52
Music of the Microspheres Eigenvalue problems from micro-gyro design David Bindel Department of Computer Science Cornell University Oxford NA seminar, 29 Apr 2014 Oxford 1 / 52

Music of the Microspheres - Cornell Universitybindel/present/2014-04-oxford.pdf · Music of the Microspheres Eigenvalue problems from micro-gyro design David Bindel ... MEMS Basics

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

  • Music of the MicrospheresEigenvalue problems from micro-gyro design

    David Bindel

    Department of Computer ScienceCornell University

    Oxford NA seminar, 29 Apr 2014

    Oxford 1 / 52

  • The Computational Science & Engineering Picture

    Application

    Analysis Computation

    Oxford 2 / 52

  • A Favorite Application: MEMS

    I’ve worked on this for a while:SUGAR (early 2000s) – SPICE for MEMSHiQLab (2006) – high-Q mechanical resonator device modelingAxFEM (2012) – solid-wave gyro device modeling

    Goal today: an illustrative snapshot.

    Oxford 3 / 52

  • MEMS Basics

    Micro-Electro-Mechanical SystemsChemical, fluid, thermal, optical (MECFTOMS?)

    Applications:Sensors (inertial, chemical, pressure)Ink jet printers, biolab chipsRadio devices: cell phones, inventory tags, pico radio

    Use integrated circuit (IC) fabrication technologyTiny, but still classical physics

    Oxford 4 / 52

  • Where are MEMS used?

    Oxford 5 / 52

  • My favorite applications

    Oxford 6 / 52

  • G. H. Bryan (1864–1928)

    Fellow of the Royal Society (1895)Stability in Aviation (1911)Thermodynamics, hydrodynamics

    Bryan was a friendly, kindly, veryeccentric individual...(Obituary Notices of the FRS)

    ... if he sometimes seemed a colossal buffoon, he himself didnot help matters by proclaiming that he did his best workunder the influence of alcohol.(Williams, J.G., The University College of North Wales, 1884–1927)

    Oxford 7 / 52

  • Bryan’s Experiment

    “On the beats in the vibrations of a revolving cylinder or bell”by G. H. Bryan, 1890

    Oxford 8 / 52

  • Bryan’s Experiment Today

    Oxford 9 / 52

  • The Beat Goes On

    0.00 6.48 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 4.90 5.00 5.10 5.20 5.30 5.40 5.50 5.60 5.70 5.80 5.90 6.00 6.10 6.20 6.30 6.40

    Audio Track

    0.00 8.36 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 4.90 5.00 5.10 5.20 5.30 5.40 5.50 5.60 5.70 5.80 5.90 6.00 6.10 6.20 6.30 6.40 6.50 6.60 6.70 6.80 6.90 7.00 7.10 7.20 7.30 7.40 7.50 7.60 7.70 7.80 7.90 8.00 8.10 8.20

    Audio Track

    Oxford 10 / 52

  • A Small Application

    Northrup-Grumman HRG(developed c. 1965–early 1990s)

    Oxford 11 / 52

  • A Smaller Application (Cornell)

    Oxford 12 / 52

  • A Smaller Application (UMich, GA Tech, Irvine)

    Oxford 13 / 52

  • A Smaller Application!

    Oxford 14 / 52

  • Micro-HRG / GOBLiT / OMG

    Goal: Cheap, small (1mm) HRGCollaborator roles:

    Basic designFabricationMeasurement

    Our part:Detailed physicsFast softwareSensitivityDesign optimization

    Oxford 15 / 52

  • Foucault in Solid State

    Oxford 16 / 52

  • Rate Integrating Mode

    Oxford 17 / 52

  • Rate Integrating Mode

    Oxford 18 / 52

  • A General Picture: Stationary Frame

    =q1(t) +q2(t)

    q2

    q1

    Consider free vibration consisting of two modes of oscillation:

    q̈ + ω20q = 0, q(t) ∈ R2.

    Oxford 19 / 52

  • A General Picture: Rotating Frame

    =q1(t) +q2(t)

    q2

    q1

    q2

    q1

    Rate of rotation is Ω� ω0:

    q̈ + 2βΩJq̇ + ω20q = 0, J ≡[0 −11 0

    ]

    Oxford 20 / 52

  • A General Picture: Rotating Frame

    =q1(t) +q2(t)

    q2

    q1

    q2

    q1

    [q1(t)q2(t)

    ]≈[cos(−βΩt) − sin(−βΩt)sin(−βΩt) cos(−βΩt)

    ] [q01(t)q02(t)

    ].

