Multipath Routing Algorithms for Congestion Minimization

  • View
    31

  • Download
    0

Embed Size (px)

DESCRIPTION

Multipath Routing Algorithms for Congestion Minimization. Ron Banner and Ariel Orda Department of Electrical Engineering Technion- Israel Institute of Technology. Introduction. Traditional routing schemes route all traffic along a single “optimal” path - PowerPoint PPT Presentation

Text of Multipath Routing Algorithms for Congestion Minimization

  • Multipath Routing Algorithms for Congestion Minimization

    Ron Banner and Ariel Orda

    Department of Electrical Engineering Technion- Israel Institute of Technology

  • IntroductionTraditional routing schemes route all traffic along a single optimal path

    Traffic is always routed over a single pathHigh congestionWaste of network resources.

    Multipath Routing split the traffic among several paths in order to ease congestion.

  • Multipath RoutingMultipath routing can be fundamentally more efficient than the traditional approach.

    It can significantly reduce congestion in hot spots .

    As congested links result in high variance, it provides steady and smooth data streams.

  • Previous work mainly focused on heuristicsEqual Cost MultiPath (ECMP): Equal Distribution of traffic along multiple shortest paths The shortest path and equal partition limitations considerably reduce load balancing capabilities.

    OSPF-OMP: Allows splitting traffic among paths unevenly. Heuristic traffic distribution scheme that often results in an inefficient flow distribution.

    Proportionally split traffic among several widest paths that are disjoint w.r.t. bottlenecks [Nelakuditi et al., 1xxx] Again: Heuristic and evaluated by way of simulations.

  • How much is gained by optimal flow distribution?Experiment: Generated random networks that include 10,000 Waxman topologies & 10,000 power-law topologies.r(L)= the ratio between the congestion of an optimal assignment of traffic to paths (with a length restriction L) to the congestion produced by OMP.Power lawWaxman

