40
Multiscale Models Heston Model Perturbation around Heston Numerical Work Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University of California Santa Barbara Modeling and Managing Financial Risks Paris, January 10-13, 2011 Jean-Pierre Fouque Heston 1.5

Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Multiscale Stochastic Volatility Models

Heston 1.5

Jean-Pierre Fouque

Department of Statistics & Applied ProbabilityUniversity of California Santa Barbara

Modeling and Managing Financial Risks

Paris, January 10-13, 2011

Jean-Pierre Fouque Heston 1.5

Page 2: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

References:

Multiscale Stochastic Volatility for Equity, Interest-Rate

and Credit Derivatives

J.-P. Fouque, G. Papanicolaou, R. Sircar and K. SølnaCambridge University Press (in press).

A Fast Mean-Reverting Correction to Heston Stochastic

Volatility Model

J.-P. Fouque and M. LorigSIAM Journal on Financial Mathematics (to appear).

Jean-Pierre Fouque Heston 1.5

Page 3: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Outline1 Multiscale Models

Motivation for Multiple Time ScalesMultiscale DynamicsSingular-Regular Perturbations: Black-Scholes 2.0

2 Heston ModelDynamicsWhy We like HestonProblems with Heston

3 Perturbation around HestonHeston + Fast FactorOption Pricing

4 Numerical WorkMultiscale Implied Volatility SurfaceMultiscale Fit to Data

Jean-Pierre Fouque Heston 1.5

Page 4: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Motivation for Multiple Time ScalesMultiscale DynamicsSingular-Regular Perturbations: Black-Scholes 2.0

Outline1 Multiscale Models

Motivation for Multiple Time ScalesMultiscale DynamicsSingular-Regular Perturbations: Black-Scholes 2.0

2 Heston ModelDynamicsWhy We like HestonProblems with Heston

3 Perturbation around HestonHeston + Fast FactorOption Pricing

4 Numerical WorkMultiscale Implied Volatility SurfaceMultiscale Fit to Data

Jean-Pierre Fouque Heston 1.5

Page 5: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Motivation for Multiple Time ScalesMultiscale DynamicsSingular-Regular Perturbations: Black-Scholes 2.0

Volatility Not Constant

1950 1960 1970 1980 1990 2000−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04Daily Log Returns

S&P500Simulated GBM

Jean-Pierre Fouque Heston 1.5

Page 6: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Motivation for Multiple Time ScalesMultiscale DynamicsSingular-Regular Perturbations: Black-Scholes 2.0

Skews of Implied Volatilities (SP500 on June 1, 2007)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.60.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Moneyness=K/X

Impl

ied

Vol

atili

tyImplied Volatilities on 1 June 2007

1 mo2 mo3 mo6 mo9 mo12 mo18 mo

Jean-Pierre Fouque Heston 1.5

Page 7: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Motivation for Multiple Time ScalesMultiscale DynamicsSingular-Regular Perturbations: Black-Scholes 2.0

What’s Wrong with Heston?

Single factor of volatility running on single time scale notsufficient to describe dynamics of the volatilty process.

Not just Heston . . . Any one-factor stochastic volatility modelhas trouble fitting implied volatility levels accross all strikesand maturities.

Emperical evidence suggests existence of several stochasticvolatility factors running on different time scales

−→

Jean-Pierre Fouque Heston 1.5

Page 8: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Motivation for Multiple Time ScalesMultiscale DynamicsSingular-Regular Perturbations: Black-Scholes 2.0

Evidence

Melino-Turnbull 1990, Dacorogna et al. 1997,Andersen-Bollerslev 1997,

Fouque-Papanicolaou-Sircar 2000,

Alizdeh-Brandt-Diebold 2001, Engle-Patton 2001,Lebaron 2001,

Chernov-Gallant-Ghysels-Tauchen 2003,

Fouque-Papanicolaou-Sircar-Solna 2003, Hillebrand 2003,Gatheral 2006,

Christoffersen-Jacobs-Ornthanalai-Wang 2008.

