of 56 /56
Darmstadt, October 1th, 2015 Multilevel Characterization of Biotherapeuticsusing CESI-MS: from Intact Protein to Peptide Mapping Approach Yannis-Nicolas François Laboratory of Mass Spectrometry of Interactions and System, University of Strasbourg, France CESI User Meeting

Multilevel Characterization of Biotherapeuticsusing CESI ... · HC LC-HC 219 SCDK 222 1 LC LC-HC 212 GE C214 1 HC HC-HC 223 THT CPP CPAPELLGGPSVFLFPPKPK 248 1 HC HC-HC 223 THT CPP

  • Author
    others

  • View
    1

  • Download
    0

Embed Size (px)

Text of Multilevel Characterization of Biotherapeuticsusing CESI ... · HC LC-HC 219 SCDK 222 1 LC LC-HC...

  • Darmstadt, October 1th, 2015

    Multilevel Characterization of Biotherapeutics using CESI-MS:

    from Intact Protein to Peptide Mapping Approach

    Yannis-Nicolas François

    Laboratory of Mass Spectrometry of Interactions and System, University of Strasbourg, France

    CESI User Meeting

  • Separation in capillary electrophoresis

    electrophoretic mobility

    electroosmotic mobility

    • Analytes are separated depending on their charge and size

    • CE provides fast separation

    great efficiency

    low sample consumption

  • Advantages of CE-MS

    � Great efficiency

    � Selectivity

    � Sensitivity

    � Structural information

    � Ultra-low flow rate

    CE-ESI-MS Coupling

  • Advantages of CE-MS

    � Great efficiency

    � Ultra-low flow rate

    CE-ESI-MS Coupling

    Minimize ion suppression2

    Maximize ionization efficiency

    Increase sensitivity1

    1Wilm, Mann International Journal of Mass Spectrometry 1994, 136, 167–1802Schmidt, Karas, Dulcks , J Am Soc Mass Spectrom 2003, 14, 492–500

  • 1. Monoclonal antibodies primary structure characterisation by CESI-MS

    2. Biosimilarity assessment by CESI-MS

    3. Antibody Drug Conjugate characterization by CESI-MS

    4. Glycoform Separation and Characterisation of Cetuximab Variants by Middle-up Off-line CE-UV/ESI-MS

    Content

  • CESI-MS coupling

    • CESI-MS allows to be operated using nano flowrates

    Favorable to ESI ionization

    • CESI-MS showed improved sensitivity compared

    to sheath liquid interface

    � Faserl et al., Anal. Chem. 2011, 83, 7297-7305

    � Busnel et al., Anal. Chem. 2010, 82, 9476-9483

    Diagram and picture of the CESI interface

  • mAbs characterisation by CESI-MS/MS

    • Monoclonal antibody (mAb) therapeutics attract the most interest due to their strong therapeutic potency.

    � In 2015, over than 43 are marketed

    � more than 30 mAbs in clinical trial phase III

    • mAbs specificity for its antigen opens new avenues for therapeutic treatments

    � oncology

    � autoimmune diseases

    � Transplant rejection prevention

    • mAbs are complex and heterogeneous glycoproteins representing a challenge to analytical sciences

    � Characterization on different level of the mAbs

    � Necessity of precise and high throughput characterization

    Zhang Z. et al., Mass Spec. Rev., 2009 (28), 147-176

  • A. Beck et al., Anal. Chem. 2012, 84, 4637-4646

    Average mass: 148,057 Da (1,328 a.a.)

    LC : -N30T – (D/isoD, +1 Da)

    HC : -N55T – (D/isoD, +1 Da)

    HC : -N387T – (D/isoD, +1 Da)

    Monoclonal AntibodyTrastuzumab

  • mAbs characterisation workflow

    In-solution tryptic digestionAnalysis by

    t-ITP CESI-MS/MS

    Amino acid sequence

    characterisation

    PTMs hot spots

    characterisation

    Glycosylations

    (structure)

    CESI8000 coupled to 5600 TripleTOF MS

    • Primary structure characterisation workflow based on bottom-up proteomics strategy

  • Amino acid sequence characterisation

    • MS/MS amino acid sequence characterisation (trastuzumab)

