18
Triaxial Stress State +ve sense shown)

Mohr's Circle

Embed Size (px)

Citation preview

Page 1: Mohr's Circle

Triaxial Stress State

(+ve sense shown)

Page 2: Mohr's Circle

3D Principal – Triaxial Stress

max int min

123

Page 3: Mohr's Circle

3D Stress – Principal Stresses

3 21 2 3 0I I I

The three principal stresses are obtained as the three real roots of the following equation:

where

1

2 2 22

2 2 23 2

x y z

x y x z y z xy xz yz

x y z xy xz yz x yz y xz z xy

I

I

I

I1, I2, and I3 are known as stress invariants as they do not change in value when the axes are rotated to new positions.

Page 4: Mohr's Circle

Stress Invariants for Principal Stress

3213

3132212

3211

I

I

I

1

2 2 22

2 2 23 2

x y z

x y x z y z xy xz yz

x y z xy xz yz x yz y xz z xy

I

I

I

Zero shear stress on principal planes

Page 5: Mohr's Circle

Mohr’s Circle?

• There is no Mohr’s circle solution for problems of triaxial stress state

• Solution for maximum principal stresses and maximum shear stress is analytical

• Either closed form solution or numerical solution (or computer program) are used to solve the eigenvalue problem.

Page 6: Mohr's Circle

Maximum Shear Stresses

2 3max,1 2

1 3

max,2 2

1 2

max,3 2

Absolute max shear stress is the numerically larger of:

NormalStress,

31

y’z’, absmax

2

x’y’y’z’

Page 7: Mohr's Circle

3D Mohr’s Circle – Plane StressA Case Study – The two principal stresses are of the same sign

31 2

Page 8: Mohr's Circle

3D Mohr’s Circle – Plane StressA Case Study – The two principal stresses are of opposite sign

31 2

Page 9: Mohr's Circle

For the following state of stress, find the principal and critical values.

ij

120 50 0

50 80 0

0 0 0

MPa

Tensor shows that: z = 0 and xz = yz = 0

80 MPa

120 MPa

50 MPa

y

x

Example:

Page 10: Mohr's Circle

120 MPa

0 MPa

0 MPa

80 MPa

0 MPa

0 MPa

y

z

x

z

The other 2 faces:

Page 11: Mohr's Circle

She

ar S

tres

s, M

Pa

-25 0 25 50 75 100 125 150 175-80

-60

-40

-20

0

20

40

60

80

Normal Stress (MPa)

V

H

max = 77 MPa

3-D Mohr’s Circles

Page 12: Mohr's Circle

Example: triaxial stress state, not plane stress

• Determine the maximum principal stresses and the maximum shear stress for the following triaxial stress state. (+ve values as defined in slide 1)

102530

253040

304020

MPa

Page 13: Mohr's Circle

Solution

zyzzx

zyyxy

zxxyx

102530

253040

304020

MPa

1

2 2 22

2 2 23 2

x y z

x y x z y z xy xz yz

x y z xy xz yz x yz y xz z xy

I

I

I

= 20 + 30 –10 = 40 MPa

= -3025 MPa

= 89500 MPaSolve

3 21 2 3 0I I I

Page 14: Mohr's Circle

Solution to Example

-800000

-600000

-400000

-200000

0

200000

400000

600000

-100 -80 -60 -40 -20 0 20 40 60 80 100

Stress (MPa)

Sig

ma

(MP

a)

-51.8 MPa

65.3 MPa

26.5 MPa

Open the Exel Spreadsheet “triaxial stress.xls” for a template to solve the cubic eqn.

Page 15: Mohr's Circle

Results

MPa

MPa

MPa

MPa

5.58

)8.513.65(2/1

8.51

5.26

3.65

max

1

2

3

Page 16: Mohr's Circle

Mohr’s circles

NormalStress, MPa

3=63.51= -51.8

y’z’, absmax=58.5

2=26.5

Shear (MPa)

Page 17: Mohr's Circle

Safety Factor?If the stress state was determined on a steel crankshaft, made of forged

SAE1045 steel with a yield strength of 300 MPa, what is the factor of safety against yield?

1. Tresca Criterion: max= 58.5 MPa

6.2)5.58(2

300

2 max

ySFS

2. Max Principal Stress Criterion: max= 63.5 MPa

6.43.65

300

2 max

ySFS

Page 18: Mohr's Circle

3. Von Mises Criterion:

9.23.103

300

e

ySFS

2/1222

2/1213

232

221

))8.51(3.65()3.655.26()5.268.51(2

1

)()()(2

1

e

e

MPa

MPa

MPa

8.51

5.26

3.65

1

2

3

=103.31 MPa