23
Multifunctional, Inorganic- Filled Separators for Large Format, Li-ion Batteries R. Pekala, R. Waterhouse, Y. Patil, S. Peddini, J. Emanuel, J. Frenzel, D. Lee, D. Spitz, and G. Fraser-Bell Entek Membranes LLC, Lebanon, Oregon 97355 May 10, 2011 Project ID # ES008 This presentation does not contain any proprietary, confidential, or otherwise restricted information

Multifunctional, Inorganic-Filled Separators for Large ...energy.gov/sites/prod/files/2014/03/f11/es008_pekala_2011_p.pdf · Multifunctional, Inorganic-Filled Separators for Large

Embed Size (px)

Citation preview

Page 1: Multifunctional, Inorganic-Filled Separators for Large ...energy.gov/sites/prod/files/2014/03/f11/es008_pekala_2011_p.pdf · Multifunctional, Inorganic-Filled Separators for Large

Multifunctional, Inorganic-Filled Separators for Large

Format, Li-ion Batteries

R. Pekala, R. Waterhouse, Y. Patil, S. Peddini, J. Emanuel, J. Frenzel,

D. Lee, D. Spitz, and G. Fraser-Bell

Entek Membranes LLC, Lebanon, Oregon 97355

May 10, 2011

Project ID # ES008

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Page 2: Multifunctional, Inorganic-Filled Separators for Large ...energy.gov/sites/prod/files/2014/03/f11/es008_pekala_2011_p.pdf · Multifunctional, Inorganic-Filled Separators for Large

Overview

Timeline

Start – Feb 2010

Finish – June 2011

Percent complete – 90 %

Budget

Total project funding DOE share - $ 748,404

Entek share - $ 748,404

Funding received in FY2010 -$339,752

Funding for FY 2011- $ 408,652

Barriers Addressed

Abuse tolerance, reliability and ruggedness

High temperature (200 °C) integrity

Cell performance and life

Low cost (goal - $1/m2)

Partners

Portland State University - Electron microscopy

PPG, Evonik, Cabot - Inorganic fillers

Parkinson -Equipment and materials processing

Am. Lithium Energy Corp. – Cell builds

Page 3: Multifunctional, Inorganic-Filled Separators for Large ...energy.gov/sites/prod/files/2014/03/f11/es008_pekala_2011_p.pdf · Multifunctional, Inorganic-Filled Separators for Large

Project objectives

Define optimum process parameters to achieve inorganic-filled separators with

consistent properties for enhanced battery performance and abuse tolerance

Demonstrate good performance and stability of inorganic-filled separators in

18650 cells

Develop scale-up plan that can meet cost objectives

Operating Assumptions Maintenance of electrode separation under abuse conditions is vital for HEV/PHEV

battery safety

Overcharge, over-discharge, and high rate discharge are controlled at the system level by the Battery Management System

Objectives of the study

High temperature mechanical and dimensional stability of the separator, whether it exhibits shutdown or not, is the key to safety in large format, HEV/PHEV Li-ion cells regardless of cathode chemistry

Page 4: Multifunctional, Inorganic-Filled Separators for Large ...energy.gov/sites/prod/files/2014/03/f11/es008_pekala_2011_p.pdf · Multifunctional, Inorganic-Filled Separators for Large

Approach Silica- and/or alumina-filled separators

Extrusion of inorganic filler / UHMWPE / oil mixtures

Inorganic filler content > 65 wt. %

Biaxial orientation to achieve thin films (20-25 um)

Extraction and thermal annealing to ensure high temperature dimensional stability

Inorganic aggregatesprovide high temp barrier stability, high porosity, and fast wetting

Polymer fibrilsprovide mechanical integrity for separator processing & cell winding

Poresprovide high conductivity for excellent power capability

Page 5: Multifunctional, Inorganic-Filled Separators for Large ...energy.gov/sites/prod/files/2014/03/f11/es008_pekala_2011_p.pdf · Multifunctional, Inorganic-Filled Separators for Large

Surface & Fracture SEM --- Al2O3

Polymer rich surface layer with open porosity Highly porous bulk structure with pore size < 1 um

2.7:1 Al2O3:PE, Surface 2.7:1 Al2O3:PE, XMD Fracture

Page 6: Multifunctional, Inorganic-Filled Separators for Large ...energy.gov/sites/prod/files/2014/03/f11/es008_pekala_2011_p.pdf · Multifunctional, Inorganic-Filled Separators for Large