    100% sequence coverage achieved in a single injection through

    only purely tryptic unmodified peptides

    Gahoual R. et al., Anal. Chem., 2014 (86), 9074-9081

    variable domain

    complementarity determining region

    constant domain

    identified peptides

  • Amino acid sequence characterisation

    MS/MS spectrum of digested peptides LT04

    APK

    (m/z 315.2039 ; 2+)

    MS/MS spectrum of digested peptides HT15

    DYFPEPVTVSWNSGALTSGVHTFPAVLQS

    SGLYSLSSVVTVPSSSLGTQTYICNVNHKP

    SNTK

    (63 amino acids ; m/z 1119.898 ; 6+)

    Implementation of CE allows separation and successful detection of a larger variety of peptides

  • A. Beck et al., Anal. Chem. 2012, 84, 4637-4646

    Average mass: 148,057 Da (1,328 a.a.)

    LC : -N30T – (D/isoD, +1 Da)

    HC : -N55T – (D/isoD, +1 Da)

    HC : -N387T – (D/isoD, +1 Da)

    Trastuzumab (Herceptin)

  • Detection of 15

    different glycosylations

    (MS)

    9 structures

    characterized (MS/MS)

    Glycosylations characterization

    • mAbs glycosylations are characterized simultaneously using the same CESI-MS/MS data

    Gahoual R. et al., mAbs, 2013 (5), 479-490

  • • Glycopeptides MS signal intensity used to estimate glycoforms relative abundances

    15 different glycoforms identified in trastuzumab case

    Possibility to detect weakly abundant glycosylation

    Glycosylations characterization

    Gahoual R. et al., Anal. Chem., 2014 (86), 9074-9081

  • PTMs hot spots characterization

    N-terminal glutamic acid cyclization characterization

    • CE mechanism separates of peptide with N-terminal glutamic acid cyclization from the

    unmodified peptide

    Results suggest partial

    modification of sample

    Favorable conditions to estimate

    sample modification level

    HT01

    pyroglu - HT01

    Extracted ion electropherograms of peptides HT01 and modified HT01

    Gahoual R. et al., Anal. Chem., 2014 (86), 9074-9081

  • PTMs hot spots characterization

    Methionine oxidation

    • Methionine oxidation causes peptide mass shift (+15.99 Da) leading to the separation of the

    modified peptide in CZE

    confirmed by MS/MS spectra

    Gahoual R. et al., Anal. Chem., 2014 (86), 9074-9081

    Methionine (M)

    methionine

    sulfoxide (oxiM)

    EIEs and MS/MS spectra of peptides HT21 (intact and modified)

  • PTMs hot spots characterization

    Asparagine (N) aspartic acid (deaN)

    • Deamidation (+ 0.98 Da) involves mobility change in CZE enabling the separation of the unmodified peptide

    CE separation of deamidated peptides eases the

    identification of the modification by MS

    Gahoual R. et al., Anal. Chem., 2014 (86), 9074-9081

    EIEs and MS/MS spectra of peptides LT04 (intact and modified)

    Asparagine deamidation

  • PTMs hot spots characterization

    Aspartic acid isomerization

    CE separation prior to MS analysis allows in this particular case to include

    aspartic acid isomerization in the overall characterization workflow

    HT23 (-D283-)

    HT23 (-isoD283-)

    EIEs and MS/MS spectra of peptides HT23 (intact and modified)

    Gahoual R. et al., Anal. Chem., 2014 (86), 9074-9081

  • Aspartic acid separation in CZE

    • Aspartic acid isomers separation by CZE confirmed using a synthetic peptide

    NH2-GLEWIGYISY D GTNNYKPSLK-OH

    NH2-GLEWIGYISY isoD GTNNYKPSLK-OH

    Synthetic peptides sequences :