    Oxford 21 / 52

  • An Uncritical FEA Approach

    Why not do the obvious?Build 3D model with commercial FERun modal analysis

    Oxford 22 / 52

  • The Perturbation Picture

    Perturbations split degenerate modes:Coriolis forces (good)Imperfect fab (bad, but physical)Discretization error (non-physical)

    Oxford 23 / 52

  • The Perturbation Picture

    Perturbations split some degeneracies:Zeeman effect (magnetic)Stark effect (electric)

    This is far from unique to MEMS!

    Oxford 24 / 52

  • Three Step Program

    1 Perfect geometry, no rotation2 Perfect geometry, rotation3 Imperfect geometry

    Oxford 25 / 52

  • Step I: Perfect Geometry, No Rotation

    Oxford 26 / 52

  • Step I: Perfect Geometry, No Rotation

    Free vibration problem in weak form

    ∀w, b(w, ü) + a(w,u) = 0.

    where

    b(w,a) =

    ∫B0ρw · a dB0,

    a(w,u) =

    ∫B0ε(w) : C : ε(u) dB0,

    Or think:Mü + Ku = 0

    Oxford 27 / 52

  • Step I: Perfect Geometry, No Rotation

    Free vibration problem in weak form

    ∀w, b(w, ü) + a(w,u) = 0.

    Symmetry: Q any rotation or reflection

    b(Qw, Qu) = b(w,u)

    a(Qw, Qu) = a(w,u)

    Decompose by invariant subspaces of Q =⇒ Fourier analysis

    Oxford 28 / 52

  • Fourier Expansion and Axisymmetric Shapes

    Decompose into symmetric uc and antisymmetric us in y:

    uc =

    ∞∑m=0

    Φcm(θ)ucm(r, z), u

    s =

    ∞∑m=0

    Φsm(θ)usm(r, z)

    where

    Φcm(θ) = diag ( cos(mθ), sin(mθ), cos(mθ))

    Φsm(θ) = diag (− sin(mθ), cos(mθ),− sin(mθ)) .

    Modes involve only one azimuthal number m; degenerate for m > 1.

    Preserve structure in FE: shape functions Nj(r, z)Φc,sm (θ)

    Oxford 29 / 52

  • Block Diagonal Structure

    Finite element system: Müh + Kuh = 0

    K =

    Kcc0Kss1

    Kcc1Kss2

    Kcc2. . .

    KssMKccM

    Mass has same structure.

    Oxford 30 / 52

  • Step II: Perfect Geometry, Rotation

    Oxford 31 / 52

  • Step II: Perfect Geometry, Rotation

    Free vibration problem in weak form

    ∀w, b(w,a) + a(w,u) = 0.

    wherea = ü + 2Ω× u̇ + Ω× (Ω× x) + Ω̇× x

    Assumption: Ω2/ω2 and Ω̇/ω2 are negligible.

    Discretize by finite elements as before:

    Müh + Cu̇h + Küh = 0

    where C comes from Coriolis term (2b(w,Ω× u̇)).

    Oxford 32 / 52

  • Block Structure of Finite Element Matrix

    Discretize 2b(w,Ω× u̇):

    C =

    C00 C01C10 C11 C12

    C21 C22 C23. . . . . . . . .

    Off-diagonal blocks come from cross-axis sensitivity:

    Ω = Ωzez + Ωrθ =

    00Ωz

    +cos(θ)Ωx − sin(θ)Ωysin(θ)Ωx + cos(θ)Ωy

    0

    .Neglect cross-axis effects (O(Ω2/ω20), like centrifugal effect).

    Oxford 33 / 52

  • Analysis in Ideal Case

    Only need to mesh a 2D cross-section!Compute an operating mode uc for the non-rotating geometry.Compute associated modal mass and stiffness m and k.Compute g = b(uc, ez × us).Model: motion is approximately q1uc + q2us, and

    mq̈ + 2gΩJq̇ + kq = 0,

    Oxford 34 / 52

  • Step II: Imperfect Geometry

    Oxford 35 / 52

  • Step III: Imperfect Geometry

    Oxford 36 / 52

  • What Imperfections?