Surface & Fracture SEM --- Silica

2.3:1 Silica:PE, Surface 2.3:1 Silica:PE; XMD fracture

Polymer rich surface layer with open porosity Highly porous bulk structure with pore size < 1 um

Page 7: Multifunctional, Inorganic-Filled Separators for Large ...energy.gov/sites/prod/files/2014/03/f11/es008_pekala_2011_p.pdf · Multifunctional, Inorganic-Filled Separators for Large

Technical accomplishment: excellent dimensional stability

USABC Goal : < 5% shrinkage at 200 °C

Achieved with more than one formulations and different inorganic fillers

Silica filled separator

Roll ID Base roll Filler:PE Thickness (avg) 200 C Shrinkage % Gurley Puncture

µm MD XMD sec/10ml gf /25 u

DY110217.002 59 2.1 18.7 5.87 4 6.8 280

DY110221.001 263 2.3 25.3 4.67 4 7.8 230

DY110301.003 260 2.3 23.8 4.2 3.5 7.2 224

DY110302.002 260 2.3 23.3 4 3.5 7.4 244

DY110303.002 260 2.3 25.1 4.5 3.7 7.6 214

DY110218.002 64 2.6 21.3 6.5 2.67 5.3 192

Alumina filled separator

Roll ID Base roll Filler:PE Thickness (avg) 200 C Shrinkage % Gurley Puncture

µm MD XMD sec/10ml gf /25 u

DY110131.025 202 2.7 25.4 5 1 12.7 391

DY110214.003 202 2.7 20.8 6.33 2.5 12 386

Page 8: Multifunctional, Inorganic-Filled Separators for Large ...energy.gov/sites/prod/files/2014/03/f11/es008_pekala_2011_p.pdf · Multifunctional, Inorganic-Filled Separators for Large

Technical accomplishment: exceptionally low impedance

Rapid wetting with electrolyte

Enhanced power capability and low temperature performance

USABC Goal : MacMullin # < 11

Achieved with all formulations

Roll IDBase roll Filler Filler:PE Thickness

Areal Resistance Resistivity

MacMullin Number

Microns Ω-cm² Ω-cm

Inorganic Filled Separators

DY110217.002 59 Silica 2.1 19 0.59 308 3.6

DY110224.002 263 Silica 2.3 23.8 0.63 266 3.2

DY110224.004 261 Silica 2.3 22.8 0.85 373 4.1

DY110303.001 260 Silica 2.3 24.1 0.59 247 3.1

DY110218.002 64 Silica 2.6 20.5 0.48 232 2.9

DY110131.025 202 Alumina 2.7 25.9 1.06 410 4.4

DY110214.003 202 Alumina 2.7 22.3 0.88 396 4.3

Unfilled Separators

Teklon® HPIP Unfilled 25 2.15 869 8.2

Teklon® Gold LP Unfilled 12 1.85 1460 13.2

Coated Unfilled Separator

Coated Teklon® Alumina 14 2.4 1668 14.9

Page 9: Multifunctional, Inorganic-Filled Separators for Large ...energy.gov/sites/prod/files/2014/03/f11/es008_pekala_2011_p.pdf · Multifunctional, Inorganic-Filled Separators for Large

Technical accomplishment: 18650 Cell Builds

Purpose: To characterize the performance of cells with inorganic-filled separators and compare them to control cells with microporous polyethylene separator.

Primary concerns: Adsorbed H2O on the fillers

Stability of fillers in contact with positive and negative electrodes.

Cell build campaigns

Cells built by American Lithium Energy Corp. NMC positive electrodes, graphite negative electrodes, high rate design

Build #1: April 2010, 20 cells, control and silica-filled separators

Build #2: August 2010, 40 cells, four different inorganic fillers

Build #3: December 2010, 20 cells, silica repeat and alumina

Page 10: Multifunctional, Inorganic-Filled Separators for Large ...energy.gov/sites/prod/files/2014/03/f11/es008_pekala_2011_p.pdf · Multifunctional, Inorganic-Filled Separators for Large

Generic Test Plan for Cell Builds

Build 18650 CellsAmerican Lithium Energy Corp.• 10 cells for each separator

formulation

Initial Performance Characterization8 cells

• 1C discharge, room temp• 1C discharge, -30°C• HPPC, room temp.

Calender Life Test60°C, 100% SOC

• 4 cells each formulation•Repeat RPT every 4 wks

Cycle Life TestRoom Temp., 1C with 2C pulse• 4 cells each formulation

7-day OCV screening test

2 cells reservedfor future tests.

