PL8-2

Stranne,Maria,CS09-3Strauss,Annett,PS07-320Strauss,Tina,PS07-320Stringlis,IoannisA.,PS04-247Stuart,JeffJ.,CS20-4Studholme,DavidJ.,CS14-4, PS04-245Stuttmann,Johannes,PL3-1Su,Jing,PS04-213Suda,Yasuo,PS02-135Sudirman,LisdarManaf,PS05-250Sue,Masayuki,PS13-465Suga,Eri,PS02-098Sugano,Shoji,CS10-3,PS03-171, PS10-388,PS10-393,PS10-402, PS10-407,PS11-425Suganuma,Norio,PS02-098Sugawara,Kyoko,CS16-4Sugimoto,Takuma,PS10-402Sugio,Akiko,CS14-2,PS14-531Sugiyama,Akifumi,PS02-111, PS02-112,PS02-119Sugiyama,Shigeru,CS21-3Suharsono,UtutW.,PS20-616Sumida,Hiroki,PS10-392Summers,Peter,PS11-420Sun,HuiH.,PS01-021,PS13-468Sun,Jing,CS03-1,PS04-229, PS04-231Sun,Wenxian,PS14-543Sundaresan,Venkatesan,PS02-116Sundelin,Thomas,PS15-584Sung,Wilson,PS11-420Surana,Priyanka,CS15-1Suryadi,Yadi,PS05-250Sussman,MichaelR.,CS15-3Suzaki,Takuya,CS17-2,PS02-106, PS02-107,PS02-108,PS02-113Suzaki,Toshinobu,PS04-184Suzina,NataliaE.,PS14-567Suzuki,Akihiro,PS02-133Suzuki,Hideyuki,PS11-418Suzuki,Hiromu,PS10-387Suzuki,Masashi,PS08-356,PS08-365Suzuki,Nobuhiro,PS03-162Suzuki,Yutaka,PS02-123Swamy,H.M.Mahadeva,PS11-415Swiatek,Mariusz,PS04-182Szabo,Les,CS20-3Szczesny,Robert,PS14-559Szczyglowski,Krzysztof,CS17-2, PS02-107Szemenyei,Heidi,CS09-6Tabata,Ryo,PS21-622Tabata,Satoshi,PS02-098,PS02-107, PS02-108,PS02-112,PS02-127Tabei,Yutaka,PS13-483Tada,Yasuomi,PS03-155,PS03-167, PS04-238,PS13-461,PS13-463Tagami,Hideaki,PS14-572Taguchi,Fumiko,PS01-024,PS14-553Taguchi,Yoshito,PS07-298Taira,Suvi,PS14-532Tajima,Shigeyuki,PS02-124, PS02-126,PS13-461,PS13-463Takabayashi,Junji,PL8-4, PS10-399,PS10-411,PS13-448Takabayashi,Kengo,PS10-397Takagi,Hiroki,CS14-6,CS19-5, PS19-602Takagi,Mai,PS09-380Takahara,Hiroyuki,PS07-307Takahara,Masahiro,PS02-108

