Author
others
View
1
Download
0
Embed Size (px)
Darmstadt, October 1th, 2015
Multilevel Characterization of Biotherapeutics using CESI-MS:
from Intact Protein to Peptide Mapping Approach
Yannis-Nicolas François
Laboratory of Mass Spectrometry of Interactions and System, University of Strasbourg, France
CESI User Meeting
Separation in capillary electrophoresis
electrophoretic mobility
electroosmotic mobility
• Analytes are separated depending on their charge and size
• CE provides fast separation
great efficiency
low sample consumption
Advantages of CE-MS
� Great efficiency
� Selectivity
� Sensitivity
� Structural information
� Ultra-low flow rate
CE-ESI-MS Coupling
Advantages of CE-MS
� Great efficiency
� Ultra-low flow rate
CE-ESI-MS Coupling
Minimize ion suppression2
Maximize ionization efficiency
Increase sensitivity1
1Wilm, Mann International Journal of Mass Spectrometry 1994, 136, 167–1802Schmidt, Karas, Dulcks , J Am Soc Mass Spectrom 2003, 14, 492–500
1. Monoclonal antibodies primary structure characterisation by CESI-MS
2. Biosimilarity assessment by CESI-MS
3. Antibody Drug Conjugate characterization by CESI-MS
4. Glycoform Separation and Characterisation of Cetuximab Variants by Middle-up Off-line CE-UV/ESI-MS
Content
CESI-MS coupling
• CESI-MS allows to be operated using nano flowrates
Favorable to ESI ionization
• CESI-MS showed improved sensitivity compared
to sheath liquid interface
� Faserl et al., Anal. Chem. 2011, 83, 7297-7305
� Busnel et al., Anal. Chem. 2010, 82, 9476-9483
Diagram and picture of the CESI interface
mAbs characterisation by CESI-MS/MS
• Monoclonal antibody (mAb) therapeutics attract the most interest due to their strong therapeutic potency.
� In 2015, over than 43 are marketed
� more than 30 mAbs in clinical trial phase III
• mAbs specificity for its antigen opens new avenues for therapeutic treatments
� oncology
� autoimmune diseases
� Transplant rejection prevention
• mAbs are complex and heterogeneous glycoproteins representing a challenge to analytical sciences
� Characterization on different level of the mAbs
� Necessity of precise and high throughput characterization
Zhang Z. et al., Mass Spec. Rev., 2009 (28), 147-176
A. Beck et al., Anal. Chem. 2012, 84, 4637-4646
Average mass: 148,057 Da (1,328 a.a.)
LC : -N30T – (D/isoD, +1 Da)
HC : -N55T – (D/isoD, +1 Da)
HC : -N387T – (D/isoD, +1 Da)
Monoclonal AntibodyTrastuzumab
mAbs characterisation workflow
In-solution tryptic digestionAnalysis by
t-ITP CESI-MS/MS
Amino acid sequence
characterisation
PTMs hot spots
characterisation
Glycosylations
(structure)
CESI8000 coupled to 5600 TripleTOF MS
• Primary structure characterisation workflow based on bottom-up proteomics strategy
Amino acid sequence characterisation
• MS/MS amino acid sequence characterisation (trastuzumab)
100% sequence coverage achieved in a single injection through
only purely tryptic unmodified peptides
Gahoual R. et al., Anal. Chem., 2014 (86), 9074-9081
variable domain
complementarity determining region
constant domain
identified peptides
Amino acid sequence characterisation
MS/MS spectrum of digested peptides LT04
APK
(m/z 315.2039 ; 2+)
MS/MS spectrum of digested peptides HT15
DYFPEPVTVSWNSGALTSGVHTFPAVLQS
SGLYSLSSVVTVPSSSLGTQTYICNVNHKP
SNTK
(63 amino acids ; m/z 1119.898 ; 6+)
Implementation of CE allows separation and successful detection of a larger variety of peptides
A. Beck et al., Anal. Chem. 2012, 84, 4637-4646
Average mass: 148,057 Da (1,328 a.a.)