Page 11: Multifunctional, Inorganic-Filled Separators for Large ...energy.gov/sites/prod/files/2014/03/f11/es008_pekala_2011_p.pdf · Multifunctional, Inorganic-Filled Separators for Large

18650 Cell Build #1 – April 14, 2010

20 cells built: two different separators.

Control, Teklon XP, 20 micron

Group Designation Separator Formulation

A & B

C & D Precipitated silica, PR 59, 20 micron)

Page 12: Multifunctional, Inorganic-Filled Separators for Large ...energy.gov/sites/prod/files/2014/03/f11/es008_pekala_2011_p.pdf · Multifunctional, Inorganic-Filled Separators for Large

Cycle Testing: Control vs. Silica-filled Separator

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 200 400 600 800 1000 1200

Dis

char

ge C

apac

ity (A

H)

Cycle Number

18650 Cycle Capacity: Teklon Controls

TeklonTeklonTeklonTeklon80% Cap.

Average Fade = -24.6%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 200 400 600 800 1000 1200 1400 1600

Dis

char

ge C

apac

ity (A

H)

Cycle Number

18650 Cycle Capacity: Silica-filled Separators

silica

silica

silica

silica

80%

1500 cyclesAverage Fade = -16.2%

• Room temperature, 100% DOD, 1C rate.• Control cells reached 80% of initial capacity at 1000-1100 cycles.• Cells with silica-filled separator are still cycling with 84% of initial capacity

after 1500 cycles.

Cells with silica-filled separator have demonstrated greater cycle life than controls.

Page 13: Multifunctional, Inorganic-Filled Separators for Large ...energy.gov/sites/prod/files/2014/03/f11/es008_pekala_2011_p.pdf · Multifunctional, Inorganic-Filled Separators for Large

60°C Storage Test: Control vs. Silica-filled Separator

3.7

3.75

3.8

3.85

3.9

3.95

4

4.05

4.1

4.15

4.2

0 20 40 60 80 100 120 140 160 180

Ope

n C

ircui

t Vol

tage

Days on Test

60°C Storage Test - Teklon Control: Cell OCV

US0005US0006US0007US0008

3.7

3.75

3.8

3.85

3.9

3.95

4

4.05

4.1

4.15

4.2

0 20 40 60 80 100 120 140 160 180

Ope

n C

ircui

t Vol

tage

Days on Test

60°C Storage Test - Silica-filled: Cell OCV

US0015US0016US0017US0018

• Fully charged (4.2V), 60°C, characterization test every 4 weeks.• Control cells exhibited increasing OCV fade rate over time.• Cells with silica-filled separator had lower, stable OCV fade rate.

Silica-filled separator contributes to lower rate of self discharge.

Page 14: Multifunctional, Inorganic-Filled Separators for Large ...energy.gov/sites/prod/files/2014/03/f11/es008_pekala_2011_p.pdf · Multifunctional, Inorganic-Filled Separators for Large

60°C Storage Test: 30°C and -20°C Capacity

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

0 20 40 60 80 100 120 140 160 180

Capa

city

(A

H)

Days in Storage at 60°C

18650 60°C Storage Test: Standard Capacity at -20°C

05 Teklon

06 Teklon

07 Teklon

08 Teklon

15 Silica

16 Silica

17 Silica

18 Silica

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0 50 100 150 200

Cap

acity

at 3

0°C

Days on Storage

18650 60°C Storage Test: Standard Capacity at 30°C

05 Teklon

06 Teklon

07 Teklon

08 Teklon

15 Silica

16 Silica

17 Silica

18 Silica

The rate of capacity loss is greater for the controls and less for the cells with silica-filled separator.

The control cells are unable to support 1C discharge at -20°C after 12 weeks of storage. The silica-filled cells continue out to 20 weeks.

Silica-filled separator demonstrates less capacity fade, especially at low temperature.

Page 15: Multifunctional, Inorganic-Filled Separators for Large ...energy.gov/sites/prod/files/2014/03/f11/es008_pekala_2011_p.pdf · Multifunctional, Inorganic-Filled Separators for Large

60°C Storage Test: HPPC Test – Discharge Pulse Resistance

The resistance of the control cells increased with storage while the resistance of the cells with silica-filled separator stayed relatively stable.