Jean-Pierre Fouque Heston 1.5

Page 9: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Motivation for Multiple Time ScalesMultiscale DynamicsSingular-Regular Perturbations: Black-Scholes 2.0

Outline1 Multiscale Models

Motivation for Multiple Time ScalesMultiscale DynamicsSingular-Regular Perturbations: Black-Scholes 2.0

2 Heston ModelDynamicsWhy We like HestonProblems with Heston

3 Perturbation around HestonHeston + Fast FactorOption Pricing

4 Numerical WorkMultiscale Implied Volatility SurfaceMultiscale Fit to Data

Jean-Pierre Fouque Heston 1.5

Page 10: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Motivation for Multiple Time ScalesMultiscale DynamicsSingular-Regular Perturbations: Black-Scholes 2.0

Multiscale SV Under Risk-Neutral

dXt = rXt dt + f (Yt ,Zt)Xt dW(0)⋆t ,

dYt =

(1

εα(Yt) −

1√εβ(Yt)Λ1(Yt ,Zt)

)dt +

1√εβ(Yt) dW

(1)⋆t ,

dZt =(δc(Zt) −

√δ g(Zt)Λ2(Yt ,Zt)

)dt +

√δ g(Zt) dW

(2)⋆t .

Time scales: ε≪ 1 ≪ 1/δFast factor: YSlow factor: ZOption pricing:

Pε,δ(t,Xt ,Yt ,Zt) = IE ⋆{

e−r(T−t)h(XT ) | Xt ,Yt ,Zt

},

∂Pε,δ

∂t+ L(X ,Y ,Z)P

ε,δ − rPε,δ = 0.

Jean-Pierre Fouque Heston 1.5

Page 11: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Motivation for Multiple Time ScalesMultiscale DynamicsSingular-Regular Perturbations: Black-Scholes 2.0

Outline1 Multiscale Models

Motivation for Multiple Time ScalesMultiscale DynamicsSingular-Regular Perturbations: Black-Scholes 2.0

2 Heston ModelDynamicsWhy We like HestonProblems with Heston

3 Perturbation around HestonHeston + Fast FactorOption Pricing

4 Numerical WorkMultiscale Implied Volatility SurfaceMultiscale Fit to Data

Jean-Pierre Fouque Heston 1.5

Page 12: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Motivation for Multiple Time ScalesMultiscale DynamicsSingular-Regular Perturbations: Black-Scholes 2.0

Expand

Pε,δ =∑

i≥0

j≥0

(√ε)i (

√δ)j Pi ,j ,

P0 = PBS computed at volatility σ(z):

σ2(z) = 〈f 2(·, z)〉 =

∫f 2(y , z)ΦY (dy).

√εP1,0 = V ε

2 x2 ∂2PBS

∂x2+ V ε

3 x∂

∂x

(x2 ∂

2PBS

∂x2

),

√δ P0,1 = V δ

0

∂PBS

∂σ+ V δ

1

∂x

(∂PBS

∂σ

).

In terms of implied volatility:

I ≈(b⋆ + τbδ

)+

(aε + τaδ

) log(K/x)

τ, τ = T − t.

Jean-Pierre Fouque Heston 1.5

Page 13: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Motivation for Multiple Time ScalesMultiscale DynamicsSingular-Regular Perturbations: Black-Scholes 2.0

Time Scales

The previous asymptotics is a perturbation around Black-Scholesleading to Black-Scholes 2.0 where 2.0 = 1+ 2x(0.5)

Why not keeping one volatility factor on a time scale of order one?This would be a perturbation around a one-factor stochasticvolatility model, but which one?

Heston of course!

Jean-Pierre Fouque Heston 1.5

Page 14: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

DynamicsWhy We like HestonProblems with Heston

Outline1 Multiscale Models

Motivation for Multiple Time ScalesMultiscale DynamicsSingular-Regular Perturbations: Black-Scholes 2.0

2 Heston ModelDynamicsWhy We like HestonProblems with Heston

3 Perturbation around HestonHeston + Fast FactorOption Pricing

4 Numerical WorkMultiscale Implied Volatility SurfaceMultiscale Fit to Data

Jean-Pierre Fouque Heston 1.5

Page 15: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

DynamicsWhy We like HestonProblems with Heston

Heston Under Risk-Neutral Measure

dXt = rXtdt +√

Zt XtdW xt

dZt = κ(θ − Zt)dt + σ√

Zt dW zt

d 〈W x ,W z〉t = ρdt

One-factor stochastic volatility model

Square of volatility, Zt , follows CIR process

Jean-Pierre Fouque Heston 1.5

Page 16: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

DynamicsWhy We like HestonProblems with Heston

Outline1 Multiscale Models

Motivation for Multiple Time ScalesMultiscale DynamicsSingular-Regular Perturbations: Black-Scholes 2.0

2 Heston ModelDynamicsWhy We like HestonProblems with Heston

3 Perturbation around HestonHeston + Fast FactorOption Pricing

4 Numerical WorkMultiscale Implied Volatility SurfaceMultiscale Fit to Data

Jean-Pierre Fouque Heston 1.5

Page 17: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

DynamicsWhy We like HestonProblems with Heston

Formulas!