Takahashi,Akira,CS01-2,PS13-479Takahashi,Fuminori,PS01-073Takahashi,Hideki,PS01-038, PS08-365Takahashi,Hirokazu,PS02-112Takahashi,Yujiro,PS12-431Takai,Ryota,PS01-066Takai,Shoko,PS02-114Takamizawa,Daisuke,PS01-032Takanashi,Kojiro,PS02-111, PS02-112,PS02-119Takano,Makoto,CS02-1Takano,Masao,PS05-256,PS05-257, PS05-258Takano,Mayumi,PS13-462,PS13-474Takano,Yoshitaka,CS04-1, CS11-5,PS01-008,PS01-018, PS03-145,PS04-215,PS04-217, PS07-287,PS13-441,PS13-482, PS13-483,PS20-610Takao,Kazumi,PS20-615Takaoka,Masumi,PS13-474Takatsuji,Hiroshi,CS10-3, PS03-171,PS10-388,PS10-393, PS10-403,PS10-407,PS11-425Takebayashi,Kosuke,PS10-392Takeda,Atsushi,PS08-366Takeda,Naoya,CS17-2,PS02-105, PS02-108,PS02-122,PS02-123Takemoto,Daigo,PS03-151,PS04-205, PS04-208,PS04-211,PS04-216, PS18-593,PS18-595Takeshita,Minoru,PS08-365, PS08-371Takeuchi,Kasumi,CS05-3Takeuchi,Michio,PS03-160Takigawa,Kaori,PS01-067Takita,MarcoA.,PS14-551Takken,Frank,PL1-2Talbot,NicholasJ.,CS04-3, PS03-158,PS04-179Tamaoki,Daisuke,PS10-410,PS10-411Tameling,WladimirI.L.,CS01-3Tamiru,Muluneh,CS14-6,CS19-5, PS13-480,PS19-602Tamura,Yosuke,PS02-114Tan,ChoonMeng,PS07-281Tan,Joanne,PS06-278Tanabe,Shigeru,PS03-171,PS13-518Tanaka,Aiko,PS04-205,PS18-593, PS18-595Tanaka,Atsushi,PS02-098Tanaka,Hirokazu,PS07-302Tanaka,Isao,PS21-620Tanaka,Kaori,PS09-375,PS09-380Tanaka,Kaoru,PS07-306Tanaka,Keiji,PS13-463Tanaka,Ken,PS15-579Tanaka,Masayuki,PS14-538,PS14-556Tanaka,Shigeyuki,PS07-292Tanaka,Yuka,PS01-066Taniguchi,Shiduku,PS10-410, PS10-411,PS13-448Tanimoto,Takumi,PS01-063Tanishita,Youhei,PS02-135Tasset,Celine,PL3-1,CS12-3Tatano,Satoshi,PS03-155Tax,FransE.,CS10-6Tax,Franz,PS01-037Taylor,Greg,PS20-607Taylor,Jen,PS04-189Tee,KevinC.Y.,PS01-033Teillet,Alice,PS06-279

Page 228: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

226

IND

EX

Teixeira,PauloJ.P.L.,PS20-611Templeton,MatthewD.,PS14-557Tena,Guillaume,PL5-2Teper,Doron,PS14-564Teply,Julia,PS02-139Terada,Rie,PS13-447Terakado-Tonooka,Junko,PS18-589Terakura,Shinji,PS14-572Terami,Fumihiro,PS07-303Teraoka,Tohru,PS03-160,PS07-309Terauchi,Ryohei,CS04-6,CS07-4, CS14-6,CS19-5,PS01-008, PS01-012,PS01-077,PS04-179, PS04-210,PS04-217,PS04-218, PS04-225,PS07-310,PS07-313, PS13-480,PS19-602Tews,Helena,PS14-564Tezzoto,Tiago,PS11-428Thakur,Shalabh,CS01-4Thapanapongworakul,Nanthipak, PS02-124Tharreau,Didier,PS04-225,PS20-618Thatcher,LouiseF.,PS10-406Thieme,Frank,PS14-559Thieme,Sabine,PS14-559Thiessen,Nina,PS20-607Thimmegowda,GeethaG.,PS11-415Thoiron,Severine,PS18-587Thomas,MarkR.,CS11-6Thomas,WilliamJ.,PS01-054Thomazella,DanielaP.T.,PS20-611Thomma,BartP.H.J.,CS01-3, CS07-5,PS04-228,PS13-514Thompson,Blaine,PS01-052Thon,Michael,CS20-1Thordal-Christensen,Hans,PS01-009, PS03-143,PS03-144,PS07-288Thota,SrinivasS.,PS14-575Thurow,Corinna,PS10-383Thuy,PhanThiHong,PS05-265Thuy,TranThiThu,PS05-265Tian,Caijuan,PS13-492Tiburcio,RicardoA.,PS20-608, PS20-611Timko,MichaelP.,PS18-594Timpner,Christian,PS04-194Tintor,Nico,CS16-3,PS01-019, PS01-060Tjamos,EleftheriosC.,PS04-243Tjamos,SotiriosE.,PS04-243Tlabot,Nick,CS03-5Todoroki,Yasushi,PS18-587Toeller,Armin,CS11-1,PS04-226Toh,WaiKeat,PS01-025Tojo,Daisuke,PS13-505Toliashvili,Leila,PS01-030Tomaz,JuarezP.,PS14-566Tomczynska,Iga,PS04-182Tominaga,Akiyoshi,PS02-133Tomita,Reiko,PS01-076,PS08-345, PS08-346Tomitaka,Yasuhiro,CS06-4Tomizawa,Taka-aki,PS10-400Tor,Mahmut,PS04-245,PS13-466Toronen,Petri,PS14-526Torregrosa,Laurent,CS11-6Torrena,Pernelyn,PS04-189Toruno,TaniaY.,CS07-3,PS07-318Tosa,Yukio,CS04-6,PS04-181, PS04-190,PS04-210,PS12-431, PS13-459Toth,Reka,PS14-531Toueni,Maoulida,PS13-454