LC : -N30T – (D/isoD, +1 Da)
HC : -N55T – (D/isoD, +1 Da)
HC : -N387T – (D/isoD, +1 Da)
Trastuzumab (Herceptin)
Detection of 15
different glycosylations
(MS)
9 structures
characterized (MS/MS)
Glycosylations characterization
• mAbs glycosylations are characterized simultaneously using the same CESI-MS/MS data
Gahoual R. et al., mAbs, 2013 (5), 479-490
• Glycopeptides MS signal intensity used to estimate glycoforms relative abundances
15 different glycoforms identified in trastuzumab case
Possibility to detect weakly abundant glycosylation
Glycosylations characterization
Gahoual R. et al., Anal. Chem., 2014 (86), 9074-9081
PTMs hot spots characterization
N-terminal glutamic acid cyclization characterization
• CE mechanism separates of peptide with N-terminal glutamic acid cyclization from the
unmodified peptide
Results suggest partial
modification of sample
Favorable conditions to estimate
sample modification level
HT01
pyroglu - HT01
Extracted ion electropherograms of peptides HT01 and modified HT01
Gahoual R. et al., Anal. Chem., 2014 (86), 9074-9081
PTMs hot spots characterization
Methionine oxidation
• Methionine oxidation causes peptide mass shift (+15.99 Da) leading to the separation of the
modified peptide in CZE
confirmed by MS/MS spectra
Gahoual R. et al., Anal. Chem., 2014 (86), 9074-9081
Methionine (M)
methionine
sulfoxide (oxiM)
EIEs and MS/MS spectra of peptides HT21 (intact and modified)
PTMs hot spots characterization
Asparagine (N) aspartic acid (deaN)
• Deamidation (+ 0.98 Da) involves mobility change in CZE enabling the separation of the unmodified peptide
CE separation of deamidated peptides eases the
identification of the modification by MS
Gahoual R. et al., Anal. Chem., 2014 (86), 9074-9081
EIEs and MS/MS spectra of peptides LT04 (intact and modified)
Asparagine deamidation
PTMs hot spots characterization
Aspartic acid isomerization
CE separation prior to MS analysis allows in this particular case to include
aspartic acid isomerization in the overall characterization workflow
HT23 (-D283-)
HT23 (-isoD283-)
EIEs and MS/MS spectra of peptides HT23 (intact and modified)
Gahoual R. et al., Anal. Chem., 2014 (86), 9074-9081
Aspartic acid separation in CZE
• Aspartic acid isomers separation by CZE confirmed using a synthetic peptide
NH2-GLEWIGYISY D GTNNYKPSLK-OH
NH2-GLEWIGYISY isoD GTNNYKPSLK-OH
Synthetic peptides sequences :
1. Monoclonal antibodies primary structure characterisation by CESI-MS
2. Biosimilarity assessment by CESI-MS
3. Antibody Drug Conjugate characterization by CESI-MS
4. Glycoform Separation and Characterisation of Cetuximab Variants by Middle-up Off-line CE-UV/ESI-MS
Content
mAbs biosimilarity assessment
• As several mAbs patent are ending in the next few months/years, other companies should have the
possibility to commercialize « unprotected » mAbs
• mAbs complexity and production process (cell line selection) makes it nearly impossible to produce
strictly the same product as the innovator company
• FDA and EMA are introducing guidelines to help biopharma companies to determine the key features
needed for a biosimilarity between two products in term of structure, PK and PD => reducing clinical