  • 1. Monoclonal antibodies primary structure characterisation by CESI-MS

    2. Biosimilarity assessment by CESI-MS

    3. Antibody Drug Conjugate characterization by CESI-MS

    4. Glycoform Separation and Characterisation of Cetuximab Variants by Middle-up Off-line CE-UV/ESI-MS

    Content

  • mAbs biosimilarity assessment

    • As several mAbs patent are ending in the next few months/years, other companies should have the

    possibility to commercialize « unprotected » mAbs

    • mAbs complexity and production process (cell line selection) makes it nearly impossible to produce

    strictly the same product as the innovator company

    • FDA and EMA are introducing guidelines to help biopharma companies to determine the key features

    needed for a biosimilarity between two products in term of structure, PK and PD => reducing clinical

    trials

    Guidelinesbiosimilars

    approval

    EMA, CHMP/437/04

    EMA, CHMP/437/04 Rev 1

  • 2nd case

    cetuximab vs.candidatebiosimilar

  • Amino acid sequence similarity

    RGAC

    D. Ayoub et al., mAbs 2013, 5, 699-710

    • A single analysis of each sample sufficient to

    conclude on the complete similarity regarding

    AA sequence

    • Complete sequence coverage is obtained

    through peptides without miscleavages or

    PTMs

    • CESI-MS/MS enabled to confirm an error,

    recently reported in the litterature

    Gahoual R. et al., mAbs, 2014 (6), 1464-1473

  • Glycoforms characterisation

    • Fc/2 glycosylation site characterisation

    Heterogenous glycoforms

    could be identified

    Difference in glycoforms

    distribution could be observed

    Cetuximab possess two different

    N-glycosylation sites

    Significant number of glycans

    could be characterized

    Gahoual R. et al., mAbs, 2014 (6), 1464-1473

  • Glycoforms characterisation

    • Fd glycosylation site characterisation

    Glycoforms exhibited by the candidate biosimilar are significantly different from cetuximab

    Rejected as biosimilar� 30 % of glycans contains N-acetylneuraminic acid

    Gahoual R. et al., mAbs, 2014 (6), 1464-1473

  • 1. Monoclonal antibodies primary structure characterisation by CESI-MS

    2. Biosimilarity assessment by CESI-MS

    3. Antibody Drug Conjugate characterization by CESI-MS

    4. Glycoform Separation and Characterisation of Cetuximab Variants by Middle-up Off-line CE-UV/ESI-MS

    Content

  • ADC characterisation by CESI-MS/MS

    • Antibody drug conjugates (ADCs): New class of biopharmaceutical drugs for cancer treatment

    http://adcreview.com/knowledge-center/adcs-101/how-

    do-antibody-drug-conjugates-work/

  • ADC characterisation by CESI-MS/MS

    • Antibody drug conjugates (ADCs): New class of biopharmaceutical drugs for cancer treatment

    • Cysteine-linked ADCs

    http://adcreview.com/knowledge-center/adcs-101/how-

    do-antibody-drug-conjugates-work/

    Drug

    Monoisotopic mass of drug: 1316.7869 Da

    MMAE: 716,4962 (+ 2H)

  • Chain Disulfide interchain Séquences Nb of vcMMAE

    HC LC-HC 219SCDK222 1

    LC LC-HC 212GEC214 1

    HC HC-HC 223THTCPPCPAPELLGGPSVFLFPPKPK248 1

    HC HC-HC 223THTCPPCPAPELLGGPSVFLFPPKPK248 2

    Objectives :