Control Cells Cells with silica-filled separator

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0 weeks 4 weeks 8 weeks 12 weeks 16 weeks 20 weeks 24 weeks

Resi

stan

ce M

easu

red

on 5

C Pu

lse

(ohm

s)

60°C Storage Test: Average Discharge Pulse Resistance

US0005

US0006

US0007

US0008

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0 weeks 4 weeks 8 weeks 12 weeks 16 weeks 20 weeks 24 weeks

Resi

stan

ce M

easu

red

on 5

C Pu

lse

(ohm

s)

60°C Storage Test: Average Discharge Pulse Resistance, silica-filled

US0015

US0016

US0017

US0018

Cells with silica-filled separator show less resistance growth than controls.

Page 16: Multifunctional, Inorganic-Filled Separators for Large ...energy.gov/sites/prod/files/2014/03/f11/es008_pekala_2011_p.pdf · Multifunctional, Inorganic-Filled Separators for Large

18650 Cell Build #2 – August 10, 2010

Group Designation Separator Formulation

E & F Surface-treated, fumed silica (hydrophobic)

G & H Surface-treated, fumed silica + fumed alumina

I & J Fumed alumina + additive (processing aid)

K & L Fumed alumina

40 cells built: 10 each with four different separators.

Page 17: Multifunctional, Inorganic-Filled Separators for Large ...energy.gov/sites/prod/files/2014/03/f11/es008_pekala_2011_p.pdf · Multifunctional, Inorganic-Filled Separators for Large

Cycle Life: Cell Build #2

All cell groups are cycling well at >800 cycles. Capacity fade rate is similar to silica-filled group in Build #1.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 100 200 300 400 500 600 700 800 900 1000

Dis

char

ge C

apac

ity (A

H)

Cycle Number

18650 Cycle Capacity: alumina+additive

US0049US0050US0051US0052silica avg.

Cycle 826 Average Fade = -9.0%Cycle

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 100 200 300 400 500 600 700 800 900 1000

Dis

char

ge C

apac

ity (A

H)

Cycle Number

18650 Cycle Capacity: alumina

US0059US0060US0061US0064silica avg.

800 cycles Average Fade = -9.1%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 100 200 300 400 500 600 700 800 900 1000

Dis

char

ge C

apac

ity (A

H)

Cycle Number

18650 Cycle Capacity: fumed silica

US0030US0031US0032US0033silica avg.

849 cyclesAverage Fade = -11.8%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 100 200 300 400 500 600 700 800 900 1000

Dis

char

ge C

apac

ity (A

H)

Cycle Number

18650 Cycle Capacity: fumed silica + alumina

US0040US0041US0043US0044silica avg.

855 cyclesAverage Fade = -8.7%

Page 18: Multifunctional, Inorganic-Filled Separators for Large ...energy.gov/sites/prod/files/2014/03/f11/es008_pekala_2011_p.pdf · Multifunctional, Inorganic-Filled Separators for Large

60°C Storage OCV – Cell Build #2Treated, fumed silica filler Treated, fumed silica + alumina filler

Fumed alumina + additive filler Fumed alumina filler

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

0 20 40 60 80 100 120 140 160 180 200

Ope

n C

ircui

t Vol

tage

Days on Test

60°C Storage Test - Group E (roll 92): Cell OCV

US0025US0026US0028US0029silica avg.

US0025 removed from test on day 4, 3.567V.US0028 removed from test on day 129.

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

0 20 40 60 80 100 120 140 160 180 200

Ope

n C

ircui

t Vol

tage

Days on Test

60°C Storage Test - Group G (roll 98): Cell OCV

US0035US0036US0037US0038silica avg

US0037 removed from test on day 19, 2.468V.US0036 removed from test on day 25, 1.859V.

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

0 20 40 60 80 100 120 140 160 180 200

Ope

n C

ircui

t Vol

tage

Days on Test

60°C Storage Test - Group I (roll 140): Cell OCV

US0045US0046US0047US0048silica avg.

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

0 20 40 60 80 100 120 140 160 180 200

Ope

n C

ircui

t Vol

tage

Days on Test

60°C Storage Test - Group K (roll 147): Cell OCV

US0055US0056US0057US0058silica avg

Except for early failures in groups E & G, OCV fade is similar to silica-filled cells in Build #1.