trials
Guidelinesbiosimilars
approval
EMA, CHMP/437/04
EMA, CHMP/437/04 Rev 1
2nd case
cetuximab vs.candidatebiosimilar
Amino acid sequence similarity
RGAC
D. Ayoub et al., mAbs 2013, 5, 699-710
• A single analysis of each sample sufficient to
conclude on the complete similarity regarding
AA sequence
• Complete sequence coverage is obtained
through peptides without miscleavages or
PTMs
• CESI-MS/MS enabled to confirm an error,
recently reported in the litterature
Gahoual R. et al., mAbs, 2014 (6), 1464-1473
Glycoforms characterisation
• Fc/2 glycosylation site characterisation
Heterogenous glycoforms
could be identified
Difference in glycoforms
distribution could be observed
Cetuximab possess two different
N-glycosylation sites
Significant number of glycans
could be characterized
Gahoual R. et al., mAbs, 2014 (6), 1464-1473
Glycoforms characterisation
• Fd glycosylation site characterisation
Glycoforms exhibited by the candidate biosimilar are significantly different from cetuximab
Rejected as biosimilar� 30 % of glycans contains N-acetylneuraminic acid
Gahoual R. et al., mAbs, 2014 (6), 1464-1473
1. Monoclonal antibodies primary structure characterisation by CESI-MS
2. Biosimilarity assessment by CESI-MS
3. Antibody Drug Conjugate characterization by CESI-MS
4. Glycoform Separation and Characterisation of Cetuximab Variants by Middle-up Off-line CE-UV/ESI-MS
Content
ADC characterisation by CESI-MS/MS
• Antibody drug conjugates (ADCs): New class of biopharmaceutical drugs for cancer treatment
http://adcreview.com/knowledge-center/adcs-101/how-
do-antibody-drug-conjugates-work/
ADC characterisation by CESI-MS/MS
• Antibody drug conjugates (ADCs): New class of biopharmaceutical drugs for cancer treatment
• Cysteine-linked ADCs
http://adcreview.com/knowledge-center/adcs-101/how-
do-antibody-drug-conjugates-work/
Drug
Monoisotopic mass of drug: 1316.7869 Da
MMAE: 716,4962 (+ 2H)
Chain Disulfide interchain Séquences Nb of vcMMAE
HC LC-HC 219SCDK222 1
LC LC-HC 212GEC214 1
HC HC-HC 223THTCPPCPAPELLGGPSVFLFPPKPK248 1
HC HC-HC 223THTCPPCPAPELLGGPSVFLFPPKPK248 2
Objectives :
A. Characterization of intact ADCs: Determination of average DAR et DAR Distribution
In native conditionNanoESI infusion using CESI8000
B. Peptide mapping:
Identify
- Drug conjugate peptides
- Amino acid sequence
- PTMs: N-glycosylation, deamidation, oxidation, cyclization…
ADC characterisation by CESI-MS/MS
7.38
0
8
0 ==
∑
∑
=
=
ndrug
nDrug
A
nADAR
0-Drug
Deconvoluted Mass spectra
Characterisation of Intact ADCs
• DAR Distribution
Raw MS Signal
• Average DAR
1-Drug
2-Drugs
3-Drugs
4-Drugs
6-Drugs
5-Drugs 7-Drugs 8-Drugs
2637 2638 2636 2639
DIVLTQSPASLAVSLGQR ATISCK
ASQSVDFDGDSYMNWYQQK PGQPPK
VLIYAASNLESGIPAR
FSGSGSGTDFTLNIHPVEEEDAATYYCQQSNED
PWTFGGGTK LEIKR TVAAPSVFIFPPSDEQLK
SGTASVVCLLNNFYPR EAK VQWK
VDNALQSGNSQESVTEQDSK
DSTYSLSSTLTLSK ADYEK HK
VYACEVTHQGLSSPVTK SFNRGEC
QIQLQQSGPEVVK PGASVK ISCK ASGYTFTDYYITWVK
QK PGQGLEWIGWIYPGSGNTK YNEK FK GK
ATLTVDTSSSTAFMQLSSLTSEDTAVYFCANYGNYWFAYWG
QGTQVTVSAASTK GPSVFPLAPSSK STSGGTAALGCLVK
DYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP
SSSLGTQTYICNVNHK PSNTK VDK KVEPK SCDK