Toyoda,Kazuhiro,PS05-253,PS09-375, PS09-379,PS09-380,PS14-553Tran,Van-Tuan,PS04-194Traore,SyM.,PS14-533Tresch,Nadine,PS04-219Tricoli,David,PS02-134Tringe,SusannahG.,PL2-1Truco,MariaJ.,PS01-087Trujillo,Marco,PS01-045Truman,William,CS10-1Tsai,Ching-Hsiu,PS08-340,PS08-348Tsai,Meng-Shan,PS08-340Tsai,Yun-Long,PS14-523Tsitsigiannis,DimitriosI., PS04-247,PS04-248Tsuchiya,Kenichi,PS08-371Tsuchiya,Tokuji,PS01-091Tsuda,Kenichi,CS15-2,PS10-384Tsuda,Shinya,CS06-4Tsuge,Seiji,CS01-2,CS07-2, PS07-290,PS14-560Tsuge,Takashi,PS03-167,PS04-191, PS04-205,PS20-614,PS20-615, PS20-617Tsuji,Gento,PS03-151Tsujimoto,Atsumi,PS07-310Tsukada,Shuhei,PS02-099Tsukiboshi,Takao,PS20-612Tsushima,Taro,PS08-359Tsuyumu,Shinji,PS13-519Tu,Yi-Tsung,PS08-368Tudzynski,Bettina,PS03-175Tudzynski,Paul,PS03-175,PS04-192Tugizimana,Fidele,PS13-467Turgeon,BarbaraGillian,CS03-2Tyler,BrettM.,CS20-4Tzeng,Jen-Yu,PS07-315Tzima,AlikiK.,PS04-248Uauy,Cristobal,PS04-185Uchibori,Miwa,PS08-356Uchiike,Nobukazu,PS02-103Uchioki,Maki,PS09-380Uchiumi,Toshiki,PS02-109,PS02-135Ueba,Takahiro,PS01-090Ueda,Takashi,PS01-048,PS13-445Uemura,Tomohiro,PS13-445Uestuen,Suayib,PS07-295Ugaki,Masashi,PS08-356Uhlenbroich,Sandra,PS01-075Ullah,WaliMd.,PS14-538,PS14-556Umarov,BakhtiyorR.,PS02-096, PS02-097,PS04-177Umehara,Yosuke,PS02-098Undan,JerwinR.,PS13-480Underwood,William,PS04-195, PS04-209Uno,Yuta,PS14-536Uppalapati,SrinivasaR.,PS04-206Urata,Nobuaki,PS13-495Urawa,Hiroko,PS13-509Uribe,Francisco,PS07-304Urushizaki,Shingo,PS20-613Usmanov,RustamM.,PS02-096Usugi,Sayaka,PS21-622Uwamori,Takahiro,PS05-259, PS05-266Uyeda,Ichiro,PS08-347Vaillancourt,Lisa,CS20-1Valent,Barbara,CS04-3,CS04-6, PS04-179Valenta,JoyC.,PS14-570Valerius,Oliver,PS04-194Valius,Mindaugas,PS04-186