Explicit formulas for european options:

PH(t, x , z) = e−rτ 1

∫e−ikqG (τ, k, z)h(k)dk

q(t, x) = r(T − t) + log x ,

h(k) =

∫e ikqh(eq)dq,

G(τ, k, z) = eC(τ,k)+zD(τ,k)

C (τ, k) and D(τ, k) solve ODEs in τ = T − t.

Jean-Pierre Fouque Heston 1.5

Page 18: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

DynamicsWhy We like HestonProblems with Heston

ODEs

dD

dτ(τ, k) =

1

2σ2D2(τ, k) − (κ+ ρσik)D(τ, k) +

1

2

(−k2 + ik

),

D(0, k) = 0.

dC

dτ(τ, k) = κθD(τ, k),

C (0, k) = 0,

Jean-Pierre Fouque Heston 1.5

Page 19: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

DynamicsWhy We like HestonProblems with Heston

Pretty Pictures! Heston captures well-documented features ofimplied volatility surface: smile and skew

100

150

K

0.5

1.0

1.5

2.0T

0.10

0.15

0.20

0.25

Σ

Jean-Pierre Fouque Heston 1.5

Page 20: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

DynamicsWhy We like HestonProblems with Heston

Outline1 Multiscale Models

Motivation for Multiple Time ScalesMultiscale DynamicsSingular-Regular Perturbations: Black-Scholes 2.0

2 Heston ModelDynamicsWhy We like HestonProblems with Heston

3 Perturbation around HestonHeston + Fast FactorOption Pricing

4 Numerical WorkMultiscale Implied Volatility SurfaceMultiscale Fit to Data

Jean-Pierre Fouque Heston 1.5

Page 21: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

DynamicsWhy We like HestonProblems with Heston

Captures Some . . . Not All Features of Smile

Mispricesfar ITMand OTMEuropeanoptions[Fiorentini-Leon-Rubio2002,Zhang-Shu2003 ...]

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.30.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19Days to Maturity = 583

log(K/x)

Impl

ied

Vol

atili

ty

Market DataHeston Fit

Jean-Pierre Fouque Heston 1.5

Page 22: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

DynamicsWhy We like HestonProblems with Heston

Simultaneous Fit Across Expirations Is Poor

Particulardifficultyfitting shortexpirations[Gatheral2006]

−0.1 −0.05 0 0.05 0.1 0.150.1

0.11

0.12

0.13

0.14

0.15

0.16Days to Maturity = 65

log(K/x)

Impl

ied

Vol

atili

ty

Market DataHeston Fit

Jean-Pierre Fouque Heston 1.5

Page 23: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Heston + Fast FactorOption Pricing

Outline1 Multiscale Models

Motivation for Multiple Time ScalesMultiscale DynamicsSingular-Regular Perturbations: Black-Scholes 2.0

2 Heston ModelDynamicsWhy We like HestonProblems with Heston

3 Perturbation around HestonHeston + Fast FactorOption Pricing

4 Numerical WorkMultiscale Implied Volatility SurfaceMultiscale Fit to Data

Jean-Pierre Fouque Heston 1.5

Page 24: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Heston + Fast FactorOption Pricing

Multiscale Under Risk-Neutral Measure

dXt = rXtdt +√

Zt f (Yt)XtdW xt

dYt =Zt

ε(m − Yt)dt + ν

√2

√Zt

εdW y

t

dZt = κ(θ − Zt)dt + σ√

Zt dW zt

d⟨W i ,W j

⟩t= ρijdt i , j ∈ {x , y , z}

Volatility controled by product√

Zt f (Yt)

Yt modeled as OU process running on time-scale ε/Zt

Note: f (y) = 1 ⇒ model reduces to Heston

Jean-Pierre Fouque Heston 1.5

Page 25: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Heston + Fast FactorOption Pricing

Outline1 Multiscale Models

Motivation for Multiple Time ScalesMultiscale DynamicsSingular-Regular Perturbations: Black-Scholes 2.0

2 Heston ModelDynamicsWhy We like HestonProblems with Heston

3 Perturbation around HestonHeston + Fast FactorOption Pricing

4 Numerical WorkMultiscale Implied Volatility SurfaceMultiscale Fit to Data

Jean-Pierre Fouque Heston 1.5

Page 26: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Heston + Fast FactorOption Pricing