THTCPPCPAPELLGGPSVFLFPPK PK DTLMISR
TPEVTCVVVDVSHEDPEVK FNWYVDGVEVHNAK TK PR
EEQYNSTYR VVSVLTVLHQDWLNGK EYK CK VSNK
ALPAPIEK TISK AK GQPR EPQVYTLPPSR DELTK
NQVSLTCLVK GFYPSDIAVEWESNGQPENNYK
TTPPVLDSDGSFFLYSK LTVDK SR WQQG
NVFSCSVMHEALHNHYTQK SLSLSPG
Amino acid sequence characterisation
• MS/MS amino acid sequence characterisation
94% sequence coverage achieved in a single injection using tryptic digestion
N. Said et al. Anal. Chem. 2015, Submitted
DIVLTQSPASLAVSLGQR ATISCK
ASQSVDFDGDSYMNWYQQK PGQPPK
VLIYAASNLESGIPAR
FSGSGSGTDFTLNIHPVEEEDAATYYCQQSNED
PWTFGGGTK LEIKR TVAAPSVFIFPPSDEQLK
SGTASVVCLLNNFYPR EAK VQWK
VDNALQSGNSQESVTEQDSK
DSTYSLSSTLTLSK ADYEK HK
VYACEVTHQGLSSPVTK SFNRGEC
QIQLQQSGPEVVK PGASVK ISCK ASGYTFTDYYITWVK
QK PGQGLEWIGWIYPGSGNTK YNEK FK GK
ATLTVDTSSSTAFMQLSSLTSEDTAVYFCANYGNYWFAYWG
QGTQVTVSAASTK GPSVFPLAPSSK STSGGTAALGCLVK
DYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP
SSSLGTQTYICNVNHK PSNTK VDK KVEPK SCDK
THTCPPCPAPELLGGPSVFLFPPK PK DTLMISR
TPEVTCVVVDVSHEDPEVK FNWYVDGVEVHNAK TK PR
EEQYNSTYR VVSVLTVLHQDWLNGK EYK CK VSNK
ALPAPIEK TISK AK GQPR EPQVYTLPPSR DELTK
NQVSLTCLVK GFYPSDIAVEWESNGQPENNYK
TTPPVLDSDGSFFLYSK LTVDK SR WQQG
NVFSCSVMHEALHNHYTQK SLSLSPG
Amino acid sequence characterisation
• MS/MS amino acid sequence characterisation
98,8% sequence coverage achieved in a single injection using chymotryptic digestion
N. Said et al. Anal. Chem. 2015, Submitted
DIVLTQSPASLAVSLGQR ATISCK
ASQSVDFDGDSYMNWYQQK PGQPPK
VLIYAASNLESGIPAR
FSGSGSGTDFTLNIHPVEEEDAATYYCQQSNED
PWTFGGGTK LEIKR TVAAPSVFIFPPSDEQLK
SGTASVVCLLNNFYPR EAK VQWK
VDNALQSGNSQESVTEQDSK
DSTYSLSSTLTLSK ADYEK HK
VYACEVTHQGLSSPVTK SFNRGEC
QIQLQQSGPEVVK PGASVK ISCK ASGYTFTDYYITWVK
QK PGQGLEWIGWIYPGSGNTK YNEK FK GK
ATLTVDTSSSTAFMQLSSLTSEDTAVYFCANYGNYWFAYWG
QGTQVTVSAASTK GPSVFPLAPSSK STSGGTAALGCLVK
DYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP
SSSLGTQTYICNVNHK PSNTK VDK KVEPK SCDK
THTCPPCPAPELLGGPSVFLFPPK PK DTLMISR
TPEVTCVVVDVSHEDPEVK FNWYVDGVEVHNAK TK PR
EEQYNSTYR VVSVLTVLHQDWLNGK EYK CK VSNK
ALPAPIEK TISK AK GQPR EPQVYTLPPSR DELTK
NQVSLTCLVK GFYPSDIAVEWESNGQPENNYK
TTPPVLDSDGSFFLYSK LTVDK SR WQQG
NVFSCSVMHEALHNHYTQK SLSLSPG
Drug characterization
Detection and characterization of the 4 modified peptides using MS/MS data
N. Said et al. Anal. Chem. 2015, Submitted
Conjugate peptide: LC-HC interchain 208SFNRGEC214
[M+3H]3+710,0489
709,8 709,9 710,0 710,1 710,2 710,3 710,4 710,5 710,6 710,7 710,8 710,9 711,0 711,1 711,2 711,3 711,4 711,5 711,6 711,7 711,8 711,9 712,0Mass/Charge, Da
0
710,3836
710,7173
711,0522
710 720 730 740 750 760 770 780 790 800 810 820 830 840 850 860 870 880 890 900 910 920 930 940 950 960 970 980 990 1000 1010 1020 1030 1040 1050 10600
100%
1065,0620710,0489
[M+2H]2+
1064,0 1064,2 1064,4 1064,6 1064,8 1065,0 1065,2 1065,4 1065,6 1065,8 1066,0 1066,2 1066,4 1066,6 1066,8 1067,0 1067,2 1067,4Mass/Charge, Da
0
1065,06201064,5597
1065,5624
1066,06281066,06281066,06281066,0628
Drug characterization
150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250Mass/Charge, Da
0
100% 686,4849
106,0638
1104,4784
718,5126 1121,5014 1261,55721244,53421218,5530506,3556
152,1048538,7443
246,1219134,0941 687,4867321,2148 443,2894