Valkenburg,DirkJan,CS07-5Valkonen,JariP.T.,CS08-1, PS03-149Valls,Marc,PS07-314Valmonte,Gardette,PS01-061VanBuyten,Evelien,CS10-5VanDamme,Mireille,PS04-228VandeWouw,AngleaP.,CS20-6VandenAckerveken,Guido,CS13-4, PS04-227VandenBerg,GrardyC.M.,CS01-3VandenBurg,HarroldA.,PS01-017VanderBurgt,Ate,CS11-3VanderDoes,Dieuwertje,CS10-4VanderEnt,Sjoerd,PS01-049VanderHoorn,RenierA.L., CS06-2,CS21-6VanderWolf,JanM.,PS05-249VanHeerden,Henriette,PS13-473VanLassig,Roman,PS01-086VanLent,JanW.M.,CS08-5VanPoecke,Remco,PS07-320VanStrijp,JosA.G.,PS01-049VanVeen,JohannesA.,PS05-249VanWees,SaskiaC.M.,CS06-5, CS10-4Van’tHof,Pieter,PS07-303Varlese,Rosaria,PS05-261Vater,Joachim,CS05-5Vauzeilles,Boris,PS01-075Ve,Thomas,PL5-1,CS21-2, CS21-5,PS21-619Vega-Arreguin,Julio,CS20-4Velentova,Olga,PS04-236Vellosillo,Tamara,PS09-382Venkateshwaran,Muthusubramanian, CS15-3,CS17-3VerLorenvanThemaat,Emiel, PL2-2,CS20-1,PS07-288, PS07-294,PS13-507Vera-Cruz,Casiana,CS10-5Vera-Cruz,Diana,CS02-5Verhage,Adriaan,CS06-5Verhertbruggen,Yves,CS09-6Vernaldi,Saskia,PS01-004Verniere,Christian,PS14-546Veronesi,Christophe,PS18-587Vetukuri,Ramesh,PS07-291Viaud,Muriel,PS03-175Vicente,Jorge,PS09-382Vieira,MariaL.C.,PS03-169Vinatzer,BorisA.,CS14-4, PS01-024Visser,RichardG.F.,CS13-4, PS04-180Vital,Karine,PS14-546Vlachakis,Georgios,PS01-017Vleeshouwers,VivianneG.A.A., CS04-5,CS19-4,PS04-180Vlot,A.Corina,PS13-513Voinnet,Olivier,CS13-3Voisey,Christine,PS02-121, PS02-130Volkening,JeremyD.,CS15-3Voll,Lars,CS09-5Vossen,Jack,CS04-5Vu,Ba,CS03-3Vy,TrinhThiPhuong,PS04-181, PS04-190Wada,Masayoshi,PS15-581Wada,Tomoya,PS08-332Wafula,Eric,PS18-592Wagner,Stephan,PL3-1