    A. Characterization of intact ADCs: Determination of average DAR et DAR Distribution

    In native conditionNanoESI infusion using CESI8000

    B. Peptide mapping:

    Identify

    - Drug conjugate peptides

    - Amino acid sequence

    - PTMs: N-glycosylation, deamidation, oxidation, cyclization…

    ADC characterisation by CESI-MS/MS

  • 7.38

    0

    8

    0 ==

    =

    =

    ndrug

    nDrug

    A

    nADAR

    0-Drug

    Deconvoluted Mass spectra

    Characterisation of Intact ADCs

    • DAR Distribution

    Raw MS Signal

    • Average DAR

    1-Drug

    2-Drugs

    3-Drugs

    4-Drugs

    6-Drugs

    5-Drugs 7-Drugs 8-Drugs

    2637 2638 2636 2639

  • DIVLTQSPASLAVSLGQR ATISCK

    ASQSVDFDGDSYMNWYQQK PGQPPK

    VLIYAASNLESGIPAR

    FSGSGSGTDFTLNIHPVEEEDAATYYCQQSNED

    PWTFGGGTK LEIKR TVAAPSVFIFPPSDEQLK

    SGTASVVCLLNNFYPR EAK VQWK

    VDNALQSGNSQESVTEQDSK

    DSTYSLSSTLTLSK ADYEK HK

    VYACEVTHQGLSSPVTK SFNRGEC

    QIQLQQSGPEVVK PGASVK ISCK ASGYTFTDYYITWVK

    QK PGQGLEWIGWIYPGSGNTK YNEK FK GK

    ATLTVDTSSSTAFMQLSSLTSEDTAVYFCANYGNYWFAYWG

    QGTQVTVSAASTK GPSVFPLAPSSK STSGGTAALGCLVK

    DYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP

    SSSLGTQTYICNVNHK PSNTK VDK KVEPK SCDK

    THTCPPCPAPELLGGPSVFLFPPK PK DTLMISR

    TPEVTCVVVDVSHEDPEVK FNWYVDGVEVHNAK TK PR

    EEQYNSTYR VVSVLTVLHQDWLNGK EYK CK VSNK

    ALPAPIEK TISK AK GQPR EPQVYTLPPSR DELTK

    NQVSLTCLVK GFYPSDIAVEWESNGQPENNYK

    TTPPVLDSDGSFFLYSK LTVDK SR WQQG

    NVFSCSVMHEALHNHYTQK SLSLSPG

    Amino acid sequence characterisation

    • MS/MS amino acid sequence characterisation

    94% sequence coverage achieved in a single injection using tryptic digestion

    N. Said et al. Anal. Chem. 2015, Submitted

  • DIVLTQSPASLAVSLGQR ATISCK

    ASQSVDFDGDSYMNWYQQK PGQPPK

    VLIYAASNLESGIPAR

    FSGSGSGTDFTLNIHPVEEEDAATYYCQQSNED

    PWTFGGGTK LEIKR TVAAPSVFIFPPSDEQLK

    SGTASVVCLLNNFYPR EAK VQWK

    VDNALQSGNSQESVTEQDSK

    DSTYSLSSTLTLSK ADYEK HK

    VYACEVTHQGLSSPVTK SFNRGEC

    QIQLQQSGPEVVK PGASVK ISCK ASGYTFTDYYITWVK

    QK PGQGLEWIGWIYPGSGNTK YNEK FK GK

    ATLTVDTSSSTAFMQLSSLTSEDTAVYFCANYGNYWFAYWG

    QGTQVTVSAASTK GPSVFPLAPSSK STSGGTAALGCLVK

    DYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP

    SSSLGTQTYICNVNHK PSNTK VDK KVEPK SCDK

    THTCPPCPAPELLGGPSVFLFPPK PK DTLMISR

    TPEVTCVVVDVSHEDPEVK FNWYVDGVEVHNAK TK PR

    EEQYNSTYR VVSVLTVLHQDWLNGK EYK CK VSNK

    ALPAPIEK TISK AK GQPR EPQVYTLPPSR DELTK

    NQVSLTCLVK GFYPSDIAVEWESNGQPENNYK

    TTPPVLDSDGSFFLYSK LTVDK SR WQQG

    NVFSCSVMHEALHNHYTQK SLSLSPG

    Amino acid sequence characterisation

    • MS/MS amino acid sequence characterisation

    98,8% sequence coverage achieved in a single injection using chymotryptic digestion