730,4783691,3126 1005,4146605,4266 1105,4937386,1779263,1473 1076,4844 1122,50471219,5557505,2475261,1572 1004,4272539,2417 636,4489
668,4739170,1160 788,3295502,3309
Drug fragmentation
Extracted ion electropherogram
MS spectra
MS/MS spectra: precursor 710.05 Da
Conjugate peptide: LC-HC interchain 219SCDK222
Drug characterization
226,5 226,6 226,7 226,8 226,9 227,0 227,1 227,2 227,3 227,4 227,5 227,6 227,7 227,8 227,9 228,0 228,1
Mass/Charge, Da
0,0e0
2,0e3
4,0e3
6,0e3
8,0e3
1,0e4
1,2e4
1,4e4
1,6e4
1,8e4
2,0e4
2,2e4
2,4e4
2,6e4
2,8e4
3,0e4
3,2e4
3,4e4
3,6e4
3,8e4
4,0e4
4,2e4
4,4e4
4,6e4
Inte
nsity
226,5768
227,0786
227,5774
884,4 884,5 884,6 884,7 884,8 884,9 885,0 885,1 885,2 885,3 885,4 885,5 885,6 885,7 885,8 885,9 886,0 886,1 886,2 886,3 886,4 886,5 886,6 886,7 886,8 886,9 887,0 887,1 887,2
Mass/Charge, Da
0,0e0
5,0e3
1,0e4
1,5e4
2,0e4
2,5e4
3,0e4
3,5e4
4,0e4
4,5e4
5,0e4
5,5e4
6,0e4
6,5e4
Inte
nsity
884,9568
884,4556
885,4582
885,9588
886,4611
CE separation of drug peptides eases the
identification of the modification by MS
SCDK SCDK
N. Said et al. Anal. Chem. 2015, Submitted
1. Monoclonal antibodies primary structure characterisation by CESI-MS
2. Biosimilarity assessment by CESI-MS
3. Antibody Drug Conjugate characterization by CESI-MS
4. Glycoform Separation and Characterisation of Cetuximab Variants by Middle-up Off-line CE-UV/ESI-MS
Content
Introduction
• mAbs are complex and heterogeneous glycoproteins representing a challenge to analytical sciences
� Characterization on different level of the mAbs
Intact protein analysis
Introduction
� 400 mM ε-amino-caproic acid pH 5.7
� Triethylenetetramine as additive
Not compatible with ESI-MS detection
• Classical condition described in the literature1,2
1He et al, Anal. Chem. 2010, 82, 3222-32302Gassner et al, Electrophoresis 2013, 34, 2718-2724
• mAbs are complex and heterogeneous glycoproteins representing a challenge to analytical sciences
� Characterization on different level of the mAbs
Intact protein analysis
Off-line coupling strategy
On-line Off-line
Fraction collection
CE Separation
Minutes
2 4 6 8 10 12 14 16 18 20 22
AU
-0,005
0,000
0,005
0,010
0,015
0,020
0,025
AU
-0,005
0,000
0,005
0,010
0,015
0,020
0,025
UV - 200nm
Ins + Lyso + Myo + Ribo 20 uM
PACE MDQ
Beckman CoulterProteineer FC
Bruker
CESI8000 - MS
M. Biacchi et al. Electrophoresis 2014, 35 (20), 2986-2995
MS
Analysis by
CE-UV/Fraction collection
mAbs characterisation workflow
IdeS digestion
Fc/2 variant
characterization
F(ab’)2 characterization
Analysis by
NanoESI infusion
Characterisation of FC/2 variants
M. Biacchi et al. Anal. Chem. 2015, 87, 6240-6250
� Characterization of 7 Fc/2
glycoforms.
� Separation due to C-terminal
lysine truncation
Peak 1 Fc/2
Peak 3 Fc/2-K
Peak 2: Mixture Fc/2 and Fc/2-K
Characterisation of FC/2 variants
M. Biacchi et al. Anal. Chem. 2015, Submitted
� Characterization of 7 Fc/2
glycoforms.
� Separation due to C-terminal
lysine truncation
Peak 1 Fc/2
Peak 3 Fc/2-K HeterodimerFc/2/Fc/2-K
Homodimer
Fc/2-K
Homodimer
Fc/2
Separation of Fc/2 aggregates
Characterisation of F(ab’)2 variants
M. Biacchi et al. Anal. Chem. 2015, 87, 6240-6250
� Characterization of 8 F(ab’)2
glycoforms.