Page 19: Multifunctional, Inorganic-Filled Separators for Large ...energy.gov/sites/prod/files/2014/03/f11/es008_pekala_2011_p.pdf · Multifunctional, Inorganic-Filled Separators for Large

60°C Storage OCV – Standard Capacity

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 20 40 60 80 100 120 140 160

Cap

acity

at 3

0°C

Days on Storage

18650 60°C Storage Test: Standard Capacity at 30°C

25 fSiO2

26 fSiO2

28 fSiO2

29 fSiO2

35 fSiO2+Al2O3

36 fSiO2+Al2O3

37 fSiO2+Al2O3

38 fSiO2+Al2O3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 20 40 60 80 100 120 140 160

Cap

acity

at 3

0°C

Days on Storage

18650 60°C Storage Test: Standard Capacity at 30°C

45 Al2O3/TiO2

46 Al2O3/TiO2

47 Al2O3/TiO2

48 Al2O3/TiO2

55 Al2O3

56 Al2O3

57 Al2O3

58 Al2O3

• All groups have experienced about equal capacity loss at 30°C.• No cells are able to support -30°C discharge after 12 weeks at

60°C. All can handle -20°C.

Similar results to Build #1 confirm lack of deleterious interaction with inorganic-filled separators.

Page 20: Multifunctional, Inorganic-Filled Separators for Large ...energy.gov/sites/prod/files/2014/03/f11/es008_pekala_2011_p.pdf · Multifunctional, Inorganic-Filled Separators for Large

Summary for Builds 1 and 2 Cycle testing

All groups cycling with stable capacity.

No evidence of any negative effect from the inorganic-filled separators

Silica-filled separator demonstrated better cycle life (>1500 cycles) than the control.

60°C Storage Build #1:

Cells with silica-filled separators have lower self-discharge rate, less capacity fade and less resistance growth than control cells.

Build #2

Early failures in OCV testwere due to soft shorts/defects in the cells.

All remaining cells demonstrate low self-discharge, low capacity fade and low resistance growth similar to silica-filled cells in build #1.

Overall: There is no evidence that inorganic-filled separators cause negative effects. Cell performance is generally better than for controls: longer cycle life, less self discharge, and higher rate capability.

Page 21: Multifunctional, Inorganic-Filled Separators for Large ...energy.gov/sites/prod/files/2014/03/f11/es008_pekala_2011_p.pdf · Multifunctional, Inorganic-Filled Separators for Large

Gap analysis

Parameter Units USABC Goal Program Goal Alumina DY110131.025

Silica DY110217.002

Selling price $/m2 1.00 1.00 -

Thickness micron <25 <25 25.4 18.7

MacMullin# # <11 <8 < 4.4 < 3.6

Gurley s/10cc < 35 < 20 12.7 6.8

Wettability Wet out in electrolytes

Wet out in electrolytes Complies Complies

Chemical Stability Stable in battery for 10 years

Stable in battery for 10 years Not tested Not tested

Pore Size micron <1 <1 < 1 < 1

Puncture Strength, JIS 1019* gf >300 gf/25.4 µm >300 gf/25.4 µm 391 280

Thermal Stability at 200°C <5% shrinkage <3% shrinkage5% MD 5.8% MD

1% XMD 4% XMD

Tensile Strength <2% offset at 1000 psi

<2% offset at 1000 psi 1970 1170

Skew mm/m <2 mm/meter <2 mm/meter - -

Pin RemovalEasy removal from

all winding machines

Easy removal from all winding machines

- -

Shutdown °C As required As required No Shutdown No Shutdown

Page 22: Multifunctional, Inorganic-Filled Separators for Large ...energy.gov/sites/prod/files/2014/03/f11/es008_pekala_2011_p.pdf · Multifunctional, Inorganic-Filled Separators for Large

Future work (March – June 2011) Continue 18650 cell performance testing

Cycle life 60 C storage

Conduct abuse tests Sandia National Labs Mobile Power Solutions

Continue pilot production of silica-filled separators Identify equipment requirements for scale-up Refine cost model

Complete separator characterization Drying methodology Pore size distribution Mechanical properties vs. UHMWPE molecular weight

Submit separator samples for large format cell builds A123 Dow-Kokam™ JCS

Page 23: Multifunctional, Inorganic-Filled Separators for Large ...energy.gov/sites/prod/files/2014/03/f11/es008_pekala_2011_p.pdf · Multifunctional, Inorganic-Filled Separators for Large

Summary

Developed free-standing, dimensionally stable, inorganic-filled separators that meet USABC requirements

Optimized web handling and annealing technology to ensure < 5% shrinkage in inorganic-filled separators at 200 °C

Demonstrated exceptionally low impedance in inorganic-filled separators (MacMullin number < 4.5) that allows for high power capability and low temperature performance

18650 cells with inorganic-filled separators show good performance compared to control cells with microporous polyethylene separator. Improved cycle life Lower self discharge Higher rate capability

Preliminary cost model suggests that silica-filled separators can approach target price