    N. Said et al. Anal. Chem. 2015, Submitted

  • DIVLTQSPASLAVSLGQR ATISCK

    ASQSVDFDGDSYMNWYQQK PGQPPK

    VLIYAASNLESGIPAR

    FSGSGSGTDFTLNIHPVEEEDAATYYCQQSNED

    PWTFGGGTK LEIKR TVAAPSVFIFPPSDEQLK

    SGTASVVCLLNNFYPR EAK VQWK

    VDNALQSGNSQESVTEQDSK

    DSTYSLSSTLTLSK ADYEK HK

    VYACEVTHQGLSSPVTK SFNRGEC

    QIQLQQSGPEVVK PGASVK ISCK ASGYTFTDYYITWVK

    QK PGQGLEWIGWIYPGSGNTK YNEK FK GK

    ATLTVDTSSSTAFMQLSSLTSEDTAVYFCANYGNYWFAYWG

    QGTQVTVSAASTK GPSVFPLAPSSK STSGGTAALGCLVK

    DYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP

    SSSLGTQTYICNVNHK PSNTK VDK KVEPK SCDK

    THTCPPCPAPELLGGPSVFLFPPK PK DTLMISR

    TPEVTCVVVDVSHEDPEVK FNWYVDGVEVHNAK TK PR

    EEQYNSTYR VVSVLTVLHQDWLNGK EYK CK VSNK

    ALPAPIEK TISK AK GQPR EPQVYTLPPSR DELTK

    NQVSLTCLVK GFYPSDIAVEWESNGQPENNYK

    TTPPVLDSDGSFFLYSK LTVDK SR WQQG

    NVFSCSVMHEALHNHYTQK SLSLSPG

    Drug characterization

    Detection and characterization of the 4 modified peptides using MS/MS data

    N. Said et al. Anal. Chem. 2015, Submitted

  • Conjugate peptide: LC-HC interchain 208SFNRGEC214

    [M+3H]3+710,0489

    709,8 709,9 710,0 710,1 710,2 710,3 710,4 710,5 710,6 710,7 710,8 710,9 711,0 711,1 711,2 711,3 711,4 711,5 711,6 711,7 711,8 711,9 712,0Mass/Charge, Da

    0

    710,3836

    710,7173

    711,0522

    710 720 730 740 750 760 770 780 790 800 810 820 830 840 850 860 870 880 890 900 910 920 930 940 950 960 970 980 990 1000 1010 1020 1030 1040 1050 10600

    100%

    1065,0620710,0489

    [M+2H]2+

    1064,0 1064,2 1064,4 1064,6 1064,8 1065,0 1065,2 1065,4 1065,6 1065,8 1066,0 1066,2 1066,4 1066,6 1066,8 1067,0 1067,2 1067,4Mass/Charge, Da

    0

    1065,06201064,5597

    1065,5624

    1066,06281066,06281066,06281066,0628

    Drug characterization

    150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250Mass/Charge, Da

    0

    100% 686,4849

    106,0638

    1104,4784

    718,5126 1121,5014 1261,55721244,53421218,5530506,3556

    152,1048538,7443

    246,1219134,0941 687,4867321,2148 443,2894

    730,4783691,3126 1005,4146605,4266 1105,4937386,1779263,1473 1076,4844 1122,50471219,5557505,2475261,1572 1004,4272539,2417 636,4489

    668,4739170,1160 788,3295502,3309

    Drug fragmentation

    Extracted ion electropherogram

    MS spectra

    MS/MS spectra: precursor 710.05 Da

  • Conjugate peptide: LC-HC interchain 219SCDK222

    Drug characterization

    226,5 226,6 226,7 226,8 226,9 227,0 227,1 227,2 227,3 227,4 227,5 227,6 227,7 227,8 227,9 228,0 228,1

    Mass/Charge, Da

    0,0e0

    2,0e3

    4,0e3

    6,0e3

    8,0e3

    1,0e4

    1,2e4

    1,4e4

    1,6e4

    1,8e4

    2,0e4

    2,2e4

    2,4e4

    2,6e4

    2,8e4

    3,0e4

    3,2e4

    3,4e4

    3,6e4

    3,8e4

    4,0e4

    4,2e4

    4,4e4

    4,6e4

    Inte

    nsity

    226,5768

    227,0786

    227,5774

    884,4 884,5 884,6 884,7 884,8 884,9 885,0 885,1 885,2 885,3 885,4 885,5 885,6 885,7 885,8 885,9 886,0 886,1 886,2 886,3 886,4 886,5 886,6 886,7 886,8 886,9 887,0 887,1 887,2