    1

    ECMPCongestionPLECMPCongestionWXCongestionPLXCongestionW

    DDDD+1D+2D+3DD+1D+2D+3

    0.111940.163040.0404310.031780.031780.031780.0465840.0465840.0465840.046584

    0.141510.769230.0622410.0487010.0420170.0420170.0707550.0483090.0483090.048309

    0.176470.63830.144930.0671140.0501670.0431030.180720.180720.180720.18072

    0.176470.63830.144930.0671140.0501670.0431030.180720.180720.180720.18072

    0.3370860.073710.0449780.0449780.0449780.0996680.059880.059880.05988

    0.3370860.073710.0449780.0449780.0449780.0996680.059880.059880.05988

    0.49180.114940.166670.090090.0480.0480.0614750.0361450.0297620.029762

    0.112360.612240.0731710.0675680.0589390.0492610.0241740.0189040.0189040.018904

    0.303030.555560.137610.0691240.0531910.0502510.0704230.0496690.0496690.049669

    0.303030.555560.137610.0691240.0531910.0502510.0704230.0496690.0496690.049669

    0.128210.163930.0705880.0507610.0507610.0507610.0729930.0397350.0272730.027273

    0.128210.163930.0705880.0507610.0507610.0507610.0729930.0397350.0272730.027273

    0.140190.150750.129310.0589390.0523560.0523560.0250630.0152210.0149030.014903

    0.545450.588240.545450.0597610.0587080.0527240.0715990.0470220.0470220.047022

    0.545450.389610.545450.0597610.0587080.0527240.06110.06110.06110.0611

    0.50.111940.220590.0683370.052910.052910.0420170.023220.023220.02322

    0.50.111940.220590.0683370.052910.052910.0420170.023220.023220.02322

    0.186340.236220.157890.151520.0689660.0530970.0225730.0225730.0225730.022573

    0.186340.236220.157890.151520.0689660.0530970.0225730.0225730.0225730.022573

    0.3296710.166670.0630250.0550460.0550460.0697670.0376410.0376410.037641

    0.441180.277780.0892860.0785340.0785340.0574710.043290.043290.043290.04329

    0.191080.16760.0771210.0583660.0583660.0583660.0398940.0337460.0337460.033746

    0.6250.121950.127120.0785340.0591720.0591720.0308960.0273470.0273470.027347

    0.60.20.164840.0761420.0597610.0597610.039370.039370.039370.03937

    0.151520.517240.151520.151520.0819670.059880.0397350.0278040.0278040.027804

    0.340910.291260.0763360.060.060.060.0286260.026110.026110.02611

    0.143540.192310.143540.0970870.0864550.060120.0328590.0303340.0303340.030334

    1.36360.588240.0864550.062370.0603620.0603620.0715990.0470220.0470220.047022

    10.270270.0709220.0607290.0607290.0607290.0296740.0175030.0155120.015512

    10.270270.0709220.0607290.0607290.0607290.0296740.0175030.0155120.015512

    1.8750.204080.0877190.0719420.0621120.0621120.029240.0210380.0210380.021038

    0.197370.232560.197370.128760.0970870.0634250.0429180.0429180.0429180.042918

    0.132160.214290.132160.0923080.0923080.0653590.0290980.0277520.0277520.027752

    0.132160.214290.132160.0923080.0923080.0653590.0290980.0277520.0277520.027752

    0.10830.24590.10830.10830.0804290.0697670.24590.170450.160430.16043

    0.241940.101690.103810.0983610.0709220.0709220.0209350.0204780.0204780.020478

    0.394740.147060.394740.0808630.0808630.0714290.032120.017720.0173010.015456

    0.394740.147060.394740.0808630.0808630.0714290.032120.017720.0173010.015456

    0.227270.263160.0923080.0765310.0765310.0765310.0354190.0261780.0261780.026178

    0.227270.263160.0923080.0765310.0765310.0765310.0354190.0261780.0261780.026178

    0.142862.50.111940.077320.077320.077320.0541520.0503360.0503360.050336

    0.142862.50.111940.077320.077320.077320.0541520.0503360.0503360.050336

    0.241940.100670.093750.0797870.0797870.0797870.0544460.0265720.0214290.021429

    0.555560.141510.106760.0797870.0797870.0797870.0602410.0215830.0215830.021583

    0.196080.204080.148510.120480.111940.0819670.0337840.0337840.0337840.033784

    0.319150.0528170.230770.0879770.0845070.0845070.0189750.0172710.0172710.017271

    0.319150.0528170.230770.0879770.0845070.0845070.0189750.0172710.0172710.017271

    0.236220.20.236220.126580.0996680.085960.039370.039370.039370.03937

    0.2362250.236220.126580.0996680.085960.0940440.0409280.0409280.040928

    0.476190.344830.476190.322580.090090.0882350.0201750.0163930.0163930.016393

    0.967740.31250.101010.0884960.0884960.0884960.0259290.0259290.0259290.025929

    0.120480.214290.110290.107530.0890210.0890210.0328590.024550.024550.02455

    0.234380.110290.205480.0920250.0920250.0920250.0425530.0425530.0425530.042553

    0.172410.0769230.0928790.0928790.0928790.0928790.017710.0175030.0175030.017503

    0.172410.0769230.0928790.0928790.0928790.0928790.017710.0175030.0175030.017503

    0.232560.275230.196080.0931680.0931680.0931680.0541520.0445770.0403770.040377

    0.118580.163040.118580.113640.113640.093750.0465840.0465840.0465840.046584

    0.309280.750.309280.123970.0955410.0955410.0337080.0337080.0337080.033708

    0.127120.170450.114940.10490.10490.10490.043290.0363640.0363640.036364

    0.127120.170450.114940.10490.10490.10490.043290.0363640.0363640.036364

    0.133330.422540.106010.106010.106010.106010.104530.038660.0367650.036765

    0.483870.769230.204080.106380.106380.106380.0707550.0483090.0483090.048309

    0.483870.405410.204080.106380.106380.106380.212770.063830.063830.06383

    4.28570.090090.110290.110290.110290.110290.0210530.0210530.0210530.021053

    4.28570.090090.110290.110290.110290.110290.0210530.0210530.0210530.021053

    0.652170.267860.197370.11070.11070.11070.0547450.021930.021930.02193

    0.361450.204080.361450.166670.166670.111940.0337840.0337840.0337840.033784

    0.361450.422540.361450.166670.166670.111940.104530.038660.0367650.036765

    0.192310.315790.192310.192310.16760.113640.073350.073350.073350.07335

    0.192310.315790.192310.192310.16760.113640.073350.073350.073350.07335

    0.6250.267860.365850.365850.123460.119520.0547450.021930.021930.02193

    0.6250.357140.365850.365850.123460.119520.0862070.0862070.0862070.086207

    1.20.100670.361450.173410.125520.125520.019750.0134710.0134710.013471

    0.163930.277780.163930.163930.140850.126580.043290.043290.043290.04329

    0.50.267860.139530.139530.139530.139530.106380.0445770.0445770.044577

    0.297030.122450.152280.152280.152280.152280.0680270.0340520.0252950.023006

    0.545450.294120.159570.159570.159570.159570.0228660.017720.017720.01772

    0.545450.294120.159570.159570.159570.159570.0228660.017720.017720.01772

    0.263160.857140.174420.160430.160430.160430.136360.0952380.0952380.095238

    0.612240.517240.205480.186340.162160.162160.0608520.0393180.0393180.039318

    0.612240.517240.205480.186340.162160.162160.0608520.0393180.0393180.039318

    0.223880.291260.223880.170450.16760.16760.0286260.026110.026110.02611

    0.483870.101690.175440.170450.170450.170450.0209350.0204780.0204780.020478

    0.333330.214290.214290.214290.214290.214290.0328590.024550.024550.02455

    0.535710.267860.535710.361450.361450.361450.106380.0445770.0445770.044577

    0.46959023530.53645976470.17900592940.11497171760.09666990590.08986248240.05614356470.04014996470.03934578820.0392754471

    finalGraph

    0.38119602150.104655686

    0.30910.085

    0.280.0782

    0.2448341320.074842453

    0.22330.07401

    0.2110.0733434096

    0.20586012790.073

    0.20.07333

    0.19136360940.0732122885

    0.19136360940.0732122885

    0.19136360940.0732122885

    PLOD

    Waxman

    Length Restriction (L* is the length of the shorest path)

    r(L)

    2

    PLAVERAGE

    ECMPCongestionPLRMPCongestionPL

    DDD+1D+2D+3

    11234

    0.46959023530.17900592940.11497171760.09666990590.0898624824

    NORMALIZED

    ECMPCongestionPLRMPCongestionPL

    DDD+1D+2D+3

    11234

    10.38119602150.2448341320.20586012790.1913636094

    L*1.1*L*1.2*L*1.3*L*1.4*L*1.5*L*1.6*L*1.7*L*1.8*L*1.9*L*2*L*

    0.38119602150.30910.280.2448341320.22330.2110.20586012790.20.19136360940.19136360940.1913636094

    2

    0

    0

    0

    0

    RMP congestion / ECMP congestion

    Delay

    Congestion

    RMP congestion / ECMP congestion (PL)

    3

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    RMP/ECMP

    Delay

    Congestion

    RMP congestion / ECMP congestion (PLOD)

    WAVERAGE

    ECMPCongestionWRMPCongestionW

    DDD+1D+2D+3

    11234

    0.5364597