Page 229: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

227

IND

EX

Wahyudi,ArisT.,PS02-137Walcott,Ron,PS14-533Walker,Amanda,CS11-6Wallington,Emma,PS01-053Walter,Stephanie,PS11-426Wan,Li,CS21-2,PS21-619, PS21-621Wang,Chenggang,PS04-240,PS10-409Wang,Dawei,CS03-1,PS04-229, PS04-231Wang,Ertao,CS17-5Wang,Fengpin,PS07-300Wang,Jian-Hua,PS03-156Wang,Jianying,PS06-270Wang,Jingyu,CS13-3Wang,Ke-Shuang,PS08-355Wang,Kuan-Chung,PS14-563Wang,Lei,PS14-543Wang,Li,CS14-1,PS04-212, PS07-322Wang,Lin,CS10-1,CS15-1Wang,Ling,PS04-212Wang,Ming,PS04-232Wang,Nian,PS14-548Wang,Pauline,PS14-557Wang,Qi,CS05-5Wang,Qunqing,CS20-4Wang,Ruijin,CS03-1Wang,Shichen,PS03-159Wang,Tan-Tung,PS08-358Wang,Weixiang,CS03-1Wang,Xianbing,PS08-374Wang,Xiaohong,PS06-270Wang,Xiaoyu,PS07-300Wang,Xiao-Yu,PS03-156Wang,Xiben,PS20-607Wang,Xu,PS10-412Wang,Yiming,PS07-284,PS07-285, PS13-439,PS14-525Wang,Ying-Ju,PS13-521Wang,Yu,CS13-3Wang,Yung-Chun,PS14-561Ward,Eric,CS19-2Watanabe,Akiko,PS02-103Watanabe,Satoru,PS07-311Watanabe,Tomokazu,PS09-379Watanabe,Yuichiro,PS08-366Webb,JeremyS.,PS11-427Wei,Hai-Lei,PS01-057Wei,Zhongmin,CS19-1Weiberg,Arne,PS04-232Weidner,Stefan,CS02-5Weigel,Detlef,CS12-6Weitzel,Corinna,PS15-584Welbaum,Greg,PS14-533Wenig,Marion,PS13-513Weretilnyk,Elizabeth,PS11-420Wesolowska,Kinga,PS14-562Wessling,Ralf,PS07-288,PS07-294Westphall,MichaelS.,CS15-3Whigham,Ehren,PS07-305White,FrankF.,PS04-195Whitham,StevenA.,CS15-6, PS04-233Wicker,Thomas,PS04-234Widyawan,Arya,PS14-524Wiedemann-Merdinoglu,Sabine, CS11-6Wierzba,Michael,CS10-6,PS01-037Wiewiora,Barbara,PS18-590Will,Cornelia,CS09-5Williams,Jessica,PS14-558Williams,SimonJ.,PL5-1,

CS21-2,CS21-5,PS01-014, PS01-092,PS21-619,PS21-621Williamson,ValerieM.,PS06-273Willmann,Roland,PS01-002,PS01-029Wilson,Dan,PS01-023Win,Joe,PL2-3,CS04-5, CS21-4,PS04-217Wirthmueller,Lennart,PL3-2, CS12-3,PS07-289Wise,Roger,CS15-1Wise,RogerP.,PS07-305Witek,Kamil,PS15-580Wong,HannLing,PS01-015,PS01-025, PS03-168Wong,James,CS04-4Wongkaew,Porntip,PS11-416Woo,SheridanL.,PS05-261Woods-Tor,Alison,PS04-245Wroblewski,Tadeusz,CS07-1, PS01-087,PS07-327Wu,Can,PS13-492Wu,Chih-Feng,PS14-528Wu,Chih-Hang,PS13-484Wu,Guo-Jiang,PS02-098Wu,Hui-Chuan,PS08-336Wu,Hung-Yi,PS14-540Wu,Je-Jia,PS07-315Wu,Jia,PS04-202Wu,Jian-xin,PS13-511Wu,Jingni,PS07-284,PS07-285, PS13-439,PS14-525Wu,Ru-Fen,PS14-532Wu,Wenjie,PL5-1Wulff,Brande,CS19-2Xavier,AndreS.,PS08-370Xi,Xue-li,CS15-4,PS04-193Xiang,Hai-Ying,PS08-373Xiang,Hongyu,CS21-3Xiao,Fangming,PS13-442Xiaoyu,Liu,PS04-199Xie,Guanlin,PS14-576Xie,Qi,PS08-330Xie,Qiguang,CS12-5Xie,Weilong,PS14-569Xie,Xiaonan,CS18-5,PS18-586Xin,Xiufang,PS07-304Xing,Yunfei,CS03-1Xiong,Yan,PL5-2Xu,Jin,PS08-374Xu,Jin-Rong,CS03-1,PS04-229Xu,Qiu-Fang,PS04-235Xu,Xiaowen,CS03-1Xu,Xinran,PS04-230Xu,You-Ping,PS04-235Xue,Minfeng,CS03-1,PS04-230, PS04-231Yadgarov,KhojiakbarT.,PS02-096Yaegashi,Hajime,PS03-162Yaegashi,Hiroki,PS19-602Yaeno,Takashi,PS01-065,PS07-311Yagi,Toshiharu,PS02-133Yamada,Akiyoshi,PS02-094Yamada,Kenta,CS01-2Yamada,Kohji,CS16-3,PS01-018, PS01-060Yamada,Kosumi,CS05-3Yamada,Makoto,PS13-499Yamada,Reiko,PS01-064Yamada,Shoko,PS10-410Yamada,Shuuhei,PS19-599Yamada,Shuyei,PS04-184Yamada,Takashi,CS05-6Yamagishi,Noriko,PS09-375