    Mass/Charge, Da

    0,0e0

    5,0e3

    1,0e4

    1,5e4

    2,0e4

    2,5e4

    3,0e4

    3,5e4

    4,0e4

    4,5e4

    5,0e4

    5,5e4

    6,0e4

    6,5e4

    Inte

    nsity

    884,9568

    884,4556

    885,4582

    885,9588

    886,4611

    CE separation of drug peptides eases the

    identification of the modification by MS

    SCDK SCDK

    N. Said et al. Anal. Chem. 2015, Submitted

  • 1. Monoclonal antibodies primary structure characterisation by CESI-MS

    2. Biosimilarity assessment by CESI-MS

    3. Antibody Drug Conjugate characterization by CESI-MS

    4. Glycoform Separation and Characterisation of Cetuximab Variants by Middle-up Off-line CE-UV/ESI-MS

    Content

  • Introduction

    • mAbs are complex and heterogeneous glycoproteins representing a challenge to analytical sciences

    � Characterization on different level of the mAbs

    Intact protein analysis

  • Introduction

    � 400 mM ε-amino-caproic acid pH 5.7

    � Triethylenetetramine as additive

    Not compatible with ESI-MS detection

    • Classical condition described in the literature1,2

    1He et al, Anal. Chem. 2010, 82, 3222-32302Gassner et al, Electrophoresis 2013, 34, 2718-2724

    • mAbs are complex and heterogeneous glycoproteins representing a challenge to analytical sciences

    � Characterization on different level of the mAbs

    Intact protein analysis

  • Off-line coupling strategy

    On-line Off-line

    Fraction collection

    CE Separation

    Minutes

    2 4 6 8 10 12 14 16 18 20 22

    AU

    -0,005

    0,000

    0,005

    0,010

    0,015

    0,020

    0,025

    AU

    -0,005

    0,000

    0,005

    0,010

    0,015

    0,020

    0,025

    UV - 200nm

    Ins + Lyso + Myo + Ribo 20 uM

    PACE MDQ

    Beckman CoulterProteineer FC

    Bruker

    CESI8000 - MS

    M. Biacchi et al. Electrophoresis 2014, 35 (20), 2986-2995

    MS

  • Analysis by

    CE-UV/Fraction collection

    mAbs characterisation workflow

    IdeS digestion

    Fc/2 variant

    characterization

    F(ab’)2 characterization

    Analysis by

    NanoESI infusion

  • Characterisation of FC/2 variants

    M. Biacchi et al. Anal. Chem. 2015, 87, 6240-6250

    � Characterization of 7 Fc/2

    glycoforms.

    � Separation due to C-terminal

    lysine truncation

    Peak 1 Fc/2

    Peak 3 Fc/2-K

    Peak 2: Mixture Fc/2 and Fc/2-K

  • Characterisation of FC/2 variants

    M. Biacchi et al. Anal. Chem. 2015, Submitted

    � Characterization of 7 Fc/2

    glycoforms.

    � Separation due to C-terminal

    lysine truncation

    Peak 1 Fc/2

    Peak 3 Fc/2-K HeterodimerFc/2/Fc/2-K

    Homodimer

    Fc/2-K

    Homodimer

    Fc/2

    Separation of Fc/2 aggregates

  • Characterisation of F(ab’)2 variants

    M. Biacchi et al. Anal. Chem. 2015, 87, 6240-6250

    � Characterization of 8 F(ab’)2

    glycoforms.

    � Separation of F(ab’)2 glycoforms

    Separation based on the

    presence of sialic acid

  • Conclusion

    • CESI-MS/MS allowed to conclude in each case on the biosimilarity assessment

    • Charaterisation and Glycoform Separation of Cetuximab Variants by Middle-up Off-line CE-UV/ESI-MS

    � Separation and characterisation of FC/2 variants (FC/2 and FC/2–K)

    � Separation and characterisation of glycoform F(ab’)2 variants (presence of sialic acid)

    • Monoclonal antibodies primary structure characterisation by CESI-MS

    � 100% amino acid sequence characterisation

    � 15 glycoforms characterisation

    � All PTMs hot spots characterisation

    • ADC characterisation by CESI-MS

    � Average DAR measurement

    � 98.8% amino acid sequence characterisation

    � MS/MS characteirsation of the 4 modified peptides

  • Acknowledgments

    Emmanuelle Leize-Wagner

    Rabah Gahoual

    Michael Biacchi

    Nassur Said

    Philippe Hammann

    Lauriane Kuhn

    Philippe Wolff

    Johanna Chicher

    Laboratory of Mass spectrometry of

    Interactions and Systems (LSMIS)