Option Pricing PDE

Price of European Option Expressed as

Pt = E

[e−r(T−t)h(XT )

∣∣∣Xt ,Yt ,Zt

]=: Pε(t,Xt ,Yt ,Zt)

Using Feynman-Kac, derive following PDE for Pε

LεPε(t, x , y , z) = 0,

Lε =∂

∂t+ L(X ,Y ,Z) − r ,

Pε(T , x , y , z) = h(x)

Jean-Pierre Fouque Heston 1.5

Page 27: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Heston + Fast FactorOption Pricing

Some Book-Keeping of Lε

Lε has convenient form (z factorizes)

Lε =z

εL0 +

z√εL1 + L2,

L0 = ν2 ∂2

∂y2+ (m − y)

∂y

L1 = ρyzσν√

2∂2

∂y∂z+ ρxyν

√2 f (y)x

∂2

∂x∂y

L2 =∂

∂t+

1

2f 2(y)zx2 ∂

2

∂x2+ r

(x∂

∂x− ·

)

+1

2σ2z

∂2

∂z2+ κ(θ − z)

∂z+ ρxzσf (y)zx

∂2

∂x∂z.

Jean-Pierre Fouque Heston 1.5

Page 28: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Heston + Fast FactorOption Pricing

Expand

Perform singular perturbation with respect to ε

Pε = P0 +√εP1 + εP2 + . . .

Look for P0 and P1 functions of t, x , and z only

Find

P0(t, x , z) = PH(t, x , z)

with effective square volatility 〈f 2〉Zt = Zt ,and effective correlation ρ→ ρxz 〈f 〉

Jean-Pierre Fouque Heston 1.5

Page 29: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Heston + Fast FactorOption Pricing

More Formulas!

P1(t, x , z) =e−rτ

∫e−ikq

(κθf0(τ, k) + z f1(τ, k)

)

× G(τ, k, z)h(k)dk,

f0(τ, k) =

∫ τ

0f1(t, k)dt,

f1(τ, k) =

∫ τ

0b(s, k)eA(τ,k,s)ds.

b(τ, k) = −(V1D(τ, k)

(−k2 + ik

)+ V2D

2(τ, k) (−ik)

+V3

(ik3 + k2

)+ V4D(τ, k)

(−k2

)).

A(τ, k, s) solves ODE in τ

Jean-Pierre Fouque Heston 1.5

Page 30: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Heston + Fast FactorOption Pricing

Goup Parameters: the V’s

P1 is linear function of four constants

V1 = ρyzσν√

2⟨φ′

⟩,

V2 = ρxzρyzσ2ν

√2

⟨ψ′

⟩,

V3 = ρxyν√

2⟨f φ′

⟩,

V4 = ρxyρxzσν√

2⟨f ψ′

⟩.

ψ(y) and φ(y) solve Poisson equations

L0φ =1

2

(f 2 −

⟨f 2

⟩),

L0ψ = f − 〈f 〉 .

Each Vi has unique effect on implied volatility

Jean-Pierre Fouque Heston 1.5

Page 31: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Multiscale Implied Volatility SurfaceMultiscale Fit to Data

Outline1 Multiscale Models

Motivation for Multiple Time ScalesMultiscale DynamicsSingular-Regular Perturbations: Black-Scholes 2.0

2 Heston ModelDynamicsWhy We like HestonProblems with Heston

3 Perturbation around HestonHeston + Fast FactorOption Pricing

4 Numerical WorkMultiscale Implied Volatility SurfaceMultiscale Fit to Data

Jean-Pierre Fouque Heston 1.5

Page 32: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Multiscale Implied Volatility SurfaceMultiscale Fit to Data

Effect of V1 and V2 on Implied Volatility

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2

0.12

0.14

0.16

0.18

0.2

0.22

0.24

log(K/x)

σ imp

V1 Effect

−0.02−0.01 00.005

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2

0.12

0.14

0.16

0.18

0.2

0.22

log(K/x)σ im

p

V2 Effect

−0.02−0.01 00.005

Vi = 0 corresponds to Heston

Jean-Pierre Fouque Heston 1.5

Page 33: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Multiscale Implied Volatility SurfaceMultiscale Fit to Data

Effect of V3 and V4 on Implied Volatility

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2

0.12

0.14

0.16

0.18

0.2

0.22

0.24

log(K/x)