� Separation of F(ab’)2 glycoforms
Separation based on the
presence of sialic acid
Conclusion
• CESI-MS/MS allowed to conclude in each case on the biosimilarity assessment
• Charaterisation and Glycoform Separation of Cetuximab Variants by Middle-up Off-line CE-UV/ESI-MS
� Separation and characterisation of FC/2 variants (FC/2 and FC/2–K)
� Separation and characterisation of glycoform F(ab’)2 variants (presence of sialic acid)
• Monoclonal antibodies primary structure characterisation by CESI-MS
� 100% amino acid sequence characterisation
� 15 glycoforms characterisation
� All PTMs hot spots characterisation
• ADC characterisation by CESI-MS
� Average DAR measurement
� 98.8% amino acid sequence characterisation
� MS/MS characteirsation of the 4 modified peptides
Acknowledgments
Emmanuelle Leize-Wagner
Rabah Gahoual
Michael Biacchi
Nassur Said
Philippe Hammann
Lauriane Kuhn
Philippe Wolff
Johanna Chicher
Laboratory of Mass spectrometry of
Interactions and Systems (LSMIS)
Plateforme Protéomique
Strasbourg Esplanade
Centre d’Immunologie Pierre Fabre
Alain Beck
Elsa Wagner-Rousset
Marie-Claire Janin-Bussat
Daniel Ayoub
Olivier Colas
Jean-Marc Busnel
Acknowledgments
Steve Lock
Jim Thorn
Milla Neffling
Anton Heemskerk
Michel Anselme
Thank you for your attention“La petite France” - Strasbourg
mAbs characterisation by CESI-MS/MS
The t-ITP CESI-MS/MS method developed demonstrated its robustness
on different samples including technical replicates in each case
Results summary obtained with the t-ITP CESI-MS/MS method
Gahoual R. et al., Anal. Chem., 2014 (86), 9074-9081
59
Glycoforms abundances method
• Glycosylations relative quantification was performed using maximum intensities or peak area
Similar results with both
methodologies
Maximum intensity was selected for
the quantification
58
Glycoforms relative abundances
• Glycosylations relative abundances estimated from the CESI-MS/MS data were confronted to other
techniques if data were available
40.81
37.81
9.04
7.19
1.64 1.19 0.85 0.74 0.72
0
5
10
15
20
25
30
35
40
45
H3N4F1 (G0F) H4N4F1 (G1F) H5N2 (Man5) H5N4F1 (G2F) H4N4 (G1) H3N3F1 (G0F-
GlcNac)
H6N4F1 H3N4 (G0) H4N3F1 (G1F-
GlcNac)
D. Ayoub et al., mAbs 2013, 5, 699-710
44
PTMs hot spots characterization
position sequence
trastuzumab biosimilar
unmodif modif unmodif modif
N-term glutamic acid cyclization
1 -19 EVQLVESGGGLVQPGGSLR 98.2 1.8 97.3 2.7
Asparagine deamidation
51 - 59 IYPTNGYTR 89.4 10.6 92.3 7.7
374 - 395 GFYPSDIAVEWESNGQPENNYK 85.8 14.3 100.0 0.0
25 - 42 ASQDVNTAVAWYQQKPGK 96.1 3.9 96.0 4.0
Methionine oxidation
252 - 258 DTLMISR 95.3 4.7 94.5 5.5
420 - 442 WQQGNVFSCSVMHEALHNHYTQK 97.8 2.2 95.2 4.8
Aspartic acid isomerization
99 - 124 WGGDGFYAMDYWGQGTLVTVSSASTK 91.4 8.6 86.0 14.0
278 - 291 FNWYVDGVEVHNAK 92.0 8.0 96.5 3.5
396 - 412 TTPPVLDSDGSFFLYSK 75.3 24.7 93.9 6.1
Gahoual R. et al., mAbs 2014, in press
1st case
trastuzumab vs.candidatebiosimilar
Amino acid sequence similarity
• Complete sequence coverage obtained
for trastuzumab
• Biosimilar candidate sequence could be
successfully identified except HC K217
Suggesting an amino acid
substitution between the two samples
Gahoual R. et al., mAbs 2014, 6, 1464-1473
Amino acid sequence similarity
Interpretation of unidentified MS/MS spectra
Unambiguous characterisation of the amino
acid substitution of biosimilar candidate
CESI-MS/MS spectra of trastuzumab biosimilar candidate
V D K R217 V E P K
rejected candidate
Gahoual R. et al., mAbs 2014, 6, 1464-1473
Glycoforms characterisation
• Glycosylation distribution evaluated for each sample using CESI-MS/MS data
Identification of a significant
number of glycoforms
Minor differences of glycoforms
could be distinguished
Gahoual R. et al., mAbs 2014, 6, 1464-1473
56
Poor crystallization = No MALDI-MS signal
CE-MALDI
Biacchi et al., Anal. Chem., 2015 submitted