    Plateforme Protéomique

    Strasbourg Esplanade

  • Centre d’Immunologie Pierre Fabre

    Alain Beck

    Elsa Wagner-Rousset

    Marie-Claire Janin-Bussat

    Daniel Ayoub

    Olivier Colas

    Jean-Marc Busnel

    Acknowledgments

    Steve Lock

    Jim Thorn

    Milla Neffling

    Anton Heemskerk

    Michel Anselme

  • Thank you for your attention“La petite France” - Strasbourg

  • mAbs characterisation by CESI-MS/MS

    The t-ITP CESI-MS/MS method developed demonstrated its robustness

    on different samples including technical replicates in each case

    Results summary obtained with the t-ITP CESI-MS/MS method

    Gahoual R. et al., Anal. Chem., 2014 (86), 9074-9081

  • 59

    Glycoforms abundances method

    • Glycosylations relative quantification was performed using maximum intensities or peak area

    Similar results with both

    methodologies

    Maximum intensity was selected for

    the quantification

  • 58

    Glycoforms relative abundances

    • Glycosylations relative abundances estimated from the CESI-MS/MS data were confronted to other

    techniques if data were available

    40.81

    37.81

    9.04

    7.19

    1.64 1.19 0.85 0.74 0.72

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    H3N4F1 (G0F) H4N4F1 (G1F) H5N2 (Man5) H5N4F1 (G2F) H4N4 (G1) H3N3F1 (G0F-

    GlcNac)

    H6N4F1 H3N4 (G0) H4N3F1 (G1F-

    GlcNac)

    D. Ayoub et al., mAbs 2013, 5, 699-710

  • 44

    PTMs hot spots characterization

    position sequence

    trastuzumab biosimilar

    unmodif modif unmodif modif

    N-term glutamic acid cyclization

    1 -19 EVQLVESGGGLVQPGGSLR 98.2 1.8 97.3 2.7

    Asparagine deamidation

    51 - 59 IYPTNGYTR 89.4 10.6 92.3 7.7

    374 - 395 GFYPSDIAVEWESNGQPENNYK 85.8 14.3 100.0 0.0

    25 - 42 ASQDVNTAVAWYQQKPGK 96.1 3.9 96.0 4.0

    Methionine oxidation

    252 - 258 DTLMISR 95.3 4.7 94.5 5.5

    420 - 442 WQQGNVFSCSVMHEALHNHYTQK 97.8 2.2 95.2 4.8

    Aspartic acid isomerization

    99 - 124 WGGDGFYAMDYWGQGTLVTVSSASTK 91.4 8.6 86.0 14.0

    278 - 291 FNWYVDGVEVHNAK 92.0 8.0 96.5 3.5

    396 - 412 TTPPVLDSDGSFFLYSK 75.3 24.7 93.9 6.1

    Gahoual R. et al., mAbs 2014, in press

  • 1st case

    trastuzumab vs.candidatebiosimilar

  • Amino acid sequence similarity

    • Complete sequence coverage obtained

    for trastuzumab

    • Biosimilar candidate sequence could be

    successfully identified except HC K217

    Suggesting an amino acid

    substitution between the two samples

    Gahoual R. et al., mAbs 2014, 6, 1464-1473

  • Amino acid sequence similarity

    Interpretation of unidentified MS/MS spectra

    Unambiguous characterisation of the amino

    acid substitution of biosimilar candidate

    CESI-MS/MS spectra of trastuzumab biosimilar candidate

    V D K R217 V E P K

    rejected candidate

    Gahoual R. et al., mAbs 2014, 6, 1464-1473

  • Glycoforms characterisation

    • Glycosylation distribution evaluated for each sample using CESI-MS/MS data

    Identification of a significant

    number of glycoforms

    Minor differences of glycoforms

    could be distinguished

    Gahoual R. et al., mAbs 2014, 6, 1464-1473

  • 56

    Poor crystallization = No MALDI-MS signal

    CE-MALDI

    Biacchi et al., Anal. Chem., 2015 submitted