Yamaguchi,Junji,PS01-021,PS01-026, PS01-071,PS13-443,PS13-460, PS13-468Yamaguchi,Katsushi,PS02-108Yamaguchi,Koji,CS01-2,PS07-290, PS07-312Yamaguchi,Yube,PS01-078,PS01-079Yamaji,Yasuyuki,CS16-4Yamakawa,Takeo,PS02-100,PS02-102Yamamoto,Hidehiko,PS13-519Yamamoto,Kohei,PS02-094Yamamoto,Mikihiro,PS03-148, PS03-167,PS20-617Yamamoto,Yoshiharu,PS05-264Yamamoto,Yu,PS13-504Yamanaka,Koichi,PS18-586Yamane,Hisakazu,CS10-3,PS01-068, PS03-171,PS10-399,PS10-408, PS13-458,PS13-485,PS13-503Yamaoka,Naoto,PS01-076,PS08-346, PS08-354,PS08-364,PS13-506Yamasaki,Hiroki,PS02-126Yamasaki,Kanako,PS10-392Yamashita,Kazuaki,PS02-119Yamashita,Yui,PS15-582Yamashita-Yamada,Misuzu,CS16-3, PS01-018,PS01-060Yan,Liewei,CS12-4Yang,Chunling,PS04-233Yang,Douck-Hee,PS01-062Yang,Fen,PS03-140Yang,Fong-Jhih,PS14-523Yang,Han-Yu,PS13-470,PS13-471Yang,Hongyu,PS04-202Yang,Jun,CS03-1,PS04-229Yang,Jun-Yi,PS07-281Yang,Kwang-Yeol,PS01-062,PS11-422, PS13-481,PS13-491,PS13-500Yang,Shu-Yi,CS17-6,PS02-116Yang,Tsung-Lin,PS13-520,PS13-521Yang,Weibing,PS13-438Yang,Wen-Chieh,PS14-563Yano,Koji,PS02-108Yano,Shigekazu,PS04-196Yao,Ai,PS01-013Yao,Jian,CS01-5Yao,Min,PS21-620Yao,N.,PS04-212Yao,Nan,CS15-4,PS04-193,PS13-511Yasuda,Michiko,CS05-2,CS18-3, PS10-400,PS10-401,PS10-405Yasuda,Shigetaka,PS01-071,PS13-443, PS13-468Yasuda,Shinsuke,PS03-155Yazaki,Kazufumi,PS02-111,PS02-112, PS02-119Yeh,Hsin-Hung,PS08-358,PS11-423Yeh,Shyi-Dong,PS19-604Yen,Shyi-Kae,PS08-367Yeo,May,PS11-420Yeom,Seon-In,PS01-069,PS04-207, PS13-494Yi,Mihwa,CS04-3,PS03-152Yi,Siao-Huei,PS13-486Yogev,Ohad,PS04-198Yohei,Yoshioka,PS05-252Yokosho,Kengo,PS02-112Yokota,Keisuke,PS02-126Yokota,Shinso,PS10-387Yokotani,Naoki,PS03-171Yoneyama,Kaori,CS17-4,CS18-5, PS18-586,PS18-591Yoneyama,Katsuyoshi,PS20-609

Page 230: n Kyoto, Japa - AU Purepure.au.dk/portal/files/75103439/ABSTRACTS.pdfInnateimmunityinmammals ShizuoAkira1 1Laboratory ofHostDefense,WPIImmunologyFrontierResearch Center,OsakaUniversity,Japan