    Let me count the ways...Over/under etchMask misalignmentThickness variationsAnisotropy of etching single-crystal Si

    These are not arbitrary!

    Oxford 37 / 52

  • Representing the Perturbation

    Map axisymmetric B0 → real B:

    R ∈ B0 7→ r = R + �ψ(R) ∈ B.

    Write weak form in B0 geometry:

    b(w,a) =

    ∫B0ρw · a J dB0,

    a(w,u) =

    ∫B0ε(w) : C : ε(u) J dB0,

    where J = det(I + �F) with F = ∂ψ/∂R.

    Oxford 38 / 52

  • Decomposing ψ

    Do Fourier decomposition of ψ, too! Consider case where

    m = only azimuthal number of wn = only azimuthal number of up = only azimuthal number of ψ

    Then we have selection rules

    a(w,u) =

    {O(�k), |m± n| = kp0, otherwise

    Similar picture for b.

    Oxford 39 / 52

  • Decomposing ψ

    Over/under etch (p = 0)Mask misalignment (p = 1)Thickness variations (p = 1)Anisotropy of etching single-crystal Si (p = 3 or p = 4)

    Oxford 40 / 52

  • Block matrix structure

    Ex: p = 2

    K =

    K0 � �2 �3

    K1 � �2

    � K2 � �2

    � K3 ��2 � K4 �

    �2 � K5�3 �2 � K6

    . . .

    Oxford 41 / 52

  • Impact of Selection Rules

    Fast FEA: Can neglect some wave numbers / blocksAll assuming no accidental (near) degeneraciesFirst order: Only need diagonal blocksSecond order: Diagonal blocks plus “directly coupled”

    Also qualitative information

    Oxford 42 / 52

  • Qualitative Information

    Operating wave number m, perturbation number p:

    p = 2m frequencies split by O(�)kp = 2m frequencies split at most O(�2)p 6 |2m frequencies change at O(�2), no splitp = 1

    p = 2m± 1 O(�) cross-axis coupling.

    Note:m = 2 affected at first order by p = 0 and p = 4(and O(�2) split from p = 1 and p = 2).m = 3 affected at first order by p = 0 and p = 6(and O(�2) split from p = 1 and p = 3).

    Oxford 43 / 52

  • Mode Split for Rings: ψ(r, θ) = (cos(2mθ), 0).

    0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

    −2

    0

    2

    Perturbation amplitude / thickness

    Freq

    uenc

    ysh

    ift(%

    )

    Oxford 44 / 52

  • Mode Split for Rings: ψ(r, θ) = (cos(mθ), 0).

    0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

    −1

    −0.5

    0

    Perturbation amplitude / thickness

    Freq

    uenc

    ysh

    ift(%

    )

    m = 2a m = 2bm = 3a m = 3bm = 4a m = 4b

    Oxford 45 / 52

  • Analyzing Imperfect Rings

    Oxford 46 / 52

  • Analyzing Imperfect Rings

    q2

    q1

    q2

    q1

    q2

    q1

    q2

    q1

    q2

    q1

    q2

    q1

    Oxford 47 / 52

  • Beyond Rings: AxFEM

    Mapped finite / spectral element formulationLow-order polynomials through thicknessHigh-order polynomials along lengthTrig polynomials in θAgrees with results reported in literatureComputes sensitivity to geometry, material parameters, etc.

    Oxford 48 / 52

  • Further Steps

    Lots of possible directions:Symmetry breaking through damping?Integration with fabrication simulation?Joint optimization of geometry and fabrication?

    Oxford 49 / 52

  • Thank You

    Yilmaz and Bindel“Effects of Imperfections on Solid-Wave Gyroscope Dynamics”Proceedings of IEEE Sensors 2013, Nov 3–6.

    Thanks to DARPA MRIG + Sunil Bhave and Laura Fegely.

    Oxford 50 / 52

  • Open problem: Accurate etch simulation

    Simple isotropic etch modeling fails – 1mm is huge!Working on better simulator (reaction-diffusion).For now, take idealized geometries on faith...

    Oxford 51 / 52

  • Open problem: Appropriate damping models

    Bulk waves in Si about 8500 m/s.Typical wafer: 150 mm (6 in) is 675 µmGHz resonator: wavelength of tens of micronskHz resonator: wavelength of centimetersCompletely different anchor models should apply!

    Surface losses also matter...

    Oxford 52 / 52

    Appendix