σ imp

V3 Effect

−0.02−0.01 00.005

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2

0.1

0.15

0.2

0.25

log(K/x)σ im

p

V4 Effect

−0.02−0.01 00.005

Vi = 0 corresponds to Heston

Jean-Pierre Fouque Heston 1.5

Page 34: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Multiscale Implied Volatility SurfaceMultiscale Fit to Data

Outline1 Multiscale Models

Motivation for Multiple Time ScalesMultiscale DynamicsSingular-Regular Perturbations: Black-Scholes 2.0

2 Heston ModelDynamicsWhy We like HestonProblems with Heston

3 Perturbation around HestonHeston + Fast FactorOption Pricing

4 Numerical WorkMultiscale Implied Volatility SurfaceMultiscale Fit to Data

Jean-Pierre Fouque Heston 1.5

Page 35: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Multiscale Implied Volatility SurfaceMultiscale Fit to Data

Captures More Features of Smile

Better fitfor far ITMand OTMEuropeanoptions(SPX,T=121days, onMay 17,2006)

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.20.1

0.11

0.12

0.13

0.14

0.15

0.16

log(K/x)

Impl

ied

Vol

atili

ty

Market DataHeston FitMultiscale Fit

Jean-Pierre Fouque Heston 1.5

Page 36: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Multiscale Implied Volatility SurfaceMultiscale Fit to Data

Simultaneous Fit Across Expirations Is Improved

Vast im-provementfor shortexpirations

65 days tomaturity

−0.1 −0.05 0 0.05 0.1 0.150.1

0.11

0.12

0.13

0.14

0.15

0.16

log(K/x)

Impl

ied

Vol

atili

ty

Market DataHeston FitMultiscale Fit

Jean-Pierre Fouque Heston 1.5

Page 37: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Multiscale Implied Volatility SurfaceMultiscale Fit to Data

Accuracy of Approximation: Smooth Payoffs Usual technique forsmooth payoffs (Schwartz space of rapidly decaying functions):

Write a PDE for the residual (model price minus next-orderapproximated price)

Use probabilistic representation for parabolic PDEs withsource (small of order ε) and terminal condition (small oforder ε)

Deduce residual is small of order ε

Well, not exactly because moments of Yt need to be controlleduniformly in ε

Jean-Pierre Fouque Heston 1.5

Page 38: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Multiscale Implied Volatility SurfaceMultiscale Fit to Data

Moments of Y

dYt =Zt

ε(m − Yt)dt + ν

√2

√Zt

εdW y

t

Yt = m + (y − m)e−1ε

R t0 Zsds +

ν√

2√ε

e−1ε

R t0 Zudu

∫ t

0e

R s0 Zuduν

√Zs dW y

s

We show that for any given α ∈ (1/2, 1) there is a constant Csuch that.

E|Yt | ≤ C εα−1 ,

and therefore an accuracy of ε1−

Jean-Pierre Fouque Heston 1.5

Page 39: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Multiscale Implied Volatility SurfaceMultiscale Fit to Data

Numerical Illustration for Call Options Monte Carlo simulation fora European call option: standard Euler scheme, time step of 10−5

years, 106 sample paths with ε = 10−3 so that√εV3 = 0.0303 is of

the same order as V ε3 , the largest of the V ε

i ’s obtained in the datacalibration example. The parameters used in the simulation are:

x = 100, z = 0.24, r = 0.05, κ = 1, θ = 1, σ = 0.39, ρxz = −0.35,

y = 0.06,m = 0.06, ν = 1, ρxy = −0.35, ρyz = 0.35,

τ = 1,K = 100,

and f (y) = ey−m−ν2so that

⟨f 2

⟩= 1.

ε√εP1 P0 +

√εP1 PMC σMC |P0 +

√εP1 − PMC

0 0 21.0831 - - -

10−3 −0.2229 20.8602 20.8595 0.0364 0.0007

Jean-Pierre Fouque Heston 1.5

Page 40: Multiscale Stochastic Volatility Models Heston 1 · Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University

Multiscale ModelsHeston Model

Perturbation around HestonNumerical Work

Multiscale Implied Volatility SurfaceMultiscale Fit to Data

Summary

Heston model provides easy way to calculate option prices instochastic volatility setting, but fails to capture some featuresof implied volatility surface

Multiscale model offers improved fit to implied volatilitysurface while maintaining convenience of option pricingforumulas

Present work with Matt Lorig to appear in the SIAM Journal onFinancial MathematicsWork in preparation for Risk: formulas for fast and slow time

scales around Heston (Heston 2.0).

Jean-Pierre Fouque Heston 1.5