228

IND

EX

Yoneyama,Koichi,CS18-5,PS18-586, PS18-591Yoo,Seung-Jin,PS01-062Yoro,Emiko,PS02-106Yoshida,Chie,PS02-108Yoshida,Kakoto,CS19-5Yoshida,Kentaro,PL2-3,CS04-6, CS19-5,PS04-210,PS04-217, PS04-218,PS04-225,PS07-310, PS19-602Yoshida,Riichiro,CS10-3Yoshida,Satoko,CS18-4,PS18-592, PS18-594Yoshihara,Akihide,PS13-463Yoshiharu,Yamamoto,PS05-252Yoshikawa,Hirohumi,PS13-458Yoshikawa,MakotoM.,PS04-201Yoshikawa,Nobuyuki,PS09-375Yoshino,Kae,CS03-5,PS03-145, PS04-217,PS07-287Yoshioka,Hirofumi,CS01-2, CS06-6,CS11-5,CS13-5, PS01-038,PS01-064,PS01-065, PS07-298,PS10-404,PS13-457, PS13-472Yoshioka,Miki,CS11-5,PS01-064, PS01-065,PS13-472Yoshioka,Yohei,PS05-264Yoshizawa,Nobuo,PS10-387You,Bang-Jau,PS19-604Young,Li-Sen,PS18-585Young,Sarah,CS20-3Yourstone,Scott,PL2-1,PS14-568Yu,Agnes,CS13-3Yu,Deshui,CS16-5Yu,Hee-Ju,PS02-134Yu,Jialin,PS08-373,PS08-374, PS12-436Yu,Kangfu,PS14-569Yu,Pei-Ling,PS04-222Yu,Xilan,PS14-558Zamioudis,Christos,CS05-4Zarsky,Viktor,PS01-045Zavaliev,Raul,CS08-2,PS09-381Zehner,Susanne,CS02-4Zel,Jana,PS01-072Zenbayashi-Sawata,Kaoru,PS13-444Zeng,Lie-xian,PS04-213Zenpei,Shimatani,PS13-447Zerbini,FranciscoM.,PS08-370Zerbini,PolianeA.,PS08-370Zhai,C.,PS04-212Zhang,Chong,CS12-5Zhang,Chunquan,CS15-6,PS04-233Zhang,Feng,PS07-317Zhang,Haili,PS01-011Zhang,Jing-Bo,PS03-156Zhang,Ru-Nan,PS08-373Zhang,Shujian,PS07-323Zhang,Wei,PS04-230Zhang,Weiguo,PS01-041Zhang,Weiwei,PS04-188Zhang,Xiaoxiao,PS21-621Zhang,Xuecheng,PS10-389Zhang,Xue-Xian,PS05-251Zhang,Y.,PS04-212Zhang,Yan,CS03-1Zhang,Yong,PS14-571,PS14-574Zhang,Yongfeng,PS14-552Zhang,Yongliang,PS12-436Zhang,Yuanbao,PS14-543Zhang,Zhi-Xin,PS04-235Zhang,Ziding,PS08-374

Zhao,Bingyu,PS14-533Zhao,Jinping,PS01-011Zhao,Wensheng,CS03-1,PS04-229, PS04-230,PS04-231Zhao,Xiucai,PS07-300Zheng,Xiangzi,PS04-199Zheng,Yi,PS13-478Zhou,Cuiji,PS12-436Zhou,Huanbin,CS01-5Zhou,Ji,PS01-022Zhou,Jian-Min,PL6-1,CS21-1Zhou,Rong,PS04-240Zhou,Xiaoying,CS03-1Zhou,Xueping,PS08-330Zhou,Xue-Ping,PS04-235Zhou,Yuan,PS08-374Zhu,Min,PS08-349Zhu,Xiao-yuan,PS04-213Zimmerli,Laurent,CS01-6Zimmermann,Tamar,PS14-533Zipfel,Cyril,PL1-1,PS01-020, PS01-037,PS01-041,PS01-043, PS01-048,PS01-053,PS07-324, PS13-475Zocher,Sara,CS02-4Zou,Cheng,PS04-187Zou,Hua-Song,PS14-530Zou,Lifang,PS14-529Zou,Li-Fang,PS14-530Zuo,Yushan,PS04-229Zurek,Grzegorz,PS18-590Zvirin,Zvi,PS04-198